
MIT /LCS/TM-50

AN ENCIPHERING MODULE

FOR

MULTICS

G. Gordon Benedict

July 1974

MAC TECHNICAL MEMORANDUM 50

AN ENCIPHERING MODULE FOR MULTICS

G. Gordon Benedict

July, 1974

This research was performed in the Computer Systems Research
Divisiou of Project MAC, an M.I.T. Interdepartmental Laboratory,
and was sponsored in part by the Advanced Research Projects
Agency (ARPA) of the Department of Defense under ARPA Order
No. 2095 which was monitored by Office of Naval Research
Contract No. N00014-70- A-0362- 0006; in part by the Air Force
Information Systems Technology Applications Office and by ARPA
under ARPA Order No. 2641; and in part by Honeywell Information
Systems, Inc.

This Technical Memorandum reproduces a June, 1974, M.I.T.
Electrical Engineering Department S. B. Thesis of the same
title.

An I:nciphering Module for Multics

ABSTRACT

Recently IBM Corporation has declassified an aloorithP1

for encryption usable for conputer-to-connuter or

computer-to-terminal communications. Their algorithm was

implemented in a hardware device called Lucifer. l\. software

implementation of Lucifer for !!ultics is described. A proof

of the algorithm's reversibility for deciphering is

provided. A special hand-coded (assembly language) version

of Lucifer is described whose goal is to attain performance

as close as possible to that of the hardware device.

Performance measurenents of this progran are given.

Questions addressed are: How comp lex is it to implenent an

alqorithm in software designed primarily for diqital

hardware? Can such a program perform well enouqh for use i n

the I/0 system of a large tiMe-sharing svstern?

Author: G. Gordon Benedict

Thesis Supervisor: Prof. Jerome II. Saltzer

An Enciphering Module for Multics paqe 3

CONTENTS

Title Page 1

Abstract 2

Contents 3

Figures 4

Tables 5

Overview 6

Section 1, Introduction to Enciphering 8

Section 2, Enciphering Algorithms ar.d Lucifer 12

in Particular

Section 3, A Proof of Lucifer's Reversibility 17

Section 4, The Multics Software Implementation 19

Section S, Timing Measurements and Conclusions 22

Appendix A, Operation of the Lucifer Hardware 24

Appendix B, 'l'he PL/I Implementatio n 34

Appendix c, The Assembly Language Implementation 43

Appendix D, Introduction to Multics Assembler 62

Bibliography 68

An Enciphering Module for Multics paqe 4

FIGURES

Figure 1, Flowchart 15

Figure 2, Block Diagram 15

Figure 3, Bit Addresses in Registers 25

Figure 4 , Hardware Schematic 26

Figure 5, Exploded Key Bit Ass ignr:tent 44

Figure 6, Key Bit Assignment 45

rigure 7, Convolution Registers 47

Figure 8, Postrotation Convolution Registers 4 8

An Enciphering Module for Multics page 5

TAilLES

Table 1, Key Byte Access Schedule 31

Table 2, Four-bit Permutations 33

Table 3, Convolution Register Rotation Counts 51

An Enciphering Module for Multics page 6

OVERVIEW

This thesis examines the enciphering algorithm recently

released by IBM, Lucifer. This algorithm is described as a

hardware mechanism in "The Design of Lucifer, a

Cryptographic Device for Data Communications", by J. Lynn

Smith; this was the primary source document.

A proof of Lucifer's reversibility is given, that it

will in fact correctly decipher its previously-output

ciphertext when provided with the same key used for

enciphering. Two software implementations are described and

their performance measured.

This paper is divided into five sections and four

appendices. "Introduction to Enciphering" briefly explains

the uses of enciphering in computer-to-computer and

computer-to-terminal communication as a security

enhancement. "Enciphering Algorithms and Lucifer in

Particular" lists some criteria for a good computer-oriented

cipher. The gene:t"al operation of Lucifer is depicted

without much detail. Sufficient detail is however given for

understanding of "A Simple Proof of Lucifer's

Reversibility". This section provides an informal proof

that Lucifer works in that it correctly deciphers its own

ciphertext. "The Multics Software Implementation"

demonstrates how to use the enciphering programs. The final

section, "Timing and Conclusions", presents performance

An Enciphering Module for Multics page 7

me a surements of a PL/ I and a Multics assembly language

version of Lucifer. Appendix A, "Operation of the Lucifer

Hardware", details t he operation of the hardware device

described by Smith. Appendix B, "The PL/ I Implementation",

details a software version in the PL/I language designed t o

simulate closely the Lucifer hardware in its operation and

be readable and exportable. Appendix c, "The Assembly

Language Implementation", details a version of Lucifer

optimized for execution time. For those readers unfamiliar

with the Multics hardware, "An L1troduction to Multics

Assembler" briefly explains those f eatures of the Honeywell

model 6180 processor used by Lucifer.

An Enciphering Module for Multics page 8

INTRODUCTION TO ENCIPHERING

Much attention has been paid recently to comnuter and

data security. Computer security consists o f regulating the

use of computer facilities to only t hose people or those

tasks authorized to use t hem. This has been attempted by

such mechanisms as p asswords , protection rings , and

privileged instructions. Data security is be coming mor e

important with the advent of government a nd corporate

personal-data files . This problem is magnified if the

computer system is available

telecommunications . Gi ven the

to

above

many users

faci lities

via

f or

regulating computer faci l ity use, access control is one

mechanism that is available for preventing . unauthorized

access to data f i les . However , thi s mechanism fails when

data is transmitted over telephone lines , radio links, or

physical (mail or courier) shipments . Such co~munic ations

are easily tapped without the legitimite us er' s knowledge,

except for the case of a courier. Even more ins idious than

the traditional reading of sensitive data is the insertion

of spurious data designed to confuse o r misdirect the

operation of a system . One mechanism for minimizing this

problem is enciphering that data, which protects the data

itself rather than the me d ium of transmitting t he data.

Enciphe ring is a process whereby t ransformations are

made on t he message (cleartext), usua l ly on a bit or

An Enciphering Module for Multics page 9

character level. If the algorithm is known the cipher may

be breakable by analyzing the ciphertext, particularly if

sample cleartext for some of the ciphertext is available.

Since an enciphering algorithm must be reversible to be

useful, a key known by both the message originator and the

intended receiver is also used. Thus if the key is

intercepted or deduced the cipher is now cracked. The

essence of successful cryptology is in devising an

enciphering algorithm which is not possible to crack in the

time-span of the message's useful .1ess, and in keeping the

key secret.

Enciphering helps in preventing insertion of spurious

data to confuse a computer, as well as preventing reading of

secret data. This is because a random message inserted onto

~1e communication link will probably decipher to

unrecognizable garbage. The algorithm implemented in this

paper is so constructed that if one bit is changed in a

legitimate enciphered message, the deciphered text will

almost certainly be unrecognizable. This prevents the form

of interference wherein a saboteur records (taps) the

ciphertext, changes some bits randomly without even

understanding the message, and inserts the text onto the

telephone lines. Unrecognizable text can usuallv be

rejected by the computer. There still reroains the problem

of t he saboteur who records the ciphertext and replays it

unchanged later. This can be extremely damaging to

An Enciphering Module for Multics page 10

unrepeatable or irreversible processes. A method of

avoiding this problem is message chaining, whereby a part of

the previous data exchange is enciphered in t his data

exchange, as a verification field. Thus the same message

replayed tomorrow would contain an out-of-date veri f ication

field and be rejected. The operation of s uch a s ys tem is

discussed at length in Smith's paper.

Enciphering can also be used for computer-to-terminal

communications. The terminal would contain a hardware

deciphering module; the algorithm described here was

designed with this purpose in mind. The user could have his

key on a magnetic card, or he could type it in on the

terminal. The computer would contain a central file of all

users' keys and a software or hardware version of the

enciphering module.

Enciphering can add some security to online files

against the possibility of random hardware or software

failures or physical stealing of backup tapes, disk packs,

etc. Enciphering in this application merely adds another

dimension of security.

This pa per details an enciphering algorithm developed

by Feistel and Smith of IBM for computer-to-terminal

communications. A software version has been p repared,

intended to be used as part of the input/output software or

the network interface of Multics. A command to encipher and

decipher online segments has also been written. A proof of

.l\.n Enciphering Module for Multics page 11

the algorithm's reversibility is also given; this was hinted

at but not proved in the Smith and Feistel papers.

An Enciphering Module for Multics page 12

ENCIPHERING ALGORITHMS AND LUCIFER IN PARTICULAR

There are several desiderata in the design of an

enciphering algorithm. One is needed which is easily

implemented in hardware, yet would provide a great mea3u~e

of security against cryptanalysts especially against

those armed with computers of their own.

Many traditional algorithms have operated by performing

one-for-one character substitutions based on the key. For

example, the "Vignere-Vernam" ciphers use a square array of

characters. To encipher, each character of cleartext is

used as a column index into this array: the character of the

key corresponding to this character of cleartext (i.e., the

nth character of the key corresponds with the nth character

of cleartext) is used as a row index. The character at the

intersection is the corresponding ciphertext character. The

key is repeated as many times as necessary to exhaust all

characters of cleartext. The square array can contain

essentially any characters. These ciphers' weakness arise

from the key repitition and the simple substitution of a

very short message element (a character). Such ciphers are

subject to frequency analysis, particularly if a sample of

cleartext is available. This oversimplified account is •

drawn from "Cryptology, t he Computer, and Data Privacy" by

M. B. Girdansky.

The algorithm developed by Smith and Feistel uses the

An Enc ipheri ng Module for Multics page 13

traditional enciphering mechanisms

strings and modulo arithmetic on

of substitution of

strings. However, by

r epeated cycles , e ssentially a substitution is performed on

not s mall charac ters but 128-bit blocks. Thus such methods

a s frequency analysis require computatio n time on t h e order

o f t he lifetime of t he uni verse.

This algor i thm, called Lucifer, has the

a dvantages of simple hardware i mplementation

added

with

shift-registers and easy reversib ility . A

descrip t ion of t he algorithm follows and then a

i ts reversibility.

general

proof of

The basic transformations used are one-to-one mappings

and exclusive-ors (mod- 2 addition). The input is div ided

i nto equal-sized b locks ; each block is processed comp l e tely

independently of t he others. The following description

refers to 011e blo ck only . It is thus desirable f roM a

cryptograph ic po int o f v i ew to use as large a block size as

possible, since t he mor e bits which affect a given b it of

c iphert ext, the harder will be the job of the crv ptanalyst.

As ment ioned before, a basic weakness in many ciphers i s the

small block size.

A block is broken into the top half and the bo ttom

half . Without chang i ng t he bottom hal f , it is broken into

easily manipulable units called by tes. Each byte undergoes

one of two one- to- one t ransfo rma tions depending upon a b i t

of the key. This collection of transformed bytes i s

An Enciphering Module for Multics paqe 14

referred to as confused bytes, and the operation is referred

to as confusion. Next, each bit of the confused bytes i s

modulo-2 summed with a different bit of t he r.ey. This

operation is referred to as interrup tion. Now t hese bytes

are modulo-2 summed with the top half of the cle artext, the

block previously unused. This is called diffusion. The two

halves are swapped; this operation is called interchange.

Sixteen such cycles occur. One complete

confusion-interruption-diffusion cycle is called a CID

cycle. The schedule for accessing key bits is so arranged

that every key bit is used for both controlling the

confusion transformation and for interruption. The

interchange operation occurs on every cycle except the last.

An Enciphering Module for Multics page 15

Figure 1: Flowchart

es

Figure l shows a flowchart of the operation. Thus the

algorithm consists of:

CID c.ycle
0

Figure 2: Block Diagram

CID eye!~
n

The on l y difference between enciphering and deciphering

is the order in which the key bits arc accessed. Hithin CI D

cycle n during deciphering, key bits are accessed in the

An Enciphering Module for Multics page lG

same order as in CID cycle 15 - n in enciphering. These

operations, explained in general here, are fully detailed in

Appendix A - Operation of the Lucifer Hardware.

This leads to a simple proof of reversibility , as

explained in the next section.

An Enciphering Module for Multics page 17

A PROOF OF LUCIFER'S REVERSIBILITY

Assume there are n + 1 CID cycles and thus n

interchanges. Call output of the CID cycJ A n l MOIi Ml

(where MO is the first half of the message, Ml is the second

half). Call the output of cycle n coll Cl. The double

vertical bar represents concatenation. MO 11 Ml is

transformed in the following manner by cycle n, which is the

last cycle (the first is numbered O). Confusion: A

transformation T (Ml) is applied. Which transformation

depends on a bit of the key (one for each byte of Ml) but

s i nce the same key bits will be accessed for the same byte

positions during deciphering the specific transformations

selected is irrelevent, as long as they are all one-to-one.

Interruption: T (Ml) is exclusive-ored with s pecific key

bits KI. Di f fusion: T (Ml) + KI is exclusive-ored with the

top l"ialf. The total message i s thus T (Ml) + KI + MO 11 Ml.

