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ABSTRACT 

We analyze the computational complexity of some decision problems 
for cormnutative semigroups in terms of time and space on a Turing 
machine. 

The ma i n result we present is that any decision procedure for the 
word problem for cormnutative semigroups requires storage space at least 
proportional to n/logn on a multitape Turing machine. This implies 
that the word problem is polynomial space hard (and in particular that 
it is at least NP-hard). 

We cormnent on the close relation of commutative semigroups to 
vector addition systems and Petri nets. 

We also show that the lower bound of space n/logn can be extended 
to certain other natural algorithmic problems for cormnutative semigroups. 
Finally we show that for several other algorithmic problems for connnuta­
tive semigroups there exist polynomial time algorithms. 
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Introduction 

We consider in this thesis the computational complexity of an 

effectively decidable problem of algebra: the word problem for finitely 

presented commutative semigroups. The main result we present is that 

any decision procedure for this problem requires space at least 

pr0portional ton/log non a multitape Turing machine. 

In section one we define the problem and derive the lower bound. 

In section two we survey the known algorithmic solutions to this 

problem and sketch the close relation of the word problem for 

commutative sernigroups to the reachability problem for vector addition 

systems and Petri nets [25], [17] (a problem of current interest 

in theories about parallel processing). 

In section three we present an algorithm based upon solutions 

by Biryukov [6] and Rackoff [39]. 

In section four we extend the lower bound of space n/log n to 

certain other natural algorithmic problems for commutative semigroups. 

Finally we show that for several algorithmic problems for cormnutative 

semigroups there exist polynomial time algorithms. 
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Section 1 - A Lower Bound on the Word Problem for Connnutative Semigroups 

Definition of Problem 

Recall that a semigroup <S, ·> is a nonempty set S with a binary 

operation· which is associative. We shall say that a set G ~Sis a 

generating set of elements for the semigroup if every elements ES 

can be written as a product of elements in G 

where a. f G. 
1. • 

J 
It is evident that two different products or "words" can represent 

the same element in the semigroup. One can then consider the con­

gruence relation Rover the set of all words of G such that the 

relation R holds between two words of Giff they represent the same 

element of the semigroup. 

One common method of presenting a sernigroup is in terms of a 

set G of generators and a set of "defining relations" for these 

generators, i.e. a set of equations of the form (Ui = Vi}, where 

U. and V. are words over G. From these equations we derive the 
1. 1. . . 

relation R for the semigroup as follows: Let X and Y be words over 

G. We shall say that X ⇒ Y iff there exists words X' and X" (possibly 

empty) and some equation U. = V. such that 
J J 

X = X'U.X' 1 and Y 
J 

or X X'V.X11 and Y 
J 

X'V.X" 
J 

x•u.x11
• 

J 

* We shall say that Xis in the relation R to Y iff X ⇒ Y, i.e. iff 

there exist: a sequence of words x1 , x2 , • • • , X , n ~ 1, where 
n 

X = x1 and Xn = Y, such that for each i, ~i<n, Xi ⇒ Xi+l' 
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The word problem for finitely presented semigroups is to determine 

given an arbitrary finite set of generators, a finite set of defini~g 

relations, and two words, whether these words are in the relation R 

for that presentation. In 1947 Emil Post [37] and also A. Markov {34] 

showed that this problem was recursively unsolvable; in fact they 

showed a stronger result, that is, they proved that there was a fixed 

presentation (fixed set of generators and defining relations) for which 

the word problem was recursively unsolvable. And in fact G.S. Tseiten {51} 

later showed that the following fixed presentation had a recursively 

unsolvable word problem: 

generators - (a,b,c,d,e} 

relations - ac = ca ad= da be= cb bd = db 

eca = ae edb = be abac = abace 

However although the general problem is unsolvable, this does 

not mean that we cannot solve the problem for special cases. In fact 

consider commutative semigroups; i.e. sernigroups in which the generators 

obey the relation ab= ba for all generators a,b. It is known that the 

word problem for finitely presented commutative semigroups is recursively 

solvable [33],[8],[40],[38],[6]. 

Remark: We can if we wish view word problems for semigroups 

simply as a derivation problem for a special type of grannnar or 

rewriting system, that is, one in which the rewriting rules are 

bidirectioncl or synnnetric ("-''), that is, if the grammar includes 

rewriting rule a ➔ ~. it also includes~ ➔ a. A common tenninology 

that is used is to describe these symmetric rewriting systems as Thue 



8 

systems and to describe the more general nonsymmetric systems as semiThue 

systems (Post[37J). We shall say that a semiThue system is commutative 

if it includes the rewriting rules ab ➔ ba; ba ➔ ab for every pair of 

letters a,b. 

