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In t his paper we examine a class of computation schemas and consider t he 

problem of deciding when pairs of elements in t his class represent equivalent 

programs. We are able to show t hat equivalence is decidable for a non-trivial 

class of unary operator dat a flow schemas, and consider the applicability of 

this result to the problem of deciding equivalence in related models of 

computation. 

The model described below is a restricted version of the data flow schema 

described by Dennis and Fosseen in (l]. The r eader is referred to that source 

for a more complete discussion of the properties of data flow schemas. 

I. Unary Operator Schemas 

A unary operator data flow schema (UDFS) is a bipartite directed graph 

in which the two types of nodes are links and actors. There are t wo types of 

links and five types of actors, as shown in Figure 1. Data links are repre 

sented by solid dots and control links by open do ts (Figure la); the arcs be

tween actors and links are data arcs or control arcs, according to the type of 

link. 

Figure lb illustrates the various types of actors. Of these, two deserve 

comment: 

An operator has a single input data arc and a single output data arc. 

The data link from which the input arc emanates is the input link of the op

erator; t he data link at which the output arc terminates is the operator output 

link. Each operator is labelled with a function letter selected from a se t F 

of function letters for the schema; at least one operator is labelled with 

each letter in F. 

A decider has a single i nput data arc and a single output control arc. 

Input links and output links for deci ders are defined in manners analogous to 

those for operators. Each decider in a schema is labelled with a predicate letter 

selected from a set P of predicate letters for the schema; each letter in P 

labels at least one decider in t he schema. 

A UDFS S has an ordered set IN(S) of schema input links, and an ordered 

set OUT(S) of schema output links. No arc terminates on any input link of S, 
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while at least one arc terminates on each non-input link of S; at least one 

arc originates at each nonoutput link of S. Only data links may be in IN(S) 

or OUT(S), and the sets need not be disjoint. If card(IN(S)) = m and 

card(OUT(S)) = n, we say that Sis an (m,n) - UDFS. 

An interpretation I for a UDFS S with function letters FS and predicate 

letters PS consists of: 

i) 

ii) 

iii) 

iv) 

A domain D of values . 

An assignment of a total function cpf: D ➔ D to each fin FS. 

An assignment of a total predicate TI : D ➔ {true, false} to each p -- ---
p in PS. 

An assignment of a value v. ED to the ith input link of S for each 
l. 

i, 1:;; i ~ card(IN(S)). 

Let S be an (m, n) - UDFS with function letters F
8

, and let L be the set of 

symbols 61 , 62 , ... , ~- Then the expression set of S, EXP(S), is the set 
~~ 

F S • L U (null}. 

Let S be a UDFS. A configuration of S consists of: 

i) An association of an expression in EXP(S) with each data arc of the 

schema. 

ii) An association of one of t he expressions {true, false, null} with 

each control arc of S. 

A computation by Sis a (possibly infinite) sequence of configurations 

v
0

, v1 , ... , vk, vk+l' •.• where each vi+l is obtained from vi by firing some en

abled node in the schema, and v
0 

is the initial configuration of s. The firing 

rules for the various types of nodes are depicted in Figure 2. (The condition 

for which a node is enabled , i.e. firable, is indicated by an asterisk, and the 

result of firing the enabled node is shown to the right .) As computational 

concurrency is an important aspect of the data flow model, several nodes may 

be enabled in a given configurat ion, any one of which may be fired to produce 

a successor configuration of a computation. 

A computation C by a UDFS Sis complete if either C is infinite, or C is 

finite and no node in Sis enabled in the final configuration in C; otherwise 

C is a partial computation. Unless noted otherwise, "computation" shall refer 

to a complete computation. 
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The initial configur ation ~O is that in which the express ion 6i is 

associated with the data arc(s) emanating from the ith input link of S, the 

expression false is associated wi t h certain con trol arcs in S (in a manner 

described later), and the expression null is a ssociated with all other arcs 

in S. 
Each actor in a data flow schema is a determinate system, although the 

schema itself need not be, since the merge node is not per sistent (i.e. once 

enabled it may be disabled without firing if non-null expressions become as 

sociated with both data input arcs) . By adopt ing a few simple rules regarding 

the interconnection of these systems, determinacy is assured for the schema as 

a whole (see, for example [ 3]). The rules for constructing ''well- formed" 

data flow schemas are as follows : 
A well - formed schema (WFS) is a UDFS formed by an acyclic composition of 

component UDFS's, where each component is an operator, a condit ional schema, 

or an iteration schema. 
The schema R shown in Figure 3a is a conditional schema, provided that 

Pi and Qi are well-formed UDFS 's, 1 ~ i ~ k. The links w, x1, y 1, x 2 , Y2, ... , xk,Yk 

(which are not necessarily distinct) are the input links of t he conditional schema, 

links z
1

, z
2

, . .. , zk are the output links; the schemas P1, Q1, P2, Qz, ... , Pk' Qk 

comprise the bod~- of the con_di_:ional schema, and nodes m1, m2, ... , 11\ are the 

conditional merge nodes of the s chema. 

The schema shown in Figure 3b is an iteration schema, provided that R. is 
). 

a well- formed UDFS, 1 ~ i ~ £. (The link z and the preceding F- gate may or 
I., 

may not exist.) The links x
1

, x
2

, ... , xi., (not necessarily distinct) are the input 

links of the iteration schema, t he links z , z 2, .•. z and z (if it exists) are 1 ' 1.,-l i., 

the output links of the iteration schema; the UDFS 's R R , . . R comprise the -
-- - - --·---- --- - ------ 1' 2' ' 1., - -
body of the iteration schema, and nodes m1, m2, •. ,mt are the iteration merge nodes 

of the schema. 
The decider associated with a conditional schema Risa conditional decider 

and is said to control schema R; that associated with an i terat ion schema R' is 

an iteration decider and is said t o control R'. The input control arcs of iteration 

merge nodes in a WFS are precise ly those with which the value false is associated 

in the initial configuration of the schema. 

Examples of well-formed schemas and the "programs" t hey represent are given 

in the Appendix. 
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II. Equivalence of WFS's 

Let S be a WFS and C some computation by S. Then for each data link 

x in S, the expression history of xis the sequence of non- null expressions 

associated with the incident arc of x during computation C. 