Remember that on cycle n no interchange occurs. On

deciphering, this output will be fed into decipher cycle 0,

which is the same as e ncipher cycle n. Since this cycle is

exactly the same as t he last encipher cycle, confusion and

interruption will generate T (Ml) + KI just as before. When

this is exclusive- ored with the top half consisting of T

(Ml) +KI+ MO the original MO will be regenerated.

Since the interchange before encipher cycle n occurs

after decipher cycle 0, the output from the int~rchanqe wi ll

An Enciphering Module for Multics page 18

also match. Thus the entire n - 1 interchange and n CID for

encipher is equivalent to the O CID and O interchange.

Thus these cycles can now be effectively stripped offr the

same proof is applied to a Lucifer consisting of n CID

cycles and n - 1 interchanges. Eventually a Lucifer of one

CID cycle and zero interchanges remain; this has already

been demonstrated above to be reversible.

In the actual specific operation of Lucifer, the

diffusion operation does not consist

exclusive-or; instead the bits are permuted in a

of a simple

fixed

the fashion before diffusion. This does not

reversibility, since the ciphertext will undergo

affect

the same

permutation and thus each cycle will regenerate the input of

the corresponding encipher cycle. However, this permutation

is necessary for the cipher to be difficult to break. It

ensures that small differences, say a one-bit change , in a

given message block will propagate throughout all the bits

of that block of ciphertext. Each bit of cleartext

potentially affects every bit of ciphertext, within a

128-bit block.

An Enciphering Module for Multics page 19

THE MULTICS SOFTWARE IMPLEMENTATION

Two programs were written as implementations of the IBM

hardware vers ions of Lucifer. One is a s~raightforward PL/I

program which manipulates the bits in essentially the same

fashion the hardware does. The other is a Multics assembly

language program optimized for speed of execution. Detaili

and listings of each may be found in the appendices.

Instructions on using them are given here.

First, a key must be supplied. This is done by calling

the set_key entry:

declare lucifer_$set_key entry (bit (128));

call lucifer_$set_key (key);

This entry saves the key in internal static. This key

will be used for all future enciphering and deciphering

until set_k~y is called again.

To encipher:

declare lucifer_$encipher entry (dimension (*)

bit (128), dimension (*) bit (128), fixed binary precision

(35)) ;

call lucifer_$encipher (cleartext, ciphertext,

code);

The packed bit array, cleartext, is enciphered and

deposited in the equal-sized array ciphertext. The code

argument will be set to zero unless the dimensions of

cleartext and ciphertext do not agree, in which case code

An Enciphering Module for Multi c s pa ge 20

will be set to one and the enciphering not perf o r med. The

ciphertext and cleartext may be the same v ari able.

To decipher:

call lucifer_$decipher (ciphertext , c l eartext,

code);

This entry is declared the same a s encipher, and its

operation is similar.

One problem with this implementation is that Lucifer

requires a 128-bit b lock to encipher each 1 28-bit block of

the cleartext. If the cleartext is not a multiple of 128

bits the last block could be padded with zeroes, but the

output ciphertext corresponding to t h is b l o c k cannot be

truncated . If it is i nformation will be l os t and it will

not be deciphered correctly. This is because on deci pher

the truncated block will be padded to 128 bi t s (with zeroes,

presumably) which is not identical to t he original output of

encipher before truncation. Therefore the primitive

subroutines lucifer_$encipher and lucifer $decipher require

data to be passed in 12 8-bit blocks.

To make this mo r e palatable to Multics users (to whom

data tends to come i n multiples of 9-bit characters o r

36-bit words anyway) a command has been wr itten to translate

an entire segment . To set the key, type :

set_key -key-

where -key - will be padded or truncated to 128 bits and is

a n octal string .

An Enciphering Module for Multics page 21

To encipher a segment, type:

encipher -cleartext- -ciphertext-

The segment whose relative pathname is -cleartext- will be

enciphered . If the optional argument · ciphertext- is not

given e1e original segment will be overwritten; otherwise

the ciphertext will be written onto the segment named

-ciphertext-.

The input will be padded to a mod 128 bit length with

zeroes, and the output segment will be equal in length.

Note that no additional pages can e ~er be required by this

padding, since a page is 36*1024 bits long, a multiple of

128.

To decipher, type:

decipher -ciphertext- -cleartext-

This comman d operates in the same way as encipher. Since

the ciphertext segment must be a multiple of 128 bits long,

exactly as produced by encipher, the output deciphered text

will be exactly as long. This is because decipher has no

way of knowing how long the original was. This can damage

standard object segments which have significant words

expected to be found at the end of the segment. Note that a

better version of this command would encipher the original

cleartext length into the ciphertext segment.

An Enciphering Module for Multics page 22

TIMING MEASUREMENTS AND CONCLUSIONS

One of the important questions addressed by this paper

is "Is it possible to take an algorithm designed f or

hardware implementation and efficiently translate

easy

it t o

software?". Performance measurements by Fei stel s how that

the Lucifer hardware module enciphered a 128-bit block i n

about 165 microseconds. A version written in 360 assemb l y

langugage for the 360/67 required about 9 milliseconds . The

current Multics hardware, the Honeywell model 6180, executes

instructions at approximately the same rate a s the IBM

360/67. The PL/I version, as expected, was extremely slow

and required 10.4 seconds to encipher 72 blocks o f 1 28 b its

each, or 144 milliseconds/block. The assembly language

version required .4 seconds/72 blocks , o r 5 . 5

milliseconds/block. Multiplying by ten t h e number of blocks

passed to lucifer did not substantially reduc e t he

time/block, suggesting that 5.5 milliseconds represent s real

computation and not overhead. Since Multi cs char acters are

nine bits long, Lucifer requires s . s * (9/128) = 390

microseconds per character enciphered. Current ly t he

Multics I/O system requires about 100 micr oseconds per

character for its processing; thus if Lucifer were used for

all I/O a severe performance degradation could occur.

However this speed probably suffices for t he occa sional use

to which it might be put.

An Enciphering Module for Multics page 23

There are some possibilities for further speed-ur of

the assembly language version: this is discussed in Appendix

c.

An Enciphering Module for Multics page 24

APPENDIX A - OPERATION OF THE LUCIFER HARDWARE

This appendix explains the details of the operation of

Lucifer as it was originally designed, as a hardware device.

This material is drawn from J. Lynn Smith ' s "The Design of

Lucifer, a Cryptographic Device for Data Communications" .

A copy of the PL/I program which implements the

algorithm, duplicating very closely the exact bit flows

within the hardware, is shown and explained in Appendix B.

Several cautions must be made in reading the hardware

diagram given in figure 4. Individual bits of a given byte

are arrayed vertically across registers; bytes are numbered

right-to-left, bits of a byte top-to-bottom. Thus each

vertical column below represents one byte of eight bits.

Therefore if the bytes are adjacent (O, 1, 2 .•• etc) the

storage order in memory (in a two-dimensional array) is

according to the ordered pairs in each bit position shown

below.

An Enciphering Module for Multics pa<Je 25

Figure 3: Bit Addresses in Registers

7 6 5 4 3 2 1 0~ \ .

7,0 6,0 5,0 4,0 3,0 2,0 1,0 o,o 0

7,1 6,1 5,1 4,1 3,1 2,1 1.1 0,1 1

7,2 6,2 5,2 4,2 3,2 2,2 1,2 0,2 2

7,3 6,3 5,3 4,3 3,3 2,3 1,3 0,3 3

7,4 6,4 5,4 4,4 3,4 2,4 1,4 0,4 4

7 , 5 6,5 5,5 4,5 3,5 2,5 1,5 0,5 5

7,6 6,6 5,6 4,6 3,6 2,6 1,6 0,6 G

7,7 6,7 5,7 4,7 3,7 ,7 1,7 0,7 7

An Enciphering Module for Multics page 26

Figure 4: Hardware Sch ematic

- - ,--

...

~31.'5 1-?3~ '\.0 ~.1....NO',
NOi .L\J "'J ~ii.:!)-/\! '-;J 'l::ll

I I I I I

)~~ :ttttitl:±=±---t-----4
~ ll ..

ttt-"++--+-1--1--1+.1') f,
--

0 Ji
- --

VI - -L.... - -i..- -

~ 0 0 , 1 "< r-r::: ::r U) -...o t-
J..J
1-
, '

'.d
~}

V:
")

-~t--

Ii It 1i 11
.___ - ,._ - .._ -~ ;___ -

'-.)
(+.J
Gt

f---

u n n rt i

An Enciphering Module for Multics page 27

Note also that the author assumed that high-order bits

are transmitted first; the Smith paper does not specify

this. Thus bits are first loaded into position O of the

convolution registers (top half), then po,ition 1, 2 etc. on

to position O of the source registers (bottom half).

Each of the registers shown is connected as a circular

shift-register. In addition, bits can be shifted from the

convolution registers to the source registers and back for

the interchange operation.

A complete enciphering or deci~1ering operation for one

128-bit block consists of sixteen

confusion-interruption-diffusion (CID) cycles, with an

interchange cycle in between each CID cycle for a total of

15 interchange cycles.

At the start of a CID cycle, byte O of the key is

copied into the transformation-control register.

register will supply eight bits for controlling

confusion operation; each bit will correspond with one

of the source registers.

This

the

byte

A CID cycle consists of eight shifts of the source,

convolution, and transformation-control register (TCR). The

TCR shifts vertically upward; other registers rotate

horizontally, byte n going to byte mod (n - l, 8).

An individual shift of a CID cycle occurs as follows.

Byte O is taken from the source registers. It flows into

the confusion box along with bit O of the TCR. A one-to-one

An Enciphering Module for Multics page 28

transformation is applied to this byte , according to the bit

from the TCR. The output from the confusion box is an

eight-bit confused byte. Each bit of the confused byte is

exclusive-ored with some bit of the convolution registers;

note that no two bit positions are in the same byte. Each

of these result bits is exclusive-ored with some bit of the

rightmost byte of the key; this constitutes the interruption

function. The result of this operation is stored in the bit

position of the convolution registers to the right of the

pair of exclusive-or gates. Note that diffusion occurs

before interruption, but this is immaterial since mod 2

addition is commutative. As the result bit is stored in the

convolution registers, the convolution registers, source

registers, and TCR undergo a shift. Thus the bit that

previously was to the right of the exclusive-or gates in the

convolution registers is not destroyed; it is shifted right,

and the result of diffusion occupies its old position.

These shifts are executed eight times for each CID

cycle. In addition, during each shift t he 16-byte key

registers each rotate right one position with one exception:

during the last shift of each CID cycle the key register is

not rotated during encipher; during decipher the key

registers rotate two positions after the last shift. Thus

seven key shifts occur per CID cycle on encipher and nine

key shifts occur per CID cycle on decipher. This, coupled

witl1 an initial shift of nine positions before processing

An Enciphering Module for Multics page 29

any · blocks, constitutes the only difference between

enciphering and deciphering.

When eight shifts of one CID cycle are complete, the

source registers will be back to their original position.

The convolution registers are also restored except that each

of its 64 bits has been exclusive-ored with exactly one key

bit exclusive-ored with exactly one source bit. This is

guaranteed by the placing of the gates in a

position for each bit of the confused

registers have been rotated ei~ier seven

different byte

byte. The key

times (for

encipher) or nine times (for decipher). The TCR has yielded

all its bits. An interchange cycle now occurs, unless this

is the last CID cycle. · This consists of connecting

positions O and 7 of the source registers with positions 7

and O of the convolution registers, respectively; eiqht

shifts now occur. This merely swaps the contents of the

registers.

Now the next CID cycle begins. A new key byte is

fetched into the TCR. On CID cycle 1 this will be byte 7

for encipher and byte 2 for decipher of the original key.

It is important that the key bits be accessed in the

reverse order (between CID cycles) when deciphering as

compared to enciphering, but in the same order within each

CID cycle. This is to ensure reversibility, as exrlained

earlier. In addition, for cryptographic strength each bit

of the key should be accessed an equal number of times:

An Enciphering Module for Multics page 30

eight times for interruption and once for transformation

control of one byte of the source registers . The following

method of accessing key bytes was thus devised. If there is

to be an encipher, the key is initialized by loading it into

the key registers. If a decipher is to be performed, the

key registers are then rotated so that the first CID cycle

will use bytes 9 to O rather than Oto 7. After each CID

cycle there will be no key shifts on encipher , but there

will be two shifts during decipher. This will cause the key

An Enciphering Module for Multics page 31

bytes to be accessed as shown in table 1.

