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Abstract: Pe tri Nets, Generalized Petri Nets, and Vector Addition 

Systems can represent each other and thus have common decidability 

problems. The graphical appeal of Petri Nets is used in a new presen

tation of the classical problems of boundedness (decidable) and inclu

sion (undecidable). Various forms of the Reachability Problem are 

shown to be recursively equivalent to the Liveness Problem for Petri 

Nets. The decidability of these questions is still open, and some 

arguments both for and against t he decidability of Liveness are pre

sented. 
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0. Introduction 

In 1967, R. Karp and R. Mi ller [10] introduced a formalism called 

Vector Addition Systems to discuss decidability questions about their 

Parallel Program Schemata. That same year, A. W. Holt introduced Petri 

Nets [8, 14) to model concurrent behavior in Systems. Both formalisms 

have been used to model and analyze the structural behavior of asynchronous 

and parallel systems [5, 6, 10, 11, 16, 17]. 

The similarity of these two formalisms has been recognized early, but 

had not been exploited until about 1972, when R. Keller [11) used a gen

eralized form of Petri Nets as a convenient graphical representation for 

his Vector Replacement Systems, a generalization of Vector Addition Systems. 

Thus he translated Petri Net concepts such as Liveness -- which he needed to 

model Asynchronous Systems -- into Vector Replacement Systems terms. 

In 1972 also, M. Rabin [2, 15] presented the Unsolvability of the Inclu

sion Problem for Reachability Sets in Vector Addition Systems in a talk at 

MIT. From this, two things appeared: (1) There are unsolvable problems 

about Petri Nets, and (2) The proof could be presented very clearly i n Petri 

Net terms. 

In this memo it is our purpose to establish the following results and 

observations: 

The four formalisms mentioned so far -- Vector Addition Systems, 

Petri Nets, Vector Replacement Systems, and Generalized Petri Nets 

are equivalent to each other, in the sense that any problem ex

pressed in one formalism can be translated by a standard procedure 

into another formalism. Thus, the generalization of the original 

formalisms only buys convenience, not more generality . 

The graphical appeal of Petri Net methods permits a better grasp 

for intuitive arguments, which can help enormously to find rigorous 

proofs of various facts. 

Taking advantage of t he above observation, we present new proofs of 

the major decidability results obtained for Vector Addition Systems 

by Karp and Miller,as well as of Rabin's Undecidability result. 

Finally, we apply our tools to several open questions, and prove the 

recursive reducibilities between various deci dability questions. In 

particular, we prove the recursive equivalence of the Liveness Problem 

and the Reachability Problem, and explore some hypotheses which would 

imply the Undecidabili ty or the Decidability of these problems . 
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1. Definitions and Notations 
We begin by defining the most general concepts of which the earlier 

definitions are a restricted case. 

1.1 Generalized Petri Nets 

Definition 1.1: A Generalized Petri Net (GPN) N=(TI, :E,F, B,M0 ) consists of 

the following: 

1. a fini te set of places, TI=[p1 , •.. ,pr} 
disjoint from TI 2. 

3. 

4. 

a finite set of transitions,~= [ t 1 , . . . ,ts } 

a forwards incidence function F: [ X r; ➔ lN 

a backwards incidence function B: r. X I; ➔~ 

('N is t he set of non
negative integers ) 

5. an initial marking M0 : TI ➔ lN 

It is represented graphically as follows: 

1. places are represented by circles 

2. transitions are represented by bars 

0 
I 

Fig . 1.1 

3. circles and bars are connected by bundles of arcs: if£ is a 

place and tis a transition, and F(p ,t) = 3, we have a 

bundle of 3 arcs going from p tot. 

or Fig. 1. 2 

p t 
~ 

3 t p 

4. a marking is represented by drawing a number of tokens into 

a place, or writing the number. 

Example: TI= (Pl'P2,P3 } 

I:= ft1,t2,t3 , t4J 

tl t2 t3 t4 

pl 1 3 0 0 

F= P2 0 1 0 0 i.e. , F(pl' t 1 ) 

P3 0 0 1 5 

t t2 t3 t4 

\pl 0 0 1 0 

r 
5 

B = P2 2 1 0 0 M = Pz 1 
0 

lP3 
0 2 0 0 P3 0 

Fig. 1.3 

= 1 
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For the purpose of modeling Asynchronous Systems, a Petri Net is 

a dynamic ob ject. The system starts in some initial configuration, 

and goes through a series of configurations by a sequence of actions. 

We study the set of possible configurations the System may assume, 

and the set of possible action sequences the system may go through. 

Configurations are modeled by markings, action sequences are modeled 

by firing sequences, and elementary configuration changes (actions) 

are modeled by the firing of a transition, which changes the marking by 

removing tokens from some places and adding tokens to some other places. 

A firing sequence is then denoted by a string over the alphabet of transi 

tion names. A Petri Net then represents the structure of the System with 

a given initial configuration, and the possible evolutions of the System 

are represented by the set of firing sequences and the set of reachable 

markings, also called reachability set or marking class. 

Vector notation: We can interpret a marking Mas a vector with r 

coordinates, where r is the number of places. Thus, the i th coordinate 

of Mis M(p.) . The distinction will be clear from the context: Mis l. 

a vector on rrf and M(p.) is a non-negative integer. For a given 
l. 

transition t., we similarly 
J 

vector B(ti) as follows: 

the i h coordinate of 

define am input vector F(t.) and an o~tput 
J 

F(t.) is 
J 

B(t.) 
J 

F(p.,t.) 
l. J 

B(p.,t.) 
l. J 

Thus, F(t.) and B(t.) are also vector s on lNr. When we look upon markings 
J J 

as r-dimensional vectors, it is sometimes useful to look upon Band Fas 

rxs-mar1.ces,w .. - ., .. t · 1.'th F - F(p t) See definition 1.18 on page 13 for an 
----- -- l. ' J l. J 
application. 

Firing Relation: We shall interpret a transition as a relation between 

markings: 

f . · · 1 2 We wr1.·te M[t)M', and say that transition tis fi1 ~bleat De 1.n1. t 1.on _ . _: 

marking Mand leads to marking M', as follows: 

M[t ) M' ( M~F( t) & M'-M=B(t)-F(t)) 

The relation~ for vectors is the componentwise greater-or-equal partial 

order relation on lNr . 
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We then extend the Firing Relation to a sequence of firings 

a = t.t .•.. tk as the composition of the relations corresponding 
1. J 

to t.,t .•.. tk. This composition of relations corresponds to the 
1. J 

concatenation operation for strings. We thus define a firing 

sequence as follows: 

Definition 1.3: A firing sequence from marking M to marking M' is a 

string atE'.5°J* defined recursively as follows: 

M[at )M' t:,. 3M"EJN r: M[a)M" & M"[t)M' 

If A stands for the empty st r ing (length zero), it is understood 

that, ~MEJN r: M [A)M. 

Now we are ready to define the two most important concepts: these= 

of firing sequences of a Petri Net, and the set of reachable markings, 

or marking class. 

Definition 1.4: Given a GPN N = (TI,~,F,B,M
0

) with initial marking M
0

, we 

define: 

starting at M
0

. 

markings f rom M
0

, or the marking class, or the reachability set. 

Note: The reachab ility set of a net N could of course be written R(N), 

since M0 is part of the specification of N. But it is advantageous 

to show its dependence on M
0 

in particular. This permits us to 

consider SN(M) and ~(M) for the same Net, except for the consider

ation of an arbitrary initial marking M. 
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1.2 Ordinary Petri Nets and Self-Loop - Free Petri Nets 

Definition 1.5: An ordinary Petri Net is a GPN where the size of arc

bundles is restricted to one. Thus, the only possible values for 

the incidence functions F and Bare zero and one: 

'lfpETIJ F(p,t) s 1 & B(p,t) ~ 1 
Vt EL 

-
A Self-Loop-Free Petri Net is a GPN where no place-transition 

pair is both forwards and backwards connected: 

'If pETI \ 
'lf tE~) F(p,t) · B(p,t) = 0 

A Restricted Petri Net (RPN) is both ordinary and Self-Loop-Free. 

Alternative representations: 

For ordinary Petri Nets, the F and B incidence functions are often 

replaced by a relation. called the dot relation or arc relation over 

bipartite pairs of places and transitions. • ~ TI x:r, U LX TI, and (p,t)E• is 

written as p•t and means that an arc goes from place p to transition t. 

Thus: 

p•t - F(p,t)=l 

t•p - B(p,t)=l 

This is the definition used in MAC TR-94 [6) • 

For Self-Loop-Free Petri Nets, the two incidence functions F and B 

can be replaced by a single incidence function T = B-F, where bundles 

f rom a transition to a place are represented by positive numbers (the 

number of tokens one firing adds to that place), and bundles from a 

place to a transition are indicated by negative numbers (the number 

of tokens a firing takes away from that place). It can be seen that 

firability is defined as follows: 

M[t)M' ~ W-0 & M'~O & M' -M = T(t) (where, of course, T(t) stands 

for the vector whose components are T(p.,t).) 
l. 

In particular, RPN's have a single incidence function whose range 

is [ -1,0,+l}. 
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1.3 Vector Replacement Systems and Vector Addition Systems 

We give Karp and MiHer's original definition of a Vector Addition 

System below: (JN= non-negative integers ; 7l = integers.) [10] 

Definition 1.6: An _r-dime~sional Vector Addition System (VAS) is a pair 

-).I = ( q,W) in which q is an r-dimensional vector of non- negative integers, 

and Wis a finite set of r - dimensional integer vectors: qEINr, W ~?lr . 

The reachability set R(>f) is the set of all vectors of the form 

q + wl + w2 +. • .+wn 

i 
w. Ew & q + L w . ~ o 

i j = l J 

such that, Vi ~n: 

Geometrically, in r -coordinate space, R()f) is the set of points 

reachable from q by successive translations from the set W without ever 

leaving the first orthant. 

Relation to Petri Nets: There is a one-to-one correspondence between 

VAS's and Self-Loop-Free Petri Nets: 

VAS Correspondence Self-Loop-Free Petri Net 

V = ( q, w) N = ( TI '~. T' Mo) = <TI'~. F' B 'Mo) 

(the r "dimensions" ofW) n={pl' ... ,pr } 

q E ]Nr q = MO M E JNr 
0 

w = {w1,···,ws} ~ = {t1,···,ts} 
w. = T(t .) 

W ~ Zlr l. l. T B - Fas defined before = 

w. - translation without t.-firing: M[t.)M' with 
11. . the first orthant M1

~ 0 & M' ~ 01 eaving 

reachability set R(){) = ¾(MO) reachable markings ¾(M0 ) or 
➔ 

R(){) marking class M0 = ¾(M0 ) 

The isomorphism is quite apparent. Firing sequences were not explicitly 

defined for a VAS. 
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R. Keller defines Vector Replacement Systems in the wider context of 

Transition Systems, where a Transition System is anything having a 

possibly infinite set of distinguishable states or configurat ions, a 

finite set of transitions that describe elementary state changes, and 

an initial state. In this context, we have: [11] 

Definition 1.7: A Vector Replacement System (VRS) (q
0

,~,U,V) is a 

Transition System where: 

1. r 
The set of states is Q ~ JN , where r = dimension of the VRS. 

2. q0 is the initial state: q
0

EQ. 

3. ~ is the set of transitions:~ = {t
1

, ••• ts J. 

4. U and V are functions from b to llr, with the following properties: 

(let t .~) 
1. 

a) U(t.) is called a test -vector fort . 
1. 1. 

b) V(t.) is called a replacement vector fort. 
1. 1. 

c) U(t.) s V(t.) 
1. 1. 

d) t changes the state from q to q' iff q + U(t.) ~ 0 and 
1. 

q+V(t.) = q'. 
1. 

The set of states Q is the reachability set of the VRS. 

Thus, a VRS is like a VAS (q0 ,w = {wi I wi = V(ti)} ) except that the 

condition restricting the application of some translation w. to a point 
1. 

q depends on whether q + U(t.) ~ O, which is more restrictive than 
1. 

q + V(t.) = q + w. ~ 0. 
1. 1. 

Relation to Petri Nets: 

VRS: < q0 .~. u, v) GPN: (TI ,~,F,B,M0 ) 

dim VRS = r II = {p,, •.• p); rnr:---;----
~ = {t1 , ... ts} 

r 
qo = Mo M EINr qoEJN ·o 

U,V:~ ➔ ?l 
r 

F ,B:~ ➔ IN r 

Vt .~:U(t . )SV(t.) 
1. 1. 1. 

assume U :~ ➔ - JNr u = -F 

(see note below) V = B-F 

set of states Q Q = R(M
0

) reachability set R(M
0

) 

Note: As Keller himself points out, positive coordinates of a test 

vector U(t.) do not matter, i.e ., we get exactly the same results 
1. 

if we set all positive coordinates of a test vector to zero. 
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1.4 Liveness, Boundedness, Reachability and Coverability 

From now on, we shall use the language of GPN's, taking advantage 

however of the fact that markings are expressed as vectors, and the 

action of a transition firing can be expressed by the pair of vectors 

F(t) and B(t) . Unless specified otherwise, we shall be talking about 

a Petri Net N = <n,~,F,B,Mo) , Il = lP1····,Pr}, L= [t1,···,ts}. 