When an enabled node of a schema fires during a computation, the subsequent 

non- null expression associated with the emanating arcs of the node is 

completely determined by those associated with the incident arcs, unless the 

node is a decider. If the schema has been provided an interpretation, then 

the output expression resul ting from the decider's firing is also determined 

by the input arc's expression, since a total predicate will be associated with 

the decider and, in an obvious fashion, a value from the domain will be asso-

ciated with each element in the expression set. Hence, while the specification 

of an interpretation for a WFS S does not determine a unique computation for the 

schema, each (complete) computation by an interpreted schema defines the same expres

sion history for each data link in the schema. In fact, such is still the 

case if, r ather t han providing an interpretation for the schema, we provide, 

for each predicate letter p appearing in the schema, a total predicate TI : p 
(EXP(S)) ➔ {true, false}. In general, however, we will still have specified 

more than is needed to determine the expressions associated with the output 

arcs of Sat the conclusion of any finite computation by S, since each predi 

cate will be evaluated at only finitely many input expressions. This motivates 

the following definitions : 

Let S be a WFS and d a decider in S. Then a test by dis a pair (E, d) 

where Eis an element of EXP(S). Each firing of a decider during a computa

tion by S defines a test by t ha t decider in the obvious manner: the expression 

Eis simply the expression associated with the input arc of the decider at the 

time of the firing. 

If C is a computation by S, the logic sequence of C is constructed as 

follows: 

We begin with the empty sequence; each time a decider fires during com

putation C, we append the pair (T, N) where T is t he tes t defined by the firing 

and NE {true, false} is the outcome of the test, i .e . t he control value asso

ciated with the output arc of the decider immediately a fter firing. The 

resulting sequence is the logic sequence of C. 
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Let Sand S' be WFS's (S' not necessarily distinct from S), and l et T 

and T' be tests made by deciders d and d' in Sand S', respectively. Then T 

and T' are similar tests if their first components are identical and their 

second components are labelled with the same predicate letter. Let L be the 

logic sequence of a computation C by Sand L' the logic sequence of a computa

tion C' by S'. Then Land L' conflict at tests T, T' if (T, N) is in Land 

( ' Nc) · · L ' h N E ( fa 1 se } , Nc · h 1 · 1 1 f T, is in , were ~, ------~ is t e ogica comp ement o 

N, and T and T' are similar tests. Logic sequences Land L' are consistent 

if they do not conflict at any pair of tests. A computation is proper if its 

logic sequence is self-consistent. 

Let Sand S' be (m,n) -WFS's, and let C and C' be proper computations by 

Sand S', respectively. Then C and C' are (output) equivalent if either both 

are infinite, or both are finite and each defines the same expression his 

tory for the ith schema output link, 1 ~ i ~ n. The schemas Sand S 1 are 

(strongly) equivalent if, for all proper computations C by Sand C' by S', 

the logic sequences of C and C' are consistent only if C and C' are equiva

lent. 

It is convenient at this time to introduce a notion of equivalency among 

data links of WFS's. Let x be a data link of a WFS Sand y a data link of a 

WFS S'. Then links x and y are equivalent links if, for each proper computa

tion C by Sand consistent proper computation C' by S', the expression history 

of x defined by C is the same as that of y defined by C', whenever C and C' 

are finite. A WFS Sis reduced if it contains no pair of equivalent data 

links. 
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III. Free Schemas 

A WFS Sis a free WFS (FWFS) if, for each computation C by S, tests 

T and T 1 are made during Conly if the first components of T and T' differ, 

or the predicate letters labelling the second components of T and T' differ. 

(Intuitively, a schema Sis free if no predicate is ever applied twice to the 

same expression during a computation by the schema.) We note that freeness 

of S ensures that each computation by Sis proper, regardless of the outcome of 

any test made during the computation. 

IV. Decider and Schema Productivity 

Intuitively, a test T made during a computation C by a WFS Sis pro

ductive if the outcome of the test affects the output behavior of the schema 

for that computation. Formally: Let S be a WFS, and let T be a test made 

during a proper computation C by S. Then Tis productive if there exists a 

computation C' by S such that the logic sequences of C and C' conflict only 

at tests T, T' (•or some T' made during C) and C and C' are not equivalent. 

A decider din a WFS Sis productive if d makes a productive test during 

some computation by S. A schema Sis decider productive if each decider in 

Sis productive. 

A WFS Sis said to be in standard form if it is reduced and decider pro------
ductive. 

V. Decidability of Link Equivalence in FWFS's 

In this section, we prove that it is decidable, for any pair of data 

links x and yin a FWFS S, whether or not x and y are equivalent. (This re

sult is a corollary of the result reported in [ l ]; the alternative proof 

given here is far simpler, although not readily generalizable to the entire 

class of Oennis-Fosseen schemas.) 

Some additional notation shall prove useful. Let S be a FWFS and let 

1t, be the set of nodes of S. We may define a partial ordering ''>" among the 

elements of ,Z. as follows: 

n ~ n' if and only if: 
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(i) n' is a decider of Sand n is a node other than a decider; or 

(ii) n and n' are deciders controlling schemas Rand R' in S, respectively, 

such that neither decider is within the body of the schema con

trolled by the other, and some input link of R' lies on a path from 

some output link of R to some output l ink of S. 

(Note that the well-formedness of S ensures that ">-" is indeed a partial 

ordering.) 

A computation C by a FWFS Sis properly ordered if no node n fires in a 

configuration v of C if a node n' is enabled in v such that n' >- n. We note 

that for each computation C by S there is an equivalent computation C' by S 

such that C' is properly ordered . 

Intuitively, properly ordered computations have the property that the firing 

of deciders is held up until only deciders are enabled. Also, if a decider is 

fired at some point in a computation by a schema, then no loop-free path from 

any schema input link to that decider contains a node controlled by a decider 

which is also enabled at that point in the computation -- otherwise, this other 

decider would be fired first. 

Let S be an FWFS and Ca computation by S. Then the outcome sequence of 

C is the sequence of ordered pairs obtained from the logic sequence of C by 

deleting the first component of each test appearing in any pair in these

quence; i.e. if (,-1' N1), (,- 2 , N2), .. . , (,-k' Nk)' (,-k+l' Nk+l), ... is the 

logic sequence of C, then the outcome sequence of C is the sequence 

(s(,-1), Nl), (s(-rz), Nz), ... , (~(,-k), Nk), (s_(,-k+l), Nk+l), .. . , where s(,-i) 

denotes the second component of Ti. We note that the freeness of S ensures 

that the set of outcome sequences of computations by Sis a regular set. 

Theorem l= Let S be a FWFS and let x and y be data links in S. Then it is 

decidable whether or not x and y are equivalent links. 

Proof: As is the case with logic sequences , we no te that many computations 

by an FWFS may have the same outcome sequence, but that all computa

tions having the same outcome sequence define the same expression 

histories for each schema data link. 

Let L be the language {a$~$la is t he outcome sequence of some 
X 

finite computation C by S, ~ E EXP(S) is the last element in the expres-

sion h istory of x defined by C (~ is t he empty string if the expression 

history of x defined by C is empty), and$ is a special symbol not 

appearing in EXP(S) }. 
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Let L be t he language defined in a simi lar fashion for link y. 
y 

We note that the f reeness o f S i mplies tha t x and y a r e equivalent 

links if and only if L = L, since if the expression histories of 
X y 

x and y differ for some computation by S, t hen in par ticular the last 

elements of the h i s t or i es differ for s ome computation by S. 