Table 1: Key Byte Access Schedule

CID cycle encipher decipher

0 0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 0

1 7 8 9 10 11 12 13 14 2 3 4 5 6 7 8 9

2 14 15 0 l 2 3 4 5 11 12 13 14 15 0 1 2

3 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11

4 12 13 14 15 0 1 2 3 13 14 15 0 1 2 3 4

5 3 4 5 6 7 8 9 10 6 7 8 9 10 11 12 13

6 10 11 12 13 14 15 0 1 15 0 1 2 3 4 5 6

7 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15

8 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8

9 15 0 l 2 3 4 5 6 10 11 12 13 14 15 0 1

10 6 7 8 9 10 11 12 13 3 4 5 6 7 8 9 10

11 13 14 15 0 1 2 3 4 12 13 14 15 0 l 2 3

12 4 5 6 7 8 9 10 11 5 6 7 8 9 10 11 12

13 11 12 13 14 15 0 1 2 14 15 0 1 2 3 4 5

14 2 3 4 5 6 7 8 9 7 8 9 10 11 12 13 14

15 9 10 11 12 13 14 15 0 0 1 2 3 4 5 6 7

The byte of the key used for transformation control is

in the left-hand column. Note that the decipher schedule is

the same as the encipher schedule read upsidedown, but

within a CID cycle, read horizontally, lJytes are accessed in

the same order. Also note that the key registers will be so

positioned after sixteen CID cycles ready for the next

An Enciphering Module for Multics page 32

block: in byte O for encipher, byte 9 for decipher.

The exact nature of the confusion operation has not

been explained yet. It is not important particularly what

it is, as long as it is one-to-one and sufficiently random.

It works as follows. Each byte to be confused (from the

source registers) is split into two four-bit halves. If the

key bit from the TCR for this byte is 1, the two halves are

exchanged; otherwise no operation is performed . Next , each

four-bit half undergoes a one-to-one mapping . The method in

hardware used decoders, encoders, and permuted wires, but

effectively a table look-up was done to associate with each

of the sixteen bit combinations a unique four-bit

replacement. The two mappings for the two halves are

different; the one for the top half is called SO a nd the one

for the bottom half is Sl. Finally an 8-bit byte is

generated by permuting

mapping networks. The

the eight wires

result of this

from these two

entire confusion

operation (and the way it is done in the software versions)

is to consider the key bit concatenated with the source byte

as a nine-bit index into a 512 element table. Each element

is an eight-bit confused byte. This is explained in

Appendix B, the PL/I implementation.

An Enciphering Module for Multics page 33

Table 2: Four-bit Permutations

input so Sl

0000 1100 0111

0001 1111 0010

0010 0111 1110

0011 1010 1001

0100 1110 0011

0101 1101 1011

0110 1011 0000

0111 0000 0100

1000 0010 1100

1001 0110 1101

1010 0011 0001

1011 0001 1010

1100 1001 0110

1101 0100 1111

1110 0101 1000

1111 1000 0101

An Enciphering Module for Multics page 34

APPENDIX B - THE PL/I IMPLE~1ENTATION

The PL/I implementation is very similar to the hardware

design. However, instead of rotating data toward the low

address end of each register, index values into fixed arrays

are decremented and wrapped around to the high order end.

Note very carefully that each byte shown in the hardware

diagram, those bits arrayed vertically, are rows of

two-dimensional arrays. Thus if a conventional PL/I array

is printed it will appear transposed as compared to the map

of the registers. For consistency within this document all

arrays will be transposed from the conventional order so

that they appear identical to the hardware bit orderings.

Instead of doing 15 interchanges (unlike most other

operations, a real movement of data occurs on interchange)

16 are done. This last interchange is undone by copying the

source registers first into the result block followed by the

convolution registers. This is to avoid checking within the

loop for the special case of the last execution. Similarly

rather than skipping a key-shift cycle on encipher and

performing an extra one on decipher each CID cycle, eight

increments of the key index interruption_row are always

performed. After a CID cycle is complete, a fixup variable

either one or minus one is added modulo 16 to

interruption_row; this variable is -1 for encipher and 1 for

decipher.

An Enciphering Module for Multics page 35

The program operates as follows. It copies the first

half of a given 128-bit block into the

convolution_registers; the second half is copied into

source_registers. The interchange_index loop counts the

CID-interchange cycles, sixteen in number. Within that loop

a CID cycle is performed by assigning interrup tion_row to

ks_row; interruption_row shows which byte of the key will

next be used for interruption, ks_row shows which byte will

be used for transformation control. This assignment is the

equivalent of copying the next byte of the key into the TCR

at the start of a CID cycle. Now the data row loops eight

times, once for each byte in source_registers. The entire

confusion operation is implemented by a 512 byte table; the

first half for key bit= O, the second half for key bit= 1.

Thus the confused byte is found by indexing this table with

the key bit identified by ks_row and data row concatenated

with the source byte identified by data row. Now

convolution index loops eight times, once for each bit in

the confused byte. Note that this is all done in parallel

in the hardware version and in the assembly language version

described in Appendix c. Each bit of the confused byte must

be exclusive-ored with some bit of the key byte identified

by interruption_row. J ust as the key interrup tion wires

were permuted in the hardware, so key_table tells which bit

of that key byte is supplied for each bit of the confused

byte. This interrupted bi t is now exclusive-ored with some

An Enciphering Module for Multics page 36

bit of the convolution registers. The register in which the

bit lies which will be diffused (the one to the righ t of the

exclusive-or gates) is the one corresponding to the source

register from which the interrupted bit was derived . The

number of this register, the column in the PL/I sense

(although it is horizontal on the diagrams) is therefore

convolution index. The byte in which this bit lies is given

by a table, convolution_table. These positions rotate right

around the registers, one position for each shift of the CID

cycle, once for each incrementing of data row . Therefore

the correct convolution_table entry for this bit of the

interrupted byte must be mod-8 summed with data row: this

supplies the byte or row number of the target bit .

After this byte is complete, interruption_row is

incremented mod 16 to simulate rotating the key reg isters

once to the right. Now data row is incremented to have the

effect of rotating the source, convolution , and

transformation-control registers.

After the eight loops of data_row, interruption_row

must be readjusted to si~ulate only seven key shifts on

encipher but nine shifts on decipher. As explained b efore ,

a fixup variable either one or minus one is mod 16 added to

interruption_row; this fixup variable is set at the entry

points. The two entry points also set the initial

interruption_row, either O for encipher or 9 for decipher.

After sixteen loops of interchange_index , sixteen

An Enciphering Module for Multics page 37

CID-interchange pairs have been performed. The block is now

copied into the result field; the source registers are

copied first to undo the effect of the extra interchange

cycle.

fin Fnclpherlnp, ttorlule for Multic s PiH'P 38

/••*•••
• • r0ny rlP'ht (c) l 'l7t, , t' ;,ss;,rh11sP tt s lnstTt11tP nf Tech n <' l <'P'Y

an" l'nnf"y>•l' ll '"f"r,-,;,tlnn S y'-tf"rn<;, In<".

•
···•!

/• Thls r,o-'11 l P Jr,nlPMPnts thl' l.urJfp,- P n ("inhprlf' P' ;, lPorlt f-,., ;,s .<ove l0r,p-' hy l l' t '.
lnltl;,lly corlP~ hy r . ~or-'0n Rpop"lrt nh/ 2~/ 74 ;,t tt-p r0r,out P r S ys tPr~ f'P SP?rr h -'lvlslnn of Projec t 1'/lr • /

SPt_f•py:

"Pcl 11 r P
'1Pc 111rP

nrocerlure (a_k,,y); /• this pntry 11sP" t 0,tp ll lurlfpr wt-;, t ~ P Y tr u s e•/

a_kpy nar;,,.,P tPr hit (l iP);
kpy hlt (P) rllrPnslor (n

.<o ,';1t;i_r010 ■ 0 to Vi;
rlo ks_r0w 2 n t<' 7;

suhstr (kPy (,.,, t ii

/ • k Pv usPr t-;,s •/
1 5) lrtern;, 1 st11tlr;

!• It" r;, tn t hr 11 f"l"'\ l lJr"'n S

!• itPr?tP th r11 Y O\i''c; of

_rnY,), 1-s f"{'\\t/ • 1 , 1) 2

suhs tr (11_kPy, 16 • 1-:s - r"\I'' • ,';, t ;, - f"('l\'J

pnrl;
enrl;
rPturn;

0f 1· ev •!
1,py •!

!• tr;,r<;OOSP

• 1 , l) ;
•!

/• nec l11r;itions for encipherfnP' an-' -'P<"l nhPrlnP' PntrlPs f0 llo~ •/

<'ecl;,re

,'p(' 1 ;l rP

-'P<" l ii rP
,'(>('1 ;,rP

,'p(' j ? r P
-'PClil rP

ripe 1 ;irP

(;,rl.<r,
hno 1 ,
,. 1 ri ,

fJ x prl,

"'°"' s trln",
suhst r) htif l tlr;

(S<'ll r<"e_rf>P 1 <;tPrs, /• thp SOP r r 0 rPP'l StP rS (hott<''" t- ;,1 f) •/
<"Onvol11tlon rPPi stP rs l / • r0nvol11tl0n rPl'lster s (t00 h;, lf) • /

.<ir,Pn sTn0 (0: 7l hit(~) un;, l iPne-';

tPxt_nositlnn ffxp-l hl0;,ry prP<"lslnn (?h, fl); /• h 1ts nf irr,11t st rlnP' prn<"PSSPrl so far•/
(ln t!'rct-;,nl'P_ln"PX, /• ('nllPtS lntprrh;,r,pp ry<"l"s en - 15) •/

rir1tc1_ro\i'1, /• v,t--~t rn, , o~ c;o11rrP ('Ir rrir,vnl11t lf'f" r Pf"lc;tPr nf'\·1 ,..,urH,fnv • !
1,s_rnv,, /• w► .. ;1t rrw• n-'=' t•ny """"W 11c. Jrq, e",.- tr~ns4='nrr¥'rlt '""' r0rtr<'1 • /
c-onvolutlon_in-',ox, /• wt-lrh hlt n" ronf"""" h ytr> (rl11 rln.., nnp rir') ('nnv0lvlnv nm·1 •/
c-nnvol11tlon_r0w, !• -,hi<"" r os, of ronvol11tlnn r,ovlstPrs rr,nt;,ln~ x0r l'iltP (h;ir<'w;,rp h;,d·) •/

l nterru r, t lnn rns,, / • row of lry 11sf>-' "0r lntprr11ntl nn-.<!f'11slnn •/
eltl-Pr_nne_nr_,.,,n11s_nrp) !• -1 f o r pnc-i0h,or, J fnr "e<"lph,or •/

fi xP" t-ln;, r y;

('nnfusP-'_hytP hit (RJ;
temp_rPPistPr hit (fih) ;

I* n11to11t of <"nnf11sf>r (1 hy t P) •/
/• usf>" ,.,n ,-ply fnr s1·•?nn ln " s011r<"P ;,n-' <"nnvol11tlon revister s •/

c-onv0 l11tion_t11"IP Al,.,,Pnsl0r (0 7) /• ~,t-•rt- hit pnsitlnns tn "'Un<' 1n r-nnvo lutinn revistPrS • /

/In rnrlr,hprinr 1•0r<ulp f0r l'ultlr-s "ilf'P 30

r<pc 1 ;,rr
initi;,1 (7, f, ?,

vny_tahlp r<;,.,rnslon (0
initl;,1 (2, ~, h,

] , ~,
: 7)
", ~,

0, 3, I,) <;t;,tir lntprral
/• "IVPS r,prm11t;,tinn ,...,

1, 7, r.) lrtprr;,l statlr

'i~r" hin;,ry nrPr.lslon (3);
vpy hi ts 115pr' 'nr lntPrrunt ion •/
'ixrr< hJn;,ry prPrlslnn (3);

0;irr l11Ap rnn<11slnr_t;il-lp;

onr I r,hpr:

Aprl;,rp

"Pr I ;, rp

r<pc 1 ;,rr
r<pr l arP

/• nnrlr,hprln" pntry •/
P.ntry (a_in, ;,_nut, ;,_r,nr'p);

(;, in, / • rlP;,rtPxt (r! nhprtPxt
'" r a - out) ,. J mp n s I on (•) h i t (1? R) n;, r ;,Mp t pr;

(a-In nvly h;,sprl (;,r<.-lr (;, ir)) ,

r't>r,Jnhp,-) •/
/• r I o► p rtPxt (rlPartext ,,...,. rlrcinher) •/

;,=out_ov ly hasprl (ar'r'r c'i_011t))) h it
f"' P SSi'"P 1Pnrth flxP" hfr;,ry nrrrlslnn
a_ror<n 7 fxp.-l hln;,ry nrrrl<;lon (35);

(l"'PS<;;,c,p lPnl'th) llf'i"'l I ,.nf'!r<;
(?h); -

/• stat11s r""" • !

Pltlpr_<>nP_or_mlnus_onr = -1; /•

lntP.rruotion r ow• O;
P:O t" in i n; -

I•
I*

af"'nunt to il,.,. ;,<ter a rJ n r.yr. 1 p to
I f'tPrr11nt l on_rm,,, hpr;,11sP Pnc I nhpr rPsusP. s
"I r s t hytp or L•py to l!SP I s hyte ('I •/

r.nr''l"'"n rnr<P * /

1;,st hyte •/

rlpcJohPr: /• rlrrlol-prlf'P: Pntry -- notp clnhPrtPxt Is first ;,r~ •/
entry (a_lr, ;,_n11t, ;,_rn"r);

j"' r:

Pithpr_onp_or_r,inus_o,,p = l;

Jntprruntlnn_r"w • Q;

/• svln;, hyte "f 'PY w► pn "erlnhpril'ft for p;,,-h rto ryr l e • /

/• fir st hytP nf l•py to IISP ,,,h on "rr.lr,hprJnp •!