Definition 1.8: A marking M covers a marking M' iff M ~ M'. Two raarkings 

Mand M' are incomparable iff neither covers the other. We write this: 

M ~ M' ~ M -J. M' & M' i M 

Definition 1.9: Two markings Mand M' agree over a subset P ~ TI, which 

we write M=M' (mod P), i ff the coordinates corresponding to places 

in P agree: 

M=M'(moj P) ~ Vp.EP: M(p.) = M'(p.). 
i i i 

The set of markings which agree over a given subset P with a given 

marking Mis denoted by: 

M/P [ M'IM=M'(mod P) }. 

Instead of referring to the congruence class m = M/P, we often call 

it a submarking m of P; in this case we also say t hat M agrees with 

the submarking m, 

Definition 1.10: A marking M is reachable iff MER(M0). 

A submarking m of pQI is reachable iff 3MER(M0): m = M/P, i.e. iff 

some marking M which agrees with mis reachable . 

Definition 1.11: A markine; Mis coverable iff ID-1.'ER(Mu) M' ~M 

A submarking is weakly coverable iff some marking which agrees with it 

is cover ab le. 

A submarking is strongly coverable iff every marking which agrees 

with it is coverable. 

Note that a reachable submarking is weakly coverable, but not necessarily 

strongly coverable. 
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Definition 1.12: A place pi is bounded at M
0 

iff there exists an integer 

b. EJN such that: 
l. 

M(p.) ~ b 
l. i 

A subset P ~ Il is bounded at MO iff every piEP is bounded at M
0

• 

A GPN is bounded iff n is bounded at M
0

• 

Definition 1.13: A place pi Eilis certainly unbounded at M
0 

iff it is un

bounded (not bounded) at every MER(M
0
). 

Definition 1.14: A set of places P ~ TI is simultaneously unbounded iff any 

arbitrarily large subrnarking of Pis weakly coverable, or equivalently 

iff the zero subrnarking of n - P is strongly coverable. 

* Definition 1.15: A transition tis potentially firable at M
0 

iff there exists 

a marking MER(M
0

) at which tis firable: 

3}1ER(M
0
): M ~ F(t) 

Definition 1.16: A transition tis live at M0 iff it is ·po tentially firable 

at every MER(M0 ). 

A subset of transitions is live iff every element is live; a Net 

is live iff ~ is live at M0 • 

Note: For vectors,~ is a partial order. Thus,~ is not the same as< 

(~but not=). The order relationship between two vectors is either 

~ or ~ or l( . Also, if we write M < M' to indicate (M ~M' & M 1 M'), 

this does~ mean that every coordinate of Mis strictly less than 

the corresponding coordinate of M1
• This latter requirement would 

be better indicated by writing M ~ M'-1, where 1 stands for the 

vector whose coordinates are all equal to one. 

,•~ R. Keller calls this property "pseudo- live", but various other live
like properties (such as infinitely often firable) have been called 
"pseudo-live", and we wish to avoid confusion. [11] 
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Definition 1 . 17: The marking change ~cr associated with a firing se

quence is precisely what it says: if M1 [o)M2, then oo = Hz - ~-

Definition 1.18: The firing vector cr associated with a firing sequence is 

ans-dimensional vector (s = !I;I, the number of transitions) whose 

· th d · · h b f f . i coor inate is t e nlllll er o occurrences o t. in cr. 
i 

This gives us an alternate way of defining oo, which is, like a marking, 

an r-dimensional vector: ~cr = (B - F) • cr, where Band Fare viewed as 

r x s-matrices. 

Definition 1.19: The hurdle Ho- of a firing sequence cr is the smallest 

marking which permits cr to be completely fired. We have: 

Ho- = -.81£ (vlv = o or (~t., cr',o" : cr't.cr"=o & V=~cr• - F(t.)) } i i i 

(The greatest lower bound .81:£. of a set of vectors is the largest vector 

(not necessarily in the set) which is covered (~) by all vectors in the 

set. ) Also note that vcr: Ho-+~~ 0. 

Some useful properties of R(M) and S(M): 

Ml ER(M0) ¢,) R(M
1

) ~ R(M
0

) 

Ml ~ MO ⇒ S(M
0

) ~ S(M1) 

(tis live at M0 & M1ER(M0)) 

(pis bounded at MO & M1ER(M0)) (pis bounded at M1) 

(pis certainly unbounded at M
0 

& ~ER(M0)) ⇒ (pis certainly unbounded 

at M1). 
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2. The Equivalence of the GPN Model and the RPN Model 

Many systems can be naturally and easily represented by GPN's 

because in certain contexts the restrictions of RPN's seem to be 

arbitrary. On the other hand, certain analytical techniques that have 

been developed for RPN's could be very usefully applied to more general 

systems. 
In this section we shall show how an arbitrary GPN can be represented 

by an RPN such that the two nets behave equivalently, in the following 

sense: Every firing sequence of one net can be translated into a 

corresponding firing sequence of the other net; every marking of one 

can be translated into a corresponding marking in the other net; and 

corresponding firing sequences yield corresponding markings. It will be 

seen that every question about the GPN can be answered by asking a 

corresponding question about the RPN used to represent the GPN. 

2.1 The Construction of an RPN Equivalent to a Given GPN 

Given a Generalized Petri Net N = (TI,~,F,B,M0) , we shall construct 
,._ ,._ A A,-.,._ n 

a Restricted Petri Net N = (Il ,1:,F,B,M0) as follows: (let = (p1 ... pr} 

and~= (t1 .•• ts}) 

a. for each place p. E TI, determine the maximum number of arcs 
l. 

(forwards or backwards) that go from p. to each transition. 
l. 

b. 

Let this number be k.: 
l. 

k. = max (F(p. , t.) + B(p., t.)) 
l. l. J l. J 

lS:j$'.S 

Ex: k. = 3 
l. 

.:~=~-=-~-=-::::.t. 
J 

Fig. 2 .1 

for each place p. E TI, 'n will contain a set of k. places, 
l. l. 

which we denote: 

" "' p. l' p. 2' 
l. ' l, " p. k 

l, . 
l 

A 
These are all the places in TI. 

A 

Thus, \n \ = k. 
l. 
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~ will contain a transition 1. for each t. E ~- But I: will 
J >'< J 

also contain additional A-transitions, which connect the k. 
1. 

/'- ,,.._ 
places p. 1 , ... , p. k 

1., ]. , • 
corresponding top. in TI into a ring: 

]. 

The example above thusitransforms into: 

' 
i!r - - - - "\. 

I 

' I I 

~ A. 2 I 
1., 

\ I 

\ I 

\ I 
\ A. I i,3 

/' / 
- - -
\\\ 

1. Fig. 2. 2 
J 

Note: If for some p., k. = 1, t hen there is no need for change, 
1. ]. 

d. 

>'< 

and for this place, no A-transition need be introduced. 

I'- /'-
Now we generate F and B by distributing the arcs connected to a place 

p. over the places in the corresponding ring in such a way as to 
]. 

create no self- loops and no multiple arcs. This is always possible, 

usually in many different (but equivalent) ways because of the choice 

of k.: 
1. 

A is the symbol of the empty string or the empty firing sequence. We 
talk about A-transitions because, in a sense, their firings are invisible, 
i . e. the correspondence with firing sequences of the represented GPN is 
established by deleting the A .. occurences in the string corresponding t o 
a firing sequence of the tran;fc5rmed net -9'. Note that A .. itself is not 
the symbol of the empty string. J., J 



e. 
/'-.. Let M be defined as: 

0 

I' 
M (p. 1) 

0 1., 

A 
M (~. J.) 

0 1., 

= M (p.) 
0 1. 

= O for j # 1 

It should be clear that the tokens can always arrange themselves in 

the place rings in such a way as to permit exactly the same firing 

sequences as in the original net, if we disregard the additional firings 
,... 

of the ~-transitions, i.e., each firing sequence of N corresponds to the ,. 
firing sequence of N obtained by deleting from the string in "fi< all ,... 
occurences of ~-transition, thus making it into a string in D<, and N 

" has no other firing sequences. (A firing sequence of N containing only 

~-firings corresponds to the empty firing sequence of N, and in fact does ,. 
not significantly change the marking of N, because the sum of t he tokens 

in any given place ring is not affected by ~-firings.) Also, to every 

marking ME~(M
0

) (marking class) there will correspond a set of markings 
A A 

.J<. ~~(M
0

) such that: 

.A. " M(p.) = I: M(p . . ) 
1. 1 ~j~k. 1.,J 

1. 

We also readily convince ourselves that t. is live in Nat any 
,.. J ,._ 

reachable marking M if and only if t. is live in Nat any and all 
" J corresponding markings M. The same applies to boundedness: p. is 

1. 

bounded if and only if any (and all) places p .. , 1 ~ j ~ k., are 
1.,J 1. 

bounded, and the bound is the same. Questions about reachability, 

coverability, firability, etc., can be answered in this very manner. 

We can therefore state: 
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Theorem 2.1: Generalized Petri Nets, Restricted Petri Nets, Vector 

Addition Systems, and Vector Replacement Systems are equivalent in 

modeling power for Asynchronous Systems. 

Of course, this talks only about the modeling power, not the 

modeling convenience. But from an analytical point of view, it means 

that we can choose whichever form we like to prove our theorems. Karp 

and Miller's and Keller's decidability results for boundedness and 

coverability, Rabin's undecidability result for the inclusion of 

Reachability Sets, and the various results obtained by many authors 

for Petri Nets can be applied to any of the formalisms mentioned, and 

the proof uses the model most appropriate to the proof method. As an 

example, we shall present a Petri Net version of Rabin's proof in section 4. 

2. 2 Other even more r.estricted models of a Petri Net 

a) Fan-in/Fan-out reduction: The fan-in and fan-out from every place 

and every transition can be reduced to 2. 

It is easy to see that if we make the place-rings larger, we can generate an 

equivalent net where each place has at most one input and two outputs, or 

two inputs and one output: 

Just use k. = 
1. 

(F (p. , t . ) + B (p. , t . ) ) 
1. J 1. J 

The example of figure 2.1 now becomes: 

Fig. 2.4 
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But by extending the principle of a A- trans ition ring, we can also reduce 

fan-in and f a n- out of transitions, as we show by the following example: 

6 7 8 9 

This can be replaced by the fol lowing : 
Figure 2. 5 

Figure 2.6 

The net can be further transfonned by reducing the fan-in and/or f?n · out on 

the places; this only adds 1-in- 1-out A- transitions. 

The equivalence of f iring sequences is as before: Same up to A- firings. 
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lbe equivalence of markings is similar: We still have the linear function, 

bu t the sets of places over which the sums extend are not disjoint as before. 
In our example, we have: 

M(l) = M(l) + M(ll) + M(l3) 

M(2) = M(2) + M(ll) + M(l3) 
..... A A 

M(3) = M(3) + M(l2) + M(l3) 
.,. ... "' 

M(4) = M(4) + M(l2) + M(l3) 

M(S) 

M(6) 

M(7) 

,I' 

M(S) 

M(6) + M(l4) 
J'\ A 
M(7) + M(l4) 
..... A 

M(8) M(8) + M(lS) 

M(9 ) = M(9) + M(lS) 

Thus, every generalized Petri Net is equivalent to a self-loop free Petri Net 

where the fan-in and fan-out is limited to 2 at every node. 

We s hould note that the above constructions do not affect the following properties: 

liveness 

boundedness 

decomposability into State Machines or Marked Graphs*) 

State Machine 

connectedness 

deadlock, trap*) 

The cons t r uctions may affect the following properties: 

safeness 

conflict-freeness 

persistence 

Free Choice, Simple*) 

- Marked Graph 

But t hese concepts can usual ly be redefined. For example, F . G. Commoner [3] 

has liveness and deadlock r es ul ts for r.1ultiple -arc Simple i~-::: ts. 

-,'<) These concep t s are defined and used in [3,6,9]. 
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b) Almost - Euler Nets: We can t r ansform a Petri Net into an equivalent 

net where each transition is one - in- one- out or two- in-two- out, except for 

two non-Euler transitions, one of which is one- in- two-out and generates 

extra tokens as needed, the other is two- in- one - out and removes tokens from 

the net when needed. 
We first reduce fan- in and fan- out : t he only non-Euler transitions left 

are one- in-two-out, or two- in- one - out, or poss ibly zero- in or zero-out. 