We may construc t a deterministic pushdown au t omaton M (see, for 
X 

example [ 4]) which r ecognizes L as fol lows : 
X 

M will have stored in its f i nite s t ate control a description of 
X 

the schema S. Scanning an i nput string of t he for m a$~, Mx will push 

a into its stack, ensur ing as it does so t hat a i s indeed an outcome sequence 

of some properly ordered computation by S . After scanning the special symbol 

$, M will begin to " trace a path" from link x backwar d through the 
X 

schema S. As merge nodes are encountered in the pa th, symbols of a 

are poppej f rom the s tack to determine wh ich of t he possible paths are 

followed. (The fact that a i s t he outcome sequence o f a pr operly ordered 

computation ens ures t hat t he required ou tcomes are stor ed in the stack in 

the cor rect or der .) As operators are encountered i n the path, symbols of~ 

are scanned to ensure that~ is the correct expression for the path followed, 

i . e. as each operator is encountered, the nex t symbol o f ~ is scanned to en

s ur e that it i s the function symbol label l ing t he operator . Finally, if and 

when the ith i npu t l i nk of Sis encountered , t he las t two symbols of~ are 

scanned to ens ur e t ha t t hey are ~ . $ . 
l. 

In a similar manner we may construct an aut omaton M which recog
y 

nizes the language L . The automata M 
y X 

and M have the property that 
y 

in accepting or r e j ecti ng any input string , t he direction of the stack 

head changes only once ; hence the work of Valiant [4 J implies that the 

equivalence o f M and M (and hence t hat o f l inks x and y) is decidable. 
X y 

Be fore stating the next result, we introduce addi t ional notation: 

For any FWFS S, let t he boundary links of S, BOUND(S), be t he uni on of OUT(S) and 

the set of data links which are inpu t links to i t eration deciders. The well-formednes, 

of S ensures that each node of S must lie on a path fr om IN(S) to BOUND(S). (Note 

t hat a node need not l i e on a path from I N(S) t o OUT(S) . ) 

Corollary 1.1: Let S be a FWFS. Then we may e ffective ly construct from San 

equiva lent FWFS S' s uch t hat S 1 is reduced. 
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Proof: For each pair of equivalent links x and yin S, we replace all arcs 

emanating from link x by arcs emanating from link y and delete link x. 

We then delete all nodes no longer on a path fr om IN(S) to BOUND(S) . 

This procedure is repeated until no pair of equivalent links remains . 

The result schema is S'. 

VI. Decidability of Productivity for AFWFS 's. 

It has been shown [2] that the equiva lence problem for the class of 

WFS's is recursively undecidable. It follows immediately that decider pro

ductivity iS an undecidable property for the class, s i nce the schema S of 

Figure 4 is a WFS if s
1 

and s
2 

are WFS's, and decider dis productive if 

and only if s
1 

and s
2 

are not equiva~ent. _It is currently an open problem 

whether or not productivity is a decidable property for t he class of FWFS's, 

since t he ability to decide productivity implies t he abili ty to determine the 

equivalence of arbitrary FWFS's . (Note that the schema S of Figure 4 is f ree 

if s
1 

and s
2 

are free schemas. ) 

We are able to show, however, that productivity is a decidable property 

of a subclass of the FWFS's: 
Let S be an arbitrary FWFS. Then S satisfies Property~ if each decider 

in Sis labelled with a predicate letter not appearing elsewhere in the schema; 

in such a case, we say that Sis an AFWFS. 

In this section of the paper we show that it is decidable whether or not 

a decider in an AFWFS is productive. Unfortunately, this does not directly 

imply t he decidability of equivalence for the class of AFWFS's, since the 

schema S of Figure 4 is not, in general, an AFWFS, even i f both s1 and s2 are. 

We note that if Sis an AFWFS and dis an iteration decider in S, then 

each test made by dis productive. Thus, it is sufficient to prove that 

it is decidable whether or not a conditional decider din an ar bitrary 

AFWFS is productive. 

Some additional notation is useful: 

Let S be a Fi{FS and d a conditional decider ins. Let m be a 1 rge 

node controlled by d. Then mis .llE.ll i f , whenever C and C' are computations 

by S conflicting only at tests made by d, the expression history of the output 

link of m defined by C is t he same as that defined by C'. (Informally, mis 

null if the sequence of non-null expressions associated with the output arc of m 

i s independent of the outcomes of tests made by d during any computation by S.) 
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We note that there is no reason to extend t he concept of null node to t he 

merge nodes controlled by iteration deciders, since such nodes cannot be null: 

the length of the expression history of such a node 's output link depends on 

the number of times the controlling decider fires. 

Clearly, any conditional decider which controls only null nodes must be 

non- productive. Hence, the identification and elimination of such nodes is a 

necessary step in the identification of non-productive deciders. Unfortunately, 

while it is an easy task to eliminate null merge nodes from a schema, the elim

ination of such nodes is not in itself sufficient to ensure the productivity of 

each decider in the schema, as demonstrated by the schema of Figure 5. Schema S 

contains no null merge nodes, yet decider dis non- productive: the output of the 

merge node mis used solely as input to decider d", and m exhibits ~-null be

havior (i.e. the expression history for the output link of m defines the outcome 

of the test by decider d) for precisely those computations during which m" ex

hibits null behavior. It would seem that a necessary and sufficient condition 

to ensure that a schema Sis decider productive is that there exist a computation 

by S during which each conditional merge node exhibits non-null behavior; as we 

shall see, this is nearly the case. 

Before presenting the next lennna, we consider a simple transformation which 

may be applied to AFWFS's: 

Let R be a (portion of) a conditional schema within Sas shown in Figure 6a . 

(We say t hat Risa conditional cons truct controlled by d; schema Pis the true 

alternative of R, schema Q the false alternative.) Then Transformation T con-

sists of moving gate t 1 past schema P, and moving gate f
1 

past schema Q, as il 

lustrated in Figure 6b. We note that if P and Qare free of iteration schemas, 

then the application of Transformation T to R results in an AFvlFS which is equiva

lent to S; in such a case, we say that Tis applicable to R. 

Lemma 2.1: Let S be an AFivFS. Then for each merge node controlled by a condi

tional decider of S, it is decidable whether or not the node is null. 

Proof : Let S" be the AFWFS obtained from S by applying T wherever anplicable in 

the schema. It is clear that if Tis not applicable to a conditional con

struct associated with a merge node min the schew~, then m cannot be null. 

(Since at least one alternative of the construct contains iteration de

ciders which might diverge if enabled, the expression history of m's out

put link depends in general on the outcomes of tests made by the controlling 

decider.) Hence, the only candidates for null nodes in S" are those condi-
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tional mer ge nodes in which t he paths from t he associate d gat es to t he 

merge consist o f a sing le data arc . But it i s c l early decidable whether 

or not such a node is null, since it is null if and only if the input 

l i nks of the associated T and F gat es are equivalent . 