!• r0m,.,nn sprtinn •/
r1PSSi1P'P_ l enp,tt, =,.,,.,(;,_In, 1).]?P; /• ,,,, r ,...r
I< "'"' (/'I 011t 1) • I;>P -= "'"Ss;,"r 1 Pn"t" thpn "n ·

~_coAp 2

1

}; - '

"I ts I n Jr, nut •/
/• ~;, r" ;,t thi s•/

rP.turr,;
en.-l;

/ • f"';,ln l o"n fo l l ows . this consists of SPo;,r;,tP!y ;,n" in"Popn.-lpntly ornress l nc, e;ich I?R-hit
hlork of lr,nut text (m;,y "" r lp;, r - nr clnhpr-tPxt). o;,rh hlorl· ls n rorPssp.-l hy

I ii intf'rrh;inp,p cyrles ln tPrSr>Pr sP" 1·dt" I F r1r (rnn'11sl"r-intf'rr11ntJo,,-r<lff115Jr,n) ryrlPs.
ro,- MOrP "f'tillls see l " I' n.:>nE>rs .:> r" f"'Y t"Psls. •/

"o trxt_oosltlnn • 0 hy l? R wl-flp (tPxt_nns l tln" c f'lPSSilP'P_ l Pnl'th); /• f'i1 C ... h l or~ •/

st rl n,. (ronvr,l11t•n,,_r,.,.lstors) = s11h<;tr (;,_;,,_,...vly, tPxt_o"s'tlnf' + 1, F4);
st r I np (snu rrP_ r,,., I stprs) = Sl'hstr (i't_l ,,_,...vl y, tPxt_nns It Inn + F~, li4);
"o Jntorrh;,n,.p_ln"rx = n hy 1 tr I~; /• IF lntPrrh;,n.,P ryc lp s • /

vs_rn1• • lnt,-rruntir,n_rN·•;

.-lo r';,t;i_rnw = (\ tr, 7;

/• tr;,ns"r,rM;,tlnr, rnntrol i s f irst hytf' o" 1-py
usp.-l for lr,tf'rr11ntlor, In ti-ls rtn ryc l e •/

/• ornrrss P hytes o" lnnu t E>.:>rh r1n cycle•/

ror,f11sPr' hvtP c /• ! n(' I· 11n '" t;,hlp to r-rt ronf11slor, • /
ron711slnr,_t;,"lr (flxpr< (s11"str (l•pv (l-s_rN·1), r<;,ta_rne, +], I) II

/In Fnclpherln~ t'orlule for l'ultlrs
PaP;P hO

e n rl;

sn11rrP_rPp, stPrs {rl;,t;,_rm,,), fl, O));

rln r.nnvnlutlon_irrlpx = n tn 7;
/• cnrvnlve e;ich hft of ronfuserl hyte •/

Pn";

Cl"lr>vol11tlrr_rn1-1 = /• for Par" r.ycle

convolution nnsltll"lrs rot;ite ;irnunrl ref7isters •/
JT1nrl (r.nrvnlutlnr_tahlp (r.nnvnlutlnn_lrrlpx) + r';ita_row, P);

s11hstr (rnnvnlutlnn_r,,f7istpr s (c0rvnlutlnr_row), ronvol11tinn_fnr'ex •1,]) =
hnnl (s11hstr (1-'.Py (lrtf'rruntlnn_rrw),
kPy_t;,1--lp (rnnvnl11tlnn_lnr'px) • l, 1),
1--nnl (suhstr (cnrr115pr'_hyte, r.nnvnl11tlon_lnr'px +l, 1),
s11h s tr (rnnvnl11tlon_rP.P'i s ters (ronvol11tlon_rm·1),
cnnvrlut'nn_lnrlpx •l, l), 11 n11n 11 ...), "nlJO"h);

lrtPrruot l on rm•• = /• ;,r'" 1 i=nr nPxt l•ey .._yte l'llth ~·•rc1oc1rnunrl • /
morl (l~tPrr1tntlnn_rn1,, • 1, lF);

lntPrruntlor_rnv, = /• nr enrlol--pr, ,..,.. 1--;,rl· 1 hytp, r'pr.lohpr, 51,fo J •/
rt1rHi (lrtPrruotlnn_rn1-J • pltl--pr_nnP_nr_JT1irus_nnP, lf-);

/• Sl'lclf'l source anrl convnlutlnn rPplstPr s •/

Pnrt ;

enrl;

s trlnp.; (tp,-,o_rPf7lstpr) = strinf7 (sn11rrP_rPpisters {•));
strin.P' (sn11rrP rp,-.isters {•)) = s trini>; (convnl11tlor rr> l" i s ter s (•));
strlnp.; (cnnvnlutlon_ ref7 1 s ter s (•l) = strln ,-. (teJT1n_rPpi s t e r);

s u hs tr (c1_ out_n vly,
s u,-. s tr (c1_n11t_nv ly,

t ex t _nns lt lnn • J, f.h) = st ri n f7 (s r11 r rP_ rp17 f st e rs) ;
tPxt_nn s ltl n n • r-~ , r 1i1 = st rl rP (ronvn l ut l nn_r Pf7iste r s) ;

;,_r.nrl e = n;
rPturn ;

enrl SPt_kPy;

/In ,nc in'-e rirP. Mo'1ule for t•t1ltir-s r,af'P hl

/* 11•r1 u n~ r11~ c0n"usl0n_t;,'-1e.irc1,n11
Tl-l s i...,r,1£>,-,ents tf->e conft1s ion on£>r ;, tl0n of luri"Pr.
It s '-0111'1 orly f-,p use'1 hy lurffpr.nll *I

'1pr-J ;, r e cnn f t1sl o n tahl!" irltlnl (
"lll OlOlllr,h, "llOlllll"h,
"11()0001) "h, "11000]) 1 11h,
" <' (ln lO]ll]"h, "lO()Jl]f"J"'-,
"10000001 "h "10000101 "h
"n11101n1 11< 11 11111101 11<
"11100001 11h, "111no1n1"",
"nn11r11n"h, "llllllllO"h,
"l<' lOOOlO"h, 11 1n1no11n"h,
"OOOlOlll"h "10011111 11 h
"lOOOOOll"h' "lOOOOlll"h

1

"nOJlf"l 11 11< 11 10111111 "<
"101000ll"h, "10100lll"h,
"nf"Ollll()O"h, "lOOlllOO"f-i,
"100f"OOOO"h, 11 10000100 11 h,
11 01n101no"h, "11n11100 111-,,

"llOOOOOO"h, "11000Jl'l0 11 h,
"011 lOlf"O"h, "111 ll lOO"h,
"11 l<'OOOO"h, "111no1no"h,
"1111101Jl'"h, "lllllllO"h,
"llll'l"Oll'"h, 11 111no11n"h ,
"flf1010ll'l"h "Hf1111JO"h
11 1nrooo1n"h

1

"1f"non110 11h'
11 rr11n1n1 11< 11 1n1111n1 11h:
"lOlCOOOl"h, "1<'10010l"h,
" C1 l"lfllf"l"h "llOlllOl""
"11nooon1 11,< "llOOOllll"<
11 n111r11J"h, "Jll]JJ]J."h,
"ll]OOOlJ"h, 11 111no111"",
"00110]/l()"h, "1011 l lOO"h,
"1n1nooon 11 h 11 1n100 •rn 111-
"0101n11n11,-,; "lHllllO"h;
"1100001n"h, "11onn11o"h,
"ClOlf"Ill"h, "llnlllll"h,
"llOOOOll"h, "llOOOlll"h,
11 000101n1"h, 11 1no111n1"h,
"1onoooo1"h, "lOOOOlOl"h,
"n111n1n1"1-, "111111n1 11 h
11 11100001"< 11 111001r1 11,<
"fl011('1110"h "lOlllllO"h
11 1n10001n 11h: 11 10100110 11<
"onr1n111 11 h, "lflOl)lll"h,
11 1nnooo11"h, "lOOOOlll"h,
11 nn110111"h, "101111 ll"h,
"1n1 o no11 11 1-,, 11 10100111 11 h,
11 0001r.1nn"h, "lOOlllOfl"h,
"10nooooo"h 11 1oono1on"h
11 n1n101no 11 h: 11 11n111no"<
"11000000"h, 11 11ono100 11 h,

"ll f" f'llll"h
"l 1n 11 1n1 J 11h

1

"100()110) 11 h
1

"1()0('1100l"h'
"llllll10l"h

1

"I llf11001 "<
"lfll nu IO"h,
"1n1n101n"1-,
"lOOOllll"h,
"lflOOJ('ll l "h,
11 1r1n1111"",
"1n1 n1nu "h
11 1noo1100 11h'
11 1nno1000 11 h:
"11nn11no"h,
"110()J('(l(1"1-,
"111011nn 11<
"l l lf'lf"fl0 11 f , ,

"lllf'J 110"",
"ll lf"lfllfl"t-,
"J(1(1()J) lfl"h,
11 1onn1n1n"h,
"Jf110])())"",
"J nJ ~iOOJ "h,
"JJ'1()JJ()l 11 h,
"l]f"O]OOJ"h,
"l]]ll]llJ"h,
"lllfll()JJ"h,
11 1n1011on"",
11 1n1n1 nnr"'"
11 11no1 ll O"h'
"l 1no101" 11,<
"llOOllll"h,
11 unn1011 11 h,
11 1rnr11 J n1 "h,
"1r>nr1no1 ""
"lllf'llnJ"h:
"ll 101001 "h
"1'1)011]0 11 h:
"1<'1n1n1r"h,
"lf'OOllll"h,
11 1nrn1 Oll "" 11 101.0111 J "<
"10l"lllll"h,
"lOOOllOO"h
"H'no1noo"":
11 11no1100 11 h,
"J 1 rn1non 11 h,

11 11n1noJJ"h,
"n J n n J n 1 1 "h,
11 1nn10001 "",
11 nono1001 "",
11 111. 1oon1 "h,
11 1'110100l"h,
11 1011(101 """,
"00101010 11 h,
"lnOJ()Oll"h,
11 nnoo1011 " h
"1<'1]0011"<
11 nn1 Olf"l l "h,
11 1no10000 11 h,
11 ooon1oro"h,
"l](lJOOO{l"h,
"OlOOlOOO"h,
"llllOOOO"h,
"n11r1noo"h,
11 11110010 111-,
"nJ 1n1n1.r"h,
"lf'Ol0010 11h
11 oonn1(lJ 0 11<
11

] f'l.1()001 11h,
11 001(1] no1 11h,
11 11 n10001 "h,
11 ()Jf1'1JOOJ"t-,
11 1111no11"h,
"OJ 10]0).1 "h,
"1"11 nnrrn""
11 nn1 n111on 11

.,;

"11010010 111-,
"('1Jno1n1 (l"h,
"lJOlOOJl"h,
11 r1nn1011 "h,
"1rn1nno1 "h,
11 onno1001 11 h
"1 1 11 on n 1 "h:
"('111'1100l"h,
"JnJ lOOIO"h,
"Of'l('l()JO"h,
"lnilJn(lJ l "'·,
11 00001011 "h,
"101 JO(lll "h,
"('OJOl(lll"h,
11 1nn10000 11 h,
11 onoo1000 11 h
11 11 010000 11 <
"OJ no] 0(10 11 h,

"11n1 r 11J"h
"n1ni1n11 11 h'
11 1nn101n1 " h ,
"0(1 011 llOl "h,
"JlllfllOl"h

1

"OlJl]OOl"h
1

11 }01] (1 1)0 11h
1

11 00111n1n 11 h'
"J nn1 Olll 11h

1

"non11011 11.,'
"lOllf'lll l "h'
11 no111011 11<
"10010100 11h,
11 00011('00""
11 11n1n100 11 h'
11 01011nn(l"h

1

11 1111n1no 11<
11 1'11})()0() 111-,

"llllOllO"h'
"n1111n1n 11h'
11 1noi('l11.n 111-'
11 rnr11nin 11h'
"Jl'llf11f'l"<
"OOll]f'Ol""
"ll fl} O] (lJ 11 h ;
11 0) llJl(lO] ""
"111]1']11 111-,
11 ni 111ni1 11<
"lOJJf'lnO"",
11 nn111oon"h
11 11 nJ "l lfl 11 h'

""l"ll01'1"h'
"llflJOlJl"h

1

11 r1011n11 111-:
11 1nn1r101"h,
11 nr r11001"1-,
"ll)Jf'JOl"h,
"OJ ll 1on1 11 h ,
11 1n11n11 n"<-,
"nn111n10"" ,
"1n n 1r111 "h,
"O(l0110ll"h,
11 1n11n11I"h,
11 00)1l()J1 11 h,
11 }f1()10100 11 h,
11 nrn11onn"h,
"l)l'll'J OO" h ,
"01n11r on 11 1- ,

