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An I:nciphering Module for Multics 

ABSTRACT 

Recently IBM Corporation has declassified an aloorithP1 

for encryption usable for conputer-to-connuter or 

computer-to-terminal communications. Their algorithm was 

implemented in a hardware device called Lucifer. l\. software 

implementation of Lucifer for !!ultics is described. A proof 

of the algorithm's reversibility for deciphering is 

provided. A special hand-coded (assembly language) version 

of Lucifer is described whose goal is to attain performance 

as close as possible to that of the hardware device. 

Performance measurenents of this progran are given. 

Questions addressed are: How comp lex is it to implenent an 

alqorithm in software designed primarily for diqital 

hardware? Can such a program perform well enouqh for use i n 

the I/0 system of a large tiMe-sharing svstern? 

Author: G. Gordon Benedict 

Thesis Supervisor: Prof. Jerome II. Saltzer 



An Enciphering Module for Multics paqe 3 

CONTENTS 

Title Page 1 

Abstract 2 

Contents 3 

Figures 4 

Tables 5 

Overview 6 

Section 1, Introduction to Enciphering 8 

Section 2, Enciphering Algorithms ar.d Lucifer 12 

in Particular 

Section 3, A Proof of Lucifer's Reversibility 17 

Section 4, The Multics Software Implementation 19 

Section S, Timing Measurements and Conclusions 22 

Appendix A, Operation of the Lucifer Hardware 24 

Appendix B, 'l'he PL/I Implementatio n 34 

Appendix c, The Assembly Language Implementation 43 

Appendix D, Introduction to Multics Assembler 62 

Bibliography 68 



An Enciphering Module for Multics paqe 4 

FIGURES 

Figure 1, Flowchart 15 

Figure 2, Block Diagram 15 

Figure 3, Bit Addresses in Registers 25 

Figure 4 , Hardware Schematic 26 

Figure 5, Exploded Key Bit Ass ignr:tent 44 

Figure 6, Key Bit Assignment 45 

rigure 7, Convolution Registers 47 

Figure 8, Postrotation Convolution Registers 4 8 



An Enciphering Module for Multics page 5 

TAilLES 

Table 1, Key Byte Access Schedule 31 

Table 2, Four-bit Permutations 33 

Table 3, Convolution Register Rotation Counts 51 



An Enciphering Module for Multics page 6 

OVERVIEW 

This thesis examines the enciphering algorithm recently 

released by IBM, Lucifer. This algorithm is described as a 

hardware mechanism in "The Design of Lucifer, a 

Cryptographic Device for Data Communications", by J. Lynn 

Smith; this was the primary source document. 

A proof of Lucifer's reversibility is given, that it 

will in fact correctly decipher its previously-output 

ciphertext when provided with the same key used for 

enciphering. Two software implementations are described and 

their performance measured. 

This paper is divided into five sections and four 

appendices. "Introduction to Enciphering" briefly explains 

the uses of enciphering in computer-to-computer and 

computer-to-terminal communication as a security 

enhancement. "Enciphering Algorithms and Lucifer in 

Particular" lists some criteria for a good computer-oriented 

cipher. The gene:t"al operation of Lucifer is depicted 

without much detail. Sufficient detail is however given for 

understanding of "A Simple Proof of Lucifer's 

Reversibility". This section provides an informal proof 

that Lucifer works in that it correctly deciphers its own 

ciphertext. "The Multics Software Implementation" 

demonstrates how to use the enciphering programs. The final 

section, "Timing and Conclusions", presents performance 
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me a surements of a PL/ I and a Multics assembly language 

version of Lucifer. Appendix A, "Operation of the Lucifer 

Hardware", details t he operation of the hardware device 

described by Smith. Appendix B, "The PL/ I Implementation", 

details a software version in the PL/I language designed t o 

simulate closely the Lucifer hardware in its operation and 

be readable and exportable. Appendix c, "The Assembly 

Language Implementation", details a version of Lucifer 

optimized for execution time. For those readers unfamiliar 

with the Multics hardware, "An L1troduction to Multics 

Assembler" briefly explains those f eatures of the Honeywell 

model 6180 processor used by Lucifer. 
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INTRODUCTION TO ENCIPHERING 

Much attention has been paid recently to comnuter and 

data security. Computer security consists o f regulating the 

use of computer facilities to only t hose people or those 

tasks authorized to use t hem. This has been attempted by 

such mechanisms as p asswords , protection rings , and 

privileged instructions. Data security is be coming mor e 

important with the advent of government a nd corporate 

personal-data files . This problem is magnified if the 

computer system is available 

telecommunications . Gi ven the 

to 

above 

many users 

faci lities 

via 

f or 

regulating computer faci l ity use, access control is one 

mechanism that is available for preventing . unauthorized 

access to data f i les . However , thi s mechanism fails when 

data is transmitted over telephone lines , radio links, or 

physical (mail or courier) shipments . Such co~munic ations 

are easily tapped without the legitimite us er' s knowledge, 

except for the case of a courier. Even more ins idious than 

the traditional reading of sensitive data is the insertion 

of spurious data designed to confuse o r misdirect the 

operation of a system . One mechanism for minimizing this 

problem is enciphering that data, which protects the data 

itself rather than the me d ium of transmitting t he data. 

Enciphe ring is a process whereby t ransformations are 

made on t he message (cleartext), usua l ly on a bit or 
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character level. If the algorithm is known the cipher may 

be breakable by analyzing the ciphertext, particularly if 

sample cleartext for some of the ciphertext is available. 

Since an enciphering algorithm must be reversible to be 

useful, a key known by both the message originator and the 

intended receiver is also used. Thus if the key is 

intercepted or deduced the cipher is now cracked. The 

essence of successful cryptology is in devising an 

enciphering algorithm which is not possible to crack in the 

time-span of the message's useful .1ess, and in keeping the 

key secret. 

Enciphering helps in preventing insertion of spurious 

data to confuse a computer, as well as preventing reading of 

secret data. This is because a random message inserted onto 

~1e communication link will probably decipher to 

unrecognizable garbage. The algorithm implemented in this 

paper is so constructed that if one bit is changed in a 

legitimate enciphered message, the deciphered text will 

almost certainly be unrecognizable. This prevents the form 

of interference wherein a saboteur records (taps) the 

ciphertext, changes some bits randomly without even 

understanding the message, and inserts the text onto the 

telephone lines. Unrecognizable text can usuallv be 

rejected by the computer. There still reroains the problem 

of t he saboteur who records the ciphertext and replays it 

unchanged later. This can be extremely damaging to 
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unrepeatable or irreversible processes. A method of 

avoiding this problem is message chaining, whereby a part of 

the previous data exchange is enciphered in t his data 

exchange, as a verification field. Thus the same message 

replayed tomorrow would contain an out-of-date veri f ication 

field and be rejected. The operation of s uch a s ys tem is 

discussed at length in Smith's paper. 

Enciphering can also be used for computer-to-terminal 

communications. The terminal would contain a hardware 

deciphering module; the algorithm described here was 

designed with this purpose in mind. The user could have his 

key on a magnetic card, or he could type it in on the 

terminal. The computer would contain a central file of all 

users' keys and a software or hardware version of the 

enciphering module. 

Enciphering can add some security to online files 

against the possibility of random hardware or software 

failures or physical stealing of backup tapes, disk packs, 

etc. Enciphering in this application merely adds another 

dimension of security. 

This pa per details an enciphering algorithm developed 

by Feistel and Smith of IBM for computer-to-terminal 

communications. A software version has been p repared, 

intended to be used as part of the input/output software or 

the network interface of Multics. A command to encipher and 

decipher online segments has also been written. A proof of 
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the algorithm's reversibility is also given; this was hinted 

at but not proved in the Smith and Feistel papers. 
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ENCIPHERING ALGORITHMS AND LUCIFER IN PARTICULAR 

There are several desiderata in the design of an 

enciphering algorithm. One is needed which is easily 

implemented in hardware, yet would provide a great mea3u~e 

of security against cryptanalysts especially against 

those armed with computers of their own. 

Many traditional algorithms have operated by performing 

one-for-one character substitutions based on the key. For 

example, the "Vignere-Vernam" ciphers use a square array of 

characters. To encipher, each character of cleartext is 

used as a column index into this array: the character of the 

key corresponding to this character of cleartext (i.e., the 

nth character of the key corresponds with the nth character 

of cleartext) is used as a row index. The character at the 

intersection is the corresponding ciphertext character. The 

key is repeated as many times as necessary to exhaust all 

characters of cleartext. The square array can contain 

essentially any characters. These ciphers' weakness arise 

from the key repitition and the simple substitution of a 

very short message element (a character). Such ciphers are 

subject to frequency analysis, particularly if a sample of 

cleartext is available. This oversimplified account is • 

drawn from "Cryptology, t he Computer, and Data Privacy" by 

M. B. Girdansky. 

The algorithm developed by Smith and Feistel uses the 
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traditional enciphering mechanisms 

strings and modulo arithmetic on 

of substitution of 

strings. However, by 

r epeated cycles , e ssentially a substitution is performed on 

not s mall charac ters but 128-bit blocks. Thus such methods 

a s frequency analysis require computatio n time on t h e order 

o f t he lifetime of t he uni verse. 

This algor i thm, called Lucifer, has the 

a dvantages of simple hardware i mplementation 

added 

with 

shift-registers and easy reversib ility . A 

descrip t ion of t he algorithm follows and then a 

i ts reversibility. 

general 

proof of 

The basic transformations used are one-to-one mappings 

and exclusive-ors (mod- 2 addition). The input is div ided 

i nto equal-sized b locks ; each block is processed comp l e tely 

independently of t he others. The following description 

refers to 011e blo ck only . It is thus desirable f roM a 

cryptograph ic po int o f v i ew to use as large a block size as 

possible, since t he mor e bits which affect a given b it of 

c iphert ext, the harder will be the job of the crv ptanalyst. 

As ment ioned before, a basic weakness in many ciphers i s the 

small block size. 

A block is broken into the top half and the bo ttom 

half . Without chang i ng t he bottom hal f , it is broken into 

easily manipulable units called by tes. Each byte undergoes 

one of two one- to- one t ransfo rma tions depending upon a b i t 

of the key. This collection of transformed bytes i s 
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referred to as confused bytes, and the operation is referred 

to as confusion. Next, each bit of the confused bytes i s 

modulo-2 summed with a different bit of t he r.ey. This 

operation is referred to as interrup tion. Now t hese bytes 

are modulo-2 summed with the top half of the cle artext, the 

block previously unused. This is called diffusion. The two 

halves are swapped; this operation is called interchange. 