We successively use the following partial constructions 

' ..__ 

- -, 
t, ~ ', 

I 

' 

I 

t.: 
'J' 

becomes 

becomes 

becomes 

becomes 

becomes 

becomes 

Figure 2. 7 

~ 

:l----0---I 

.-
I 
I 
I 

•t· •-' 

(all thin transitions are ~-transitions) 

Finally, we connect all O(places into a ring with one extra place oe0 , all~ 

places into a ring , etc., giving us 6 place- rings, which are then intercon-

nected as follows: 
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Figure 2.8 

We do not go into the detail of how this curiosity works. We only give it 

as an example of the kind of transformations one can make. We shall see 

another quite interesting transformation in Section 5.2. 

' ' \ 

\ 

\ 

I 

I 
I 

I 
I 

/ 



-23-

3. Decidable Questions: Boundedness, Coverability 

3.0 Introduction 

One way a place pi may become unbounded is the following: 

Let M
0 

be the original marking, and suppose there exists a firing sequence 

0 10 2 such that: 

M0 [0 1)M1 & Ml (0z)M2 & M2:?: ~ & M2(pi) >~(pi) 

Because of M2 :?: ~• every firing sequence possible from M1 is also possible 

from M2, in particular, 02 can be repeated, and therefore 0 1(02)* is a legal 

set of firing sequences. But then it is clear that by repeating 0 2 arbitrarily 

often, the marking in p. can grow without bounds. In particular, after the 
1 

firing sequence 0 1 (0 2)n, the marking will be M
1 

+ n • (M2 - ~). All places 

p. for which M2 (p.) - M1 (p.) > 0 will be unbounded. But this is not the only 
J J J 

way a place can become unbounded. Example: 

MO = (1 , 0 , 0 , 0) 

Figure 3 . 1 

P4 is unbounded: given any number n, the firing sequence (t
1

)n t
2

(t
3

)n yields 

the marking <O , 1, O, n). But for no pair of reachable markings such that 

M2:?: M1 do we also have M2 (p4 ) > M1 (p
4

). This net incidentally has the inter

esting property that t 3 can fire any finite number of times, but cannot fire 

indefinitely . 

However, in this case the unboundedness of p
4 

follows from that of p
3

, for 

which we do find two markings having the property described here: M
0

[t
1

) M
1 

and Ml:?: M0 and M0 (p3 ) > M
0

(p
3
): Ml= (1, O, 1, 0). 
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Karp and Miller (10) have shown that there exists a finite construction 

which explicitly shows which places are unbounded, and which are not. We 

shall use basically the same construction, called a coverability tree. 

3.1 Coverability Trees 

A coverability tree is a rooted, labelled tree. The labels are chosen 

from the set (JN U {w})r, where w is a special symbol used to denote unbounded

ness. It means "arbitrarily many," and we will perform arithmetic with it as 

if it were a natural number larger than any other natural number. The greater 

or equal than relation(~) and the operations of addition(+) and subtraction 

(-), when applied to w, satisfy the following rule: 

Vn E JN : w ~ w & w ;;;,: n & w + n = w & w - n = w & w :/: n 

Thus indeed, "arbitrarily many" can exceed any given finite number, and is not 

affected by adding or subtracting a finite number. 

The labels are thus r-dimensional vectors, where some coordinates may be 

w, and the~ relation for vectors is defined as usual, taking into account the 

abovementioned rule for w. 

The arcs of this tree will also be labelled; the arc-labels will be 

transition names. In addition to the arcs of the tree, we will provide two 

kinds of backpointers, which can point from a node a to an antecedent of that 

node, i.e. a node~ that lies on the (unique) path from t he root node p to 

node a. These pointers are not considered to be arcs of the tree (it would not 

be a tree anymore) but are introduced for the purpose of record- keeping only. 

If~ is an antecedent of a , we write this~< a, not to be confused wi th 

the relation~ for vectors or labels. The root node is an antecedent to every 

other node in the tree and has no antecedent; a leaf node is not antecedent to 

any node. The label of node a is denoted by L. 
a 

The label of the root node will be the initial marking vector, and the 

arcs of the tree will express transition firings. The node labels reflect 

the corresponding marking changes, but as soon as a node a is reached whose 

label L covers the label of some antecedent~, there is a possibility of 
a 

unboundedness, and we introduce w for those coordinates where arbitrarily many 

tokens can be generated if the firing sequence expressed by the arc labels 

along the path from~ t o a is repeated sufficiently often. To express this 
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more conveniently, we include an w-backpointer, labelled w. if we introduce w 
l. 

in the i th coordinate, from that noae to the corresponding antecedent~-

If we reach a node ct whose label equals that of some of its antecedents~, 

we make ct a leaf node and introduce a loop backpointer, labelled A, from ct to~

The symbol A stands for the empty string and suggests that, when one reaches the 

leaf node ct, one has in fact also reached the interior node~ and can continue 

tracing a path corresponding to a firing sequence, as we shall see. The reason 

for constructing a tree instead of the graph obtained by identifying nodes with 

identical labels is because the tree structure is more convenient for the 

proofs which will follow. 

Definition 3.1: Given a Petri Net N = (TI, ~, F, B, M0), we define its 

coverability tree TN(M
0

) recursively as follows: 

* 

basis: The label of the root node is the original marking: 

step: Let ct be a node in t he coverability tree, with label L. There 
ct 

are several cases: 

a. If no transition would be firable at a marking agreeing with L 
ct 

in its finite coordinates, i.e. if 

Vt E ~: L ~ F(t) 
ct 

* then ct is a leaf node called a dead-end. 

b. If some antecedent of ct has a label equal to L, i.e. if 
ct 

y-<ct & L = L 
y ct 

then ct is a leaf node called a loop-end, and there is a loop back

pointer, labelled A, from ct toy, written ct[A)y. 

c. If ct is not a leaf node by (a) or (b), then it has a successor node 

for each transition which might be firable by a marking agreeing 

with L in its finite coordinates . If tis such a transition, an 
ct 

arc labelled twill go from ct to a node~. which we write ct[t)~. 

R. Keller calls this a null-end [11]. 
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(This is not a firing relation for markings in RN(M0), but a 

similar relation for nodes in the coverability tree TN(M
0
).) 

Thus we have: (assuming a is not a leaf node) 

vt: L ~ F(t) ⇒ a[t)~ 
a 

Now we determine the label L~, where a[t)~, as follows: 

Let A~ be the set of those antecedents of~ (possibly including 

a) whose labels are covered by L' = L - F(t) + B(t): 
a 

We consider two subcases: 

cl. If A~= 0, let L~ = L' 

& L $; L'} 
y 

L - F(t) + B(t). 
a 

c2. For every coordinate i in which L' is finite but strictly 

greater than t he label Ly of some y EA~, we introduce an 

W-backpointer, labelled w., from~ toy, which we write as 
1. 

vi, 1$; i$; r; vy EAA: (L'(i) # W& L'(i)> L (i)) ⇒ ~(w.)y 
t' y 1. 

The label L~ is then determined as follows: 

We see that step (c2) is where w-coordinates are introduced. The various 

w. - backpointers indicate which firing sequence can be used to increase the 
1. 

corresponding place marking beyond any bound -- provided that sequence can 

indeed be fired sufficiently often. 

Disregarding the arc labels and the backpointers, this construction is 

exactly the same as Karp and Miller's (10]. It differs slightly from 

R. Keller's construction (11) in that Keller includes step (b) under step (c2) 

by checking whether A~ contains a node y whose label LY is equal to L'. 

Figure 3.2shows an example of a simple Self-Loop- Free Petri net, which thus 

directly corresponds to a Vector Addition System, where the t wo constructions 

yield different coverability trees. 
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0 

0 

1 

w w 

Karp and Miller's construction, Keller's construction. 
same as definition 3.1 without backpointers. 

Figure 3.2 

We will show that this coverability tree will be finite for any given 

Petri Net, and thus the recursive definition provides at the same time an algo

rithm for constructing the coverability tree of a Petri Net. 

To illustrate this, we construct the coverability tree for the example 

shown in the beginning of this section, reproduced in Fig. 3.3 on the next page. 

The w
3

-backpointer shows us how to increase the third coordinate without 

bounds by repeating t 1 • The w
4

-backpointer shows that we must repeat t 3 
n times to get n tokens on p

4
, by firing (t

3
)n. But this is possible only 

if p3 has enough tokens, i.e . the fourth w depends on the third w. That is 

because the firing vector associated with t
3 

is not positive. This does not 

mean that we cannot produce arbitrarily many tokens in p4 , but it does mean 

that to do so we must first produce enough tokens in p
3

. 

Our aim in constructing this coverability tree is to provide a decision 

procedure for deciding whether a given place is bounded,and whether a given 

marking can be covered by a reachable marking. For this, we need three 

theorems: 

0 
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root 

1 0 0 0 

t2 

0 1 0 0 1 0 w ....... 
....... A. .... 

dead-end ' t2 ' \ 
\ 

0 1 w 0 0 w 0 
looe-end 

t3 'w 
\ 4 

0 1 w w 

t3 
\ A. 

' 
0 1 w w 

looe•end 

Figure 3 .3 
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Theorem 3.1: Every coverability tree is finite. 

Theorem 3.2: A place is unbounded if and only if the coverability tree contains 

a label in which the corresponding coordinate is w. 

Theorem 3.3: There exists a reachable marking covering a given vector in lNr 

if and only if the coverability tree contains a label which 

covers that vector. 

Theorem 3.3 also provides the justification of the name "coverability tree." 

We shall now prove these theorems. 

3.2 Finiteness 

Lemma 3.4 Every infinite sequence of non-negative integers contains a non

decreasing subsequence. 

Proof: If the sequence contains infinitely many mutually distinct elements, we 

can extract a strictly increasing subsequence starting with any element 

and scanning along the sequence until we find a larger element, and so on. 

If the sequence does not contain infinitely many mutually distinct 

elements, some element must be repeated infinitely often, and there ex

ists an infinite constant subsequence. 

In any case, there is an infinite non-decreasing subsequence. 

QED 

Lennna 3.5 Every infinite sequence of r-dimensional vectors in (lN U (w})r 

contains an infinite non-decreasing subsequence. 

Proof: Consider the first coordinate. If there are infinitely many vectors 

whose first coordinate is w, they form an infinite subsequence non

decreasing in the first coordinate. Otherwise, disregarding those 

vectors whose first coordinate is w, there exists an infinite subse

quence of vectors whose first coordinate is non-decreasing, by Lennna 

3.4. In any case, there exists an infinite subsequence non-decreasing 

in its first coordinate. 
This infinite subsequence now contains another infinite subse-

th 
quence non-decreasing in its second coordinate, and so on to the r 

coordinate. Thus there exists an infinite subsequence non-decreasing 

in each coordinate. 
QED 
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Corollary 3.6 There exists no infinite set of mutually incomparable vectors 

in (:N U (w}/. 

Proof: This infinite set, being denumerable, could be arranged in an infinite 

sequence where each element occurs exactly once. But then, by Lemma 3.5, 

any two elements of some infinite non-decreasing subsequence would be 

comparable, which contradicts the assumption of infinity. 

QED 

Note, however, that if r ~ 2, no a-priori b9und exists on such sets of incompar

able vectors: The set ( (x, y) E JN
2 

lx + y = k} is such a set of mutually incom

parable pairs of size k+l, arbitrarily large. 

Proof of Theorem 3.lf) Every coverability tree is finite and can be effectively 

constructed. 

Suppose some Petri Net has an infinite coverability tree. By construction, 

every node has at most as many immediate successors as there are transitions in 

the Petri Net, a finite number. Then, by Konig's Infinity Lemma for rooted trees, 

there must be an infinite path in the tree, i.e. a path which does not eventually 

end at a leaf node. But then, by Lemm.a 3.5, there must be an infinite non

decreasing subsequence of the sequence of node labels along that infinite 

path. In fact, it must be strictly increasing, otherwise the path would have 

to end in a loop-end leaf node at the first repetition of a label. But each 

time a label is reached which is strictly larger than some previous label, it 

will have, by construction, at least one more coordinate equal to w than the 

smaller label. Since there can be at most r coordinates equal to w, the 

· existence of such an infinite increasing subsequence of labels along a path 

in the tree is contradictory. Now that w~ kn~w that_ ~he tree is finite, we can 

convince ourselves that the recursive definition 3.1 also provides an algo

rithm for constructing the coverability tree. 
QED 

Note: Konig's Infinity Lemma for rooted trees can easily be prooved non-cons

tructively. Assume the rooted tree is infinite, yet at each node there is a 

finite number of branches. Then at least one of the branches from the root node 

must point to the root of an infinite subtree. The path traced out by the root 

nodes of such sucessive infinite subtrees must be an infinite path QED. 