11 n1n 11J l l"h
11 n1 r, n n 111"<
11 nn n111 0 1"h
"O OOOOl fl l"h

1

11 r11111n1 11 <
11 n11no1n1"" ,
"'lOlllllO"h,
11 on1 no11n"h
"nOOlllll"h:
11 noono111 11 h
11 ro111111 11 <
"OOlO Olll"h,
11 nnn11100"h,
11 nnnoo1oo"h,
"Ol'llllOO"h,
"n1ono100"",
11 n1111100"h,
11 r1100100"h,
11 n111111n"1-,
11 011no110"<
"nOOllllf'"~,
"OOOOOllO"h,
11 nn1111n1 "h,
11 nn1nn1n1"",
"Ol<'lllOl"h,
11 n1non101" " ,
""1111111"",
"('IJJflOlll""
11 f"n1111no 11 <
11 nn100100 11h,
"r'JflllllO"h
11 n1noo110 11

,-,:

"f'lOllllJ"h,
1101000111"",
11 nnn111n1"1-,
11 nnono101 11h
"n11111n1 11 h:
11 011no101"1-,,
" OOlllllO"h,
"nOl(lOllO"h,
"f10'111 l l l "h,
11 nonon111" 1-, ,
11 rn111111 11 h,
11 no1no111"h,
"nno111oo"h,
"r,OOOOIOO"h,
11 n1n11100 11 h,
11 n1 noo1 nn"h,

"ll Ollfl l l "h
11 n1no 1 111 ,,.,,
"1 00 1 1 <' 01 ""'
11 nooo11n 1"h

1

"llll l '10l"h'
" nllOllflJ"h,
"l Ol l l<'lO"t-

1

"O Ol Ol l l O" h,
"lOOll<'ll"h,
"nOO Ollll"h,
"lOlllrJl"h:
"<'0101 lll"h
11 1001 l "00"<
"000 011 00""
"11 011()0f' 11 h;
11 r10011on 11 h
"lllJJ OOO"h

1

"011 0] 100 11 1-,
11 11111rnn 11 h:
11 n11 0lllf'"h,
11 1001 lf'J'1 11 h
"nOOOlllf'"h;
"10111001 "h,
"f"OlOl]Ol"h,
11 11 0)]1'01 11 h
"n1no11n1"<
11) ll lJ nJ1 11 h

"OllOllll"h
1

"101 ll OOO"h'
11 r o1011 o n 11 <
"1101 lOJn"h,
11 n1no111n"h,
"1101J01l"h
"nl001 l l 1 11 h '
11 10011no1 11 h:
"l'OOOl l OJ"h,
"lllll OOl"h 11 <'11011 0111 h

1

"1 0111 C1 10" h :
11 00101110"1-,,
"1001101 l" r ,
"OOOOllll"h
"101110ll"h,
11 no10111 1 11<
"10011n on11 1-,
11 nooo11ro 11h:
"11 0 1 lf'O O"h,
11 n1 0011n O" h ,

" 0 1oono11"1- ,
11 n 1 r 1r>OJ J " h ,
"rorionon 1 "" 11 0001 000] "h:
11 1' 110 000] " h ,
"n111o noJ "h
"'10J(l00J()"h'
" (10 11 00 1 n 11,<
" <' OO OO(ll l "h,
"0001 Ofll l "",
11 001 ro o11"1-,
"001) 0()11"1-,
"OOOOOOOO"h ,
11 no o1 o o oo"h,
"(ll00'1(l (' 0 11 h,
"<'lOl OOOO"h,
"Oll 00 (lf10"h,
"(llllOOll('"t-,
"f'llfll'OlO"h,
"OllJ OOlf'l" h ,
"(l00000}() 11 h ,
"OOOJ(lf'l 0"",
"001 <'"'l('ll"",
11 nn11 ro nt"h,
11 r1nonor,1 " " , 11 n1(l1no o1"h,
11 n1Jono11 "h,
"('ll}J () ()JJ" h ,
11 001nnonr, 11 h,
"no11n0on11 1-
1101000r1r11h'
"nlOlflOJI'"":
11 0100001 l"h,
11 01 nJ nn1 J "h,
"ll0(1Q'1() 1'l] "h,
"('10010'10] " h,
11 n11ooon1 111-,
"011 l<'OOJ " 'i ,
11 0010001 0 " h ,
"OOll CO JO" h ,
"0000001 l" h ,
"OOOHOl l"h ,
"OOlOOOll"h,
"00110011 " h ,
"('IO OOOOO O" h ,
" OOOJ1' 00'1" h
11 01onnno o"h;
"11]01 000'1"h,

fin Fnr.lphering t'orlule f0r t 1ultir-s Oill7e l12

"Olll()l OO"h, "lJlllJrJO"h, "lllOllOO"h, "lJ llOO(W"h, "1J ll 01()0"h, ""ll lllOO "h ,
11

111nnonn 11 h, 11 111nn1no"h , "1110100()"h, "()JlO lOOO "h, "Oll l lO OO"h, 11 01100100 11h,
"()lllOllO"h, "lllllllO"h, "lJl()lllO"h, 111111no1n"h, 11 111111110 11h, 11 01111110 11h,
"1110001()"h, "lllOOllO"h , 11 111n1n10"h, "i'11 010l() "h, "OllllOlO"h, 11 01100110 11 h,
"OOOlOllO"h, 11 10011110 11 h, "1(10f11110"h , 11 1on1001n 11 h , 11 1on10110 11 h, 11 00011110 11 h,
"1onooo 1n"h, 11 10000110 11 h, "10f101010"h, 11 nnoo101n"h, "non11n1o"h, 11 00000110 11 h,
"OOllr'!lOI"h, 11 10111101 11 h, 11 101n11n1 11h, 11 1n11nno1 11h, 11 1('111 0 ln1 11 h, "OOllllOl"h,
11 10100001 11 h, 11 1010010111 h, 11 10101001 11h, 11 00101001 11h, 11 nn111no1 11h, 11 nn100101 11h,
11 n1 n101n1 11h, "llOlllOl"h, 1111nn11n1 11h, 11 11n1nOOl"h, "11n10101 11h, · "01011101"",
1111nooon1 11 h, 11 1100010111h, 1111no1001 11h, "Ol()OlOOl"h, 11 01n11no1 11h, 11 n1nno101 11 h,
"OlllOlll"h, " llllllll" h, "lllOllll"h, "11110011 11h, 11111101Jl"h, "l"ll lll ll"h,
"111()0011 11h, "lllOOlll"h, 11 111n1n11 11h, 11 n1101011 11h, "fll]lJ()ll"h, "OllOOlll"t--,
11 on11n1nO"h, 11 1n1111nO"h, "lOJOllOO"h , "lOlJOOOO"h, 11 1011n10011h, 11 001]1]00 11h,
11 1n1n('lonn 11 1, , 11 1n1001nn"h, 11 1n1n1000 11h, 11 nr1n1ono 111-,, 11 on111nnn 111-, 11 f'o1on100 11h,
11 n101 n110 11 h, "llOJlllO"h, 11 11nn111 () tlh , "ll('l10010 11h, 1111n1r11n 11h, "OlflllllO"h,
11 11nnoo1011 h, 11 11nnn11n 11h, 11 11nn1n1n"", 11nJn()Jn1n"", 11 n1011n1r 11h, 11 n1n11011n"h,

) hit (fl) un;ill,,-nerl rfl,,,ensl0n (n: 511) intern;il st;itir.;

/• P l [) lt•r f.lJf)F FILF r,nr"11s 1nn_t;if-Jp. 1 nr-1.nll •/

"lllllOflO"h,
"Ol 101 1"0"h
"11111 111() 11

..,;
11 n11n111n"h,
"lOOll OlO"h,
"('100011 10"",
"lOlllOOl"h,
11 no1011n1 11 1-,,
11 11011 nn 1 " h,
"Ol001Ir''l"h,
"lllll Oll "h,
"()11011 11"'1,
11 10111 noo 11h,
11 00 101100"1-,,
"110111'Jf' 11 h,
"rlOOlll fl " h ,

"011nnoon " h ,
II (\ l lJ (' (' (11) Ith,

"f1110('010"h,
" Ol11001(1"h,
11 noncoo10 11 h ,
"0001011] O"h,
"fl0 1f10001"h,
11 00110 0f11"h,
" 0 10 0 f1 00l "h,
" 01 0 11' ()(1 J"h,
" Oll!' O'l ll"",
"01ll""ll 11 h,
"nQJ0(11'00"h ,
11 f1 () J J Q(1M' 11 h,
" OlOOflnJf' " h,
" (1J() J"f11 0 11 h

An Enciphering Module for Multics page 43

APPENDIX C - THE ASSEMBLY LANGUAGE I MPLEMENTATION

The basic philosophy of the Multics asseMbly language

version of Lucifer was to produce a program which could

encipher or decipher at the highest speed. This does not

contribute to the readibility of the program; therefore this

explanation is quite detailed. If the reader is unfamiliar

with Multics assembly language, a short introduction is

given in Appendix D.

The set_key entry does more than store the key in

internal static. During ciphering the key is used in two

places: transformation control and interruption. For

reasons explained later, each purpose requires the key to be

in a different format for optimal operation. To avoid key

manipulation during ciphering, set_key stores the key in two

variables, key and exploded_key.

In exploded_key each bit of the key is given its own

nine-bit byte. The high-order bit of each byte contains the

key bit; the low order eight bits are zero. This key is for

transformation control. In the diagram below showing the

storage assignment, the ordered pair in each byte position

gives the byte of the key number and the bit within the

byte. 2\s in the hardware diagrams adjacent bits of a byte

are arrayed vertically, although it is more conventional to

show memory words horizontally. Thus each byte of the key

An Enc iphering Module for Multics paqe 44

requires two words; t hirty-t wo words for 1 28 bit s.

Figure 5: Exp loded Ke y Bit Assignment

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

1 20 112 104 96 88 80 72 64 5 6 48 40 32 24 16 8

1 21 113 105 97 89 81 73 6 5 5 7 49 41 33 25 17 9

122 114 106 98 90 82 74 66 5 8 5 0 42 34 26 18 10

123 115 107 99 91 83 75 67 5 9 51 43 35 27 19 11

1 24 116 108 100 92 84 76 68 60 52 44 3G 28 20 12

125 117 109 101 93 85 77 69 61 53 45 37 29 21 13

126 118 110 102 94 86 78 70 62 54 46 38 30 22 14

127 119 111 103 95 87 79 71 63 55 47 39 31 2 3 15

For int errupti on, t he ke y b i ts within a key by t e are

no t acces s e d in t he same order as the conf use d byt e's bits,

o, 1 , 2 •• • 7. Rather t hey a r e a ccessed 2, 5, 4, o, 3, 1, 7,

6 as given in key_table of the PL/ I program or as s hown by

t he wir ing of the h ardwar e. To avoid t he us e of such a

table and lookup time during ciphering, ci1e key bytes are

p r esor ted by set_ke y . Each 8-bit byte o f t he key is s tored

in the high order part o f a Mul tic s 9- bit byte, the

r emaining bi t being zero. Thus t he s torage assignment is as

0 }. ,. <
V -'(,

0 \' •

1

2

3

4

5

6

7

An Enciphering Module for Multics page 45

shown in the diagram below.

Figure 6: Key Bit Assignment
~ t

5 4 3 2 1 o Y° Kfi..
".>--\

4 0 12 8 4 0 0

5 1 13 9 5 1 1

6 2 14 10 6 2 2

7 3 15 11 7 3 3

Words O and 1 are copied into words 4 and 5. This is

to permit directly addressing eight bytes starting at any

byte between O and 15 without programming a complicated

wraparound routine.

The basic idea underlying this program is to process

all 64 bits of the source and convolution registers at once,

each CID cycle. In order to do this, the key bits must be

so arranged that each of its bits lies in the bit position

corresponding to that of the source register bit with which

it will be exclusive-ored during

explains the rearranging above.

When the encipher entry

interruption. This

is cc:.lled, it sets

interruption_row (held in index register 2) to zero as in

the PL/I program. Since an entire CID cycle is done in

parallel, interruption_row will never be incremented along

the horizontal line of the key byte access schedule given

earlier. Instead it will be incremented each CID cycle to

assume the values given in the schedule's left-hand column.

Examining the schedule it can be seen that interruption_ row

An Enciphering Module for Multics
page 46

should ~~us be incremented by 7 for encipher and -7 for

decipher, modulo 16. Thus each entry also sets the variable

either 7 or minus 7 to the appropriate value. This is added

to x2 mod 16 each CID cycle.

After the argument extents are calculated and pointers

to the strings fetched {bp -) input string, bb -) output

string), the main loop is entered.

As in the PL/I program, the first 64 bits of each

128-bit block are placed into convolution_registers, the

next 64 into source_registers. As with the key, each 8-bit

byte is p laced in the high order eight bits of a Multics

9-bit byte. This unpacking is accomplished by unpack_loop.

This loop depends on the fact that the assembler will assign

source_reg isters a location after

because it is declared afterward.

address) bytes are unpacked first.

convolution_registcrs

The low order {high

Once this is comp lete, sixteen CID-interchange pairs

are executed.