Corollary 2.1 .1: Let S be an AFWFS. Then we may cons t r uct an AFWFS S' from S 

s uch that S' i s equi valen t t o Sand S' is f r ee of nu l l merge nodes. 

Proof: For each null merge node min S, we merge t he ou t put link of m with the 

input link of e ither associated gate, and t hen delete bo t h associated 

ga tes and node m. We t hen delete all node s no l onger on a path from 

IN(S) to BOUND(S); the r emaini ng schema i s S' . 

Lermna 2. 2: Le t S be an AFWFS. Suppose t hat Transformation Tis not applicable 

to a condi tiona l construct associat ed wi t h a merge node m dr iven by a 

decider d . Then d is productive . 

Proof: Since Trans formation T is not applicable to the cons t r uc t , one alter native 

of t he construct (say the t r ue a l t er native ) contains an iter a t ion decider 

labelled wi th s ome predicat e letter p. Pr operty A ensure s t ha t the 

fals e a l ternative cannot contain a s i milar ly labelled decider. Since 

S is free, th e p- labelled decider can diver ge (i.e. per form an infini t e 

seri es of tests, each with outcome true ) in response t o a t r ue outcome 

of a t est made by d , but not in r esponse t o a false outcome . Thus dis 

produc tive. 

Lemma 2.3 : Le t S be an AFWFS free of nul l mer ge nodes. Suppose tha t xis an 

output link of a merge node dr iven by a conditional decider d , and t hat 

a data pa t h exists f r om l i nk x t o BOUND(S) . Then dis pr oduct ive . 

Proof: By hypo t hesis, there exist finite computations C and C' by S such t hat 

C and C' confl ict only a t a test T made by d, and such that the expr ession 

h i stor y of x defined by C differ s from t ha t of x de fined by C'. Mor e 

over , since there i s a dat a path f r om x t o a link y E BOUND(S), then 

C and C' can be chosen in s uch a way as to ensure t hat the expression 

h i s tory of y defined by C differs f r om t ha t of y defined by C' . If 

YE OUT(S), the productivity of dis i rranediate ; i f y is t he input link 

of an i tera tion decider d' in~, the produc t ivity of d follows directly 

f r om Pr oper ty A and t he f reeness of the _schema : since a test T' is made 

by d' dur ing C which i s no t made by d ' dur ing C' (or vice ver sa), we 
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may certainly construct a computation C" by S such t hat C" is infinite 

and conflicts with one of the finite computations C and C' only at tes t T, 

thus implying the productivity of decider d . 

The proof of the following result is a straightforward, a l beit tedious 

exercise, and is left to the reader: 

Lemma 2.4: Let T
1

, T2, ... , Tk' Tk+l be 2n-tupl es (n > 0) of wor ds over an 

alphabet v, let R1 , R2, •.. ,¾be sets of 2n-tuples*of words over V, 

and let L be the language r 1.R1*. r 2. R2* .... •Tk·¾ 0 'T" k+l· (The concate

nation operation is extended to tuples of words i n t he obvious manner : 

if a= (a
1

, a
2

, ... , a!) and~= (~1, ~2 , •.• , ~£)are t uples of char

acter strings, then a· ~ is the __ ~ple Ca1· ~1, a 2 · !3 2 , · · ., a£·!3£).) 

Then: ((VW E L)(3i, 1 ~ i ~ n) (components 2i-l and 2i of war e iden

tical)) ⇒ ((3i, 1 $ i ~ n) (vw EL) (components 2i - l and 2i of w are iden

tical)). 

Some additional terminology is needed before presenting an important 

corollary of the above Lemma: 

Let S be a WFS. Then the set of~ deciders of S, MAilH)( S) , is the set of 

deciders in S which do not occur within the body of some iteration schema in S; the 

set of main l inks of S, MAINL(S), is the set of links in S which do not occur within 

the body of some iteration schema in S, less the output links of mer ge nodes con

trolled by main iteration deciders of S. We note that if xis a l i nk in MAINL(S), 

the expression history of x defined by any computation C by S consists of at most 

a single element. 

Corollary 2 .4.1 : Let S be a reduced FWFS and l et X = (x
1

, y
1

, x
2

, y
2

, . . . , xn, yn) 

be an ordered set of data l inks i n MAINL(S ) such that no merge node driven 

by a conditional decider in MAIND(S) l ies on a data pa t h from IN(S) to an 

element of X. Then t here exists a computation C by S s uch tha t for all i, 

1 $ i ~ n, t he expression history of x . de f i ned by C is not the same as 
1. 

t hat of yi defined by C. 

Proof: Let E = (d1 , d2 , ... , dk ) be an enumeration o f t he iterat ion deciders in 

MAIND(S) such t ha t i f d. > d. (where> is t he par t ial or dering of 
1. J 

che nodes of S defined previously), t hen i > j ; le t C,denote the class 
. ~ . - ..... 

of finite, properly ordered computations by S. Then fo r any aata -link x in 

X, the expression history of x defined by any computa tion C in C,-
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consists of a single wor d w of the form 

ak+l (x) • l\(x, C) • ak(x) • 13k- l (x,C) • ... • 0'2(x), 131 (x,C) • a 1 (x) where 

l3. (x, C) denotes the (possibly empty) portion of w due to the firings 
l. 

of operators in the iteration schema controlle d by d.; a. (x) denotes 
l. l. 

the fixed portion of w due to the operators which fire between the 

l ast firing of di and the first firing of di+l' 1 ~ i ~ k ; and 

O'k+l(x) denotes the portion of w due to the operators which fire after 

the last firing of dk . (Note that the a' s are the same in al l computa

tions in C, . ) 
For each i, 1 ~ i ~ k + 1, let ,.i be the 2n-tuple (a i (x1) , O'i(y 1) , 

O'i(x2), O'i(y2), ···, a i(xn)' O'i(yn)). 

* * * Finally, let L = ,-k+l • ¾ • ,-k • ¾-l • ... • ,- 2 • Rl • ,- 1 . 

(Intui t ively' L = ( <!!. ' C..y., ex , ' , ... ' f X ' t y ) I for 
(; 

~ xl 1 2 vy 2 n n 
putation C in , c..,w is the (singleton) express ion history of 

defined by C, w E (x1 , y 1, x2, y 2 , . .. , xn' yn}}) . 

We have: 

some com

link w 

((V computations C inC)(gi ~ n)(the expression histor ies of links xi 

and y. defined by Care the same) ) ~ ((1W E L)(1i ~ n) (components 
l. 

2i- l and 2i of w are identical)) ~ ((~i ~ n)('fw E L)(components 2i - l 

and 2i of w are identical) ) ~ ((~i ~ n) (V computations C inC,)(the 

expression histories of x. and y. defined by Care the same)) ~ S 
l. l. 

is not reduced. 