Model of Computation 

We shall measure the computational complexity of a problem in 

tenns of the time or space required by a Turing machine to solve the 

problem. The particular variant of the Turing machine model that we 

shall use shall be the multitape 1.nput-Qutput 1uring .!!!achine (IOTM) 

model defined in Stockmeyer [44). 

We informally describe the model as follows. An IOTM M has a 

finite state control and k + 2 tapes (k>O): an input tape, k worktapes, 

and an output tape. The input xis placed between the left and right 

endmarker '$' on the input tape. There are single heads scanning each 

tape; the input head is 2-way, read-only, the worktape heads are 2-way 

read/write, and the output head is right-moving, write-only. Depending 

on the current state of the finite state control and the symbols being 

scanned by the input and worktape heads, M may in one step change state, 

print new symbols where the heads are located on the worktapes and on 

the output tape (but not the input tape) and shift its heads to adjacent 

locations. We assume the output head shifts right one when and only 

when it has just printed a symbol on the output tape. Note that since 

the input he~d is read-only we are not allowed to write new symbols 

on the input tape. 
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We shall say that an IOTM M accepts input x iff given input x M 

eventually halts after some number of steps in unique accepting state 

q. We say that an IO™ M computes the function f(x) iff M given input a 

x eventually halts in state q with f(x) on the output tape. We thus 
a 

may think of IOTM's either as devices for language recognition or as 

devices for function computation. 

The storage space S(x) used by an IOTM on input xis defined to be 

the nwnber of different worktape -cells visited by the heads of M during 

the course of its computation on input x. 

We define S(n) = •max S(x), where jxJ denotes the length of x. 
1x1=n 

Note that with the IOTM model it makes sense to talk about a set 

being accepted or a function being computed in storage space S(n), 

where S(n) grows more slowly than linearly or more slowly than the 

length of the output f(x), because tape squares visited by the input 

tape head and output tape haad are not counted as part of the space 

required by the IOTM. 

Complexity of the Word Problem 

By the complexity of the word problem for finitely presented 

commutative semigroups we speak of the complexity of an acceptance 

or language recognition problem; that is we will denote word problems by 

. strings over some formally defined alphabet and will accept the 

string iff 1he word problem which the string denotes is answered 

affirmatively. We remark now however that t here are really three 

different word problems which we can consider. The first one, 
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which we denote the fixed word equivalence problem, is the question 

whether an arbitrary word Y is equivalent to a fixed word x0 in a 

fixed presentation P0 of a commutative semigroup. The second one, 

which we term the word problem for fixed commutative semigroups, 

is the question whether two arbitrary words X and Y are equivalent in a 

fixed presentation P0• The third one, which we denote the uniform 

word problem, is the question whether two arbitrary words X and Y 

are equivalent in an arbitrary presentation P. 

For problems one and two we define the following notation. 

Let L be the set of generators in presentation P
0

• 

Let * L be the set of all words (strings) over the alphabet E· , 

* i.e. E = r 
xl X I x. EL, l~i:5:n, ~O}. l ... n 1 

An instance of the fixed word equivalence problem will have·the form 

* y~ · where YE L . 

An instance of the word problem for a fixed commutative semigroup 
~ 

will have the form X ~ Y, where X,Y EL~,~~ L, and 4 is a special 

delimiter symbol. 

For the uniform word problem however there is no bound on the 

size or cardinality of the set of generators (since the presentation P 

varies at each instant). Thus for this problem we shall formally 

* represent a generator by a word in (0,1,2} of the form 2·x, where 

x E (0,1}*. A word X over the generators is represented in :0,1,2}* 

by a concatenation of words representing generators. A relation R 

* will be represented by X 3 Y, where X,Y E (0,1,2} are words over 

generators. An instance of the uniform word problem will be a word 
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* in ~0,1,2,3,4} of the form 

X 4 Y 4 g
1 82 . . . gm 4 R1 4 R2 4 ... 

* where g. E 2·(0,1} 
' 

l:S:i~, represent generators, 
1. 