Konig's original Infinity Lemma [12] is more general. We provide a translation 

of his proof in appendix, page 77 . 

*) This is the same proof as in Karp and Miller [10]. 
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3.3 Firing Sequences and Composite Paths in a Coverability Tree 

Now that we know that coverability trees are finite objects, we can use 

them to answer certain questions about the corresponding Petri Net. 

First, we show that every firing sequence can be folded on t he coverability 

tree, in the sense that there exists a sequence of paths in the tree , linked by 

loop backpointers, such that the arc labels spell out the given firing sequence . 

This is why we write a[t)~ if an arc labelled t goes from node a to node~, and 

now we extend this to the case where a is a loop-end and a[\)y and y[t)~ . 

Indeed, as in the formation of a firing sequence, we have a[\t)~, where A is the 

symbol for the empty string. See Fig. 3.4. We then observe that the "fir ing 

rule" for labels is similar to that for markings, taking into account the rules 

for arithmetic with w and the possible introduction of new w-coordinates. 

:::) L ~ F(t) 
a 

Fig. 3.4 

\/ 

I 
I 

/ 
/ 

._____,._ ... 5 

......._ __ __, a 
loop-end 

(L =L ) 
Y a 

Definition 3.2: A \-composite path cr from node a to node~ in a cover

ability tree, written a [cr)~ , is a concatenation of paths starting 

at a , ending at~, and linked by loop-backpointers . 
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Lemma 3.7 If cr is a firing sequence of the Petri Net N leading from the 

original marking M0 to some marking M, then cr is also a ~-composite path 

path in the coverability tree TN(M0 ) from the root p to a node a such 

that L ~ M, and such that L and M agree in the finite coordinates of 
a a 

L : 
ct 

~ r : L (i) f. M(i) ~ L (i) = w) 
a a 

Proof: By induction on the length of cr. 

basis: L 
p 

M
0 

for the null sequence or path 

step: assume M0 [cr)M1 and M1 [t)~. 

By induction, there is a node a such that p[cr)a and La~ M1 with 

La and M1 agreeing in La's finite coordinates. 

Since tis firable at M1 we have~~ F(t), and therefore 

L ~ F(t). Therefore, a cannot be a dead-end leaf node. If ct is a 
a 

loop-end leaf node, we follow the loop backpointer to a' and consider 

a', since we then also have p[cr)a' and L, = L. Thus we can assume 
a a 

p[cr)a and La~ M1 ~ F(t) for some interior node ct• But then, by the 

construction of the coverability tree, there is an arc labelled t which 

goes from a to a node~ such that L~ ~ La - F(t) + B(t) . 

M2 = ~ - F(t) + B(t), we have: 

a[t)~ ~ p[crt)~ & L~ ~ M2 

Since 

and the finite coordinates are transformed the same way for the labels 

as for the markings. 

QED 
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Corollary 3.8: If place p. is unbounded in a Petri Net, the corresponding 
]. 

coverability tree contains a label whose i th coordinate is w. 

Proof: Suppose no label has w as its i th coordinate. Since the number of 

1 b 1 . f. . h . 1 1 b ~ f h · th d. a e s is inite, t ere is a argest va ue, . r w, o t e i coor i -
i 

nate of all labels. Now, since every reachable marking is covered by 

the label reached by a corresponding composite path in the cover

ability tree, no reachable marking can exceed b. tokens in p .. Thus 
]. ]. 

p. must be bounded; in fact, b. is a bound. 
]. ]. 

QED 

Corollary 3.9: If a given marking M can be covered by a reachable marking 

M
1 

in a Petri Net, then the coverability tree contains a label La 

which covers M. 

Proof: By Lemma 3.7 there exists a label La which covers M1, hence 

La~M1 ~M 

QED 

Corollaries 3 . 8 and 3.9 are the "only if" parts of Theorems 3.2 and 3.3, 

respectively. 

What remains to be shown is that w indeed stands for "arbitrarily many 

tokens" as a coordinate in the coverability tree. To produce more than a 

given number of tokens in place p., we have to repeat the sequence of firings 
]. 

leading up the first occurence of the corresponding w, That sequence is called 

an w. -loop: 
]. 

Definition: I f a[cr)~ and an w.-backpointer goes from~ back to a, then cr is 
]. 

called an w.-loop, the vector ~cr is the corresponding loop change, and 
]. 

Hcr is called the loop hurdle. (See Definitions 1 . 17 and 1.19 on pag~ 13). 

Note that there may be several different w.-loops for the same coordinate i, 
]. 

which means that sometimes the unboundedness of a place can be confirmed by 

different strategies. 

It should also be poin t ed out that if cr is an w.-loop, as a firing sequence 
]. 

in the Petri Net it may not be firable the firs t time down the coverability 

tree, but only after certain other w-coordinates have been made large enough 

to cover the loop hurdle by repeating other w.-loops before. 
J 
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For this reason we must also not expect to find a reachable marking 

which equals any given marking agreeing in the finite coordinates with some 

label in the coverability tree. But we will show that we can cover any 

such marking in the w-coordinates. 

Definition 3.4: An w-composite path in a coverability tree is a sequence of 

paths in the tree, linked by W- backpointers. 

Lennna 3.10: For every node a in the reachability tree ~(M
0

) of a Petri Net, 

and for any target vector V agreeing with L in the latter's finite 
a 

coordinates, there exists a firing 
a 

sequence cr(V) which is also an 
a 

w-composite path from the root p to node a, such that the marking 

reached by cr(V) covers V : 
a a 

& M ~ V 
a a 

Proof: By induction along the path from p to a. 

basis: VP must equal M0 since LP has only finite coordinates. 

Suppose a[t)~, and suppose that, for every V ~ L, there exists 
a a 

a firing sequence cr(V) whose corresponding w-composite path 
a 

ends at a and leads to a marking M ~ V. We have M ~ L; 
a a a a 

M M0 + bcr(V ), and the 
a a 

finite coordinates of L . 
a 

three vectors M, V, L agree in the 
a a a 

We wish to find a firing sequence cr(V~) capable of reaching 

a marking M~ which covers a given target vector V~, where V~ agrees 

with L~ in the finite coordinates of L~. 

If L~ has no more W- coordinates than La, the situation is 

simple: L~ = La - F(t) + B(t), and to cover V~, it is enough to 

choose Va(i) = (V~ + F(t ))(i) for w-coordinates and 

Va(i) = (V~ + F(t) - B(t))(i) for the finite coordinate: (which 

must agree with the corr es ponding labels La and L~), and then 

take cr(V~) = cr(Va) t. It is clear that in this case, Ma~ F(t) 

which makes t firable, and we have: 
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M~ = Ma - F(t) + B(t) ~ Va - F(t) + B(t) ~ v~. 
Also, if the W-composite path 0 (V) ends at a, then clearly 

a 
cr (V ~) ends at ~. 

Now let us assume that L~ has one or several more w-

d . t h L h "th d "th W 11 h h coor ina est an , say t e i an J e ca t ese t e 
a 

"new" w- coordinates, as opposed to the "old" w-coordinates 

already present in L The w-loops corresponding to these new 
a 

w- coordinates are cr. and cr . , the corresponding loop changes are 
i J 

oo. and oo., the corresponding loop hurdles are Ho. and Ho .• 
i J i J 

We shall try a firing sequence of the form: 

Now we must prove that there exists a target V and two a 
integers x and y such that this sequence is firable and leads t o 

a marking M~ ~ V~ . We know that t,oi(i) ~ 1 and 6crj(j) ~ 1. 

Therefore, if we choose x = V~(i) and y = V~(j), the above choice 

for crCV~) will produce a marking M~ which will cover V~ in 

coordinates i and j, provided we can find V such that this se-
a 

quence be firable. In other words, given x and y as chosen above, 

we must find V such that t(cr.)x(cr.)y be firable at M, where 
a i J a 

M
0 

[cr (V ) )M : 
a a 

Let us look at the coordinates of this hurdle H~. They are of 

t hree kinds: those for which L~ is still finite, the~ w

coordinates i and j (W-coordinates in L~ but finite in La ), and 

the old w-coordinates (W-coordinates in L ) . -- a 
The finite coordinates are transformed the same way by 

w-composite paths for labels and by firing sequences for markings. 

The loop change for these coordinates is zero. Therefore, H~ 

does not exceed L~ in the finite coordinates. 

The new w-coordinates are also no problem. Indeed, they 

are finite in L, and 
a 

the hurdles of single 

in L 
Ci 

- F(t) + B(t) they strictly exceed 

firings of cr. and cr. respectively. That is 
i J 

because, if ~[w. ) y, then (L - F(t) + B(t))(i) > L (i), and as 
i Ci y 



-36-

far as this coordinate is concerned, cr. can be fired from y 
l. 

back to~- For the second and subsequent firings, the hurdle 

coordinate i would be even less, and ultimately be zero, since 

the loop change is positive for this coordinate . If cr. and cr. 
l. J 

are different sequences, then the loop change in one coordinate 

i is zero for the other loop 0 . and vice versa. 
J 

Since V must agree with L over the finite coordinates of 
a a 

V , 
a i.e. those just discussed, we see that Va~ H~ is automatically 

satisfied in these coordinates. 

For the old w- coordinates, where by induction we can exceed 

any bound in a corresponding marking, we can choose a wildly 

exaggerated upper bound of H~, like 

Vk , L (k) = W : V ( i ) = V R ( i ) + (F ( t ) + x • H (cr . ) + y • H (cr . ) ) ( i ) a a .., 1.· J 

Having thus established values for x, y, Va' given V~, we 

can now assert that: 

- by induction, there exists cr(V) and M such that: 
a a 

M0 [0 (Va)) Ma 

M ~ V 
a a 

cr(V) is an W- composite path to a 
a 

- at M, the following holds: 
a 

M ~ H ( t (cr . ) X (cr . /) 
ct 1. J 

M [ t (cr . ) x (cr . /) M.... 
ct 1. J IS 

M~ ~Ma+ 6(t(cri)x (crj)Y) ~ V~ 

t(0 .)x (cr .)Y is an w-composite path from ct to~-
1. J 

Therefore, 

to~ and a 

cr(VR) = cr(V) t(cr.)x(cr.)1 is an W-composite path leading .., a i J 
firing sequence leading to M~ ~ V~. 

QED 
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We have shown that in order to exceed a target vector V~ ~ L~, 

V~(k) = L~(k) if L~(k) I w, we compute a target vector Va for the node 

preceding~ in the coverability tree. Thus regressing along the path 

p ➔ ••• ➔ a ➔ ~ we map a firing strategy to eventually exceed our target 

vector. As in Lerrnna 3.7 the finite coordinates of the labels change exactly 

like the markings. We note that in this strategy, the w. -loops are executed 
i 

in the sequence in which the corresponding w.-coordinates are introduced, and 
i 

that there is no embedding of the firing sequences corresponding to these 

loops even if the loops themselves are embedded. As an example, we show a 

coverability tree in Fig. 3.5 (on · the next page), and a firing sequence for 

exceeding a given target vector. 

The if parts of Theorems 3.2 and 3.3 follow immediately from Lerrnna 3.10. 

We have thus proved Theorems 3.2 and 3.3. 

And from Theorems 3.1, 3.2 and 3.3 follow the main results of this 

chapter: 

Theorem 3.11: It is decidable whe ther a set of places is simultaneously 

unbounded. 

Proof: We can check whether the coverability tree has a label in which the 

coordinates corresponding to these places are all w. 

QED 

The meaning of "simultaneously unbounded" becomes clear if we look at 

Fig. 3.6. Also see Definition 1.14 on page 12. 

Fig. 3.6 

P
3 

and P
4 

are simultaneously unbounded. 

P
2 

and P
3 

are not simultaneously unbounded, 

even though each one is unbounded 

individually. 
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w / \ 

3 / 
\ b (b/6 / 

I 

\ 
'\ 0 2 \ 0 1 56 0 0 1 57 0 
' "- dead-end \ "-I lw C 

"-
1 

'\ \ 2 
0 w 0 0 w 2 0 0 56 2 0 0 57 2 

\ w4 I 
looe-end w , \ I 

d (d/
1 

1, d J I 
\ I I 
) I 121 

0 12 2 22 0 13 2 

A/ I I 
/ 

j I 
J 2 5 I a(cda) (abcda) 

j 
0 w 2 13 5 3 2 3 6 5 3 

A 

a 

w w w w w w w w w w 1 5 3 1 1 7 5 2 

looe-end looe-end looe-end looe-end 
target marking 

arget: 1 5 3 1 

cr 3 = b b.cr3 = (0,0,1,0) 

cr 1 = d; H (cr) = ( 0,0,2,1) .6.crl = ( 1,0,-2,0) 

0-4 cda; H(cr4 ) = ( 1,1,2,0) .6.cr4 = ( -1,0,-2,1) 

cr 2 = abcda; H(cr 2 ) = (3,0,1,0) .6.cr2 = ( -3 , 1,-1,0) 

Firing to exceed the b57 d22 2 5 sequence target: a c a (cda) (abcda) a 

Fig. 3.5 
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Theorem 3.12: It is decidable whether a Petri Net can reach a marking which 

covers a given marking. 