Corollary 2.4.2: Let S be a FWFS free of null merge nodes, and l et M = 

be a set of merge nodes in S such that fo r each i, 

1 ~ i ~ n, mi satisfies two properties: 

i) mi is controlled by a conditional decider in MAIND(S); and 

ii) no merge node controlled by a conditional decider in MAIND(S) lies 

on a data path frcm IN(S) to mi. 

Then t here exists a computat ion C by S such that each element of M 

exhibits non-null behavior during C. 
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Proof: We may assume, without loss of generality, that Transformation Tis 

not applicable to the conditional constructs associated with the ele

ments of M. For each i, 1 ~ i ~ n, let x. and y. denote the input 
i i 

data links of the gates associated with merge node m .. By the pre
i 

ceeding corollary, there is a computation C by S such t hat t he expres -

sion history of x. and that of y. defined by C differs for all i, and 
i i 

the result follows immediately. 

Theorem 2: Let S be an AFWFS and d a decider in S. Then it is dec idable 

whether or not dis productive. 

Proof: 1. We first show t hat productivity of dis decidable if dis in 

MAIND(S): 

We may assume that Sis in standard form, and that Transformation T 

is not applicable in S. Decider d must be productive if d fails to 

satisfy the following conditions: 

--

i. dis a conditional decider, by Lernma 2.1. 

ii. All merge nodes controlled by d have the property that the 

paths from the associated gates to t he merge nodes consists 

of single data arcs (otherwise by Lemma 2.2, Transformation T 

is applicab le), and by Lemma 2.3, there are no data paths 

from the output link of any merge node controlled by d to 

BOUND(S), i.e. each path from the output link of a merge 

controlled by d to BOUND(S) contains at least one main con

trol link . 

Assume t hat decider d satisfies the above conditions. Let D be 

the set of conditional deciders in MAIND(S) to which paths exist from 

the output links of merge nodes controlled by d. Let~ be the set of 

AFWFS's obtained from S by fixing, in all possible combinations, the 

ou tcomes of tests made by the main conditional deciders not in D, and 

replacing the associated conditional constructs by the approp~ _ate al

ternatives. Let~• be the set of AFWFS' s obtained f r om~ by removing 

null merge nodes from the schemas, as outlined in the pr oof of 

Corollary 2.1.1 . Clearly, dis productive in S if and only if dis 

productive in some element of~•. But dis productive in some element 

of ~• if it appears at all in some element of~•: 
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Supposed appears in some element of L'. Then in particular, it must 

appear in some schema S' in L1 in which there is a path p from the output 

link of a merge node driven by d to BOUND(S'), such that no merge node driven 

by a conditional decider in MAIND(S') lies on a path from IN(S') to an input 

link of any main merge node in path p. By Corollary 2.4.2, there is a compu

tation C by S' such that each merge node in p driven by a conditional decider 

in MAIND(S') exhibits non-null behavior during C; hence, the test made by 

d during C is productive and the productivity of din schema Sis thus 

ensured. 

2. It remains to be shown that the productivity of dis decidable if dis 

not a main decider of s. Some additional notation is useful: 

Let S be a WFS and r a decider ins. The level of r in Sis O if r is in 

MAIND(S), and is k+l if r is in MAIND(R), where R is an iteration schema in 

S driven by a decider of level kin S. 

We now show that if dis a conditional decider of level k > 0 

in an AFWFS S, then the decidability of productivity ford reduces to 

that for no more than two conditional deciders of level k - 1 in an 

AFWFS S' constructed from S; the theorem then follows irmnediately by 

induction on the level of a conditional decider. 

Let S be an AFWFS and let d be a conditional decider of level 

k > 0 in S . Let R be the iteration schema in S of which dis a main 

node, and let d' be the decider driving R. Decider d lies i n one "loop" of the 

iteration schema controlled by d', i.e. a loop free data path exists to d from 

one merge node m controlled by d' (Figure 7a); let x be the output link of m. 

If there is a path from X to d', then dis productive in S if and only if it 

is productive in the body of schema R (which is decidable, since dis a main 

conditional of R). If no such path exists, dis productive in S iff the outcomes 

of its firings affect the expression history of x, and the expression history of 

x affects the output expressions of the schema , i.e. if and only if dis produc

tive in Rand decider d" is productive in the schema resulting from its insertion 

in Sas s hown in Figure 7b. (In the figure, f is a new function letter not ap

pearing in Sand pis a new predicate letter not appearing in S.) Again dis a 

main decider of R and since d" is of level k - 1 in S, the result follows . 
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Corollary 2.1: Let S be an AFWFS. Then we may construct from San 

AFWFS S' such that Sand S' are equivalent, and S' is decider pro

ductive. 

Proof: We simply eliminate the merge nodes controlled by any non-productive 

decider din S exactly as if they were null nodes. The resultant 

schema is S' . 

VII. Decidability of Equivalence for AFWFS'~ 

In this section we prove the main result of this paper: equivalence is 

decidable for the class of AFWFS's. 

The following Lemma and its Corollaries provide a basis for the proof: 

Lemma 3.1: Let Sand S' be equivalent reduced AFWFS's, and let C be a 

finite computation by S. Then there exists a computation C' by S' 

such that the logic sequences of C and C' are consistent and such that 

for each -productive test T made during C, a similar test T 1 is made 

during C'. 

Proof: Let Sand S' be as above and let C be any computation by S. Let 

T1 , T2, ... , Tn, Tn+l' ... be an enumeration of the productive tests 

made during C, and let C be the set of computations by S 1 which. have 

logic sequences consistent with that of C. The following procedure may 

be used to select the required computation c': 

i. Set i = 1, set ~. = e. 
l. 

ii. Choose an element C" from C!.. If a test T' similar to test 
l. i 

Ti is made during C", go to step (iv). 

iii. By definition of productivity, there exists some computation 

c; by S, whose logic sequence conflicts with that of Conly 

at test Ti and which is not equivalent to C. This computation 

cannot be equivalent to C", and hence its logic sequence must 

conflict with that of C" at a test T such that no test similar 

to Tis made during C. Let C' be the subset of C. consisting 
l. 

of those elements whose logic sequences conflict with that of 

C" only at test T. (Note that C' must be non-empty.) Set 

C. to C..' and go to step (ii). 
l. 
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C'' Let be the subset of C. consisting of those elements 
l. 

in which test T! is made. 
l. 

Go to step (ii). 

Set C.i+l = C/'. Set i = i + L 

Corollary 3.1.1: Let S, S' be equivalent productive AFWFS's. Let p_ and 
l 

P1 ' be the sets of predicate letters labelling the iteration deciders 

in Sand S' and let PC and Pc' be the sets of predicate letters 

labelling the conditional deciders in Sand S ', respectively. Then 

Proof: The first equality follows from the fact that each test made by an 

iteration decider in an AFWFS is productive, the second from the pro

ductivity of each conditional decider in Sand S'. 