Sixteen such cycles occur. One complete 

confusion-interruption-diffusion cycle is called a CID 

cycle. The schedule for accessing key bits is so arranged 

that every key bit is used for both controlling the 

confusion transformation and for interruption. The 

interchange operation occurs on every cycle except the last. 
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Figure 1: Flowchart 

es 

Figure l shows a flowchart of the operation. Thus the 

algorithm consists of: 

CID c.ycle 
0 

Figure 2: Block Diagram 

CID eye!~ 
n 

The on l y difference between enciphering and deciphering 

is the order in which the key bits arc accessed. Hithin CI D 

cycle n during deciphering, key bits are accessed in the 
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same order as in CID cycle 15 - n in enciphering. These 

operations, explained in general here, are fully detailed in 

Appendix A - Operation of the Lucifer Hardware. 

This leads to a simple proof of reversibility , as 

explained in the next section. 
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A PROOF OF LUCIFER'S REVERSIBILITY 

Assume there are n + 1 CID cycles and thus n 

interchanges. Call output of the CID cycJ A n l MOIi Ml 

(where MO is the first half of the message, Ml is the second 

half). Call the output of cycle n coll Cl. The double 

vertical bar represents concatenation. MO 11 Ml is 

transformed in the following manner by cycle n, which is the 

last cycle (the first is numbered O). Confusion: A 

transformation T (Ml) is applied. Which transformation 

depends on a bit of the key (one for each byte of Ml) but 

s i nce the same key bits will be accessed for the same byte 

positions during deciphering the specific transformations 

selected is irrelevent, as long as they are all one-to-one. 

Interruption: T (Ml) is exclusive-ored with s pecific key 

bits KI. Di f fusion: T (Ml) + KI is exclusive-ored with the 

top l"ialf. The total message i s thus T (Ml) + KI + MO 11 Ml. 

Remember that on cycle n no interchange occurs. On 

deciphering, this output will be fed into decipher cycle 0, 

which is the same as e ncipher cycle n. Since this cycle is 

exactly the same as t he last encipher cycle, confusion and 

interruption will generate T (Ml) + KI just as before. When 

this is exclusive- ored with the top half consisting of T 

(Ml) +KI+ MO the original MO will be regenerated. 

Since the interchange before encipher cycle n occurs 

after decipher cycle 0, the output from the int~rchanqe wi ll 
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also match. Thus the entire n - 1 interchange and n CID for 

encipher is equivalent to the O CID and O interchange. 

Thus these cycles can now be effectively stripped offr the 

same proof is applied to a Lucifer consisting of n CID 

cycles and n - 1 interchanges. Eventually a Lucifer of one 

CID cycle and zero interchanges remain; this has already 

been demonstrated above to be reversible. 

In the actual specific operation of Lucifer, the 

diffusion operation does not consist 

exclusive-or; instead the bits are permuted in a 

of a simple 

fixed 

the fashion before diffusion. This does not 

reversibility, since the ciphertext will undergo 

affect 

the same 

permutation and thus each cycle will regenerate the input of 

the corresponding encipher cycle. However, this permutation 

is necessary for the cipher to be difficult to break. It 

ensures that small differences, say a one-bit change , in a 

given message block will propagate throughout all the bits 

of that block of ciphertext. Each bit of cleartext 

potentially affects every bit of ciphertext, within a 

128-bit block. 
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THE MULTICS SOFTWARE IMPLEMENTATION 

Two programs were written as implementations of the IBM 

hardware vers ions of Lucifer. One is a s~raightforward PL/I 

program which manipulates the bits in essentially the same 

fashion the hardware does. The other is a Multics assembly 

language program optimized for speed of execution. Detaili 

and listings of each may be found in the appendices. 

Instructions on using them are given here. 

First, a key must be supplied. This is done by calling 

the set_key entry: 

declare lucifer_$set_key entry (bit (128)); 

call lucifer_$set_key (key); 

This entry saves the key in internal static. This key 

will be used for all future enciphering and deciphering 

until set_k~y is called again. 

To encipher: 

declare lucifer_$encipher entry (dimension (*) 

bit (128), dimension (*) bit (128), fixed binary precision 

( 35)) ; 

call lucifer_$encipher (cleartext, ciphertext, 

code); 

The packed bit array, cleartext, is enciphered and 

deposited in the equal-sized array ciphertext. The code 

argument will be set to zero unless the dimensions of 

cleartext and ciphertext do not agree, in which case code 
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will be set to one and the enciphering not perf o r med. The 

ciphertext and cleartext may be the same v ari able. 

To decipher: 

call lucifer_$decipher (ciphertext , c l eartext, 

code); 

This entry is declared the same a s encipher, and its 

operation is similar. 

One problem with this implementation is that Lucifer 

requires a 128-bit b lock to encipher each 1 28-bit block of 

the cleartext. If the cleartext is not a multiple of 128 

bits the last block could be padded with zeroes, but the 

output ciphertext corresponding to t h is b l o c k cannot be 

truncated . If it is i nformation will be l os t and it will 

not be deciphered correctly. This is because on deci pher 

the truncated block will be padded to 128 bi t s (with zeroes, 

presumably) which is not identical to t he original output of 

encipher before truncation. Therefore the primitive 

subroutines lucifer_$encipher and lucifer $decipher require 

data to be passed in 12 8-bit blocks. 

To make this mo r e palatable to Multics users (to whom 

data tends to come i n multiples of 9-bit characters o r 

36-bit words anyway ) a command has been wr itten to translate 

an entire segment . To set the key, type : 

set_key -key-

where -key - will be padded or truncated to 128 bits and is 

a n octal string . 
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To encipher a segment, type: 

encipher -cleartext- -ciphertext-

The segment whose relative pathname is -cleartext- will be 

enciphered . If the optional argument · ciphertext- is not 

given e1e original segment will be overwritten; otherwise 

the ciphertext will be written onto the segment named 

-ciphertext-. 

The input will be padded to a mod 128 bit length with 

zeroes, and the output segment will be equal in length. 

Note that no additional pages can e ~er be required by this 

padding, since a page is 36*1024 bits long, a multiple of 

128. 

To decipher, type: 

decipher -ciphertext- -cleartext-

This comman d operates in the same way as encipher. Since 

the ciphertext segment must be a multiple of 128 bits long, 

exactly as produced by encipher, the output deciphered text 

will be exactly as long. This is because decipher has no 

way of knowing how long the original was. This can damage 

standard object segments which have significant words 

expected to be found at the end of the segment. Note that a 

better version of this command would encipher the original 

cleartext length into the ciphertext segment. 
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TIMING MEASUREMENTS AND CONCLUSIONS 

One of the important questions addressed by this paper 

is "Is it possible to take an algorithm designed f or 

hardware implementation and efficiently translate 

easy 

it t o 

software?". Performance measurements by Fei stel s how that 

the Lucifer hardware module enciphered a 128-bit block i n 

about 165 microseconds. A version written in 360 assemb l y 

langugage for the 360/67 required about 9 milliseconds . The 

current Multics hardware, the Honeywell model 6180, executes 

instructions at approximately the same rate a s the IBM 

360/67. The PL/I version, as expected, was extremely slow 

and required 10.4 seconds to encipher 72 blocks o f 1 28 b its 

each, or 144 milliseconds/block. The assembly language 

version required .4 seconds/72 blocks , o r 5 . 5 

milliseconds/block. Multiplying by ten t h e number of blocks 

passed to lucifer did not substantially reduc e t he 

time/block, suggesting that 5.5 milliseconds represent s real 

computation and not overhead. Since Multi cs char acters are 

nine bits long, Lucifer requires s . s * (9/128) = 390 

microseconds per character enciphered. Current ly t he 

Multics I/O system requires about 100 micr oseconds per 

character for its processing; thus if Lucifer were used for 

all I/O a severe performance degradation could occur. 

However this speed probably suffices for t he occa sional use 

to which it might be put. 
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There are some possibilities for further speed-ur of 

the assembly language version: this is discussed in Appendix 

c. 
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APPENDIX A - OPERATION OF THE LUCIFER HARDWARE 

This appendix explains the details of the operation of 

Lucifer as it was originally designed, as a hardware device. 

This material is drawn from J. Lynn Smith ' s "The Design of 

Lucifer, a Cryptographic Device for Data Communications" . 

A copy of the PL/I program which implements the 

algorithm, duplicating very closely the exact bit flows 

within the hardware, is shown and explained in Appendix B. 

Several cautions must be made in reading the hardware 

diagram given in figure 4. Individual bits of a given byte 

are arrayed vertically across registers; bytes are numbered 

right-to-left, bits of a byte top-to-bottom. Thus each 

vertical column below represents one byte of eight bits. 

Therefore if the bytes are adjacent (O, 1, 2 .•• etc) the 

storage order in memory (in a two-dimensional array) is 

according to the ordered pairs in each bit position shown 

below. 
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Figure 3: Bit Addresses in Registers 

7 6 5 4 3 2 1 0~ \ . 

7,0 6,0 5,0 4,0 3,0 2,0 1,0 o,o 0 

7,1 6,1 5,1 4,1 3,1 2,1 1.1 0,1 1 

7,2 6,2 5,2 4,2 3,2 2,2 1,2 0,2 2 

7,3 6,3 5,3 4,3 3,3 2,3 1,3 0,3 3 

7,4 6,4 5,4 4,4 3,4 2,4 1,4 0,4 4 

7 , 5 6,5 5,5 4,5 3,5 2,5 1,5 0,5 5 

7,6 6,6 5,6 4,6 3,6 2,6 1,6 0,6 G 

7,7 6,7 5,7 4,7 3,7 ,7 1,7 0,7 7 
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Figure 4: Hardware Sch ematic 
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Note also that the author assumed that high-order bits 

are transmitted first; the Smith paper does not specify 

this. Thus bits are first loaded into position O of the 

convolution registers (top half), then po,ition 1, 2 etc. on 

to position O of the source registers (bottom half). 

Each of the registers shown is connected as a circular 

shift-register. In addition, bits can be shifted from the 

convolution registers to the source registers and back for 

the interchange operation. 

A complete enciphering or deci~1ering operation for one 

128-bit block consists of sixteen 

confusion-interruption-diffusion (CID) cycles, with an 

interchange cycle in between each CID cycle for a total of 

15 interchange cycles. 

At the start of a CID cycle, byte O of the key is 

copied into the transformation-control register. 

register will supply eight bits for controlling 

confusion operation; each bit will correspond with one 

of the source registers. 

This 

the 

byte 

A CID cycle consists of eight shifts of the source, 

convolution, and transformation-control register (TCR). The 

TCR shifts vertically upward; other registers rotate 

horizontally, byte n going to byte mod (n - l, 8). 

An individual shift of a CID cycle occurs as follows. 