First, the convolution registers are prepared for the

diffusion operation. Referring to the hardware diagram, one

can sec ci1at each bit of a confused, interrupted byte

{vertically arrayed) corresponds to a different byte but the

same bit {i.e., horizontal register) of the convolution

registers. As seen in the PL/I program, if a source

register bit has address (i, j] {byte i, bit j) the

convolution register bit corresponding to it is

An Enciphering Module fo r Multics page 47

[mod (i + convolution_table [j], 8), j]

where convolution table is [7, 6, 2, 1, 5, O, 3, 4].

Instead of looping through each bit as the PL/ I program

does , the convolution registers are rotated so t he bit

positions for diffusions line up, corresponding with t hose

of the source registers.

Since the horizontal registers are t he bits to rotate,

the b its to rotate are not adjacent. Thus the b it addresses

within the two-word convolution_registers of each bit before

rotation is as follows:

Figure 7: Convolution Registers

7 6 5 4 3

63 54 45 36 27

64 55 46 37 28

65 56 47 38 29

66 57 48 39 30

67 58 49 40 31

68 59 50 41 32

69 60 51 42 33

70 61 52 43 34

2 l

18 , 9

19 10

20 11

21 12

22 13

23 14

24 15

25 16

x:...e.

'< 0 "'. ·,

0 0

l l

2 2

3 3

4 4

5 5

6 6

7 7

Notice that bits 8, 17, 26 ••• 71 do not appear assigned

on the matrix. This is due to the unpacking of each 8-bit

byte to a 9-bit byte. The unassigned offsets are those of

the pad bits. The purpose of this rotation is to a l i gn

all the exclusive-or positions on t he right edge of the

matrix. Looting at the hardware schematic, the desired

An Enciphering Module for Multics page 48

position of each bit is as follows:

Figure 8: Postrotation Convolution Registers

7 6 5 4 3 2 1 0 ·'\.~
'Q ~

6,0 5,0 4,0 3,0 z,o 1,0 o,o 7,0 0

5,1 4,1 3,1 2,1 1,1 0,1 7,1 6,1 1

1,2 0,2 7,2 6,2 5 ,2 4,2 3,2 2,2 2

0,3 7,3 6,3 5,3 4,3 3,3 2, 3 1,3 3

4,4 3,4 2,4 1,4 0,4 7,4 6,4 5,4 4

7,5 6,5 5,5 4,5 3,5 2,5 1,5 0,5 5

2,6 1,6 0,6 7,6 6,6 5, 6 4,6 3,6 6

3,7 2,7 1,7 0,7 7,7 6,7 5,7 4,7 7

This rotation is accomplished as follows. Row 0 (bits

0, 9, 18 ••• 63) must be rotated right on t he diagram (left

in the AQ register as it happens) seven positions or 63

bits. Row 1 (bits 1, 10, 19 ••• 64) must be rotated 6

positions or 54 bits, etc. An array of masks, and_masks,

has been prepared with a 1-bit in each bit position for a

given register. They are ordered according to the number of

positions of rotation needed. Since register 5 needs no

rotation (because the exclusive-or gate is already in byte

0), the mask for it occurs first. I t consists of four

zeroes, a one, eight zeroes, a one, eight zeroes ••• Thus,

when convolution_registers is loaded into the AQ register

and is ANDed with this mask, only bits 5, 14, 23 ••• 68 will

remain. This register is rotated Obits left and then ORed

into a previously zeroed doubleword , named "normalized".

An Enciphering Module for Multics page 49

Next,

bits.

register 3 must be rotated left one position or nine

Thus the second mask has a one in bit 3 and a one

every nine bits thereafter. After ANDinq the

convolution_registers with this mask only bits 3, 12, 21 •••

66 remain. The AQ is rotated left nine bits, and ORed into

"normalized 11
•

There is a pointer to and_masks called and_masks_ptr.

It is referenced by using the add-delta (AD) type indirect

reference. When an indirect reference is made through this

word, after completion of the specified operation the

contents of the delta field (here 2) will be added to the

address field. Thus the next time the AQ is ANDed the next

doubleword mask will be used. Similarly an AD word controls

the shift count. The first time through the loop the AQ

must be shifted zero bits so the address field of this word

contains zero. After every indirect reference the address

field will be incremented by the delta field, here nine.

Thus the rotate counts will be O, 9, 18 ••• 63. In addition

this word is used to control the number of times the loop

will execute. After an add-delta reference is made the

tally field of the word is decremented by one~ if it reaches

zero the tally runout indicator is set. This tally field is

set to eight before beginning the loop. Thus the loop will

iterate eight times, due to the transfer-tally-runout-flag

off instruction at the end.

After preparing the convolution registers, the

An Enciphering Module for Multics page 50

confusion operation is performed on the source registers.

This is done by loading the source regis ters into the AQ and

shifting right one bit position. Now e ach 8-bit byte

appears right justified in each Multics 9-bit byte of the

AQ. The AQ is now ORed with some doubleword of

exploded_key. Each bit of exploded_key occupies the high

order bit of a 9-bit byte; thus each bit to be used for

transformation control now resides to the left of the

corresponding byte of the source.

The double\'1ord of exploded_ key t o use for

transformation control is equal to the byte of the key

addressed by interrup tion_row. This is because each byte of

the key uses a doubleword of explodcd_key, and because

interrup tion_row (in x2) alway s addresses the first byte of

the key to use for interruption this CID cycle which is also

the byte to use for transformation control. Since even the

doubleword instructions address in word indexes,

intcrrup tion_row must be doubled. This is done by addin~ it

in t\'1ice, once i n the epplb instruction and once in the oraq

instruction itself.

The AQ is stored and translated by t he mvt instruction.

The confusion table used here is identical to the one in the

PL/I program, except tl1at each 8-bit result byte is as usual

left justified within a 9-bit byte.

These confused bytes are now interrupted by

exclusive-oring with the eight bytes of the key addressed by

An Enciphering Module for Multics page 51

interruption_row. Diffusion is obtained by exclusive-oring

wit h the pre rotated convolution registers stored in

"normalized".

The interchange operation must, as well as swapping the

source and convolution (now stored in "normalized") ,

unrotate the convolution registers to undo the effect of

lining up the exclusive-or gates described above. This is

done via a very similar loop to rotate_loop. A

subtract-delta modifier references through and_rnasks_ptr.

Since this modifier subtracts delta before indirecting the

masks will be used in the reverse order. The shift counts

needed are shown below; the add-delta word for shifting

again supplies loop control.

Table 3: Convolution Register Rotation Counts

Row Previous Rotation Post-Rotation

5 0 72

3 9 63

2 18 54

6 27 45

7 36 36

4 45 27

l 53 18

0 63 9

The register accesses and rotate counts for the prerotating

should be read down ; for postro~at i on the table should be

read up.

An Enciphering Module f o r Multics page 52

After sixteen CID-interchange pai r s , one more

interchange has been done than desired . This is undone by

swapping the two registers. The bytes a re now packed into

the result field.

Some possibil i ties still exist f o r speeding up thi s

program. The two loop s controlled by t a lly words onlv loop

eigh t times; they could be explode d i nto eight copies.

Since the address of and masks and the r otate counts would

in each copy be k nown at compile time no i ndirect words

would be needed. In addi t ion the loop control instruction

ttf would be eliminated. Counting t tf as two memory

accesses and each of the tally references as one, four

memory accesses could b e saved each r otation. Since eight

are required in the loop, and there are t wo loops, 64 memory

accesses would be saved. Eight more would be saved by

eliminating the tally word setup instructions at the

beginning of each loop, for a total of 72. Si nce ther e a re

sixteen CID cycles a total of 72 times 16 = 1152 memor y

cycles might be saved . This may t o t al as much a s a

millisecond, thus saving about twenty percent o f the cipher

time for a given block. This demonstrates how s ensitive a

program' s performance can be to mi nor changes in coding

style. Other experiments are suggested , such as comple tely

rewriting the program with all arrays trans posed (so that

the bits of a byte are not stored sequentially), or

eliminating the padding bit on each b yte .

An Enciphering Module for 11ultlcs page 53

II
Copyright (cl 1974 by Ma s sachusetts Institute of Technolof'y and
Honey1tel I Inf ormati o n Systems, I nc.

'' This program is a special version of Lucifer designed to run very qui c kly.
11 Few programs could compete with this for obscurity.

Coded May 1, 1974 ' , G. Gordon Benedi ct

enc i pher:

dec i pher:

join:

at the Computer Sys tems Research divi s ion of Proj ect ~AC

entry
equ
equ
eQu
equ
equ
equ
temp
tempd
temp

push
eax2
eax7
s t x7
tra

pus h
eax2
eax7
stx7

s tx2
eaxO
I x 17
cmpx7
t nz
eaxO

eppbp
l dq
sbq
adq
q l s
stq
eppbp
ldq
s bq
adq
Ql s
cmpq
tnz

set_key,encipher,declpher
move, 3
a_in,2
a_out,4
a_code,G
a_i n_desc, 3
a_ou t_desc, 10
text_length,text_ positlon,elther_ 7_or_minus_ 7,shlft_word
convolution,source,confused_bytes,nonnal l zed
ln i t i a l_value

0
7
e l t her_7_or_m i nus_7
jo in-* , i c

ini tial I nterrupt i on r ow
go fo r ward 7 b y tes In key afte r each CID cyc l e

9 Init i a l Interruptio n rol'; (n i nth byte of key)
-7 star t eac h CI D cycle with Inter r uption row 7
e i ther_7_or_minus_7 mo r e t han l ast for l ater

l n it l al_va l ue
0
ap l O
8,du
2, I c
2

ap l a_l n_desc,O•
bp l 2
bp l l
1, d I
7
text_length
ap l a_out_desc,O*
bp i 2
bpl l
1, d I
7
text_ l ength
no_ I ength_n,a t c h -•, i c

ter~lnat l on condition after l G CID cyc l es
assume no d i sp l ay ptr In arg l ist
ge t code wh i ch te ll s us If assumpt i on Is operat i ve
I s there a d i splay ptr
no
yes, put l ength of this ptr in xO so we l'lill skip it

get ptr to desc ri ptor
hbound (a i n). ••
- ! bound (a_l n) ••.
+ l ■ d i m (a_ l n, l)
* 128 • l ength I n bits of whole array

get Ptr to descriptor
hbound (a out) •••
- l bound (a_out) ••.
• l = d im (a_ou t, l J
• 128 • length in bits of whole array

e r r o r , ho t h mus t be s '"" e

An FncipherlnR Morlule ~or Multl~s

epphp
epphh

arla_tn,*
apla_out,*

naP-P 5 4

Ret ptr tn Input arv
RPt r,tr to 0utput arrr

/In Fncloherin.P. Mor111le fnr t1ultlcs

11 hegln main loop processln l' . rPor< Ir er1r r
11 12R-hit h lock ;inrl encryr,t s<'par;ately.

r,;il'e 55

stz t f' x t_r,os I t 1 nn ZPrn nrncp s sP" s n F;,r

text_loor,:
Jr<q text_poslt Ion P:Pt ;ie1011nt r,rnrPsser< so f;, r
Cl"f)O text_lPnP'th SPP 1" h;,nr<le" ;,1 1 In ~tri l'r,
tol return_nnl'i-•, ic I" sn, rPt11rn

11 unnack next 12R-hJt hlnck sud, th;,t e,-,rh
" 8-hlt hyte occur,lf'!s the hlP'h orrlpr ~
t1 hits of II tiultlcs 9-hit hlocv .
11 th I s m11 ke s man I pu 1 11 t I on h y F I S

arlQ 15•8,rll
l <la 1 5•9,r<l

lnstn,ct lnns convenlPnt.
get nosltlnn of last ~-hit hyte In this hlork
vet o"fsPt to last q-hlt hlor~ In rPRisters

unp;ick loof):
(pr, o 1) , (p r , a 1) , h no 1 (ron v P) , J'J 1 1 (0) - cs 1

rlesch
rlesch

shq
sha
tpl

hr,10,R MOVP an R-hlt hyte •••
cor,volutlnn,9 ••• tn 11 9-hit hyte ;in" s tir!· on;,

11
0

11
h

II

8, rl 1
9, rll
unpack_tnon-•,lc

go to next tower R-hlt hyte
same for t;,rgPt
continue ur,tll lfi hytes 11re 11nn;,ckP",
R In snurrP, ~ ln convnlutinn

t1 now rlo 15 lnterct,an,P.e anr1 lf> Cl!' cyc l ,.s.