Proof: We can check whether the marking to be covered is covered by some 

label in the finitely constructible coverability tree. 

QED 

Note l: The decidability results only depend on the set of labels in the 

coverability tree. As a matter of fact, we don't even need the 

coverability tree to find a firing sequence which leads to a covering 

marking, because if we know that it exists, we can find it by simply 

enumerating all possible firing sequences and their resulting markings 

until we find one whose resulting marking covers the target marking. 

Note I: By taking "totally unreasonable" upper bounds, we can establish a 

quick formula for finding a firing sequence which exceeds a given tar

get vector. Let d be the distance of the target node from the root, 

let h be the largest coordinate of all loop hurdles and transition 

input vectors (F(t)), and let v be the largest coordinate of the tar

get vector. We shall consider only those coordinates of a given inter

mediate target for which the corresponding label has an w-coordinate. 

Our first target vector will be replaced by one whose w-coordinates 

(remember the restriction mentioned above) are all v. The closest 

antecedent where the last w was introduced into the label is less than 

d arcs away, and so we choose the corresponding target to have all its 

w-coordinates equal to v + d • h, which should be large enough. A 

similar consideration applies to the path from one W-introduction to 

the next. 

Let there be k successive W- introductions. The last W- loop will be 

repeated nk = v + d • h times, and thus the previous w-coordinates can 

be required to exceed the target by h • ~ + d • h. We already see a 

recurrence relation in the making: 

Now let x be the largest of v, d and h. Clearly, we can use: 



2 
~ = X + X 
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2 k+l n1 = x + x + ..•. + x 
k+2 

X - X 

X - 1 

Therefore, we simply follow an W-composite path leading to the target 

node, and in the process we repeat the first w-loop encountered, 
k+2 

x - x h k+l . l 
1 times, t e next one x times ess, etc. X -

Applied to the example of Fig. 3.5, we have d = 6, h 

and thus x = 6; we get the following sequence (k = 4): 

a b
9331 

c d
1555 

a (cda/58 (ab c d a)42 a 

which results in the marking ( 1167, 44, 6263, 258). 

3, V 4, 

We can also use this approximation to show that in a GPN of r 

places with an upper bound hon the loop and transition hurdles, if a 

marking can be covered, there exists a firing sequence to cover it of 

a leng th proportional to the marking to be covered. 

Note}: Although the principle of the proof of Lenuna 3 .10 is quite simple, 

we went to so much detail because, by our own experience, any fir ing 

s trategy derived from an incomplete proof (which disregards loop 

hurdles, for example) has failed on some counterexamples to actually 

be firable without producing negative intermediate markings. 

Also, while the language used in this section is mostly that of 

Vector Addition Systems, we found the graphical intuition provided by 

Petri Nets very useful to construct examples and counterexamples, and 

to test conjectures and unfinished proofs. 
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4. An Undecidable Problem About Petri Nets 

When R. Karp and R. Miller [lO]introduced Vector Addition Systems to 

answer certain decidability questio11s about their Parallel Program Schemata, 

M. Rabin showed that a particular problem about Vector Addition Systems was un

decidable: is the Reachability Set of one Vector Addition System a subset of the 

Reachability Set of some other given Vector Addition System. Rabin's first proof 

in 1967 used exponential polynomials [4] ; at that time Hilbert's 10th Problem [7] 

had not yet been shown to be undecidable. 

In 1970, Matijasevit (13] proved that Hilbert's 10
th Problem was undecidable, 

and thus permitted a technically simpler proof of Rabin's result. Rabin never 

published his proof, but in 1972 he presented his new proof in a talk at MIT, an 

account of which can be found in [2] . 

Since Vector Addition Systems and Petri nets can fully represent each other, 

Rabin's result also gives us an undecidable problem about Petri nets. Further

more, we believe that the graphical character of the Petri net model permits an 

easier exposition of the undecidability result. 

Theorem 4.1: Given two Petri nets having the same number of places, each with a 

given initial marking, it is undecidab l e in general whether every marking 

reachable in one net is also reachable in the other. 

Proof: We show that, given an arbitrary polynomial P(x
1

, ... , xr) of r variables 

with integer coefficients, there exists a pair of Petri nets such that the 

set of reachable markings of one is a subset of the reachable markings of 

the other if and only if the polynomial P has an integral root. Thus, if 

we could decide for any two Petri nets whether in fact the set of reachable 

markings of one is a subset of the reachable ma rkings (' r t:he other, we could 

also decide whether an ar bitrary polynomial with integral coefficients has 

an integral root. But this is Hilbert's 10th Problem, which has been shown 

to be undecidable by Matijasevit. 

th 
Actually, we use the following equivalent form of Hilbert's 10 problem: 

'"Rabin was misquoted in (10] and (ll] : Karp and Miller believed he had shown the 
Equality o~ Reachability Sets to be undecidable; to this author's knowledge, 
this question has not yet been resolved, as of 1973. 
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Lemma 4.2: Given two polynomials of r variables with non-negative integer coefficients 

P(x) and Q(x) such that, Vx E Jt,{: P(x) ~ Q (x), it is undecidable whether 

there exists a solution x E 1tl to P(x) = Q (x). 

Proof of Lemma U: Let R(x) be an arbitrary polynomial with r variables. Then 

R(x) = 0 has a solution in?lr if and only if one of the 2r polynomials ob 

tained from R by replacing some of the variables by their negative has a 

root in :it{. Thus a finite number of tests for non- negative integer roots 

is enough to find any integer root of R. 

Now, let R
1 

(x) be a polynomial for which we check for roots in ]Nr. 
- - 2 Let R

2
(x) = (R

1 
(x)) . Then we have: 

Vx (- JNr: R
2

(x) ~ 0, and the roots of R
2 

are clearly roots of R1 and vice ver~a. 

Now, we separate positive and nega t ive coefficients of R2 : 

where P and Qare polynomials with non- negative coefficients and clearly 

satisfy the conditions of the Lemma. 

First, we shall show how to get a Petri net to behave like a polynomial. 

Lemma 4.3: Given a polynomial with non-negative integer coefficients of r variables, 

P(x
1

, ..• , xr)' there·exists a Petri net with r+l distinguished places such 

that the set of all markings reachable in these distinguished places is the 

set (( x
1

, ... , xr, z) lxi E Ii! & 0 ~ z ~ P(x1 , ..• , xr)} 

There may be many more places in this Petr i net than just these distinguished 

places, but for the moment we disregard their markings. 

As an example, consider the following net, which can be seen to correspond 

to the polynomial of one variable P(x) = x + 1: 
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Fig. 4.1 

X 

0 ~ z ~ P(x ) 

'---v--1 

distinguished places 

The possible mark ings for the distinguished places are: 

X z 

(0, 0) (1, 0) ( 2, 0) 

< o, 1) < 1, 1) (2, 1) 

(1, 2) < 2, 2) 

< 2' 3) etc. 

The r elation to the graph of P(x) is obvious: The reachable markings can be repre

sented by the integral points below or on the graph: 

z P(x) = x + 1 

5 

4 

3 

2 

1 

0 
0 1 2 3 4 5 

X 

Fig, 4.2 

Proof of Lemma 4.3: We shall show how to construct such a net, given a polynomial 

P with r variables x 1 , ... , xr. 

The gener al s t ruc t ure is shown below: 



"generate 
some 
arbitrary 
argument 
x1,···,xr 
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"compute" 

Pr+l 

pr 

pl 

X 
r 

• • . 
xl 

distinguished places 

Fig. 4.3 

The generation part i s easy to build: 

Fig. 4 Ji, "generate" 

Each transition t. fires some number (possibly zero) of times, generating a 
1. 

value for x. 
1. 

in two copies (one for the "computer," one for the corresponding 

distinguished place ) , then the "generator" quits. The "argument" part of the 

distinguished marking is now established, and will not be altered. 
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The "computer" is a Petri net which, for a given "argument" x1 , . .• , xr, 

tries to compute P(x
1

, ... , xr). However, for the marking z of its output 

place Pr+l' P(x
1

, ... ,xr) is only an upper bound: No firing sequence can 

possibly put more tokens on z , but there exists a firing sequence which 

does put P(x
1

, ... , xr) tokens on z. I t does not matter if some other 

firing sequence kills the net before the bound is reached. 

Rabin calls such a computation by upper bounds •~eak computation , "and 

we are about to show that polynomials with non- negative integer coefficients 

are weakly computable by Petri nets. 

Polynomials are computed by the operations of addition of two num

bers, multiplication of two numbers, and substitution of previous results 

into one or several new additions or multiplications. Now, since, for 

positive integers, each of the operations add, multiply, .££.P.Y_ is non

decreasing as a function of its arguments, if we substitute a reachable 

upper bound for its arguments, the result will also be a reachable upper 

bound. 

Also, we shall make sure that the r eachable upper bound can be ap

proached one token at a time, so that the possible markings of the "result" 

place include all integers f rom zero to the bound included. 

The add and~ operations can be represented by a Petri net as 

follows: 

in 

"add" out 

''.££PY'' 

Fig . 4. 5 

And the following Petri net has a reachable upper bound o[ x , y in its 

output place : 



-46-

input x 

O s output s x·y 

input y 

Fig. 4.6 ''multiply" 

It can be seen that the following strategy yields x • y tokens at the output, 

and t hat t h i s cannot be exceeded, though it is possible to exhaust x and 

t hus gr ind to a halt by firing only t and t', not producing any tokens 

at t he output. The maximum output strategy is: Transfer ally tokens into 

y , fir e t , transfer a ll of y into o (at this point we have y tokens at the 

ou t pu t, x - 1 at the input), then fire t' and bring all y tokens back to 

y , and r e pe a t this f or t he remaining x - 1 tokens. t can fire only x times , 

and at mos t y tokens can be transferred to the output between firings oft. 

Having thus s hown t hat addition, multiplication and substitution are 

wea kly computable by Pe t ri nets (and argued that subst itut ion in fact pre

ser ves wea k computability), we can now construct a Petri ne t t hat weakly 

computes a polynomial, say 3x2 + 2xy + y3 , by i n terconnecting the Petri ne ts 

weakly computing add , .£9.EY., and multiply, as shown in Fig . 4.7. 
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Example: 

2x 
2 

+ 
• opy 

2 opy X 

X 2 
+ + Jx + 2xy 

input + 

r e s ult 

• 
opy • 

2 y y 

Fig. 4. 7 "Compute" 3x2 + 2xy + y 
3 

QED 
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Now we wil l show how to cons truct two Petr i nets , A and B, such that every 

mar king reacha ble by A i s also reachable by B i f and only i f t here exists a col 

lection of non- negative i n t egers x 1, ... , xr s uch that, f or two given polynomials 

P and Q as de scribe d i n Lemma a , we have: 

P(x 1 , . .. , xr ) = Q(x1 , ... , xr ) 

Since P(x) ~ Q(x) and s ince t he polynomials only take integral values for i ntegra l 

argtm1ent s, we have : 

(ifx E :Nr) ( P(x ) Q(x) ~ P (x ) < Q(x ) + 1) 

As far as the graphs of P and Q+ l i n (r+l ) - space are concerned, it means tha t the 
·k 

graph of P "dips under " t he gr aph o f Q + 1 if and only if P = Q has a solution: 

p z 

z 

X 

no integer solution 

Fig. 4 .8 

point reachable in B, 
but not i n A 

integer solution 

= Q 

X 

Now let A' and B' be Petr i ne t s corresponding t o t he polynomia ls P and Q + 1 according 

to Lemma b . Every marking of the set of r+ l distinguished pl aces of B' is reachable 

as a marking of the distinguished set of r + l pl aces of A' except if the graph of P 

•~ips under' ' the graph of Q, i.e . if t here i s an integer solution to the ~quation 

P = Q. Yet we want to have two Petri ne t s A and B wher e ever y marking of Bis 

reachable by A if and only if there is no solu t ion to P = Q; we want to compare the 

markings of two complete nets , not just for a subset of the places . 

What rema i11s to be Jone is to modify A' and I~ ' into two nets A and B of same 

number of places n , such that every marking of 13 is r eachable in A except if the 

··k 
Enough for the "dip" (shaded area in Fig . 4 . 8) to cont ain an integral point . 
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marking of the distinguished places of B' cannot be reached by the distinguished 

places of A'. 