Byte O is taken from the source registers. It flows into 

the confusion box along with bit O of the TCR. A one-to-one 
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transformation is applied to this byte , according to the bit 

from the TCR. The output from the confusion box is an 

eight-bit confused byte. Each bit of the confused byte is 

exclusive-ored with some bit of the convolution registers; 

note that no two bit positions are in the same byte. Each 

of these result bits is exclusive-ored with some bit of the 

rightmost byte of the key; this constitutes the interruption 

function. The result of this operation is stored in the bit 

position of the convolution registers to the right of the 

pair of exclusive-or gates. Note that diffusion occurs 

before interruption, but this is immaterial since mod 2 

addition is commutative. As the result bit is stored in the 

convolution registers, the convolution registers, source 

registers, and TCR undergo a shift. Thus the bit that 

previously was to the right of the exclusive-or gates in the 

convolution registers is not destroyed; it is shifted right, 

and the result of diffusion occupies its old position. 

These shifts are executed eight times for each CID 

cycle. In addition, during each shift t he 16-byte key 

registers each rotate right one position with one exception: 

during the last shift of each CID cycle the key register is 

not rotated during encipher; during decipher the key 

registers rotate two positions after the last shift. Thus 

seven key shifts occur per CID cycle on encipher and nine 

key shifts occur per CID cycle on decipher. This, coupled 

witl1 an initial shift of nine positions before processing 
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any · blocks, constitutes the only difference between 

enciphering and deciphering. 

When eight shifts of one CID cycle are complete, the 

source registers will be back to their original position. 

The convolution registers are also restored except that each 

of its 64 bits has been exclusive-ored with exactly one key 

bit exclusive-ored with exactly one source bit. This is 

guaranteed by the placing of the gates in a 

position for each bit of the confused 

registers have been rotated ei~ier seven 

different byte 

byte. The key 

times (for 

encipher) or nine times (for decipher). The TCR has yielded 

all its bits. An interchange cycle now occurs, unless this 

is the last CID cycle. · This consists of connecting 

positions O and 7 of the source registers with positions 7 

and O of the convolution registers, respectively; eiqht 

shifts now occur. This merely swaps the contents of the 

registers. 

Now the next CID cycle begins. A new key byte is 

fetched into the TCR. On CID cycle 1 this will be byte 7 

for encipher and byte 2 for decipher of the original key. 

It is important that the key bits be accessed in the 

reverse order (between CID cycles) when deciphering as 

compared to enciphering, but in the same order within each 

CID cycle. This is to ensure reversibility, as exrlained 

earlier. In addition, for cryptographic strength each bit 

of the key should be accessed an equal number of times: 
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eight times for interruption and once for transformation 

control of one byte of the source registers . The following 

method of accessing key bytes was thus devised. If there is 

to be an encipher, the key is initialized by loading it into 

the key registers. If a decipher is to be performed, the 

key registers are then rotated so that the first CID cycle 

will use bytes 9 to O rather than Oto 7. After each CID 

cycle there will be no key shifts on encipher , but there 

will be two shifts during decipher. This will cause the key 
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bytes to be accessed as shown in table 1. 

Table 1: Key Byte Access Schedule 

CID cycle encipher decipher 

0 0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 0 

1 7 8 9 10 11 12 13 14 2 3 4 5 6 7 8 9 

2 14 15 0 l 2 3 4 5 11 12 13 14 15 0 1 2 

3 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 

4 12 13 14 15 0 1 2 3 13 14 15 0 1 2 3 4 

5 3 4 5 6 7 8 9 10 6 7 8 9 10 11 12 13 

6 10 11 12 13 14 15 0 1 15 0 1 2 3 4 5 6 

7 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 

8 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 

9 15 0 l 2 3 4 5 6 10 11 12 13 14 15 0 1 

10 6 7 8 9 10 11 12 13 3 4 5 6 7 8 9 10 

11 13 14 15 0 1 2 3 4 12 13 14 15 0 l 2 3 

12 4 5 6 7 8 9 10 11 5 6 7 8 9 10 11 12 

13 11 12 13 14 15 0 1 2 14 15 0 1 2 3 4 5 

14 2 3 4 5 6 7 8 9 7 8 9 10 11 12 13 14 

15 9 10 11 12 13 14 15 0 0 1 2 3 4 5 6 7 

The byte of the key used for transformation control is 

in the left-hand column. Note that the decipher schedule is 

the same as the encipher schedule read upsidedown, but 

within a CID cycle, read horizontally, lJytes are accessed in 

the same order. Also note that the key registers will be so 

positioned after sixteen CID cycles ready for the next 
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block: in byte O for encipher, byte 9 for decipher. 

The exact nature of the confusion operation has not 

been explained yet. It is not important particularly what 

it is, as long as it is one-to-one and sufficiently random. 

It works as follows. Each byte to be confused (from the 

source registers) is split into two four-bit halves. If the 

key bit from the TCR for this byte is 1, the two halves are 

exchanged; otherwise no operation is performed . Next , each 

four-bit half undergoes a one-to-one mapping . The method in 

hardware used decoders, encoders, and permuted wires, but 

effectively a table look-up was done to associate with each 

of the sixteen bit combinations a unique four-bit 

replacement. The two mappings for the two halves are 

different; the one for the top half is called SO a nd the one 

for the bottom half is Sl. Finally an 8-bit byte is 

generated by permuting 

mapping networks. The 

the eight wires 

result of this 

from these two 

entire confusion 

operation (and the way it is done in the software versions) 

is to consider the key bit concatenated with the source byte 

as a nine-bit index into a 512 element table. Each element 

is an eight-bit confused byte. This is explained in 

Appendix B, the PL/I implementation. 
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Table 2: Four-bit Permutations 

input so Sl 

0000 1100 0111 

0001 1111 0010 

0010 0111 1110 

0011 1010 1001 

0100 1110 0011 

0101 1101 1011 

0110 1011 0000 

0111 0000 0100 

1000 0010 1100 

1001 0110 1101 

1010 0011 0001 

1011 0001 1010 

1100 1001 0110 

1101 0100 1111 

1110 0101 1000 

1111 1000 0101 
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APPENDIX B - THE PL/I IMPLE~1ENTATION 

The PL/I implementation is very similar to the hardware 

design. However, instead of rotating data toward the low 

address end of each register, index values into fixed arrays 

are decremented and wrapped around to the high order end. 

Note very carefully that each byte shown in the hardware 

diagram, those bits arrayed vertically, are rows of 

two-dimensional arrays. Thus if a conventional PL/I array 

is printed it will appear transposed as compared to the map 

of the registers. For consistency within this document all 

arrays will be transposed from the conventional order so 

that they appear identical to the hardware bit orderings. 

Instead of doing 15 interchanges (unlike most other 

operations, a real movement of data occurs on interchange) 

16 are done. This last interchange is undone by copying the 

source registers first into the result block followed by the 

convolution registers. This is to avoid checking within the 

loop for the special case of the last execution. Similarly 

rather than skipping a key-shift cycle on encipher and 

performing an extra one on decipher each CID cycle, eight 

increments of the key index interruption_row are always 

performed. After a CID cycle is complete, a fixup variable 

either one or minus one is added modulo 16 to 

interruption_row; this variable is -1 for encipher and 1 for 

decipher. 
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The program operates as follows. It copies the first 

half of a given 128-bit block into the 

convolution_registers; the second half is copied into 

source_registers. The interchange_index loop counts the 

CID-interchange cycles, sixteen in number. Within that loop 

a CID cycle is performed by assigning interrup tion_row to 

ks_row; interruption_row shows which byte of the key will 

next be used for interruption, ks_row shows which byte will 

be used for transformation control. This assignment is the 

equivalent of copying the next byte of the key into the TCR 

at the start of a CID cycle. Now the data row loops eight 

times, once for each byte in source_registers. The entire 

confusion operation is implemented by a 512 byte table; the 

first half for key bit= O, the second half for key bit= 1. 

Thus the confused byte is found by indexing this table with 

the key bit identified by ks_row and data row concatenated 

with the source byte identified by data row. Now 

convolution index loops eight times, once for each bit in 

the confused byte. Note that this is all done in parallel 

in the hardware version and in the assembly language version 

described in Appendix c. Each bit of the confused byte must 

be exclusive-ored with some bit of the key byte identified 

by interruption_row. J ust as the key interrup tion wires 

were permuted in the hardware, so key_table tells which bit 

of that key byte is supplied for each bit of the confused 

byte. This interrupted bi t is now exclusive-ored with some 
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bit of the convolution registers. The register in which the 

bit lies which will be diffused (the one to the righ t of the 

exclusive-or gates) is the one corresponding to the source 

register from which the interrupted bit was derived . The 

number of this register, the column in the PL/I sense 

(although it is horizontal on the diagrams) is therefore 

convolution index. The byte in which this bit lies is given 

by a table, convolution_table. These positions rotate right 

around the registers, one position for each shift of the CID 

cycle, once for each incrementing of data row . Therefore 

the correct convolution_table entry for this bit of the 

interrupted byte must be mod-8 summed with data row: this 

supplies the byte or row number of the target bit . 

After this byte is complete, interruption_row is 

incremented mod 16 to simulate rotating the key reg isters 

once to the right. Now data row is incremented to have the 

effect of rotating the source, convolution , and 

transformation-control registers. 

After the eight loops of data_row, interruption_row 

must be readjusted to si~ulate only seven key shifts on 

encipher but nine shifts on decipher. As explained b efore , 

a fixup variable either one or minus one is mod 16 added to 

interruption_row; this fixup variable is set at the entry 

points. The two entry points also set the initial 

interruption_row, either O for encipher or 9 for decipher. 