M Corollary 3.1.2: Let Sand S' be equivalent productive AFWFS's. Let P
1 

and 

~• be the sets of predicate letters labelling iteration deciders in 

MAIND(S) and MAIND(S'), respectively, and let~ and~• be the sets 

of predicate letters labelling the conditional deciders in MAIND(S) 

and MAIND(S'). Then~ = ~' and~ and P~'. 

Proof: Again, the first equality follows directly f rom the productivity of 

each test made by an iteration decider in either schema; the second 

follows from the observation that if dis a productive conditional 

decider in an iteration subschema of an AFWFS, then d can make a pro

ductive test each time the body of the subsche~~ is executed. 

The previous Corollaries are important because they imply that 

similarly labelled deciders are similarly "nested" within iteration sub

schemas in equivalent AFWFS's. In particular , within the main deciders of 

equivalen t AFWFS's we are assured of finding similar ly labelled conditional 

and iteration deciders. 

Before proceeding to the next resul t , we introduce some additional 

notation: 

Let S be an AFWFS, and let S be an AFWFS constructed from S by creating 
e 

a new output link for each main iteration decider as shown in Figure 8(a) if 

the gate g already exists in S, or as shown in Figure 8(b) otherwise . Then 
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the schema S is a ma.in extension of S. 
e 

We note that if xis the new output 

link associated with a decider d in S , then 
e 

t he expression associated with 

any finitecoinputation by S the incident ar·c- oT x at the termination of 

is the last element of the expression history of the input link of d. 

Lennna 3.2: Let Sand S' be (m,n) -AFWFS's such that for each iteration de

cider in MAIND(S ) there is a similarly labelled iteration decider in 

Proof: ---

MAIND(S'), and vice versa. Let S and S 'be main extensions of S e e 
and S' such that the order in which the new output links of S and 

e 
S 'are created (in terms of the predicate letters 

e 
labelling t he main 

iteration deciders) are the same in each case. Then Sand S' are 

equivalent iff whenever C and C' are consistent computations by S 
e 

and S ' such that the corresponding main iteration deciders of the 
e 

schemas fire the same number of times during the computations, then 

C and c' are equivalent. 

Le t S, S', S, S 'be as above and assume that S and S 'satisfy the 
e e e e 

conditions of the Lerrnna. 

"If": We note that for each computation by a schema there is a 

computation by its main extension possessing the same logic sequence, 

and vice versa; we note also that if C and C 'are equivalent compu-
e e 

tations by Se and Se'' then C and C' are equivalent computations by 

Sand S', where C is the computation by S possessing the same logic 

sequence as the computation C by S and similarly for C' and C '. e e e 
We now simply observe that if S and S ' appear equivalent for all 

e e 
pairs of consistent computations in which corresponding main iteration 

deciders fire an equal number of times , then they must, in fact, be 

equivalent since the last pair of tests performed by corresponding main 

iteration deciders (and thus each pair of tests per forned) during~ 

pair of consistent computations must be the same. The equivalence of S 

and S 1 follows i nnnediately. 

"Only if": If S and S' are equivalent, then the expression 

histories of similarly labelled iteration deciders defined Jy any pa ir 

of finite, consistent computations by the schemas must be the same, 

otherwise we could easily alter one so that it diver ged without vio-

lating the consistency of the computations. 

guaranteed equivalent . 

Thus S and S ' are e e 
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The significance of Lemma 3.2 is this: if we wish to determine 

whether or not a pair of AFWFS's are equivalent, we may construct from 

them a pair of main extensions and test this pair of AFWFS's for equiva

lence under the assumption that corresponding main iteration deciders must 

always fire an equal number of times during pairs of consistent computations. 

If the extensions are equivalent under t his assumption, the Lemma guarantees 

that the original schemas are equivalent. 

It is convenient at this point to introduce a notion of size for well

formed schemas. The following definition, while not the most obvious, will 

prove to be quite useful: 

Let S be a WFS. Then the size of S, SIZE(S), is the number of merge 

nodes controlled by iteration deciders in the schema. 

Our proof of the decidability of equivalence for AFWFS's will involve an 

induction on the size of the schemas being compared. (We note that if Sis 

an AFWFS of size 0, then Scan be equivalent only to another AFWFS of size O; 

moreover, equivalence is trivially decidable in such a case since the number 

of distinct computations by the schemas is finite and an exhaustive analysis 

is sufficient.) 

Because of the length and nature of the argument needed to prove the 

next lennna, the proof of the lerrnna will be deferred to the next section of 

t he paper: 

Lerrnna 3.3: Let Sand S ' be AFWFS's such that the labelling of deciders in 

the schemas satisfies the conditions required of equivalent AFWFS's by 

Corollaries 3.1.1 and 3.1.2. Then the problem of deciding whether or 

not Sand S' are equivalent can be reduced to the problem of deciding 

equivalence for no more than i pairs of AFWFS's,each of size no greater 

thank, such that each schema is free of main conditional deciders, 

where i is a constant bounded by (£ + 1)(3£) 2 , £ is the number of main 

conditional deciders in Sor S', and k is the maximum of SIZE(S) and 

SIZE(S '). 
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Proof: (See Section VIII.) 

To demonstrate the decidability of equivalence for AFWFS's, it is 

sufficient to show that if Sand S' are AFWFS's such that MAIND(S) and 

MAIND(S') are free of conditional deciders, and k is the maximum of 

SIZE(S) and SIZE(S'), then the problem of deciding whether or not Sand S' 

are equivalent reduces to the problem of deciding equivalence for two pairs 

of AFWFS's, each schema of size less thank. To this end we present the 

following Lemma: 

Lemma 3.4: Let X, X', Y, Y' and Z' be sets of words over some alphabet T, and 

* let y be a word in T. Let f 1 : X - X' and f
3

: X - Z' be total func -
* * tions; let f 2 : Y - (Y') be a total function such that for each 

* *•PE Y we have f 2 (w) • f 2 (p) = f 2 (1;1p) . Suppose we have, for each 

a EX and each~ E Y, the following equalities: 

1. y ·a = f 3 (a) • f 1 (a) 

2. y ~·a= f 3 (a) · f 2 (~) • f 1 (a) 

Proof: We know from (1) and (2) that the assertion is valid for w = e and for 

w E Y. Assume the assertion is valid for , . w E Yi 
i 

a ... J. ' 

the assertion is valid for all w E YO as follows : 

Let w = w
1 w2' 

io-1 
We consider . wl E y ' w2 E y. 

Case l• Ci= f 1 (a), y = f3Ca). We have by assumption 

y . wl . Ci = y . f2(Wl) • Ci and y • w2 . Ci= y 

whicq we have w 
1 

. w = f2 (wl) . f2(W2) = f (w 2 2 1 
y • wl • w 

2 
. a = f 3 (a) . f2 (Wl . W2) . fl(a). 