Interchange loop:
flrl O, ,ll z"ro fl" (klurlPe)

m;,vp zero for orlng stao
1 r<a
Sta

no rm;i 1 1 zp,-1
=on n1011,r11
shlft_wor"

t11lly" ~, lnltf ;, 1 value= 0, "Plt;i = 'l
fir wor" for shifting (lnrrPrnPnts q each t I Me)

rot;,te_loop:
1 rlao convo lution P:Pt entlrP c onvnlutl 0n rPRS (hits r - 63)
;in;i<i lpl;,nrl_m;:isks_ptr,;,n cle11r 11 11 hut cn l u,.,ns 5, tt,pn n, 1, 11, 7,
tlr shlft_worr1,;,n sh l<' t "lrst hy n, thPn 'l, then l P ••• etc.
orsil norm;,lfzpn put l n first 01or"'s hfts
orsq normatlzerl+l now 7nrl worr1
t t f rot" t e I o<"n- •, I c nn R t I Mes (s e" ta 1 1 y)

11 nr,w have In norm111 lzer1 ;,-1:or,y oF convolution
11 registers with each column so rntatP.r1
11 th11t ;il 1 tt,e XOJl gates ;,re 111 I P'neA on

epplh lplexnlo"er1_vPy,x2

source

u,e rll'ht ranA """"· nnvi co,-,F11sP s ourr.e
when x? I s a"-'"rl tr this ar1nr ,
will have ar<r<r rf vey worrls
RP.t s011rre rPi>:

f,, ? , 3

1 rlaq
Ir 1
oraci
staq

1 out Oat leF t e"P:e of e;icr hyte lrstearl of rli,:ht

mvt
r<esc9a
rlesc9il
~rr.

lh l0,x2
confuser1_hytPS

p11t e11ch hft of ks-rnl', vey I n hll"h o rr1f'r h i t nf so u rce hytP

(pr),(pr) tr;,nslate vi;, tahle (con"uslon)
confuserl_hytes,R
confusP.rf _hytP.s, 8
con Fus lon_ t;ah l p+3 - • , ! r

An F~cinhe r i n r: Morlu l e for ~u l tirs rao-p Sf>

l rlao
ml r
rlesc9;i
rlesc9a

erc1<1

confuser! hytes
(r r , x2) , T rr)
l r fkey,8
confuserl_hytps,8

cnnfuserl_hytps

P-Pt r0•1 n" vpy usprl "nr l nterruntlnn

ersa no r ma l l zF.rl

l ntpr r untlon

rll 4'" 11s l nn
2nrl wn r rl ersq norma li zerl+l

" now rlo I nterchange c yc l e.

l rlan
st;iq
f 1 rl
stan

lrl;i
s t;i

unrotatC' l onr:
- 1-';io

;inan
11 r
orsa
o r s q
tt"

a rl x2
a n x2

crirx 2
tn z

" rlone •11 th this
1 rlan
stan
lrlan
stao

n;id:_loor:

1 rlaq
stao
1 rlo
arlo
sto
1 r l ~

sho
csl
rlesch
rlPsch

sh;i
t r l
tra

source
convo l utl0n
0, rl l
source

=0000011001011
sr t i=t_worrl

n0 r i,,;il i zf'rl
l r lanrl masks rtr,srl
sh l ft_-;:;nrrl , ;,;i
sourc e
s o urr e "'l
un r ntate_ l 0nr-• ,l c

onp ha l f o4' work
zero out source frr nr f n,,- ln

t;,l l y c P., rlf' l ta = 'l, lnlt l ;i l v;ilue = <1
r ut h;,cv t;il 1 y o• 8

r:ot ,lff•usprl convo l ution r pufsters
an rl o ut al l hut that cnlHrin to hp rotaterl

shift hy a0r ror r l;,te a~nunt
pu t In t o source
? nrl worrl

efther_7_o r_mln us_7 r:o f n n ,;i rrl o r h;,cl-w;i rrl th r u kPy
•o17,rlu riorl 16

l nlt f ;,1 v,!1 11<' h;irl· to ~,1--erP 01p sta1·terl this hl0rk
I nte r ch;nge_l nr>r- 0•, tr.

128-hlt h l ocr. recomract anrl storP
source exchanpe source ;inn c0nvnlutlnn
normal lzerl
convolution
snurce
nrrmal l zerl
convol ution
text rnsltion r: n to next 128-hf t hi0r v
l?R, -;i'1

text rnsitlon
q,, 15:-,11 lf> <1-hf t hytes to na ck

8,rll r:n tr next lowpr hyt e
(r r,;, 1) , (n r , o 1) , hrr 1 (mnvP) , • I 1 1 (0)
convolutlon,9
hhf0,8

'l, n 1
r;irk loon-*, lc
text=lnor-*, Ir

gn to nPxt lm•Pr ~-hit hytps

P- n to next 1?8-hft hlnc v

An Fnclnt>e rlng Morlule for l 'u ltlr.s naJYP 57

no_lenp;th_matct,:
lrlo
sto
return

rPturn_nn~, :
s t z
rPturn

1, rl 1
apla_corll',*

arla_co"P,*

11 ho,.,h, lPn,.ths of lnnut a nA output not sa,.,P
coAp to r Pturn

'' set_kPy Pntry, to set thp ~PY For suhspnuent calls to lur lfPr,
set_key:

epphp an l 2, • EPt aAA r nf 1211-hlt Strini' ~hlrh I s ~ey

of a q-hlt hytl'
"exp lnrle
"so Pach

the ~ey anrl transpose It,
hit nccunles the f irst hit
eaxO 0 fir s t hit of key
eaxl 0 first hyte nf PXpl o"Prl 1,py

explorle_l nop:
cs l
rlesch
rlesct,

11 Just

eaxl
eaxO
cmpxO
tml

flnlsherl one
eaxO
c"'nxO
trn I

11 now Pxplorlp e11cl>
eaxn
eaxl
eax2

p~rmutat lon loop:
e;x3
11rlx3
cs l
rlpsch
rlesch

eaxl
eax2
cmpx2
tml

(pr,xO), (pr,xl),honl (move), Ff 11 (0)
hpf0,1 move noe hit oF kpy,,,
lpfexp lorleA_key,9 ••• to thP ton hit of a 9-hlt hyte

9,xl
lfi, xO
l?R, rlu
explorle_l oon-•, le
column oF R hfts.
-1 27,xO
lf-, Au
exn l o"e_l onn-•,lr

next time usP next hyte of explorlpA_key
tal-P next column e ntry, 16 hits ;,w;,y
SPP IF AonP with thi s rolumn
Aonp

now rln npxt rnlumn , s t a rtlnl' nne hit away
put 11,; "ar" 127 h f ts, nf'se t l "ro,., n revl n11s
I" JF, ~,p havP s>•Pnt thn, ;,11 hf t s (IF c 1?7

R-hft
0

per,,,utpA h lnrk to ;, q-h! t row
First rnl11mn of l<Py

0
n

n,xn cony rnlurnn of ~ey
nerrnutatl nn_tahle,x2 JYPt spprlFfr h ft no•rihpr
(pr, x 3) , (pr, x 1) , h no 1 (,.,,w P) , F r 1 1 (n)
hpfO,]
lnf kPy,? na" with an hit (only r"unt s at Pn" of l oon)

1, xl s:o to npxt hf t of '' PY rP <:til t
l,x 2 nPxt pp r ,,,utatl"n t ;,hl p entry
11,rlu rln r- 0 ~,!th thi s loon

"rllrl one 8-hlt
eaxl
eaxO
cmpxO
t "' I

nprmutatl on lnnn-•, le
hlocv. , sk i n 1;,st zero hit

1,xl
1, xO
1 Ii, rlu
nermutatlnn_lonr-• -1 , i r

hel!lnnlnJY
+] fi -1?7)

An Fncinrerfng Morlu 1e for Multics Pnv.e 5 8

11 rlupl lcate first 8 rows of kpy at enrl to prevent wr~parounrl prohlems
lrlaq lnlkPy
staq lplkPy+~

''setup tre initl?l tally wor~ usPrl for running rlown an~-mnsks
eaa lplanrl_masks
orsa lplanrl_M?sks_ptr

short_return
permutatfon_tnhle:

arp:
a rp

ar.P:
ar,~
ar.P:
a r P.
ar1t
a r P:

lfi*2
lf-*5
lfi*4
lfi*n
lfi*3
1 fi * 1
lfi*7
1F*6

"rrlves pPrMUtntTons n" l~PY r:n l unins usprl for fnterruotion

An Fnct pherln_g Morfule for ~~u ltl c- s

con fu s lon_ t a'1 1e :
tnclurf e

use
even
hss
bss

an rf_masks_pt r :
rlec
even

an rf masks:
- vfrl

vfrl
vfrl
vfrl
vfrl
vfrl
vfrl
vfrl
join
enrf

conf us t on_ t;:,h le

1 tnkaire_sec t lon

k ey , fi
e xp lorlPrl_kPy, 32

2 rfelta of 2
"neerf on even worrf hounrlary

6/1,9/1,9/1,9/1,9/l,9/l,9/1,9/1
4/1,9 / l,9/l,9/1,9/1,9/1,9/1,9/1
3/l,9/l,9/1,9/1,9/1,Q/1,9/l,9/l
7/l,9/1,Q/1,9/1,9/1,9/l,9/l,9/1
8/l,9/l,Q/1,9/1,9/1,9/1,9/l,9/l
5/l,9/1,9/1,9/1,9/1,9/1,9/1,9/l
2/l,9/l,9/l,9/1,9/1,9/1,9/1,9/1
1/1,9/1,9/1,9/1,9/l,9/l,9/l,9/l
/l lnk/1 tnkap:e_sectlon

pa tre 59

An Fnc i pher ln~ Morlu l e fo r ~u l t l cs

11
I NC'LUfl(F ILE confus i o n t;,h l e.lnc l .;, l m 11

Th i s Imp l ements the confusion ooer11t l 0n for l.u,-ffp r
11

It shoulrl on l y he ca ll er! f r om l uclff'r_.a l ""

naPP. fi O

vfrl 9o/25fi,qo/fi76,9o/f3f,qo/f4F,qo/fi56,qo/276,9o/6!iF,qo/206
vfd 9o/60F,qo/616,9o/f2f,9o/226,9o/?66,9o/216,9o/236,no/?4f
vfrl 9o/051,oo/472,qn/h32,9o/ 4h?,no/452,9o/07?,qo/h62,qo/002
vfrl qo/l102,9o/412,9o/422,9o/0?2 , no/062,9o/Ol?,9o/032 , qo/n42
vfd 9o/352,9o/772,9o/73?,9o/7b?,no/752,9o/372,9o/ 762,no/302
vfrl 9o/702, 9o/712,9o/722,9o/322 , qo/362,9o/312,9o/33 2, 9o/342
vfrl qo/154,qo/574,0o/534,9o/544,9o/554,0o/ 1 74,9o/564,~o/ 104
vfrf q0/504,9o/5lb,9o/52h,9o/l,4 , qo/Jfi4,9o/1 14,9o/134 , 9o/ 144
vfrl qo/05fi , qo/476,9o/43 f, 9o/446 , 9o/456, 9o/07fi,9o/46fi , 0o / 0 06
vfrl 9o/b 0 6 , 9o/41F,9o/h2r,qo/ 026,9o/066 , 9o/016,9n/03fi,9n/046
vfrl 9o/156 , 9o/~ 7fi ,9o/53f,9o/5hfi,9o/556 , 9o/17f,9o/56E,nn/106
vfrl qo/50fi , qn/516,9n/52F,9o/1?6,9o/Jfifi,no/llf,9n/136,qo/l116
vfd qo/050,qo/470,9o/43P,9o/440,9n/450,9o/070,9n/460,9n/ OPO
vfrf 9n/4 00,9o/410, 9o/420,9o/0?0 , 0o/Ofi0, 9o/010,9o/03P , 0n/040
v frl 9o/250,9o/fi70,0o/fi30,9o/640, no/fi5 0,9o/?70, no/F6n, no/200
vfrl 9o/600,9o/610, 9o/620, 9o/220, 9o/2F0, 9n/2J0 , 0 0/230, no/?40
vfrl 9n / 350 , 9o/ 7 70, 90/ 73 0,9n/ 74 0,9o/ 7 50 , 9n/370, 9n/7F 0,9n/3 0 0
vfrl 9o/700,9o/ 7 10,9o/720 , 9o/320,qo/360, 9o/310 , 0 0/330 , qo/340
vfrl 9o/35 4, 9o/774 , 9n/734 , 9o/744,9o /754, 9o/ 3 74 , 9o/764 , 9o/~04
vf rl 9o/ 704,9o/7 1h,9o/724,9n/324,9o/364,9o/314,9o/334 , 9o/144
vfrl 9o/054 , 9o/474, 9n/434 , qo/h44 , 9o/45b , 9n/074,9o/46 4, qo/004
v frl 9o/ 40 4, 9o/414, 9n/424,qo/024 , 9o/06 4,9o/014,9n/034,9o/0 44
vfrl 9o/ 1 52 , 9o/572,9o/532 , 9n/542,9o/552,9o/172,9o/562,no/10?
vfrl qo/502,9o/51?,9o/522,9n/1?2,9o/Jf?,qn/1J?,qo/132,9o/142
vfrl qo/252,9o/fi7?,9o/632,9o/642,9o/fi5?,9o/27?,9o/662,9o/?0 ?
vfrl 9o/602,9o/612,9o/6?2,9o/222,9o/?6?,9o/2J?,qo/23 ?,qo/?4 2
vfrl 9o/356,9o/776,9o/736 , 9n/746,9o/756,9o/376,9o/766,9n/306
vfrl 9o/706,9o/71f,9o/726,9o/326,9o/36f>,9o/31fi , qo/336,9o/346
vfrl 9n/150,9o/570,9o/530,q0/540,9o/550,9o/170,9o/560,qo/100
vfrl 9o/500,9o/510,9n/520,9n/120,9o/160,9o/l lO,no/130,no/ 14P
vfrl 9n/254,9o/674,9n/63h,9o/fi4 4,"o/f54,9o/2 74,9o/f64,9o/204
vfrl 9o/604,9o/614,9o/6?4,0n/224,9o/264,9o/21 4,nn/ 234,9o/24h
vfrl 9o/256,qo/67F,9n/636,q0/6h6,9o/FSF,9o/27f,9o/ffi6,qn/706
vf~ Qo/fi06,Qo/F16,Qn/6?6,9n/2?6,qo/"fif,9n/?lfi,9o/?3fi,no/74fi
vfrl nn/052,9o/477,9n/h3?,nn/442,qo/452,90/n72,no/4(2,no/007
vfrl Qo/40?,9o/hl7,90/4??,qn/022,9o/n6?,9o/nJ?,9n/032,9o/r47
vfrl 9n/352,9n/77?,9n/73?,no/742,qn/75?,9n/37?,9o/7f,? , 9n/'07
vfrl 9o/702,9n/71?,qn/7?7,90/322,9o/'F7,9n/31?,9n/332,9n/'42
vfrl ~n/15h,9o/57h,9n/51h,9o/544,9o/~ Sh,9n/ 174,9n/ 5fi 4,"n/ J0h
v frt 9o/504,9o/514,9n/574,9o/124,9o/lfih,9n/114,9n/J34,9n/l4b
vfrl 9n/056,0o/476,0n/41f ,no/hbF,qn/45 F,9o/076,qn/4fifi ,9n/"0F
vfrl qn/40F,9o/41F,9n/4?6,9o/026,Qo/n6F,9o/DlF, 0 0/nJ&,9n/"4F
vfrl Oo/156,9o/57fi,9n/53fi,no/54fi,Qo/55F,9o/17F,qn/5f6,no/JOF
vfrl 9n/506,9o/5 16,9n/526,9n/126,9o/lfiF,9o/1Jfi,nn/136, 0o/lhF
vfrl 9n/050,9o/470,Qo/430,nn/h40,9o/45P,9o/n7n,nn/hfiO,n0/non
vfrl 9o/400,Qo/410,9o/4?0,9n/070,no/OFn,90/n1n,no/n3n,nn/P49
vfrl 9o/250,9n/FJn,qn/fi30,9n/640,9o/FSn,9n/27n,no/FF0,9o/?OP
vfrl 9o/F00,9o/ Fl0,9o/620,qn/220,qo/?FP,9n/?.JO,no/?30,no/74 0
vfrl 9n/350,9o/770,9o/730,9o/740,9n/75n ,90/3 70,~0/7FO,no/'0P