After sixteen loops of interchange_index , sixteen 
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CID-interchange pairs have been performed. The block is now 

copied into the result field; the source registers are 

copied first to undo the effect of the extra interchange 

cycle. 
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11 1no10000 11 h, 
11 ooon1oro"h, 
"l](lJOOO{l"h, 
"OlOOlOOO"h, 
"llllOOOO"h, 
"n11r1noo"h, 
11 11110010 111-, 
"nJ 1n1n1.r"h, 
"lf'Ol0010 11h 
11 oonn1(lJ 0 11< 
11

] f'l.1()001 11h, 
11 001(1] no1 11h, 
11 11 n10001 "h, 
11 ()Jf1'1JOOJ"t-, 
11 1111no11"h, 
"OJ 10]0).1 "h, 
"1"11 nnrrn"" 
11 nn1 n111on 11

.,; 

"11010010 111-, 
"('1Jno1n1 (l"h, 
"lJOlOOJl"h, 
11 r1nn1011 "h, 
"1rn1nno1 "h, 
11 onno1001 11 h 
"1 1 11 on n 1 "h: 
"('111'1100l"h, 
"JnJ lOOIO"h, 
"Of'l('l()JO"h, 
"lnilJn(lJ l "'·, 
11 00001011 "h, 
"101 JO(lll "h, 
"('OJOl(lll"h, 
11 1nn10000 11 h, 
11 onoo1000 11 h 
11 11 010000 11 < 
"OJ no] 0(10 11 h, 

"11n1 r 11J"h 
"n1ni1n11 11 h' 
11 1nn101n1 " h , 
"0(1 011 llOl "h, 
"JlllfllOl"h

1 

"OlJl]OOl"h
1 

11 }01] (1 1)0 11h
1 

11 00111n1n 11 h' 
"J nn1 Olll 11h

1 

"non11011 11.,' 
"lOllf'lll l "h' 
11 no111011 11< 
"10010100 11h, 
11 00011('00"" 
11 11n1n100 11 h' 
11 01011nn(l"h

1 

11 1111n1no 11< 
11 1'11})()0() 111-, 

"llllOllO"h' 
"n1111n1n 11h' 
11 1noi('l11.n 111-' 
11 rnr11nin 11h' 
"Jl'llf11f'l"< 
"OOll]f'Ol"" 
"ll fl} O] (lJ 11 h ; 
11 0) llJl(lO] "" 
"111]1']11 111-, 
11 ni 111ni1 11< 
"lOJJf'lnO"", 
11 nn111oon"h 
11 11 nJ "l lfl 11 h' 

""l"ll01'1"h' 
"llflJOlJl"h

1 

11 r1011n11 111-: 
11 1nn1r101"h, 
11 nr r11001"1-, 
"ll)Jf'JOl"h, 
"OJ ll 1on1 11 h , 
11 1n11n11 n"<-, 
"nn111n10"" , 
"1n n 1r111 "h, 
"O(l0110ll"h, 
11 1n11n11I"h, 
11 00)1l()J1 11 h, 
11 }f1()10100 11 h, 
11 nrn11onn"h, 
"l)l'll'J OO" h , 
"01n11r on 11 1- , 

11 n1n 11J l l"h 
11 n1 r, n n 111"< 
11 nn n111 0 1"h 
"O OOOOl fl l"h

1 

11 r11111n1 11 < 
11 n11no1n1"" , 
"'lOlllllO"h, 
11 on1 no11n"h 
"nOOlllll"h: 
11 noono111 11 h 
11 ro111111 11 < 
"OOlO Olll"h, 
11 nnn11100"h, 
11 nnnoo1oo"h, 
"Ol'llllOO"h, 
"n1ono100"", 
11 n1111100"h, 
11 r1100100"h, 
11 n111111n"1-, 
11 011no110"< 
"nOOllllf'"~, 
"OOOOOllO"h, 
11 nn1111n1 "h, 
11 nn1nn1n1"", 
"Ol<'lllOl"h, 
11 n1non101" " , 
""1111111"", 
"('IJJflOlll"" 
11 f"n1111no 11 < 
11 nn100100 11h, 
"r'JflllllO"h 
11 n1noo110 11

,-,: 

"f'lOllllJ"h, 
1101000111"", 
11 nnn111n1"1-, 
11 nnono101 11h 
"n11111n1 11 h: 
11 011no101"1-,, 
" OOlllllO"h, 
"nOl(lOllO"h, 
"f10'111 l l l "h, 
11 nonon111" 1-, , 
11 rn111111 11 h, 
11 no1no111"h, 
"nno111oo"h, 
"r,OOOOIOO"h, 
11 n1n11100 11 h, 
11 n1 noo1 nn"h, 

"ll Ollfl l l "h 
11 n1no 1 111 ,,.,, 
"1 00 1 1 <' 01 ""' 
11 nooo11n 1"h

1 

"llll l '10l"h' 
" nllOllflJ"h, 
"l Ol l l<'lO"t-

1 

"O Ol Ol l l O" h, 
"lOOll<'ll"h, 
"nOO Ollll"h, 
"lOlllrJl"h: 
"<'0101 lll"h 
11 1001 l "00"< 
"000 011 00"" 
"11 011()0f' 11 h; 
11 r10011on 11 h 
"lllJJ OOO"h

1 

"011 0 ] 100 11 1-, 
11 11111rnn 11 h: 
11 n11 0lllf'"h, 
11 1001 lf'J'1 11 h 
"nOOOlllf'"h; 
"10111001 "h, 
"f"OlOl]Ol"h, 
11 11 0 ) ]1'01 11 h 
"n1no11n1"< 
11 ) ll lJ nJ1 11 h 

"OllOllll"h
1 

"101 ll OOO"h' 
11 r o1011 o n 11 < 
"1101 lOJn"h, 
11 n1no111n"h, 
"1101J01l"h 
"nl001 l l 1 11 h ' 
11 10011no1 11 h: 
"l'OOOl l OJ"h, 
"lllll OOl"h 11 <'11011 0111 h

1 

"1 0111 C1 10" h : 
11 00101110"1-,, 
"1001101 l" r , 
"OOOOllll"h 
"101110ll"h, 
11 no10111 1 11< 
"10011n on11 1-, 
11 nooo11ro 11h: 
"11 0 1 lf'O O"h, 
11 n1 0011n O" h , 

" 0 1oono11"1- , 
11 n 1 r 1r>OJ J " h , 
"rorionon 1 "" 11 0001 000] "h: 
11 1' 110 000 ] " h , 
"n111o noJ "h 
"'10J(l00J()"h' 
" (10 11 00 1 n 11,< 
" <' OO OO(ll l "h, 
"0001 Ofll l "", 
11 001 ro o11"1-, 
"001) 0()11"1-, 
"OOOOOOOO"h , 
11 no o1 o o oo"h, 
"(ll00'1(l (' 0 11 h, 
"<'lOl OOOO"h, 
"Oll 00 (lf10"h, 
"(llllOOll('"t-, 
"f'llfll'OlO"h, 
"OllJ OOlf'l" h , 
"(l00000}() 11 h , 
"OOOJ(lf'l 0"", 
"001 <'"'l('ll"", 
11 nn11 ro nt"h, 
11 r1nonor,1 " " , 11 n1(l1no o1"h, 
11 n1Jono11 "h, 
"('ll}J () ()JJ" h , 
11 001nnonr, 11 h, 
"no11n0on11 1-
1101000r1r11h' 
"nlOlflOJI'"": 
11 0100001 l"h, 
11 01 nJ nn1 J "h, 
"ll0(1Q'1() 1'l ] "h, 
"('10010'10] " h, 
11 n11ooon1 111-, 
"011 l<'OOJ " 'i , 
11 0010001 0 " h , 
"OOll CO JO" h , 
"0000001 l" h , 
"OOOHOl l"h , 
"OOlOOOll"h, 
"00110011 " h , 
"('IO OOOOO O" h , 
" OOOJ1' 00'1" h 
11 01onnno o"h; 
"11]01 000'1"h, 
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"Olll()l OO"h, "lJlllJrJO"h, "lllOllOO"h, "lJ llOO(W"h, "1J ll 01()0"h, ""ll lllOO "h , 
11

111nnonn 11 h, 11 111nn1no"h , "1110100()"h, "()JlO lOOO "h, "Oll l lO OO"h, 11 01100100 11h, 
"()lllOllO"h, "lllllllO"h, "lJl()lllO"h, 111111no1n"h, 11 111111110 11h, 11 01111110 11h, 
"1110001()"h, "lllOOllO"h , 11 111n1n10"h, "i'11 010l() "h, "OllllOlO"h, 11 01100110 11 h, 
"OOOlOllO"h, 11 10011110 11 h, "1(10f11110"h , 11 1on1001n 11 h , 11 1on10110 11 h, 11 00011110 11 h, 
"1onooo 1n"h, 11 10000110 11 h, "10f101010"h, 11 nnoo101n"h, "non11n1o"h, 11 00000110 11 h, 
"OOllr'!lOI"h, 11 10111101 11 h, 11 101n11n1 11h, 11 1n11nno1 11h, 11 1('111 0 ln1 11 h, "OOllllOl"h, 
11 10100001 11 h, 11 1010010111 h, 11 10101001 11h, 11 00101001 11h, 11 nn111no1 11h, 11 nn100101 11h, 
11 n1 n101n1 11h, "llOlllOl"h, 1111nn11n1 11h, 11 11n1nOOl"h, "11n10101 11h, · "01011101"", 
1111nooon1 11 h, 11 1100010111h, 1111no1001 11h, "Ol()OlOOl"h, 11 01n11no1 11h, 11 n1nno101 11 h, 
"OlllOlll"h, " llllllll" h, "lllOllll"h, "11110011 11h, 11111101Jl"h, "l"ll lll ll"h, 
"111()0011 11h, "lllOOlll"h, 11 111n1n11 11h, 11 n1101011 11h, "fll]lJ()ll"h, "OllOOlll"t--, 
11 on11n1nO"h, 11 1n1111nO"h, "lOJOllOO"h , "lOlJOOOO"h, 11 1011n10011h, 11 001]1]00 11h, 
11 1n1n('lonn 11 1, , 11 1n1001nn"h, 11 1n1n1000 11h, 11 nr1n1ono 111-,, 11 on111nnn 111-, 11 f'o1on100 11h, 
11 n101 n110 11 h, "llOJlllO"h, 11 11nn111 () tlh , "ll('l10010 11h, 1111n1r11n 11h, "OlflllllO"h, 
11 11nnoo1011 h, 11 11nnn11n 11h, 11 11nn1n1n"", 11nJn()Jn1n"", 11 n1011n1r 11h, 11 n1n11011n"h, 

) hit (fl) un;ill,,-nerl rfl,,,ensl0n (n: 511) intern;il st;itir.; 

/• P l [) lt•r f.lJf)F FILF r,nr"11s 1nn_t;if-Jp. 1 nr-1.nll •/ 

"lllllOflO"h, 
"Ol 101 1"0"h 
"11111 111() 11

..,; 
11 n11n111n"h, 
"lOOll OlO"h, 
"('100011 10"", 
"lOlllOOl"h, 
11 no1011n1 11 1-,, 
11 11011 nn 1 " h, 
"Ol001Ir''l"h, 
"lllll Oll "h, 
"()11011 11"'1, 
11 10111 noo 11h, 
11 00 101100"1-,, 
"110111'Jf' 11 h, 
"rlOOlll fl " h , 

"011nnoon " h , 
II (\ l lJ (' (' (11) Ith, 

"f1110('010"h, 
" Ol11001(1"h, 
11 noncoo10 11 h , 
"0001011] O"h, 
"fl0 1f10001"h, 
11 00110 0f11"h, 
" 0 10 0 f1 00l "h, 
" 01 0 11' ()(1 J"h, 
" Oll!' O'l ll"", 
"01ll""ll 11 h, 
"nQJ0(11'00"h , 
11 f1 () J J Q(1M' 11 h, 
" OlOOflnJf' " h, 
" (1J() J"f11 0 11 h 
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APPENDIX C - THE ASSEMBLY LANGUAGE I MPLEMENTATION 

The basic philosophy of the Multics asseMbly language 

version of Lucifer was to produce a program which could 

encipher or decipher at the highest speed. This does not 

contribute to the readibility of the program; therefore this 

explanation is quite detailed. If the reader is unfamiliar 

with Multics assembly language, a short introduction is 

given in Appendix D. 