As a first step, we add enough extr a blank places, not connected to any 

existing transition , to one of t he nets, in order to get two nets of the same 

number of places n - 2, then we add two more p l aces a ,f3 to each net. '111esc are 

all the places i_n A resp. IL In B, let O' be blank and f3 be marked with 011e token; 

neither place is connected to any transition . 'L11is completes 13, which thus dif

fers from B' in only a few disconnected places. In A, however, we insert a transi

tion from O' to f3, and we let place O' be in a self-loop on every trans ition of A. 

We let a be originally marked with one token, and~ be initially blank. Thus, as 

long as the token is in a, A behaves just like A', but when the token transfers to 

[3, all transitions become permanently disabled, and in particular, the marking in 

the r + 1 distinguished place s will be frozen . 

Now, for each of the n - 2 - (r + 1) undistinguished places of A, we add two 

transitions, one of which puts a token on t he place, the other removes a token f rom 

it; then we put all these new transitions in self- loops on place~- Thus, after 

the token from a is transferred to~, any mar king can be reached in the undis 

tinguished places of A by fir ing these extr a t r ansitions a suitable number of times. 

To see how this construction works , let us see under what conditions every 

marking reachable in B can also be reached in A. 

Let us label the places as follows : p1 , .. . , pr are the places containing 

the argument for t he polynomial, p 1 contains a partial r esult of the computation. 
r+ 

These are the r + 1 distinguished places . For the sake of argument, let the number 

of places of B' be the smaller number k, and the number of places of A' be 

n - 2 > k. We add n - 2 - k undistinguished places to B'. Let us label the undis

tinguished places of A and B pr+2 . . . pn_2, and let us label a and~, pn and pn- l' 

respectively. (See Fig. 4 . 9 ) 

For comparing markings in A and B, we pair the plnces accnr:ding to their 

labels p . . 
1. 

Now, any marking of B will be, by construction, 0f the following form, 

wher e z:;;; Q(x1 , ... , X ) + 1 : 
n 

• • ·' Y n - r -3' 1, 0) 



extra 
transitions 
of A 
,...---A---. 

• 
• a 
• 

• 
undistingui - • ~ , , 
shed places • ' ... --
of A' • 

• 

A' 

0 
distinguished 0 places of A' 

• 
• 
• 

0 
A 
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Pn 

p 
n - 1 

p 
n- 2 

Pk+l 

pk 

P r+2 

Pr+l 

pr 

P1 

Fig. 4.9 

Q a 

0 
• 
• . 

0 
0 

• 
• • 

0 

0 
0 

• 
• • 

0 

extra dummy places of B 
to match the size of A 

undistinguished 
places of B' 

transitions • 
of B' • 

• 

distinguished 
places of B' 

B' 

B 
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To reach this marking in A, we mus t first try to match p1 , ..• , Pr+l' since 

after we match p 
1 

and p, we will have frozen the marking of the distinguished 
n - n 

places of A. Therefore, we first generate the argument x1 , ... , xr for polynomial 

P, then partially compute P(x
1

, ... , xr) in a way that, if completed , would 

actually yield P(x
1

, ... , x) tokens in p 1 of A. Bu t we stop as soon as we r each 
n r+ 

z, the marking we try to match in pr+l of 13. This is possible if and only if 

P(x
1

, .. . , xr) ~ z, which in turn could fail only if z = Q(x1, ... , xr) + 1 and in 

fact P(x
1

, ... , xr) = Q(x
1

, ... , xr). Suppose we could reach z in pr+l of A. 

As soon as we do, we swi tch off all transitions of A' by transferring the token from 

a (pn) to~ (pn_
1
), at the same time matching the marking in these two places to the 

one in B. But now, we can reach any marking we wish in Pr+2 , ... , pn _2 of A, by 

firing the extra transitions of A a suitable number of times; in particular, we 

can match y
1

, ... , y 
3

, thus reaching in A the proposed marking of B. As we 
n-r-

pointed out, this can be carried out for all markings of B except one where we have: 

... ' X ) + 1 r 

But such a marking is reachable in B if and only if the above equation does have a 

solution in non-negative integers. Thus: 

<vx E :nl) P(x) -; Q (x) ~ every marking reachable in Bis also 
reachable in A 

QED 
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5. The Liveness and Reachability Probl ems for Petri Nets 

5.0 Introduction 

In this section we study the recursive reducibilities of several re

lated decision problems about Petri Nets, and therefore also about Vector 

Addition Systems, in view of Section 2. 

The main problems are the Liveness Pr oblem and the Reachability 

Problem. Both have been conjectured to be undecidable, and the first has 

been conjectured by R. Keller [11] to be reducible to the second. 

Liveness Problem: Given a Petri Net and an initial marking, is it live? 

Reachability Problem: Given a Petri Net N, an initial marking M0 , and 

a marking M, is M reachable from M
0

? (Is Min the marking class 
➔ 

of MO: MEM0 , or M E RN(MO) ?) 

We shall prove Keller's reducibility conjecture, as well as the 

reducibility of the Reachability Problem to the Liveness Problem: 

Theorem 5.1: The Liveness Problem and the Reachability Problem are 

recursively equivalent. 

Finally, we shall discuss some sufficient conditions for these 

problems t o be undecidable or to be decidable. 

5.1 The Sub- Problems 

We shall prove our result by showing various recursive reducibilities 

between t he following problems: 

LP: The Liveness Problem. 

SLP: The Liveness Problem for a subset of the transitions of a Petri 

Net: Is every transition in a given subset live? (In particular, is 

a given transition live?) 

RP: The Reachability Problem: Ar e Marking Classes recursive? 

SRP: The Reachabil ity Problem for a subset of the places of a Petri Net: 

Given a marking M, does there exist a marking M' reachable from the 

initial marking such that Mand M' coincide on the g iven subset of 

places? 

ZRP: The Reachabil ity of the zer o (empty) marking. (In Vector Addition 
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Systems language: Does the Reachabilit y Set contain the Origin?) 

SZRP: The Reachability of the Zero marking for a subset of the places. 

5.2 The Recursive Equivalence of LP and SLP 

The reducibility of LP to SLP is trivial, since LP is a special case 

of SLP. More to the point, if we know how to test for the liveness of 

a given transition, we can determine t he liveness of a subset of transi

tions by repeating the test for each transition of the subset. 

In fact, we can also construct from a given Petri Net a new net 

containing an extra transition t such that tis live if and only if the 

original net is live. 

"' 

' original, ,, 
net 

Clearly, twill die if and only if 
at least one original transition dies. 

(Each transition of the 
is connected to one of 

added components Fig. 5 .1 

original net 
the additional 

places) 

Now we shall show that if we can decide the liveness of a whole Net, 

we can decide whether a given subset is live. (Just knowing that a Net 

is dead does not tell us which transitions are dead; a non-live Net can 

certainly contain live transitions.) Example: 

l ive ~ dead 

~ 
Figure 5.2 

We shall first prove the following remarkable result: 

Lemma 5.2: Any Restricted Petri Net N can be simulated by a live Petri 

" Net N. 
,._ 

That is, we can construct a net N such that to every firing sequence of ,.. 
N there corresponds a distinct set of firing sequences of N; to every ,.. 
marking of N there corresponds a distinct set of marki~gs of N; the 

markings reached by corresponding firing sequences always correspond; 

and if two markings correspond to each other, they can be reached by 

corresponding firing sequences or not at all. Mureover, the translation 

is straightforward both ways. 
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Proof: Let us first dispel the mystery. The following Net is clearly 

non-live: 

N: 

Its firing sequences are: \ 

t 
tt 
ttt 
tttt 

Figure 5.3 

(the empty string) 

A 
The corresponding live net N must have infinitely many and un-

boundedly long firing sequences. Thus, clearly there must be a set of 
A firing sequences of N for each sequence of N. We achieve this by 

having 4 transitions a,b,c,d correspond tot, and certain patterns of 

firings will correspond to a firing oft; others will correspond to a 

non-firing oft. In particular, the correspondence will be: (represented 

as regular expressions) 

N 

\ 

t 
tt 
ttt 
tttt } 

A 
N 

(acbd)* 
(acbd)* (ab+ acbabd) (acbd)* 

(ab+ acb(ab)*d)* where the number 
of occurences of substring ab 
is 2,3 and 4, respectively. 

In other words, every firing oft is represented by the occurence of 

the substring ab against a background pattern offacbffcbf(cbf('' 

The arrows show where the substring may occur (singly or multiply). 

The background pattern fires all four transitions arbitrarily often, 

without possibility of deadlock: It is live. 
~ 

The graph of N is shown below: 
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A 

N: 

Fi gure 5.4 

A 
Place p corresponds top; its initial marking is twice the marking of 

p plus one extra token. This extra token is what keeps the net alive 

when pis empty. It can be seen that a and b remove tokens from p, 
whereas .£ and ..9. put a token back. The "empty" pattern acbd thus 

jiggles the extra token back and forth, whereas the pattern ab removes 

two tokens from p (corresponding to one token removed by a firing of! 

in N) and restores the state of the four additional places. These four 

places can be in any of four "phases": 

y 
Figure 5.5 
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The action of this net can be represented by the following state diagram: 

d 

C 

{ 
((ab)* acb(ab)*d)* 

(ab)-lc 

Figure S.6 

,.. 
We now proceed to the general construction of N, given a Petri 

Net N whose places are p
1 

••• pr and whose transitions are t 1 ••• ts. 

Nwill contain one place p. for each place p. in N, plus, for each 
1. l. 

transition tj, four places rtjl' rrj 2 , rtj3 , rrj 4 and six transitions 

t. , ••• t.f' plus one additional place which we call the hub. Each 
Ja J 

transition t. is replaced by a construction like that shown befor e, 
J 

which is connected to the hub by means oft. Je 
and tjf' and to the 

an arc from p. to . " 1 appropriate p. paces as follows: if there is 1. 
1. 

t. in N, there will be two arcs from p. 
J 1. 

to tja and tjb and two arcs 

from t. and t.d top .• If there is an 
JC J 1. ~ 

arc from t. to pk' there will 
J ,.. 

and two arcs from pk tot. and JC be two arcs from t. and t.b to pk, 
Ja J 

tjd. Thus, the effect of firing tj can be modeled as in the example 

before. 
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p. 
l. 

A 
M(p.) = 

l. 

2 ·M(p. )+l 
l. 

Figure 5. 7 

" The initial marking of N consists of twice the marking of Nin p. 
l. 

for p. plus the "steady-state" background marking of one extra token 
l. 

A 
for each pi' and a token in the hub. Whenever the hub is marked, we 

,,_ 
say that the net N is at rest. Ot herwi se, it is active, and is in some 

phase O'. ., ~-, y. or6. as illustrated before. Note that each transition 
J J J J 

cycle will start and end in phase a; t. starts the cycle fort., and 
- Je J 

tjf returns the token to the hub, thus permitting some other transition 

firing to be simulated. This guarantees that all steady state tokens 

have been returned to where they were before, switching to some other 

transition complex. The only effective marking changes are those due 

to an ab firing oft ., such as t. t.b' which transfers a pair of tokens 
- J Ja J 

from an input place (as seen in the original net N) to an output place 

of t .. 
J ,._ 

The correspondence between markings is simple. If N is at rest or in 
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" some phase a or y, we have M = 2M + 1. 
,.. 

If N is in phase ~. or 6 . the 
J J 

input places tot. 
J 

lack the steady state token, and the output places 

oft. have t wo steady state tokens in addition to 2M. The firing 
J ;-.. 

sequences of N are clearly of the form: (w1 + w2 + ... wm)* 

where 

w. = t. (t. t.b + t. t. t.b(t. t.b)*t.d)*t.f 
J Je Ja J Ja JC J Ja J J J 

and each occurence oft. t.b corresponds to a firing oft. in N, 
1a l J ,... 

and has the corresponding effect on the marking of N. 

It can be seen that this construction would fail if there were 

multiple arcs or self-loops, since it would be impossible to manage the 

steady-state tokens. But if we have an arbitrary generalized Petri Net, 

we can always transfonn it into an equivalent self-loop free single-arc 

Petri Net by using the construction shown in Section 2, which does not 

affect liveness. The translation would then be a two-step procedure, 

but we observe that the combined translation still has the properties 

outlined under Lemma 5. 2. This gives the following 

Corollary 5.3: Any Generalized Petri Net can be simulated (in the sense 

of Lemma 5.2) by a live Petri Net. 

Remark: In [lJ , Baker objects to the fact that the constructions 

used in Rabin's proof are neither live nor consistent, whereas all 
11nice" systems should only be represented by live consistent nets. 