An Fncinbering Morlule for ~ultlcs P~fYe Fl

vfrl 9n/7OO,9o/71O,9o/72n,9n/3?O,0o/36O,0o/31n,9o/33O,ao/34O
vfrl 9o/354,9n/774,9o/7311,9n/744,qn/754,~o/374,9o/7€4,9n/3O4
v f rl 9 n / 7 0 L1 , 9 o / 7111, 9 o / 7 2 Ii , 9 o / 3 ? 4 , <1 n / 3 fi 11 , 0 o / 3 111 , 9 n I 3 3 11 , 9 o / 3 4 4
v f rl 9n / 0 5 4, 9o / 11 7 4, 9 o / It 3 11, 9o / l11111, 0 o / ,, 5 1,, 9 o / 0 711, 9o / 4611, <10 / n O 4
vfrl 9n/4O4,0o/414,90/l124,9o/O24,9o/O64,"n/O14,9o/O34,9o/O44
vfrl 9o/152,9o/572,9n/53?,qn/542, 0 n/552,9o/17?,9o/56?,9o/1O2
vfrl 9n/5O2,9n/512,9o/52?,9n/1?.2,9o/lf,2,9o/112,9n/132,9o/142
vfrl 9n/25?.,9o/672,9o/F3?,9n/F42,an/652,9o/?7?.,9n/66?,<1n/2O?
vfrl 9n/6 O2,9o/612,9o/F2?,9o/222,9n/?62,9o/212,9n/232,9n/242
v f rl 9o/35f,9o/776,9o/736,9o/7116,9n/756,9o/376,9o/766,<1o/3O6
vfrl 9o/7O6,9o/716,9o/72fi,9o/326,9n/366,9o/316,9n/336,9o/3 l16
vfrl 9o / 15O,9o/57 O,9o/53O,9o/54n,ao / 55O,9o/17O,9o/56O,9o/1OO
vfrl 9o/ 5 OO,9o/ 51O,9o/52 O,9o /1 2O,9n / 16 O,9o/110,9n/13O,9n / 14O
vfrl 9o / 25 4,9o / 67 4,9o /~3 4,9o / 644 ,9o / f54,9o / 274,9o/66 4,9o / 2O4
vfrl 9o / 604 , 9o / 614,9o/ F2 4,9o/ 22 l1,9o/ 26 4, 9o/ ?.14,9o/ 23 4,9o/ 244

11 F. Nn IMCLUD E FIL E con f us ion_ tahl e. incl.a l rn

An Enciphering Module for Multics page 62

APPENDIX D - INTRODUCTION TO MULTICS ASSEMBLER

This section is intended to be a quick introduction to

the Honeywell model 6180 processor for those who are

unfamiliar with its machine language.

The 6180 is a word-addressed machine with a 36-bit

word; it also possesses some very powerful bit string and

character string handling instructions. There are two major

arithmetic registers of 36 bits each , the accumulator (A)

and the quotient (Q) registers. These may be coupled to

form a double length register, the AQ. Instructions ending

in A, Q, or AQ operate on the corresponding registers.

There are in addition eight index registers of eighteen

bits each . Instructions ending in xN where N is an octal

digit operate on these registers. Most index register

instructions take a storage operand in the top half of a

word, except for sxlN (store xN in lower half) and lxlN

(load index N from lower half).

There exist eight pointer registers for generating

segment number - word number pairs. These registers contain

a character offset and a bit offset from the addressed word

for the use of character string and bit string instructions.

· The names of these registers (in numeric address order) are

ap, ab, bp, bb, lp, lb, sp and sb. The appoints to a

procedure's argument list. The lp points to the procedure's

linkage section where internal static variables are kept,

An Enciphering Module for Multics page 63

such as the key. The sp points at the stack frame, in which

automatic variables are kept. Variables declared in a

"temp" or "tempd" pseudoop are placed in the stack frame by

the assemble r and are given one or two words each

respectively. A temp variable ma y also be given a subscrip t

in which case it wi ll be assigned that many words.

Declaration in a temp or tempd implies an sp reference. The

other pointer registers are used for spare registers; for

example, the bp points at the input string and the bb points

at the output string .

A sample instruction would be

ldq lp 1 foo

Thi s instruction will load the Q regis ter with t he i nternal

static (because of the lp reference) variab le foo.

adq 15 *8,dl

will add 120 to the Q register. The dl address modifier

causes t he address field to act like a memory operand,

padded on the le f t with zeroes. The du modifier pads on the

right with zeroes .

The following strange-looking multiword instructions

are tne special character string and bit s tring

instructions; this one performs boolean operations on bit

strings. Here a simple move is ind icated.

csl (pr,ql), (pr, a l) ,fill (0) ,bool (move)

descb bpj0,8

descb convolution,9

An Enciphering Module for Multics page 64

will move eight bits from the address bplO+ql to a 9-bit

field (padding with a zero bit) at convolution (plus

implicit sp reference) + al. The offset modifiers ql and al

refer to the bottom of the Q and A.

mvt (pr) ,(pr)

desc9a

desc9a

confused_bytes,8

confused_bytes,8

arg confusion_table+3-*,ic

will translate the eight 9-bit bytes at confused_,½ytes

(first argument) according to the table at confusion table

(third argument) and deposit the resultant eight 9-bit bytes

in confused_bytes (second argument). The lookup is done by

treating each character as an index into the table .

A list of most of the instructions used in Lucifer and

their meaning followso

ada, q, xN

ana, q, xN

anaq

arg

cmpa, q, xN

csl

descb

add to A, Q, xN

and to A, Q, xN

and to AQ (two words)

zero opcode (used for mvt table and

constants)

compare A, Q, xN

combine bit strings Jeft (three

word instruction)

a pseudoop which generates a bit

string descriptor for a csl

An Enciphering Module for Multics page 65

desc9a

eaa, xN

eppN

era, q, aq, xN

ersa, ersq

lda, q, aq

llr

lls

lrl

lxlN

mlr

mvt

ora, q, aq

orsa, q

qls

sba, q, xN

sta, q, aq

stxN

stz

t mi

tnz

t pl

instruction.

generates a 9-bit character descrip tor

effective address to A (top half), xN

effective pointer to pointer

register N

exclusive or A, Q, AQ, xN

exclusive or A, Q to storage

load A, Q, AQ

long (AQ) left rotate

long (AQ) left shift

long (AQ) right logical shift

load xN from lower half

move character string left t o righ~

(three word instruction)

move with translation

(four word instruction)

OR A, Q, AQ

OR A, Q to storage

Q left shift

subtract A, Q, xN

store A, Q, AQ

store xN

store zero

t ransfer on minus

transfer on not zero

trans~er on plus (including zero)

An Enciphering Module for Multics page 66

tra

ttf

unconditional transfer

transfer tally-runout flag off

Address modifiers appear after a comma in an address

field. For example

ldq bplO,x2

causes indexing by x2.

xN

*
*xN or *N

xN* or N*

index by index register N

indirect

indirect then index (i.e., add

index register to a ddress i n

indirect word) •

index then indirect

As well as xN index modification, the following can be

used whenever xN appears above:

au top of A

al bottom of A

qu top of Q

ql bottom of Q

ic instruction counter

du direct to upper

dl direct to lower

An Enciphering Module for Multics page 67

The indirect and tally modifiers add-delta (AD) and

subtract-delta (SD) take an indirect word. Add-delta

causes, after the instruction is executed on the operand

pointed to by the address field (bits 0 - 17; the operand

lies in the same segment as the AD word), the delta

(rightmost six bits) to be added to the address field. The

tally (bits 18 to 29) is decremented by one. If the tally

reaches zero the tally-runout indicator is set, but no fault

occurs. Subtract-delta, before executing the instruction,

subtracts the delta from the address field and increments

the tally by one.

An Enciphering Module for Multics page 68

BIBLIOGRAPHY

1. Girdansky, M. B. "Cryptology, The Computer, and Data
Privacy," Computers and Automation, April, 1972, pp. 12-19.

2. Smith, J. L., "The Design of Lucifer, a Cryptographic
Device for Data Communications," IBM Research Report RC
3326, April 15, 1971.

3. Honeywell Information Systems, Inc . Honeywell 645
Processor Manual.

Related material:

4. Smith, J. L., Notz, W. A., and Osseck , P. R., "An
Experimental Application of Cryptography to a Remotely
Accessed Data System," IBM Research Report RC 3508, August
18, 1971. (Also~ ACM 25th~ Conf., August, 1972, pp.
282-29 7.)

s. Feistel, H., "Cryptographic Coding for Databank Privacy,"
IBM Research Report RC 2827, March 18, 1970.

6. Feistel, H., Notz, W. A., and Smith, J. L.,
"Cryptographic Techniques for Machine to Machine Data
Communications," IBM Research Report RC 3663, DeceMber 27,
1971.

MIT / LCS/ TM-50

AN ENCIPHERING MODULE

FOR

MULTICS

G. Gordon Bened ict

July 1974

MAS SACH USETTS INSTITUTE OF TECHNO LOGY

PROJECT MA C

PUBLICATIONS TR/TM FORJ.V,

Title of Thesis or Report:

An Enciphering Module for Multics

Author(s):

Go Gordon Benedict

No. Assigned:

MAC TM- 50

Technical Report:

Technical Memoranda : ✓

If Thesis, type:

S.B. Thesis (June 1974)

Department:

EE Dept. Systems Research - Division II

MAC Group Leader

PUBLICATIONS DISTRIBUTION
PROJECT MAC, ROOM 417A

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139

253-5894

July 1974

We have recently issued Project MAC Technical Memoradum 50:

An Enciphering Module for Multics

Benedict, G. Gordon (This Technical Memorandum
reproduces a June 1974, M.I.T. Electrical
Engineering Department S.B. Thesis of the same
title)

AD 782-658

ABSTRACT

Recently IBM Corporation has declassified an algorithm

for encryption usable for computer-to-computer or computer

to-terminal conu:nunications. Their algorithm was implemented

in a hardware device called Lucifer. A software implementation

of Lucifer for Multics is described. A proof of the algorithm's

reversibility for deciphering is provided. A special hand-coded

(assembly language) version of Lucifer is described whose goal

is to attain performance as close as . possible to that of the

hardware device. Performance measurements of this program are

given. Questions addressed are: How complex is it to impelment

an algorithm in software designed primarily for digital hard

ware? Can such a program perform well enough for use in the

I/0 system of a large time-sharing system?