* * ~gl' ... 
' gm) ' 

and R. E :0,1,2,3} 
' 

l~j 91, 
J 

defining relation for the generators g .• 
1. 

is a 

4 R. 
n 

X and Y are words in 

word representing a 

* Let U.W. be the set of words~ '.0,1,2,3,4} representing instances 

of the uniform word problem for finitely presented commutative 

semigroups which are given an affirmative answer. 

These (or similar) conventions are necessary, since a fixed Turing 

machine can recognize words only over a finite alphabet. 

By results of Biryukov [6], Taiclin [481, Ginsburg and Spanier [16], 

and Fischer, Meyer, and Rosenberg [13] one can show that either the fixed 

word equivalence problem or the word problem for fixed commutative 

. b 1 d . 1 . T . h' 1. semigroups can e so ve 1.n rea time on a uring mac 1.ne. (We will 

discuss these results in more detail in section two and three.) We thus 

see that the only problem which has a nontrivial lower bound on its com­

plexity is the uniform problem. We now address ourselves to this 

problem. 

Lower Bound 

The outline of our lower bound proof is based on the efficient 

reducibility technique employed in Meyer [36] and Stockrneyer [44} to 

1. A Turing machine Mis termed real time if M moves its input head right 
at each step and as soon as it finishes reading the input (i.e. inn 
steps) it halts and accepts or rejects the input. 
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prove lower bounds, principally for classes of logical theories. Let 

* 1: A k Ll and B ~ L
2 

for some finite alphabets L
1

, E2• Roughly, a set A 

is efficiently reducible to a set B iff there is an "efficiently 

computable" function f such that a question of the form "Is x in A?" 

has the same answer as the question "Is f(x) in B?". The particular 

notion of efficient reducibility that we use is log-space reducibil­

We say that A ~ B via f iff f is a function f: LJl~ ➔ E
2
* such 

log ity. 
J. 

that x EA iff f(x) EB for all x EL~ and f is computable using 

storage space S(n) = log non a Turing machine. We say that a function 

f: L~ ➔ L; is length L(n) bounded iff !f(x)I ~ L(n) for all x such 

that Ix I= n, where jx I denotes the length of the word x (Stockmeyer [44)). 

Let SPACE(S(n)) denote the collection of all sets A k E~ which 

can be recognized in storage space S(n) on a (deterministic) Turing 

machine. 

Lemma: Suppose for all sets A E SPACE(n), that A ~ B by a log 

length cAnlogn bounded f, where cA is a constant depending on A. 

Then B requires space at least proportional to n/logn on a Turing 

machine. 

Proo f : By the space hierarchy theorem (Theorem 10.9 of 

Hopcroft and Ullman (23]) find a storage bound s
1

(n) ~ log n and a 

set A such t hat A E SPACE(n), but A 'f_ SPACE(S1(n)). By assumption 

A ...; B by a length cnlogn bounded f, for some constant c. We 
log 

claim that •\ ( fn/clognl) is a lower bound on the space complexity 

of B. 
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For suppose B E SPACE(S
1 

( rn/clog;1) ). Tne:1 it is easy to see 

that A E SPACE(S1(n) + logn) (cf. Lemma 3.6 of Stockmeyer [44)). 

Therefore A E SPACE(2•S
1

(n)) = SPACE(S
1
(n)). Co~tradiction. 

Hence B r/:. SPACE(S
1 

( fn/clogn])). Note that 3 t/. SPACE(S
2 

(n)) for 

any function s2 such that s2(n) = o(n/logn), since by the space 

hierarchy theorem, we can choose any tape constructable s
1

(n) ~ n 

such that lim inf s
1

(n) / n = O. 
n--+o:> 

* Theorem 1: Let As L be any set of words (over a finite alphabet 

L) which can be recognized in storage space s
1

(n) =non a (deterministic) 

Turing machine. Then A 
1
< U.W. via some function f such that 
og 

lf(x) I~ cAlxllog2 jxj for some constant cA > 0 and all x EL*, (Ix j·· > 0). 

Corollary: The uniform word problem for finitely presented 

cormnutative semigroups requires space at least proportional to n/logn 

on a multitape Turing machine. 

Proof of Corollary: The corollary follows directly from the Lemma 

and Theorem 1. 