(A Petri Net is said to be consistent if there exists a firing sequence 

which fires each transition at least once and returns to the original 

marking, i . e., there exists a steady-state behaviour involving all 

transitions i n the net). But we can easily apply the method just presented ,.. 
to construct f rom the two nets A and B of Se ction 4, two new nets A and 
,.._ 
B which are live and consistent (our construction certainly prov i des 

for a consistent steady-state firing - the one corresponding t o no 

"real" f i r i ngs at al 1) whose reachable markings agree if and only i f those 

of A and B agr ee: 
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Corollary 5.4: Given two live, consistent GPN's, it is undecidable 

whether every marking reachable by one is also reachable by the other. 

Now we are ready to use the construction of Lennna 5.2 to prove the 

following Lemma: 

Lemma 5.5: LP and SLP are recursively equivalent. 

Proof: We have to show that SLP can be reduced to LP. 

Suppose we wish to 

tions T ~ tt 1 , ••• tml, 

We construct a new 

test the liveness of a certain subset of transi

say T = tt1 , ••. ,tkJ' in a given Petri Net N. 

" net N' by using the construction of the live 
;,.. 

equivalent N for the transitions not to be tested for liveness, i.e., 

for [tk+1, ••. tn1. Remembering that the marking of N is double that of 

N (plus steady-state tokens), we replace the single arcs leading to or 

from the transitions to be tested ([t1 , ••• tk}) with double arcs in 'N~ 
and call the tra~sit ions [t1, ... tk}. Thus, the effect of firing 

t. t.b or t. in N'affects the marking of N'similarly by moving pairs 
J a J i 

.,... ' of tokens in N for each token moved correspondingly in N. But we 

have to make sure that the steady-state tokens do not interfere. As 

long as there is only one, it will not be noticed by the double arcs. 

But if the net is in phase~ or 6, there may be two steady-state tokens 

" in some place, which could cause a false firing Qf some t .• To prevent 
l. 

" this, we put each t. in a self-loop through the hub, as shown in the 
l. 

following example. Now these transitions can fire only when the net 
I', 

N is "at rest". 

Example: N = 

Test the liveness of 
( tl' t2} 

Figure 5.8 
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~ 

The corresponding net N1 is: 

Figure 5.9 

~ ~ ~ 
Now, in N' all transitions except possibly t 1 and t 2 are live by 

construction. Thus, the whole net is live if and only if (t1 ,~ 2} is 

live, which gives us a liveness test for [t 1 ,t2} in N as soon as we 
A 

can test the liveness of the net N1
• 

QED. 
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5.3 The Recursive Equivalence of RP, SRP, ZRP and SZRP 

Let us first establish the trivial reducibilities: Both RP and 

SZRP are particular cases of SRP, and ZRP is a particular case of RP 

and SZRP. Thus ZRP is reducible to both RP and SZRP, each of which 

is reducible to SRP. 

Lemma 5.6: RP, SRP, ZRP and SZRP are recursively equivalent. 

Proof: We have to show that SRP is reducible to ZRP to complete the proof. 

Suppose we wish to test for the reachability of the submarking (m1,m
2

, ••. ~) 

of the subset of places [p
1

, ..• pk} ~ [p
1

, ... pr} of some Petri Net N 

with a given initial marking. We shall construct a net N obtained from 

N by adding 

1. an extra transition ei for each place piE [ pk+i•···,Pr} in whose 

marking we are not interested. 

2. two extra transitions 8a and 8b. 

3. two extra places na and nb, where 

token and nb is blank. 

n is initially marked with one 
a 

Now we connect these extra elements to a copy of N as shown below, 

where the size of the bundle from p. to 8 ism., i.e., the firing of 
i a i 

8 removes exactly the submarking whose reachability we wish to test. 
a 

I 

/ all places 

of N 

1 all 
I • • -

1 tr ans 1. t 1. ons, , 
I t 
I t 1 
l 2 

; t 
s 

- - - - .....----.. 

" \ 
••• N I 

Figure 5.10 
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,r self-loops on every transition in N. 
a 

n ton, which self-loops on every 0., 
a b J 

e transfers the token from 
a 

k+ls; js: r. Now 0 can 
a 

fire if and only if a marking can be reached which covers the one we 

are testing for reachability. 0 can fire at most once; if it does, 
a 

it freezes all activity in N by removing the token from n, thus a 

disabling every transition of N. The marking of (p1 , ••• pk} is now 

zero if and only if the tested submarking was reachable. Now the token 

in ,rb can pump all other tokens from [pk+i•·•·Pr} via transitions 

ek+i•···,er, and finally exit nb via eb, reaching the all-zero marking 

of N if and only if the tested submarking was reachable in N. 

QED. 

5.4 The Reducibility of RP to LP 

Lemma 5.7: RP is recursively reducible to LP. 

Proof: Actually, we prove that ZRP is reducible to SLP. Lemma 5.7 then 

follows from the equivalences proved in Lemmas 5.5 and 5.6 

We wish to test whether in a given Petri Net N (with its initial 

marking), the zero marking is reachable. We construct from it a new 

net N~'< in which a certain transition 0 is live if and only if the zero 
a 

marking is not reachable in N. Then a test for the liveness of 8 in a 

N* will be a reachability test for N. 

We construct N* as follows, starting with a copy of N, to which we 

add: 

1. two places ,ra and ~b' where ~a self-loops on every transition in N. 

~a is initially marked with one token; nb is blank. 

2. a transition e from n to nb. a a 
3. for every place p. in N, a transition e which self-loops on pi 

1. i 
and transfers a token from nb to 1( . 

a 
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-~-0 ------- -- -- - -
r 

Figure 5 .11 

The token in~ permits N* to fire exactly like N and generates 
a 

the same markings in Pi•·•Pr• Once in a while 0 fires and thus 
a 

free zes N by removing this token. The token can get back to~ if 
a 

and only if at least one 0. is enabled, i.e., the present 
l. 

marking of N 

is not zero. It is thus clear that 0 is live if and only if that zero 
a 

marking of N is not reachable. 

QED. 

* N 

5.5 The Equivalence of LP and RP 

Wha t remains to be proved is that some form of the Liveness Problem 

can be reduced t o some form of the Reachability Problem. In particular, 

we show that the liveness of a transition t (SLP) can be decided by testing 

the reachability of a finite number of submarkings (SRP) which we call 

t - dead submarkings. 

Definition 5.1: Given a Petri Net N =(TI,~, F, B, M0) with TI=(p1 , .. . ,pr } 

and a transition t E ~: 

a. A marking ME :rl is said to be t-dead iff, starting from M, 

there does not exist a firing sequence which eventually fires t: 

Mist-dead tis not potentially firable a t M 
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b. A submarking m of a subset P ~ TI is said to bet-dead iff 

every marking M which agrees with m (i.e. m = M/P) is t-dead. 

(See Definitions 1.9 and 1.10, page 11.) 

From the definition of liveness (Definition 1.16), it follows that t 
I 

is live if and only if not-dead marking is reachable. Now there may be 

an infinite number oft-dead markings, but by checking the reachability of 

a submarking, we are in fact checking the reachability of an infinite num

ber of markings in one step: if the submarking is not reachable, no marking 

agreeing with it is reachable. Therefore, if every t-dead marking agrees 

with at least one t-dead submarking from a finite set Dt oft- dead sub

markings, then transition tis live if and only if no submarking in Dt is 

reachable: Checking liveness reduces t o checking the reachability of a 

finite number of submarkings. 

The following example shows in what context submarkings are considered 

fort-deadness. In the net of Fig. 5.12, if pl is blank, no amount of 

Fig. 5.12 

tokens will make t 2 potentially firable; if p2 is blank, it must receive 

a token via a firing of t 1 , to fire t
2

, and therefore we can see that the 

only t 2 -dead markings are ( 1, 0), (2, 0), and all markings of the form 

(0, x), where x E 1N. But these markings (0, x ) are precisely all markings 

which agree with the submarking pl= 0, or, more formally, the submarking 

(0, 0)/(pl}. If we are given an initial marking, say M0 = (5, 0 }' it is 

therefore enough to check the reachability of one submarking pl = 0 and 

two markings (1 , 0) and ( 2, 0). As it turns out, neither of the two 

markings (1 , 0) and (2, 0) are reachable, since if t 1 does not fire, there 
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will always be more than 4 tokens in p
1

, and after t
1 

fires, p
2 

will 

always contain at least one token. The submarking p
1 

= 0 is also not 

reachable since no firing of t 1 or t
2 

changes the parity of the marking 

in p1 . Since M0 (p1 ) is odd, we cannot reach a marking with zero tokens 

in p1 . The conclusion is that t
2 

is live at M
0 

= (5,0) . 

An important property oft- dead markings is that any marking covered by 

at-dead marking must also bet-dead. That is because any firing sequence 

starting at the smaller marking is also firable at the larger marking. 

Now we adopt t he following convention for represent ing a submarking 

M/ P, where P ~ IT, by a vector V E (JN U ( w} / . 

Definition 5.2: A vector VE (1'1 U (w}/ is said to be a submarking 

M/ P iff the finite coordinates of V are those of the places in P, 

and they agree with M: 

Vi, 1 s: i s: r: V(i) = M(p.) 
l. 

pi E IT - P ~ V(i) = w 

Example: The t-dead submarkings of the Petri net in Fig. 5.12 are 

( 1, 0) , ( 2, 0), and ( 0, w) . 

Now we can comp~re t - dead markings and submarkings by means of the 

s: relation on (JN U (w} /, as defined in Section 3.1 page 24. 

Lemma 5.8: If Vis at- dead marking or submarking, and V's: V, then 

V' is also t-dead. (V, V' E {JN U (wf). 

Proo f: I f Vis a marking, i.e. has no w- coordinates, then V' is also a 

marking. V' is covered by at-dead marking and hence must be 

t-dead. I f V is a submarking, then any marking V" which agrees 

wi th Vin its f inite coordinates is t-dead, by definition. If V' 

is smaller than V, then every marking which agrees with V' is 

covered by some marking V" which agrees with V, hence must also be 

t-dead. Then V' is t-dead by Definition 5.1. 

QED 
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This lemma justifies our convention for representing submarkings 

as vectors in (lN U (w}/. In fact, this convention also permits us to 

give a stronger form to Theorem 3.3: A submarking VE (lN u(w} )r is 

strongly coverable (see Definition 1.11) in a Petri Net N iff there 

exists a label L ~Vin the coverability tree of N. 

Now we are ready to look for a finite set oft-dead submarkings Dt 

which is sufficient to decide the liveness oft. 

Let n't be the (possibly infinite) set of all t-dead markings and 

""" submarkings. For example, Dt of the Petri Net in Fig. 5.12 would be the 

set ((1, 0), ( 2, 0), (0, w), (0, 0), (0, 1), ( 0, 2), (0, 3) , ... }. 

Definition 5. 3: 

a. A submarking VE(~ u(w})r is said to be superseded by a 

proper submarking V' of V iff every finite coordinate of V' 

is equal to the corresponding coordinate of V 

/:). 
V' supersedes V ~ V' # V & (Vi: V'(i) # w ⇒ V(i) = V'(i)) 

b. The set of unnecessary t - dead submarkings is the set 

Ut =(VE (lNU(w}/l;>tV' E 1\: V' supersedes V} 

c. The reduced t-dead set is defined as 

"' From Lemma 5.8 it is clear that Ut ~ Dt. The submarkings in Ut are 

unnecessary for the purpose of testing the liveness oft. Indeed, if 

V' supersedes V and V' is reachable, then some t-deadV" of which V' is a 

submarking will be reachable, hence tis not live. If V' is not reachable, 

then noV" of which V' is a submarking is reachable. In either case, Vis 

not needed explicitly to establish the liveness oft. Therefore, it is 

enough to check the non-reachability of all s ubmarkings in the reduced 

t-dead set Dt to establish the liveness oft. 

Now we show that Dt must always be finite. 
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Lemma 5.9: For a given Petri net and a given transition t, the reduced 

t-dead set Dt is finite. 

Proof: Assume Dt is infinite. It is certainly denumerable, so let us 

arrange it into an infinite sequence of distinct vectors in 

(lN ufw})r. By Lemma 3.5, there must be an infinite strictly 

increasing (all elements being distinct) subsequence of this se

quence. Some coordinates in this sequence may be bounded, others 

may eventually reach w, after which they must remain at w. After 

some finite initial segment, there remains an infinite tail where 

some coordinates are constant, the others increase without bound. 

Thus an infinite Dt must contain an infinite subset oft-dead 

submarkings W whose elements all agree in some set of coordinates, 

and take on arbitrarily large finite (non-w) values in the others. 

Let V be a vector which agrees with all vectors in Win the 

"cons tant" coordinates, and whose remaining coordinates are w. 