~ .?_. Ci = µ • f 1 (a), µ 'f' r.., y • µ = f 3 (a). Then: 

Vp [ (y • p • Q' = f 3 (a) . f2 (p) . 
(y p . µ fl (a) = f3 (et) . 
(y • p • µ = f 3 (a) . f2 (p)) 
(y • p µ = y • µ • f2 (p)) 
(p • µ = µ • f2 (p))] 

Substituting w1 and w2 for p yields: 

wl. µ = µ. f2(wl) 

W2 • µ = µ • f2(W2) 

f 1 (a)) ⇒ 

f2 (p) . f 1 (a)) 

⇒ 

⇒ 

⇒ 

0 ~ i < io· Then 

three cases : 

. f2 (W2) • Ci' from 

w2) and thus 



- 29-

Then: 

= y • w w . µ • f 1 (a) 
l 2 

= y • w . µ • f2(W2) . f
1 

(a) 
l 

= y • µ • f2(Wl) . f2 (w2) . fl (a) 

= f 3 (e1) . f2(wl W2) . fl (a) 

= f
3

(a) . f
2 

(W) • f
1 

(a) 

Case l· µ •ct= f 1 (a), µ F ~, y = f 3 (e1) • µ. 

The proof for Case 3 is similar to that for Case 2 and is left 

to the reader. 

The following Lemma provides the remaining needed result: 

Lemma 3.5: Let Sand S' be standard form (m,n)-AFWFS's such that each is 

free of main conditional deciders. Let k be the maximum of SIZE(S) 

and SIZE(S'). Then either it is decidable if Sand S' are equivalent, 

or the problem of deciding whether or not Sand S' are equivalent can 

be reduced to the problem of deciding equivalence of two pairs of 

Proof: 

AFWFS's, each of size less thank. 

If the size of either schema is O, equivalence is trivially 

decidable. Suppose that the size of both schemas is greater than O: 

Let x denote the first output link of S for which there exists 

a path from IN(S) to x containing a merge node controlled by an it

eration decider. (Some such link exists.) Let x' denote the corre

sponding output link of S'. Because of the absence of main condi

tional deciders in S, we have that there exists in Sa single loop

free data path from IN(S) to x, as s hown in Figure 9. (In the figure, 

the 0. 's represent operator schemas, the R. 's iteration constructs.) 
i i 

We have by hypothesis N > 0, and thus may consider the final iteration 

construct¾• encountered in the path from IN(S) to x. 

Since Sis reduced, the expression associated with the incident 

arc of x at the conclusion of a complete computation by S depends, 

in general, on the number of times the decider~ controlling¾ 

fires during the computation. Hence if x' is to be equivalent to x 
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we must encounter an iteration construct R I controlled by a similarly 

labelled decider d' on the path from I N(S') to x'. 

Let C be a finite computation by Sand C' a consistent compu

tation by S'. We can write the expression associated with the incident 

arc of x at the conclusion of C as Y~a, where a and ~a are the ex

pressions associated with the input and output arcs, respectively, of 

¾ during C. Similarly, we can write the expression associated with 

the incident arc of x' during computation C' as y'~'a', where a' and 

~'~' are the expressions associated with the input and output arcs of 

R'. We note that if x and x' are equivalent links, the expression a' 

is completely determined by the expression a• Less obvious, perhaps, 

is the fact that y' is also completely determined by a: let T 1 be a 

test made during C'. Then if y' is dependent on the outcome of T
1

, 

it must be the case that a test T similar to T' is also ma.de during 

computation C and that either a or~ (y is fixed) is dependent on the 

outcome. But~ is dependent only on tests made by deciders in the 

body of¾• and hence it must be a which is dependent on the outcome 

of T. Thus y' must be completely determined by a, this in turn 

implying that~' is a function of~- From Lemma 3.4, therefore, we 

may conclude that if x and x' appear equivalent for all computations 

in which the deci_d~s __ contro l_ling --~ a~~ R' fire no_ ~ore than once 

with outcome true, then x and x' are equivalent iff dN and d' have 

equivalent input links. We thus have the following result: let S 
e 

Let be main extensions of Sand S' constructed as in Lermna 3.2. S I 

e 
se

1 
be the schema obtained from Se by merging the false data input link 

of node~ (the merge node associated with construct¾) with its out

put link and deleting¾; let se
2 

be the schema obtained from Se be re

placing the construct¾ by a copy of its body as shown in Figure 10. 

Let Se• and Se, 
1 2 

be the schemas obtained in like manner from S '. Then 
e 

link xis equivalent to link x' iff the output link corresponding to 

link x' in Se' 
1 

is equivalent to the output link corresponding to link 

x in Se and the output link corresponding 
1 

to link x' in Se' is 
2 

This in turn im-equivalent to that corresponding to link x in Se . 
2 

plies that Sis equivalent to S' iff S is equivalent 
el 

is equivalent to Se, . Since each of the AFWFS's Se, 
2 1 

is of size no greater than k-1, the result follows. 
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Theorem J: Let Sand S' be AFWFS's. Then it i s dec idable if Sand S' are equivalent. 

Proof: We may assume that Sand S' are i n standar d form. The result then follows 

from Lemmas 3.3 and 3.5 by inducti on on t he maximum size of Sand S'. 
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VIII. Proof of Lemma 3 .3: 

Our equivalence result will be complete once we have demonstrated the 

validity of Lemma 3.3. 

The proof of the following result is similar to the proof of Corollary 

2.4.1 and is left to the reader. 

Lemma 3.3 .1: Let Sand S' be (m,n) -AFWFS's such that there are no conditional 

deciders in MAIND(S) or MAIND(S'). Let x and y be the ith and jth 

output links of schema S, 1 ~ i, j ~ n, and let x' and y' be the ith 

and jth output links of schema S'. Suppose that x and x' are not 

equivalent and y and y' are not equivalent. Then there exist finite, 

consistent computations C by Sand C' by S' such that the expression 

associated with the incident arc of link x at the conclusion of C dif

fers from that associated with the incident arc of link x ' at the 

conclusion of C', and the expression associated with the incident arc 

of link y at the conclusion of C differs from that associated with 

link y' at the conclusion of C'. 

For convenience, the Lemma 3.3 is reproduced below: 

Lemma 3.3: Let Sand S' be (m,n) -AFWFS 's such that the labelling of deciders 

in the schemas satisfies the conditions required of equivalent AFWFS's 

by Corollaries 3.1.1 and 3.1.2. Then the problem of deciding whether 

or not Sand S' are equivalent can be reduced to the problem of de-

Proof: 

• 
ciding equivalence for no more than).. pairs of AFWFS's, each of size 

no greater than.,k, such that each schema is free of main conditional 

deciders, where)- is a constant bounded by (£ + 1)(3£) 2, £ the number 

of main conditional deciders in Sor S ', and J.. is the maximum of 

SIZE(S) and SIZE (S') . 