For purposes of the proof of the Theorem we consider counter 

(or register) machines [23]. A counter machine consists of a finite 

state control and some number k (k ~ 1) of counters. A counter machine 

may store a number in each of its counters and may test whether that 

number is zero or nonzero. One counter is designated an input counter, 

in which a nonnegative integer input is initially placed; the other 

counters initially contain zero. Depending on the state and which 

counters are zero and nonzero, a counter machine may, in a single step, 

change state and increment or decrement each of the counters by one. 
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We assume without loss of generality that the counters need never 

decrement below zero [13]. Let i be a nonnegative integer. The 

space S'(i) used by a counter machine on input i is defined to be 

the maximum value stored in any of the counters during the course 

of a computation. 

let E = :s1 , ..• ,sk} be an arbitr ar y alphabet. 

Let w = s. s 
10 11 

Let µ(w) =j&O 

k-adic notation. 

s. 
1 

t 
• kj . 
1. , i.e. 

J 
µ(w) is the number which w denotes in 

This mappingµ establishes a one- one correspondence between 

strings over~ and nonegative integers (with~, the empty string, 

corresponding to zero). 

A counter machine will be said to use space S, where Sis a 

function from nonnegative integers to nonnegative integers, if for 

all n, S(n) ~ the space used on input i for any integer i~ such that 
-1 . 

Iµ (i) I = n; that is, S(n) ~ _
1
max S' (i). 

jµ Ci)I =n 

* For A~~ define µ(A)= w~Aµ(w). 

Some minor modifications to a theorem in Fischer, Meyer, and 

Rosenberg [13] yield the following result: Let S(n) ~ n. A set A 

of words is acceptable in space S(n) on a Tur ing machine iff the 

kS{n) set µ(A) is acceptable in space on a counter machine, for some 

constant k ~- 1. In particular, the sets A acceptable in space 

S(n) =non a Turing machine correspond precisely to the sets ~t(A) 

acceptable in space S(n) = kn on a counter machine. 
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Thus to prove Theorem one it suffices to prove 

Lemma: Let A \;; ' * ,s
1
,s2} be a language. 

in space S(n) = kn on a counter machine for 

A 
1
~ U.W. by a length cAnlogn bounded f. 
og 

If µ(A) is recognizable 

some constant k, then 

Proof of Lemma: Let x = x •••x E's sf. Let M be a counter 
1 n · l' 2 

machine which operates in space S(n) = kn and which accepts µ (A). For 

expository purposes we assume that M has only two counters. The 

construction for a larger number of counters is essentially the same 

as that given below for M's second counter. Assume kn~ 2n+l, n ~ 1. 

To prove the lemma we now describe how to construct from x a 

* word w E :0,1,2,3,4} which is an instance of the uniform word 
X 

problem such that µ(x) is accepted by M iff w 
X 

E u.w. Moreover 

the construction of w will be shown to require only space proportional 
X 

to logjxj. Of course we shall describe the instance of the uniform 

word problem in standard language, leaving implicit the coding of 

g~nerators, rel~tions; etc. into _the alphabet [ 0,I,2,3,4}. 

We now construct a commutative semigroup presentation which 

(informally speaking) simulates the transition rules of M. 

Let m + 1 be the number of states of the counter machine. The 

presen tation contains generators q
0

, q
1

, ... ,qm (for the s t a t es of 

the counter machine), generators a.,b., I~i~n+2 (for counter one), 
1 l. . 

generators c., d, l~j~n+l (for counter two), 4(m+l) auxiliary 
J 

generat ors, and a generator Q. 
a 
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Consider the following relations. 

Counter 1: 
(Input Counter) 

Counter 2: 

a a 
n+l n+l 

-a 
2 

.. a n+2 

C C • • • C 
1 1 1 
~ 

k 

c2c2•••c2 

---v-
k 

CC •••c 
n n n 

~ 
k 

b b 
n+l n+l 

- c2 

- C 3 

Call these relations counter representation rules. 

-b 
n+2 

d d . . f 2n+l . ' : Consi er counter one: a wor cons1st1ng o - ta sand t 
1 

b
1

1s, 0 ~ t ~ 2n+l, will be said to represent the number t. 

Consider counter two: a word consisting of kn - j c
1

•s and j 

d's, 0 · ~ j ~ kn, represents the number j. 

c ···c by the counter y1 
kn 

representation rules. 

Consider the state transition function 6 of M. That is, if 
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o(qi,u1 ,u2) = (qj,v1 ,v2) where ui E (O,+} and vi E ·:+1,0,-11 then when 

Mis in state q_ with counter one in zero-nonzero condition u and 
1 1 

counter two in zero-nonzero condition u2 , H changes state to state q. 
J 

and performs action v
1 

on counter one and action v
2 

on counter two. 