The set_key entry does more than store the key in 

internal static. During ciphering the key is used in two 

places: transformation control and interruption. For 

reasons explained later, each purpose requires the key to be 

in a different format for optimal operation. To avoid key 

manipulation during ciphering, set_key stores the key in two 

variables, key and exploded_key. 

In exploded_key each bit of the key is given its own 

nine-bit byte. The high-order bit of each byte contains the 

key bit; the low order eight bits are zero. This key is for 

transformation control. In the diagram below showing the 

storage assignment, the ordered pair in each byte position 

gives the byte of the key number and the bit within the 

byte. 2\s in the hardware diagrams adjacent bits of a byte 

are arrayed vertically, although it is more conventional to 

show memory words horizontally. Thus each byte of the key 
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requires two words; t hirty-t wo words for 1 28 bit s. 

Figure 5: Exp loded Ke y Bit Assignment 

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 

1 20 112 104 96 88 80 72 64 5 6 48 40 32 24 16 8 

1 21 113 105 97 89 81 73 6 5 5 7 49 41 33 25 17 9 

122 114 106 98 90 82 74 66 5 8 5 0 42 34 26 18 10 

123 115 107 99 91 83 75 67 5 9 51 43 35 27 19 11 

1 24 116 108 100 92 84 76 68 60 52 44 3G 28 20 12 

125 117 109 101 93 85 77 69 61 53 45 37 29 21 13 

126 118 110 102 94 86 78 70 62 54 46 38 30 22 14 

127 119 111 103 95 87 79 71 63 55 47 39 31 2 3 15 

For int errupti on, t he ke y b i ts within a key by t e are 

no t acces s e d in t he same order as the conf use d byt e's bits, 

o, 1 , 2 •• • 7. Rather t hey a r e a ccessed 2, 5, 4, o, 3, 1, 7, 

6 as given in key_table of the PL/ I program or as s hown by 

t he wir ing of the h ardwar e. To avoid t he us e of such a 

table and lookup time during ciphering, ci1e key bytes are 

p r esor ted by set_ke y . Each 8-bit byte o f t he key is s tored 

in the high order part o f a Mul tic s 9- bit byte, the 

r emaining bi t being zero. Thus t he s torage assignment is as 

0 }. ,. < 
V -'( , 

0 \' • 

1 

2 

3 

4 

5 

6 

7 
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shown in the diagram below. 

Figure 6: Key Bit Assignment 
~ t 

5 4 3 2 1 o Y° Kfi.. 
".>--\ 

4 0 12 8 4 0 0 

5 1 13 9 5 1 1 

6 2 14 10 6 2 2 

7 3 15 11 7 3 3 

Words O and 1 are copied into words 4 and 5. This is 

to permit directly addressing eight bytes starting at any 

byte between O and 15 without programming a complicated 

wraparound routine. 

The basic idea underlying this program is to process 

all 64 bits of the source and convolution registers at once, 

each CID cycle. In order to do this, the key bits must be 

so arranged that each of its bits lies in the bit position 

corresponding to that of the source register bit with which 

it will be exclusive-ored during 

explains the rearranging above. 

When the encipher entry 

interruption. This 

is cc:.lled, it sets 

interruption_row (held in index register 2) to zero as in 

the PL/I program. Since an entire CID cycle is done in 

parallel, interruption_row will never be incremented along 

the horizontal line of the key byte access schedule given 

earlier. Instead it will be incremented each CID cycle to 

assume the values given in the schedule's left-hand column. 

Examining the schedule it can be seen that interruption_ row 
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should ~~us be incremented by 7 for encipher and -7 for 

decipher, modulo 16. Thus each entry also sets the variable 

either 7 or minus 7 to the appropriate value. This is added 

to x2 mod 16 each CID cycle. 

After the argument extents are calculated and pointers 

to the strings fetched {bp -) input string, bb -) output 

string), the main loop is entered. 

As in the PL/I program, the first 64 bits of each 

128-bit block are placed into convolution_registers, the 

next 64 into source_registers. As with the key, each 8-bit 

byte is p laced in the high order eight bits of a Multics 

9-bit byte. This unpacking is accomplished by unpack_loop. 

This loop depends on the fact that the assembler will assign 

source_reg isters a location after 

because it is declared afterward. 

address) bytes are unpacked first. 

convolution_registcrs 

The low order {high 

Once this is comp lete, sixteen CID-interchange pairs 

are executed. 

First, the convolution registers are prepared for the 

diffusion operation. Referring to the hardware diagram, one 

can sec ci1at each bit of a confused, interrupted byte 

{vertically arrayed) corresponds to a different byte but the 

same bit {i.e., horizontal register) of the convolution 

registers. As seen in the PL/I program, if a source 

register bit has address (i, j] {byte i, bit j) the 

convolution register bit corresponding to it is 
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[mod (i + convolution_table [ j], 8), j] 

where convolution table is [7, 6, 2, 1, 5, O, 3, 4]. 

Instead of looping through each bit as the PL/ I program 

does , the convolution registers are rotated so t he bit 

positions for diffusions line up, corresponding with t hose 

of the source registers. 

Since the horizontal registers are t he bits to rotate, 

the b its to rotate are not adjacent. Thus the b it addresses 

within the two-word convolution_registers of each bit before 

rotation is as follows: 

Figure 7: Convolution Registers 

7 6 5 4 3 

63 54 45 36 27 

64 55 46 37 28 

65 56 47 38 29 

66 57 48 39 30 

67 58 49 40 31 

68 59 50 41 32 

69 60 51 42 33 

70 61 52 43 34 

2 l 

18 , 9 

19 10 

20 11 

21 12 

22 13 

23 14 

24 15 

25 16 

x:...e. 

'< 0 "'. ·, 

0 0 

l l 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

Notice that bits 8, 17, 26 ••• 71 do not appear assigned 

on the matrix. This is due to the unpacking of each 8-bit 

byte to a 9-bit byte. The unassigned offsets are those of 

the pad bits. The purpose of this rotation is to a l i gn 

all the exclusive-or positions on t he right edge of the 

matrix. Looting at the hardware schematic, the desired 
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position of each bit is as follows: 

Figure 8: Postrotation Convolution Registers 

7 6 5 4 3 2 1 0 ·'\.~ 
'Q ~ 

6,0 5,0 4,0 3,0 z,o 1,0 o,o 7,0 0 

5,1 4,1 3,1 2,1 1,1 0,1 7,1 6,1 1 

1,2 0,2 7,2 6,2 5 ,2 4,2 3,2 2,2 2 

0,3 7,3 6,3 5,3 4,3 3,3 2, 3 1,3 3 

4,4 3,4 2,4 1,4 0,4 7,4 6,4 5,4 4 

7,5 6,5 5,5 4,5 3,5 2,5 1,5 0,5 5 

2,6 1,6 0,6 7,6 6,6 5, 6 4,6 3,6 6 

3,7 2,7 1,7 0,7 7,7 6,7 5,7 4,7 7 

This rotation is accomplished as follows. Row 0 (bits 

0, 9, 18 ••• 63) must be rotated right on t he diagram (left 

in the AQ register as it happens) seven positions or 63 

bits. Row 1 (bits 1, 10, 19 ••• 64) must be rotated 6 

positions or 54 bits, etc. An array of masks, and_masks, 

has been prepared with a 1-bit in each bit position for a 

given register. They are ordered according to the number of 

positions of rotation needed. Since register 5 needs no 

rotation (because the exclusive-or gate is already in byte 

0), the mask for it occurs first. I t consists of four 

zeroes, a one, eight zeroes, a one, eight zeroes ••• Thus, 

when convolution_registers is loaded into the AQ register 

and is ANDed with this mask, only bits 5, 14, 23 ••• 68 will 

remain. This register is rotated Obits left and then ORed 

into a previously zeroed doubleword , named "normalized". 
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Next, 

bits. 

register 3 must be rotated left one position or nine 

Thus the second mask has a one in bit 3 and a one 

every nine bits thereafter. After ANDinq the 

convolution_registers with this mask only bits 3, 12, 21 ••• 

66 remain. The AQ is rotated left nine bits, and ORed into 

"normalized 11
• 

There is a pointer to and_masks called and_masks_ptr. 

It is referenced by using the add-delta (AD) type indirect 

reference. When an indirect reference is made through this 

word, after completion of the specified operation the 

contents of the delta field (here 2) will be added to the 

address field. Thus the next time the AQ is ANDed the next 

doubleword mask will be used. Similarly an AD word controls 

the shift count. The first time through the loop the AQ 

must be shifted zero bits so the address field of this word 

contains zero. After every indirect reference the address 

field will be incremented by the delta field, here nine. 

Thus the rotate counts will be O, 9, 18 ••• 63. In addition 

this word is used to control the number of times the loop 

will execute. After an add-delta reference is made the 

tally field of the word is decremented by one~ if it reaches 

zero the tally runout indicator is set. This tally field is 

set to eight before beginning the loop. Thus the loop will 

iterate eight times, due to the transfer-tally-runout-flag 

off instruction at the end. 

After preparing the convolution registers, the 
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confusion operation is performed on the source registers. 

This is done by loading the source regis ters into the AQ and 

shifting right one bit position. Now e ach 8-bit byte 

appears right justified in each Multics 9-bit byte of the 

AQ. The AQ is now ORed with some doubleword of 

exploded_key. Each bit of exploded_key occupies the high 

order bit of a 9-bit byte; thus each bit to be used for 

transformation control now resides to the left of the 

corresponding byte of the source. 

The double\'1ord of exploded_ key t o use for 

transformation control is equal to the byte of the key 

addressed by interrup tion_row. This is because each byte of 

the key uses a doubleword of explodcd_key, and because 

interrup tion_row (in x2) alway s addresses the first byte of 

the key to use for interruption this CID cycle which is also 

the byte to use for transformation control. Since even the 

doubleword instructions address in word indexes, 

intcrrup tion_row must be doubled. This is done by addin~ it 

in t\'1ice, once i n the epplb instruction and once in the oraq 

instruction itself. 

The AQ is stored and translated by t he mvt instruction. 

The confusion table used here is identical to the one in the 

PL/I program, except tl1at each 8-bit result byte is as usual 

left justified within a 9-bit byte. 

These confused bytes are now interrupted by 

exclusive-oring with the eight bytes of the key addressed by 



An Enciphering Module for Multics page 51 

interruption_row. Diffusion is obtained by exclusive-oring 

wit h the pre rotated convolution registers stored in 

"normalized". 

The interchange operation must, as well as swapping the 

source and convolution (now stored in "normalized") , 

unrotate the convolution registers to undo the effect of 

lining up the exclusive-or gates described above. This is 

done via a very similar loop to rotate_loop. A 

subtract-delta modifier references through and_rnasks_ptr. 