Clearly, V denotes a submarking which is not reachable in N only if 

no submarking in W is reachable in N. V must also bet-dead, be 

cause if it were not, then some marking which agrees with Vin its 

finite coordinates would not bet-dead, and yet it would be exceeded 

by some vector V' in W, since the coordinates of V' which correspond 

to w-coordinates in V are either w or can be made arbitrarily large 

in W. But this contradicts Lemma 5.8. But this vector V, which is 

t-dead and covers all of W, is in I\• and is a proper submarking of 

every element of W. Hence W ~ Ut, which is incompatible with 

Dt =])t - Ut. Thus Dt must be finite. 

QED 

What we have shown so far is: 

Corollary 5.10: The liveness of a transition t can be established by 

checking the reachability of a finite set Dt oft - dead s i ~mar kings. 

What remains to be proved is that Dt can be effectively constructed. 
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Lennna 5.11: Given a Petri Net N =(TI,~, F, B) and a transition t E ~, 

it is decidable whether a submarking VE (JN u[w})r is t-dead. 

Proof: (No initial marking is mentioned for N, since the concept of 

t-deadness is independent of the initial marking.) For a marking 

ME JNr, transition tis potentially firable iff a marking can be 

reached which covers F(t), i.e. iff some label in TN(M) covers 

F(t). (Theorem 3.3). The argument can be adapted for submarkings 

as follows. We extend the definition of a coverability tree 

TN(V), where VE (JN u{w})r, by allowing the label of the root node 

to already contain some w-coordinates, without w-backpointers to be 

sure. The definition (Definition 3.1, page25) need not be changed; 

the label of the root node of TN(V) will be LP= V, and the con

struction proceeds without modification. 

Suppose that Vis not t - dead. Then there exists a marking M 

which agrees with Vin the finite coordinates, from which a firing 

sequence leads to a marking which covers F(t), of course, 

By repeating the argument used in the proof of M ~ V = L . 
p 

Lennna 3.7 (page 32), we can see that the firing sequence is also a 

A-composite path to a node a such that L ~ F(t). 
a 

Suppose that there exis t s a node a such that L ~ F(t). Let 
a 

V ~ F(t) be a target for a, i .e. V agrees with L in its finite 
a a 

coordinates. By using the proof of Lennna 3.10 (page 34), we com-

pute a target V 
p 

V agrees with V 
p 

for the root node of ~(V); we have V
0 
~ V and 

in the fini t e coordinates of V, i.e. V is a 
p 

marking which agrees with submarking V, and from V 
p 

a marking M 
a 

can be reached such that M ~ V ~ F(t), i.e. tis potentially 
a a 

firable at V, and thus V 
p p 

is not t - dead. Therefore, submarking 

V cannot bet- dead. 

Thus, Vis t-dead if and only if TN(V) does not contain any 

label which covers F(t), which is decidable since the construction 

of TN(V) is finite and effective. There is no change to the 

finiteness proof in Theorem 3 . 1 for TN(V). 

QED 
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Lemma 5.12: For a given Petri Net Nanda given transition t, the reduced 

t-dead set Dt' as defined in Definition 5.3, can be effectively 

constructed. 

Proof: We show how to effectively find an upper bound on the finite co

ordinates of all vectors in Dt. · Then there will be a known finite set 

from which all vectors in Dt are taken . Since this selection is it

self an effective procedure, by virtue of Lemma 5 .11, the construc

tion of Dt is effective. 

Since Dt is finite by Lemma 5.9, such an upper bound exists. 

Let b be such an upper bound on the finite .coordinates in Dt. Sup

pose there is at-dead submarking V which contains finite coordinates 

strictly greater than b. Then it cannot be in Dt, and hence must be 

superseded by some t-dead V' which has w-coordinates where V has co

ordinates exceeding b. Let us write this as V' = Vb-+W' where: 

if V(i) > b then w else V (i) 

Then an upper bound has the following property: 

bis an upper boun) 

for the finite 

coordinates in Dt 

We shall show that this property can be strengthened to the fol

lowing characterization of a bound b: 

(Let B be the vector whose coordinates are all equal to b + 1, 

i.e. ~i, 1 ~ i ~ r: B(i) = b + 1) 

:
0
:st:: ;::::ebound) ~ ( 

coordinates in Dt \V 

VV s: B: 

t - dead ⇒ Vb-+W t-dead 

Indeed, let v
0 

beat-dead submarking in which some finite 

coordinates exceed b. Then, in particular, the marking Min which 

every w-coordinate of v
0 

has been replaced by b, is t-dead. It 

covers the marking M's: M obtained by replacing each coordinate which 

exceeds b, by b + 1, and hence, from Lemma 5.8, M' is also t-dead. 
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Now, if b has the property indicated above, namely that 

(V ~ B & Vt-dead) ⇒ Vb-# t-dead, then M' satisfies the conditions of V, 

and hence the submarking V' = M'b must bet-dead. This V' is easily 
➔w 

seen to be (V0)h➔W' thus v
0 

is superseded by the t-dead submarking V', 

and hence cannot be in D. 
t 

In view of Lerrana 5.11, we can now state that it is decidable 

whether a given b E 1N is an upper bound on all finite coordinates in 

Dt, by testing the characteristic property; this involves testing 

Vt-dead ⇒ Vb-+W t-dead for the (b + 2)r vectors V ~ B. 

Since we know that such a bound exists, we shall find it by trying 

successively higher values for b. 

QED 

In the process of finding the bound b by the method outlined in the 

proof of the above Lerrana 4, we will actually have tested all the candidates 

for inclusion in Dt. By testing each confirmed element of Dt for reach

ability, we have an effective test for the liveness oft by virtue of 

Lemma 5.9. 

To surranarize this lengthy section: 

We have shown that by testing the reachability of the elements of an 

effectively constructible finite set Dt of submarkings, we can decide the 

liveness oft. Thus SLP is reducible to SRP. Together with Lerrnnas 5.5, 5.6 

and 5.7 this proves Theorem 5.1: LP and RP are recursively equivalent to each 

other and to SLP, SRP, ZRP and SZRP. 
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5.6 A Sufficient Condition for the Undecidability of the Liveness and 

Reachability Problems 

In Section 4, we use Petri Nets that behave like polynomials in the 

sense that there is a place which has a reachable upper bound expressed 

by a polynomial whose argument is the initial marking of some distinguished 

set of places. Now we introduce the concept of a reachable lower bound 

as a function of the initial marking in some distinguished set of places. 

Definition 5.4: In a Petri Net with a given initial marking M0 , a place pi 

is said to have a reachable guaranteed minimum~) b. iff, 
1. 

from every marking~ in the marking class, we can reach a 

marking M
2 

such that M
2

(pi) ~ bi' and there also exists a 

marking M
3

ER(M
0

) such that M
3
(pi) = bi and vM

4
ER(M

3
), 

M4 (pi) ~ bi. 

Basically, this means that no matter what firing sequence has already 

happened, it can always be continued until b. is reached or exceeded, 
1. 

but there also exists a firing sequence after which b. cannot be 
1. 

exceeded anymore (but can still be reached). 

A reachable guaranteed minimum is of course not a bound, but it is po

tentially a lower bound. This is in contrast to the reachable upper bound 

(rub); this latter of course is a bound. No firing sequence can exceed t he 

rub, but there exists a firing sequence which reaches it. 

Now suppose instead of a rub - polynomial 11computer" as in Section 4, 

we had an ~-polynomial "computer". Then, given two polynomials with 

non-negative coefficients P and Q satisfying the conditions of Lemma 4.1, 

let us construct a rub-computer for Q and an~-computer for P (assuming 

this can be done, which is by no means certain), and then let us connect 

them together in the following way: 

(If A is a quantity, we indicate that it is a reachable upper 

bound by writing'A'; if it is a reachable guaranteed minimum, we 

write iAJ) 
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rgm - computer 

for P(x) 

rub - computer 

for Q(x) 

Figure 5 . 13 

~ 
Q(x) 

' P (x) - Q (x)., 

note: 
vxElN r: 
P(x)o!:Q(x) 

It can be seen that transition a can remove at most Q(X-) tokens from 

the output of the _E&!!t-Computer for P(x), and thus the whole construction 

above is a .!:..8!!!- computer for P (x) - Q(x) . Therefore, if there is no 

integer root to the equation P(x) - Q(x-) = 0, the output place is 

guaranteed to eventually get a token, and therefore transition~ 

will be live, whereas, if there exists such a rootx, for that input 

there will be a firing sequence such that both the rgm-computer for 

P(x) and the rub-computer for Q(X-) will actually reach their bound (and 

the .!.8!!_l- computer will be unable to exceed it), and since they are equal, 

repeated firings of transition a will exhaust all tokens in the output 

place of the P-"computer", thus effectively killing transition~-

Thus, if we connect a "generator" to the input of the ~-computer for 

P- Q, (See Fig.5 . 14), we get a Pet r i Net where a given transition~ is live iff 

there exists an integer root for P~) - Q(x) = 0, which is undecidable ac

cording to Lemma 4.2 We state this as: 

Lemma 5.13 If it is possible to construct a Petri Net which admits in one 

of its places a reachable guaranteed minimum which is a polynomial 

function (with non-negative coefficients) of the initial 

marking in a subset of its places, then the Liveness and 

Reachability Problems are undecidable. 
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rgm - computer 

for 

generator 
P(x) - Q(x) 

Figure 5.14 

We can actually restrict the condition for undecidability as follows: 

Theorem 5 .14: If there exists a Petri Net with two distinguished places 

Proof: 

a and b and an initial marking which places x tokens in i! and 

zero tokens in~ such that a reachable guaranteed minimum for 

place E is x 2 , then the Liveness and Reachability Problems 

are undecidable. 

2 We show that, given an ~-computer for x , we can construct an 

~-computer for any polynomial with non-negative coefficients. 

As in the proof of Lemma 4.3, we show that we could construct 

such an rgm- computer out of the operations add, .£2E_y and multiply. 

For each of these operations, if the inputs are reachable lower 

bounds, the output will be too. We can use the same construction 

f or add and~- Then we would construct our multiplier as 

f ol lows: _________ r __ -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-~------------, 

..!.8!!1 - squarer 

(hypothetical) 

rub - squarer 

rub - squarer 

y 

Figure 5.15: An rgm - multiplier 
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2 2 
The rgm-square computer generates (x + y + 2xy) as a reachable 

2 2 
guaranteed minimum; from this, Ci subtracts at most (x + y ) tokens, 

leaving a reachable guaranteed minimum of 2xy, thus producing the 

desired £8!!! of x .y at the output. 

QED 

5.7 Conclusion: Decidable or Undecidable? 

Consider the length of the shortest firing sequence to kill a transition 

tor to reach the zero marking. This length can also be interpreted as the 

reachable guaranteed minimum number of tokens in an additional place which 

collects one token from each transition firing. 

In the light of the preceding subsection (5.6), we see that the liveness 

and reachability problems would be undecidable if the length of such a 

shortest firing sequence increased like the square of the initial marking 

for some net. 

This suggests that the decidability might follow from the fact that the 

length of, say, the shortest killing sequence as a function of the initial 

marking, is a linear function. After some preliminary analys is of this ques

tion it is this author's belief that t his is the case, and that the constant 

of proportionality is bounded by a factor of the order of the product, over 

all transitions, of the number of input arcs of transitions. This is similar 

to the bound indicated for firing sequences used to cover a given marking, 

as shown at the end of Section 3, page 40 . 
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APPENDIX 

Konig's Infinity Lenmia: Let n
1

, n2, n3 ... ad infinitum be a denumerably 

infinite sequence of mutually distinct finite sets of points. Let 

these points be the vertices of a graph G. If G has t he property 

that each point of Tin+l is connected to one point of nn by an edge 

of G, then G possesses a forwards infinite path P1P2P3 ··• ad infinitum 

where, for each n, P is a point of IT. n n 

Proof: A finite path in G will be called an S-path if its successive ver

tices belong to n
1

, n
2

, ···, nk. There are infinitely many S-paths 

in G since every vertex which is not a point of n1 is the second end

point of an S-path. Each S- pat h begins with an edge which connects a 

point P
1 

of n
1 

to a point x
2 

of n2 . Since there are only finitely 

many such edges, there must be one such edge, say P1P2, which occurs 

in infinitely many S-paths. All these S-paths now have as a second 

edge one of the finitely many edges P2x3, where x3 belongs to n3 , 

hence there must exist in n
3 

a point P3 such that infinitely many 

S-paths that start with P
1

P
2 

also contain P2P3 . Continuing in this 

manner we define a point P4 of n
4

, P5 of n5 , etc. This procedure does 

not terminate and generates an infinite path P1P2P3 ··· with the de-

s ired property. 
QED 

(Konig points out that this proof requires the Axiom of Choice.) 

(Translated by the author from pp. 81-82 of [12J.) 
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