Let S and S 'be the main extensions constructed from Sand S', e e 
respectively, as in Lemma 3.2. 

(m,j) -AFWFS 's for some j ~ n.) 

(We note that S 
e 

and S ' are 
e 

We shall assume that S and S I contain 
e e 

some main conditional deciders, otherwise the lennna is trivially true. 

Let c dimo:.tE the number of such deciders, and assume that they have 
0 

been ordered in some fashion, similarly (according to predicate letter) 

in each schema. 
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We define a conditional assignment for S or S 'to be a 
e e 

c
0

-tuple of expressions from the set {null, true, false } and note 

that each finite computation by either schema determines, in obvious 

fashion, a conditional assignment for the schema: the ith component 

of the tuple, 1:,;; i:,;; c, is~ if the ith main conditional in the 
0 

schema fires with outcome true during the computation, false if the 

ith main conditional fires with outcome false during the computation, 

or null if the ith main conditional does not fire at all during the 

computation. A conditional assignment is said to be valid if it is, 

in fact, determined by some finite computation by the schema. 

Let V denote a valid conditional assignment for schema S (S '). 
e e 

Then we may construct a schema S(V) from V and S (S ') as follows: 
e e 

each conditional construct driven by the ith main conditional in 

Se(Se ') is replaced (as in Figure lla) by its true alternative if 

the ith component of Vis true, or by its false alternative (as in 

Figure llb) if the ith component of Vis false; all nodes no longer 

on a path to a boundary node are deleted, The decider is then deleted, 

and its input link made the j + ith output link of S (V). When this pro

cedure has been carried out for each main conditional, we create 

a new j + kth output link for each k such that the k th decider in S (S ') 
e e 

does not appear in S(v), i.e. such that null is the kth component of V. 

The resultant schema is S (V). 
- -- - - - - - --- ----- - - - -

Let~ be the set of AEWFS's (S(V) !V is a valid conditional assign-

ment for Se} and let~• be the set {S(V')\V' is a valid conditional 

assignment for S '}. (The cardinality of either set is less than 3t,) 
e 

Now, Sand S' are not equivalent if and only if the following condition 

holds : 

For some S(V) in 1, and S(V') in r,1
, there exists finite consistent 

computations C by S(V) and C' by S(V') such that the expressions as

sociated with the jth output links of S(V~ and S(V ') di~fer at the 

conclusion of the compu:ations, for some 't:,;; j and all t between j+l 

and j+c
0 

such that theJ.lh components of V and V' differ . 
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By Lemma 3,1.1, we may compare for equivalence the pair of 

schemas formed by deleting from S(V) and S(V') all output links 

after the jth (and all links no longer on a path to a boundary link), 

and the pairs of schemas obtained from S(V) and S(V') by deleting, 

for each }such that the ~th c~ponents of V and V' differ, all 

output links other than the j+3,.th output links. We thus compare for 

equivalence no more than (t+l) pairs of schemas, each free of main 

conditionals, and we do these comparisons for each element in 

0 XI:;'; the result follows. 

IX. Extensions of the Result 

The result presented in this paper is a rather specialized result but 

suggests an approach to the problem of deciding equivalence in more general 

models. In particular, the following generalizations are suggested: 

1. Demonstrating the decidability of equivalence for the class of 

FWFS's, i.e. elimination of Property A as a condition of the proof. 

2. Demonstrating the decidability of equivalence for a class of 

schemas satisfying Property A in which operators with more than a 

single input link are permitted, and/or in which deciders with more 

than a single input link are permitted. 

3. Demonstrating the decidability of equivalence for a class of AFWFS's 

in which the output links of deciders may be interconnected by a 

net of Boolean actors so that conditional and iteration constructs 

may be controlled by an interconnection of deciders, rather than by 

a single decider. 

It is the opinion of the author that the first generalization is the most 

important of those suggested, since the FWFS's are capable of modelling the 

controls of some very interesting classes of automata; some progress in this 

direction has been made. 

The second generalization is also of interest: an analysis of the results 

presented here demonstrate that the generalization to n-ary deciders presents 

little more than notational difficulties; the generalization to n-ary op

erators also appears straightforward. 

It is not clear precisely what problems are caused by the existence of Boolean 

actors, but it is felt that, provided only free schemas are examined, the problems 

introduced will be minor. 



-38-

References 

1. Dennis, J.B., and J.B. Fosseen. An Introduction t o Data Flow Schemas. 

Computation Structures Group Memo 81, Project MAC, M.I.T., Cambridge, 

Mass., September 1972. 

2. Leung, C, Unpublished notes. 

3. Patil, S.S. Closure properties of interconnections of determinate 

systems. Record of the Project MAC Conference£!! Concurrent Systems and 

Parallel Computation, ACM, New York, 1970, pp 107-116. 

4. Valiant, L. Decidability of equivalence for finite-turn deterministic 

pushdown automata. Symposium on Theory of Computing, ACM, April 1974. 



APPENDIX 

Examples of Well- Formed Unary Operator Data Flow Schemas 
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The following "programs" are represented by the schemas of Figure Al: 

(c) 

begin; 

x: =f (w); 

y; =g(x); 

z:=h(y); 

end; 

S3: [w,x } 

begin; 

wl :=w; 
xl:=x; 

WHILE p(xl) 

y:=wl; 

z:=xl ; 

end; 

- [ y,z } 

do; 

w2:=wl; 

w3:=f(w2); 

w4:=g(w3); 

wl:=w4; 

x2:=xl 

x3:=f(x2); 

xl:=x3; 

end; 

(b) S2: l u, V} - [z } 

begin; 

IF p(v) then do; 

w:=f(u); 

z :=w; 

end; 

else do; 

x:=g(w); 

y:=f(x); 

z:=y; 

end; 

end; 



z 

IN(S1 ) = {w} 

OUT(S1)= {z} 

(a) Operator Schema 

IN(S
3

) = {w,x } 

OUT(S3) = {y, z } 

(c) Iteration Schema 
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z 

(b) Conditional Schema 

y 

FIGURE Al. 

V 

IN(S2) = {u , v} 

OUT(S2 ) = {z } 

X 
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The following "program" is represented by schema S, Figure A2: 

S ! { u, V , W 1 -+ { Z 1 

begin; 

ul:=f(u); 

wl: =g(w); 

w2; =g(wl); 

IF p(w2) then do; 

u2:=g(ul); 

u3:=f(u2); 

zl:=ti3; 

end; 

z:=h(zl); 

end; 

else do; 

vl:=v; 

WHILE p' (vl) do; 

vl: =h(vl); 

end; 

zl:=vl; 

end; 



S: 
u 

ul 

T 
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zl 

FIGURE A2. 

V 

IN(S) = {u,v,w} 

OUT(S) = {z J 