Since this modifier subtracts delta before indirecting the 

masks will be used in the reverse order. The shift counts 

needed are shown below; the add-delta word for shifting 

again supplies loop control. 

Table 3: Convolution Register Rotation Counts 

Row Previous Rotation Post-Rotation 

5 0 72 

3 9 63 

2 18 54 

6 27 45 

7 36 36 

4 45 27 

l 53 18 

0 63 9 

The register accesses and rotate counts for the prerotating 

should be read down ; for postro~at i on the table should be 

read up. 
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After sixteen CID-interchange pai r s , one more 

interchange has been done than desired . This is undone by 

swapping the two registers. The bytes a re now packed into 

the result field. 

Some possibil i ties still exist f o r speeding up thi s 

program. The two loop s controlled by t a lly words onlv loop 

eigh t times; they could be explode d i nto eight copies. 

Since the address of and masks and the r otate counts would 

in each copy be k nown at compile time no i ndirect words 

would be needed. In addi t ion the loop control instruction 

ttf would be eliminated. Counting t tf as two memory 

accesses and each of the tally references as one, four 

memory accesses could b e saved each r otation. Since eight 

are required in the loop, and there are t wo loops, 64 memory 

accesses would be saved. Eight more would be saved by 

eliminating the tally word setup instructions at the 

beginning of each loop, for a total of 72. Si nce ther e a re 

sixteen CID cycles a total of 72 times 16 = 1152 memor y 

cycles might be saved . This may t o t al as much a s a 

millisecond, thus saving about twenty percent o f the cipher 

time for a given block. This demonstrates how s ensitive a 

program' s performance can be to mi nor changes in coding 

style. Other experiments are suggested , such as comple tely 

rewriting the program with all arrays trans posed (so that 

the bits of a byte are not stored sequentially), or 

eliminating the padding bit on each b yte . 
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II 
Copyright (cl 1974 by Ma s sachusetts Institute of Technolof'y and 
Honey1tel I Inf ormati o n Systems, I nc. 

'' This program is a special version of Lucifer designed to run very qui c kly. 
11 Few programs could compete with this for obscurity. 

Coded May 1, 1974 ' , G. Gordon Benedi ct 

enc i pher: 

dec i pher: 

join: 

at the Computer Sys tems Research divi s ion of Proj ect ~AC 

entry 
equ 
equ 
eQu 
equ 
equ 
equ 
temp 
tempd 
temp 

push 
eax2 
eax7 
s t x7 
tra 

pus h 
eax2 
eax7 
stx7 

s tx2 
eaxO 
I x 17 
cmpx7 
t nz 
eaxO 

eppbp 
l dq 
sbq 
adq 
q l s 
stq 
eppbp 
ldq 
s bq 
adq 
Ql s 
cmpq 
tnz 

set_key,encipher,declpher 
move, 3 
a_in,2 
a_out,4 
a_code,G 
a_i n_desc, 3 
a_ou t_desc, 10 
text_length,text_ positlon,elther_ 7_or_minus_ 7,shlft_word 
convolution,source,confused_bytes,nonnal l zed 
ln i t i a l_value 

0 
7 
e l t her_7_or_m i nus_7 
jo in-* , i c 

ini tial I nterrupt i on r ow 
go fo r ward 7 b y tes In key afte r each CID cyc l e 

9 Init i a l Interruptio n rol'; (n i nth byte of key) 
-7 star t eac h CI D cycle with Inter r uption row 7 
e i ther_7_or_minus_7 mo r e t han l ast for l ater 

l n it l al_va l ue 
0 
ap l O 
8,du 
2, I c 
2 

ap l a_l n_desc,O• 
bp l 2 
bp l l 
1, d I 
7 
text_length 
ap l a_out_desc,O* 
bp i 2 
bpl l 
1, d I 
7 
text_ l ength 
no_ I ength_n,a t c h -•, i c 

ter~lnat l on condition after l G CID cyc l es 
assume no d i sp l ay ptr In arg l ist 
ge t code wh i ch te ll s us If assumpt i on Is operat i ve 
I s there a d i splay ptr 
no 
yes, put l ength of this ptr in xO so we l'lill skip it 

get ptr to desc ri ptor 
hbound (a i n ). •• 
- ! bound (a_l n ) ••. 
+ l ■ d i m (a_ l n, l) 
* 128 • l ength I n bits of whole array 

get Ptr to descriptor 
hbound (a out) ••• 
- l bound (a_out) ••. 
• l = d im ( a_ou t, l J 
• 128 • length in bits of whole array 

e r r o r , ho t h mus t be s '"" e 
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epphp 
epphh 

arla_tn,* 
apla_out,* 

naP-P 5 4 

Ret ptr tn Input arv 
RPt r,tr to 0utput arrr 
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11 hegln main loop processln l' . rPor< Ir er1r r 
11 12R-hit h lock ;inrl encryr,t s<'par;ately. 

r,;il'e 55 

stz t f' x t_r,os I t 1 nn ZPrn nrncp s sP" s n F;,r 

text_loor,: 
Jr<q text_poslt Ion P:Pt ;ie1011nt r,rnrPsser< so f;, r 
Cl"f)O text_lPnP'th SPP 1" h;,nr<le" ;,1 1 In ~tri l'r, 
tol return_nnl'i-•, ic I" sn, rPt11rn 

11 unnack next 12R-hJt hlnck sud, th;,t e,-,rh 
" 8-hlt hyte occur,lf'!s the hlP'h orrlpr ~ 
t1 hits of II tiultlcs 9-hit hlocv . 
11 th I s m11 ke s man I pu 1 11 t I on h y F I S 

arlQ 15•8,rll 
l <la 1 5•9,r<l 

lnstn,ct lnns convenlPnt. 
get nosltlnn of last ~-hit hyte In this hlork 
vet o"fsPt to last q-hlt hlor~ In rPRisters 

unp;ick loof): 
( pr, o 1 ) , ( p r , a 1 ) , h no 1 ( ron v P ) , J'J 1 1 ( 0 ) - cs 1 

rlesch 
rlesch 

shq 
sha 
tpl 

hr,10,R MOVP an R-hlt hyte ••• 
cor,volutlnn,9 ••• tn 11 9-hit hyte ;in" s tir!· on;, 

11
0

11
h 

II 

8, rl 1 
9, rll 
unpack_tnon-•,lc 

go to next tower R-hlt hyte 
same for t;,rgPt 
continue ur,tll lfi hytes 11re 11nn;,ckP", 
R In snurrP, ~ ln convnlutinn 

t1 now rlo 15 lnterct,an,P.e anr1 lf> Cl!' cyc l ,.s. 

Interchange loop: 
flrl O, ,ll z"ro fl" (klurlPe) 

m;,vp zero for orlng stao 
1 r<a 
Sta 

no rm;i 1 1 zp,-1 
=on n1011,r11 
shlft_wor" 

t11lly" ~, lnltf ;, 1 value= 0, "Plt;i = 'l 
fir wor" for shifting (lnrrPrnPnts q each t I Me) 

rot;,te_loop: 
1 rlao convo lution P:Pt entlrP c onvnlutl 0n rPRS (hits r - 63) 
;in;i<i lpl;,nrl_m;:isks_ptr,;,n cle11r 11 11 hut cn l u,.,ns 5, tt,pn n, 1, 11, 7, 
tlr shlft_worr1,;,n sh l<' t "lrst hy n, thPn 'l, then l P ••• etc. 
orsil norm;,lfzpn put l n first 01or"'s hfts 
orsq normatlzerl+l now 7nrl worr1 
t t f rot" t e I o<"n- •, I c nn R t I Mes ( s e" ta 1 1 y) 

11 nr,w have In norm111 lzer1 ;,-1:or,y oF convolution 
11 registers with each column so rntatP.r1 
11 th11t ;il 1 tt,e XOJl gates ;,re 111 I P'neA on 

epplh lplexnlo"er1_vPy,x2 

source 

u,e rll'ht ranA """"· nnvi co,-,F11sP s ourr.e 
when x? I s a"-'"rl tr this ar1nr , 
will have ar<r<r rf vey worrls 
RP.t s011rre rPi>: 

f,, ? , 3 

1 rlaq 
Ir 1 
oraci 
staq 

1 out Oat leF t e"P:e of e;icr hyte lrstearl of rli,:ht 

mvt 
r<esc9a 
rlesc9il 
~rr. 

lh l0,x2 
confuser1_hytPS 

p11t e11ch hft of ks-rnl', vey I n hll"h o rr1f'r h i t nf so u rce hytP 

(pr),(pr) tr;,nslate vi;, tahle (con"uslon) 
confuserl_hytes,R 
confusP.rf _hytP.s, 8 
con Fus lon_ t;ah l p+3 - • , ! r 
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l rlao 
ml r 
rlesc9;i 
rlesc9a 

erc1<1 

confuser! hytes 
( r r , x2 ) , T rr) 
l r fkey,8 
confuserl_hytps,8 

cnnfuserl_hytps 

P-Pt r0•1 n" vpy usprl "nr l nterruntlnn 

ersa no r ma l l zF.rl 

l ntpr r untlon 

rll 4'" 11s l nn 
2nrl wn r rl ersq norma li zerl+l 

" now rlo I nterchange c yc l e. 

l rlan 
st;iq 
f 1 rl 
stan 

lrl;i 
s t;i 

unrotatC' l onr: 
- 1-';io 

;inan 
11 r 
orsa 
o r s q 
tt" 

a rl x2 
a n x2 

crirx 2 
tn z 

" rlone •11 th this 
1 rlan 
stan 
lrlan 
stao 

n;id:_loor: 

1 rlaq 
stao 
1 rlo 
arlo 
sto 
1 r l ~ 

sho 
csl 
rlesch 
rlPsch 

sh;i 
t r l 
tra 

source 
convo l utl0n 
0, rl l 
source 

=0000011001011 
sr t i=t_worrl 

n0 r i,,;il i zf'rl 
l r lanrl masks rtr,srl 
sh l ft_-;:;nrrl , ;,;i 
sourc e 
s o urr e "'l 
un r ntate_ l 0nr-• ,l c 

onp ha l f o4' work 
zero out source frr nr f n,,- ln 

t;,l l y c P., rlf' l ta = 'l, lnlt l ;i l v;ilue = <1 
r ut h;,cv t;il 1 y o• 8 

r:ot ,lff•usprl convo l ution r pufsters 
an rl o ut al l hut that cnlHrin to hp rotaterl 

shift hy a0r ror r l;,te a~nunt 
pu t In t o source 
? nrl worrl 

efther_7_o r_mln us_7 r:o f n n ,;i rrl o r h;,cl-w;i rrl th r u kPy 
•o17,rlu riorl 16 

l nlt f ;,1 v,!1 11<' h;irl· to ~,1--erP 01p sta1·terl this hl0rk 
I nte r ch;nge_l nr>r- 0•, tr. 

128-hlt h l ocr. recomract anrl storP 
source exchanpe source ;inn c0nvnlutlnn 
normal lzerl 
convolution 
snurce 
nrrmal l zerl 
convol ution 
text rnsltion r: n to next 128-hf t hi0r v 
l?R, -;i'1 

text rnsitlon 
q,, 15:-,11 lf> <1-hf t hytes to na ck 

8,rll r:n tr next lowpr hyt e 
( r r,;, 1 ) , ( n r , o 1 ) , hrr 1 ( mnvP ) , • I 1 1 ( 0 ) 
convolutlon,9 
hhf0,8 

'l, n 1 
r;irk loon-*, lc 
text=lnor-*, Ir 

gn to nPxt lm•Pr ~-hit hytps 

P- n to next 1?8-hft hlnc v 
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no_lenp;th_matct,: 
lrlo 
sto 
return 

rPturn_nn~, : 
s t z 
rPturn 

1, rl 1 
apla_corll',* 

arla_co"P,* 

11 ho,.,h, lPn,.ths of lnnut a nA output not sa,.,P 
coAp to r Pturn 

'' set_kPy Pntry, to set thp ~PY For suhspnuent calls to lur lfPr, 
set_key: 

epphp an l 2, • EPt aAA r nf 1211-hlt Strini' ~hlrh I s ~ey 

of a q-hlt hytl' 
"exp lnrle 
"so Pach 

the ~ey anrl transpose It, 
hit nccunles the f irst hit 
eaxO 0 fir s t hit of key 
eaxl 0 first hyte nf PXpl o"Prl 1,py 

explorle_l nop: 
cs l 
rlesch 
rlesct, 

11 Just 

eaxl 
eaxO 
cmpxO 
tml 

flnlsherl one 
eaxO 
c"'nxO 
trn I 

11 now Pxplorlp e11cl> 
eaxn 
eaxl 
eax2 

p~rmutat lon loop: 
e;x3 
11rlx3 
cs l 
rlpsch 
rlesch 

eaxl 
eax2 
cmpx2 
tml 

(pr,xO), (pr,xl),honl (move), Ff 11 (0) 
hpf0,1 move noe hit oF kpy,,, 
lpfexp lorleA_key,9 ••• to thP ton hit of a 9-hlt hyte 

9,xl 
lfi, xO 
l?R, rlu 
explorle_l oon-•, le 
column oF R hfts. 
-1 27,xO 
lf-, Au 
exn l o"e_l onn-•,lr 

next time usP next hyte of explorlpA_key 
tal-P next column e ntry, 16 hits ;,w;,y 
SPP IF AonP with thi s rolumn 
Aonp 

now rln npxt rnlumn , s t a rtlnl' nne hit away 
put 11,; "ar" 127 h f ts, nf'se t l "ro,., n revl n11s 
I" JF, ~,p havP s>•Pnt thn, ;,11 hf t s (IF c 1?7 

R-hft 
0 

per,,,utpA h lnrk to ;, q-h! t row 
First rnl11mn of l<Py 

0 
n 

n,xn cony rnlurnn of ~ey 
nerrnutatl nn_tahle,x2 JYPt spprlFfr h ft no•rihpr 
( pr, x 3 ) , ( pr, x 1 ) , h no 1 ( ,.,,w P ) , F r 1 1 ( n ) 
hpfO,] 
lnf kPy,? na" with an hit (only r"unt s at Pn" of l oon) 

1, xl s:o to npxt hf t of '' PY rP <:til t 
l,x 2 nPxt pp r ,,,utatl"n t ;,hl p entry 
11,rlu rln r- 0 ~,!th thi s loon 

"rllrl one 8-hlt 
eaxl 
eaxO 
cmpxO 
t "' I 

nprmutatl on lnnn-•, le 
hlocv. , sk i n 1;,st zero hit 

1,xl 
1, xO 
1 Ii, rlu 
nermutatlnn_lonr-• -1 , i r 

hel!lnnlnJY 
+] fi -1?7) 
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11 rlupl lcate first 8 rows of kpy at enrl to prevent wr~parounrl prohlems 
lrlaq lnlkPy 
staq lplkPy+~ 

''setup tre initl?l tally wor~ usPrl for running rlown an~-mnsks 
eaa lplanrl_masks 
orsa lplanrl_M?sks_ptr 

short_return 
permutatfon_tnhle: 

arp: 
a rp

ar.P: 
ar,~ 
ar.P: 
a r P. 
ar1t 
a r P: 

lfi*2 
lf-*5 
lfi*4 
lfi*n 
lfi*3 
1 fi * 1 
lfi*7 
1F*6 

"rrlves pPrMUtntTons n" l~PY r:n l unins usprl for fnterruotion 
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con fu s lon_ t a'1 1e : 
tnclurf e 

use 
even 
hss 
bss 

an rf_masks_pt r : 
rlec 
even 

an rf masks: 
- vfrl 

vfrl 
vfrl 
vfrl 
vfrl 
vfrl 
vfrl 
vfrl 
join 
enrf 

conf us t on_ t;:,h le 

1 tnkaire_sec t lon 

k ey , fi 
e xp lorlPrl_kPy, 32 

2 rfelta of 2 
"neerf on even worrf hounrlary 

6/1,9/1,9/1,9/1,9/l,9/l,9/1,9/1 
4/1,9 / l,9/l,9/1,9/1,9/1,9/1,9/1 
3/l,9/l,9/1,9/1,9/1,Q/1,9/l,9/l 
7/l,9/1,Q/1,9/1,9/1,9/l,9/l,9/1 
8/l,9/l,Q/1,9/1,9/1,9/1,9/l,9/l 
5/l,9/1,9/1,9/1,9/1,9/1,9/1,9/l 
2/l,9/l,9/l,9/1,9/1,9/1,9/1,9/1 
1/1,9/1,9/1,9/1,9/l,9/l,9/l,9/l 
/l lnk/1 tnkap:e_sectlon 

pa tre 59 
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11 
I NC'LUfl( F ILE confus i o n t;,h l e.lnc l .;, l m 11 

Th i s Imp l ements the confusion ooer11t l 0n for l.u,-ffp r 
11 

It shoulrl on l y he ca ll er! f r om l uclff'r_.a l "" 

naPP. fi O 

vfrl 9o/25fi,qo/fi76,9o/f3f,qo/f4F,qo/fi56,qo/276,9o/6!iF,qo/206 
vfd 9o/60F,qo/616,9o/f2f,9o/226,9o/?66,9o/216,9o/236,no/?4f 
vfrl 9o/051,oo/472,qn/h32,9o/ 4h?,no/452,9o/07?,qo/h62,qo/002 
vfrl qo/l102,9o/412,9o/422,9o/0?2 , no/062,9o/Ol?,9o/032 , qo/n42 
vfd 9o/352,9o/772,9o/73?,9o/7b?,no/752,9o/372,9o/ 762,no/302 
vfrl 9o/702, 9o/712,9o/722,9o/322 , qo/362,9o/312,9o/33 2, 9o/342 
vfrl qo/154,qo/574,0o/534,9o/544,9o/554,0o/ 1 74,9o/564,~o/ 104 
vfrf q0/504,9o/5lb,9o/52h,9o/l,4 , qo/Jfi4,9o/1 14,9o/134 , 9o/ 144 
vfrl qo/05fi , qo/476,9o/43 f, 9o/446 , 9o/456, 9o/07fi,9o/46fi , 0o / 0 06 
vfrl 9o/b 0 6 , 9o/41F,9o/h2r,qo/ 026,9o/066 , 9o/016,9n/03fi,9n/046 
vfrl 9o/156 , 9o/~ 7fi ,9o/53f,9o/5hfi,9o/556 , 9o/17f,9o/56E,nn/106 
vfrl qo/50fi , qn/516,9n/52F,9o/1?6,9o/Jfifi,no/llf,9n/136,qo/l116 
vfd qo/050,qo/470,9o/43P,9o/440,9n/450,9o/070,9n/460,9n/ OPO 
vfrf 9n/4 00,9o/410, 9o/420,9o/0?0 , 0o/Ofi0, 9o/010,9o/03P , 0n/040 
v frl 9o/250,9o/fi70,0o/fi30,9o/640, no/fi5 0,9o/?70, no/F6n, no/200 
vfrl 9o/600,9o/610, 9o/620, 9o/220, 9o/2F0, 9n/2J0 , 0 0/230, no/?40 
vfrl 9n / 350 , 9o/ 7 70, 90/ 73 0,9n/ 74 0,9o/ 7 50 , 9n/370, 9n/7F 0,9n/3 0 0 
vfrl 9o/700,9o/ 7 10,9o/720 , 9o/320,qo/360, 9o/310 , 0 0/330 , qo/340 
vfrl 9o/35 4, 9o/774 , 9n/734 , 9o/744,9o /754, 9o/ 3 74 , 9o/764 , 9o/~04 
vf rl 9o/ 704,9o/7 1h,9o/724,9n/324,9o/364,9o/314,9o/334 , 9o/144 
vfrl 9o/054 , 9o/474, 9n/434 , qo/h44 , 9o/45b , 9n/074,9o/46 4, qo/004 
v frl 9o/ 40 4, 9o/414, 9n/424,qo/024 , 9o/06 4,9o/014,9n/034,9o/0 44 
vfrl 9o/ 1 52 , 9o/572,9o/532 , 9n/542,9o/552,9o/172,9o/562,no/10? 
vfrl qo/502,9o/51?,9o/522,9n/1?2,9o/Jf?,qn/1J?,qo/132,9o/142 
vfrl qo/252,9o/fi7?,9o/632,9o/642,9o/fi5?,9o/27?,9o/662,9o/?0 ? 
vfrl 9o/602,9o/612,9o/6?2,9o/222,9o/?6?,9o/2J?,qo/23 ?,qo/?4 2 
vfrl 9o/356,9o/776,9o/736 , 9n/746,9o/756,9o/376,9o/766,9n/306 
vfrl 9o/706,9o/71f,9o/726,9o/326,9o/36f>,9o/31fi , qo/336,9o/346 
vfrl 9n/150,9o/570,9o/530,q0/540,9o/550,9o/170,9o/560,qo/100 
vfrl 9o/500,9o/510,9n/520,9n/120,9o/160,9o/l lO,no/130,no/ 14P 
vfrl 9n/254,9o/674,9n/63h,9o/fi4 4,"o/f54,9o/2 74,9o/f64,9o/204 
vfrl 9o/604,9o/614,9o/6?4,0n/224,9o/264,9o/21 4,nn/ 234,9o/24h 
vfrl 9o/256,qo/67F,9n/636,q0/6h6,9o/FSF,9o/27f,9o/ffi6,qn/706 
vf~ Qo/fi06,Qo/F16,Qn/6?6,9n/2?6,qo/"fif,9n/?lfi,9o/?3fi,no/74fi 
vfrl nn/052,9o/477,9n/h3?,nn/442,qo/452,90/n72,no/4(2,no/007 
vfrl Qo/40?,9o/hl7,90/4??,qn/022,9o/n6?,9o/nJ?,9n/032,9o/r47 
vfrl 9n/352,9n/77?,9n/73?,no/742,qn/75?,9n/37?,9o/7f,? , 9n/'07 
vfrl 9o/702,9n/71?,qn/7?7,90/322,9o/'F7,9n/31?,9n/332,9n/'42 
vfrl ~n/15h,9o/57h,9n/51h,9o/544,9o/~ Sh,9n/ 174,9n/ 5fi 4,"n/ J0h 
v frt 9o/504,9o/514,9n/574,9o/124,9o/lfih,9n/114,9n/J34,9n/l4b 
vfrl 9n/056,0o/476,0n/41f ,no/hbF,qn/45 F,9o/076,qn/4fifi ,9n/"0F 
vfrl qn/40F,9o/41F,9n/4?6,9o/026,Qo/n6F,9o/DlF, 0 0/nJ&,9n/"4F 
vfrl Oo/156,9o/57fi,9n/53fi,no/54fi,Qo/55F,9o/17F,qn/5f6,no/JOF 
vfrl 9n/506,9o/5 16,9n/526,9n/126,9o/lfiF,9o/1Jfi,nn/136, 0o/lhF 
vfrl 9n/050,9o/470,Qo/430,nn/h40,9o/45P,9o/n7n,nn/hfiO,n0/non 
vfrl 9o/400,Qo/410,9o/4?0,9n/070,no/OFn,90/n1n,no/n3n,nn/P49 
vfrl 9o/250,9n/FJn,qn/fi30,9n/640,9o/FSn,9n/27n,no/FF0,9o/?OP 
vfrl 9o/F00,9o/ Fl0,9o/620,qn/220,qo/?FP,9n/?.JO,no/?30,no/74 0 
vfrl 9n/350,9o/770,9o/730,9o/740,9n/75n ,90/3 70,~0/7FO,no/'0P 
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vfrl 9n/7OO,9o/71O,9o/72n,9n/3?O,0o/36O,0o/31n,9o/33O,ao/34O 
vfrl 9o/354,9n/774,9o/7311,9n/744,qn/754,~o/374,9o/7€4,9n/3O4 
v f rl 9 n / 7 0 L1 , 9 o / 7111, 9 o / 7 2 Ii , 9 o / 3 ? 4 , <1 n / 3 fi 11 , 0 o / 3 111 , 9 n I 3 3 11 , 9 o / 3 4 4 
v f rl 9n / 0 5 4, 9o / 11 7 4, 9 o / It 3 11, 9o / l11111, 0 o / ,, 5 1,, 9 o / 0 711, 9o / 4611, <10 / n O 4 
vfrl 9n/4O4,0o/414,90/l124,9o/O24,9o/O64,"n/O14,9o/O34,9o/O44 
vfrl 9o/152,9o/572,9n/53?,qn/542, 0 n/552,9o/17?,9o/56?,9o/1O2 
vfrl 9n/5O2,9n/512,9o/52?,9n/1?.2,9o/lf,2,9o/112,9n/132,9o/142 
vfrl 9n/25?.,9o/672,9o/F3?,9n/F42,an/652,9o/?7?.,9n/66?,<1n/2O? 
vfrl 9n/6 O2,9o/612,9o/F2?,9o/222,9n/?62,9o/212,9n/232,9n/242 
v f rl 9o/35f,9o/776,9o/736,9o/7116,9n/756,9o/376,9o/766,<1o/3O6 
vfrl 9o/7O6,9o/716,9o/72fi,9o/326,9n/366,9o/316,9n/336,9o/3 l16 
vfrl 9o / 15O,9o/57 O,9o/53O,9o/54n,ao / 55O,9o/17O,9o/56O,9o/1OO 
vfrl 9o/ 5 OO,9o/ 51O,9o/52 O,9o /1 2O,9n / 16 O,9o/110,9n/13O,9n / 14O 
vfrl 9o / 25 4,9o / 67 4,9o /~3 4,9o / 644 ,9o / f54,9o / 274,9o/66 4,9o / 2O4 
vfrl 9o / 604 , 9o / 614,9o/ F2 4,9o/ 22 l1,9o/ 26 4, 9o/ ?.14,9o/ 23 4,9o/ 244 

11 F. Nn IMCLUD E FIL E con f us ion_ tahl e. incl.a l rn 
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APPENDIX D - INTRODUCTION TO MULTICS ASSEMBLER 

This section is intended to be a quick introduction to 

the Honeywell model 6180 processor for those who are 

unfamiliar with its machine language. 

The 6180 is a word-addressed machine with a 36-bit 

word; it also possesses some very powerful bit string and 

character string handling instructions. There are two major 

arithmetic registers of 36 bits each , the accumulator (A) 

and the quotient (Q) registers. These may be coupled to 

form a double length register, the AQ. Instructions ending 

in A, Q, or AQ operate on the corresponding registers. 

There are in addition eight index registers of eighteen 

bits each . Instructions ending in xN where N is an octal 

digit operate on these registers. Most index register 

instructions take a storage operand in the top half of a 

word, except for sxlN (store xN in lower half) and lxlN 

(load index N from lower half). 

There exist eight pointer registers for generating 

segment number - word number pairs. These registers contain 

a character offset and a bit offset from the addressed word 

for the use of character string and bit string instructions. 

· The names of these registers (in numeric address order) are 

ap, ab, bp, bb, lp, lb, sp and sb. The appoints to a 

procedure's argument list. The lp points to the procedure's 

linkage section where internal static variables are kept, 
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such as the key. The sp points at the stack frame, in which 

automatic variables are kept. Variables declared in a 

"temp" or "tempd" pseudoop are placed in the stack frame by 

the assemble r and are given one or two words each 

respectively. A temp variable ma y also be given a subscrip t 

in which case it wi ll be assigned that many words. 

Declaration in a temp or tempd implies an sp reference. The 

other pointer registers are used for spare registers; for 

example, the bp points at the input string and the bb points 

at the output string . 

A sample instruction would be 

ldq lp 1 foo 

Thi s instruction will load the Q regis ter with t he i nternal 

static (because of the lp reference) variab le foo. 

adq 15 *8,dl 

will add 120 to the Q register. The dl address modifier 

causes t he address field to act like a memory operand, 

padded on the le f t with zeroes. The du modifier pads on the 

right with zeroes . 

The following strange-looking multiword instructions 

are tne special character string and bit s tring 

instructions; this one performs boolean operations on bit 

strings. Here a simple move is ind icated. 

csl (pr,ql), (pr, a l) ,fill (0) ,bool (move) 

descb bpj0,8 

descb convolution,9 
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will move eight bits from the address bplO+ql to a 9-bit 

field (padding with a zero bit) at convolution (plus 

implicit sp reference) + al. The offset modifiers ql and al 

refer to the bottom of the Q and A. 

mvt (pr) ,(pr) 

desc9a 

desc9a 

confused_bytes,8 

confused_bytes,8 

arg confusion_table+3-*,ic 

will translate the eight 9-bit bytes at confused_,½ytes 

(first argument) according to the table at confusion table 

(third argument) and deposit the resultant eight 9-bit bytes 

in confused_bytes (second argument). The lookup is done by 

treating each character as an index into the table . 

A list of most of the instructions used in Lucifer and 

their meaning followso 

ada, q, xN 

ana, q, xN 

anaq 

arg 

cmpa, q, xN 

csl 

descb 

add to A, Q, xN 

and to A, Q, xN 

and to AQ ( two words) 

zero opcode (used for mvt table and 

constants ) 

compare A, Q, xN 

combine bit strings Jeft (three 

word instruction) 

a pseudoop which generates a bit 

string descriptor for a csl 
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desc9a 

eaa, xN 

eppN 

era, q, aq, xN 

ersa, ersq 

lda, q, aq 

llr 

lls 

lrl 

lxlN 

mlr 

mvt 

ora, q, aq 

orsa, q 

qls 

sba, q, xN 

sta, q, aq 

stxN 

stz 

t mi 

tnz 

t pl 

instruction. 

generates a 9-bit character descrip tor 

effective address to A (top half), xN 

effective pointer to pointer 

register N 

exclusive or A, Q, AQ, xN 

exclusive or A, Q to storage 

load A, Q, AQ 

long (AQ) left rotate 

long (AQ) left shift 

long (AQ) right logical shift 

load xN from lower half 

move character string left t o righ~ 

(three word instruction) 

move with translation 

(four word instruction) 

OR A, Q, AQ 

OR A, Q to storage 

Q left shift 

subtract A, Q, xN 

store A, Q, AQ 

store xN 

store zero 

t ransfer on minus 

transfer on not zero 

trans~er on plus (including zero) 
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tra 

ttf 

unconditional transfer 

transfer tally-runout flag off 

Address modifiers appear after a comma in an address 

field. For example 

ldq bplO,x2 

causes indexing by x2. 

xN 

* 
*xN or *N 

xN* or N* 

index by index register N 

indirect 

indirect then index (i.e., add 

index register to a ddress i n 

indirect word) • 

index then indirect 

As well as xN index modification, the following can be 

used whenever xN appears above: 

au top of A 

al bottom of A 

qu top of Q 

ql bottom of Q 

ic instruction counter 

du direct to upper 

dl direct to lower 
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The indirect and tally modifiers add-delta (AD) and 

subtract-delta (SD) take an indirect word. Add-delta 

causes, after the instruction is executed on the operand 

pointed to by the address field (bits 0 - 17; the operand 

lies in the same segment as the AD word), the delta 

(rightmost six bits) to be added to the address field. The 

tally (bits 18 to 29) is decremented by one. If the tally 

reaches zero the tally-runout indicator is set, but no fault 

occurs. Subtract-delta, before executing the instruction, 

subtracts the delta from the address field and increments 

the tally by one. 
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ABSTRACT 

Recently IBM Corporation has declassified an algorithm 

for encryption usable for computer-to-computer or computer

to-terminal conu:nunications. Their algorithm was implemented 

in a hardware device called Lucifer. A software implementation 

of Lucifer for Multics is described. A proof of the algorithm's 

reversibility for deciphering is provided. A special hand-coded 

(assembly language) version of Lucifer is described whose goal 

is to attain performance as close as . possible to that of the 

hardware device. Performance measurements of this program are 

given. Questions addressed are: How complex is it to impelment 

an algorithm in software designed primarily for digital hard

ware? Can such a program perform well enough for use in the 

I/0 system of a large time-sharing system? 