For each state transition rule of M we include two relations in the 

presentation. For example, if o(q.,0,0) = (q.,+1,+1) include the 
1 J 

relations 

a q c ... a gc 
n+2 i n+l n+2 n+l 

algcl ... blq/ 

where g is an unique auxiliary 
generator which appears only 
in these relations. 

= (q.,+l,+l) then include the relations 
J 

blqid ... b
1
hd where h is an unique auxiliary 

generator . 
a 1hc1 ... blqjd 

If o(q.,+,+) = (q.,-1,-1) include 
1 J 

the relations 

blqid .. b
1
pd where p is 

generator. 
an unique auxiliary 

b1pd - a 1qjcl 

In general, for o(qi,u1 ,u2) = (qj,v
1

,v2) include the relations 

X1q
1
.Y1 ... X g Y where if u

1 
= 0, then X =a 

1 qi,u1 ,u2 1 1 n+2 
ul = +, Xl=bl 

X g y2 ... X3qj y3 u2 = o, Yl=cn+l 2 qi,ul,u2 
u2 = +, y =d 

1 
if vl = +, then X2=al, X =b 

3 1 
vl = X2=bl, X =a 

3 1 
vl = o, X2=Xl, X =X 

3 1 
if v2 = +, then Y2=cl' y =d 

3 
v2 = Y2=d, Y =c 

3 1 
v2 = o, Y2=Yl, y =Y 

3 1 
and g is an unique auxiliary generator. 

qi,ul,u2 



18 

We call these relations state rules. 

The dyadi~ integer x = x ···x will be represented in counter one 
1 n 

by the word r0 = D(x1)•D(x2)···D(xn), 

where D(x1 ) = (aibi for xi= s
1 

{_bibi for xi= s
2

• 

By convention the counter machine starts in state q
0 

with counter 

two initially zero. Asstnne without loss of generality that the counter 

machine before accepting empties · its counters and ha·lts in an unique 

accepting state q. 
a 

We add the additional state rule an+2qacn+l - Qa, where Q
3 

is a 

new symbol. 

Proposition 1: Given inputµ(x) the counter machine halts in unique 

accepting state q iff the words I q0c 
1 

and Q are equal in the 
a x n+ a 

semigroup presented above. 

Proof: n Define·an instantaneous description (I.D.) of a k space 

bounded counter machine to be the state the counter machine is in 

and the number (between O and 2n+l) that is in counter one and the 

n 
number (between O and k) that is stored in counter two. We shall 

say for two i.d. 's · I,.T that J is the next i.d. of I. if£ instantaneous 

description J follows in one move from instantaneous description I. 

Let 4a in X denote the ntnnber of occurrences of the generator 

a in the word X. We shall drop the phrase "in X" if the word Xis 

understood from the context. 

Define an i.d. word as follows: 
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Let Q' = :state symbols qi} U :auxiliary generators}. 

A word is an i.d. word iff it contains exactly one letter q' E 

,, 
and -,fa 1 + 2· #a2 + + 2n+l.ifa + ~b + 

n+2 7T 1 
2 ,, • #b2 + •.• + 2n+l. #lJ 

1T n+2 

" k· #c n = kn and :re 1 + + + k • #cn+l + #d 2 

and the only letters the word contains are a member of the above 

sets (i.e. Q' U :ai,bi,ci,d}). 

Q' 

= 

We shall call two i.d. words X and Y congruent if X and Y contain 

the sane letter q' E ' d .lli... 2 .lli... 2n+l .lli... • Q an -iru
1 

+ ·.-;ru 2 + ••• + · irun+2 1.n X 

2n+l 

+ 2n+l. #b · 
2 

in Y and #d in X = #d in Y. Note that 
n+ : 

* if X and Y are i.d. words and X - Y by use of only the commutativity 

and counter representation relations then X and Y are congruent i.d. 

words, and conversely. Note also that all the rules, except for the 

one involving the terminal symbol Qa' preserve the property of a word 

being an i.d. word. 

Now, with every i.d. J of the counter machine we associate an 

t m r p 
expanded i.d. word w

1 
= qa

1
b

1
c

1
d , where q is the state ·o f the counter 

machine, mis the number stored in counter one, pis the number stored 

in counter two, t equals 2n+l - m, and r equals kn - p. 

Observe that IxqOcn+l corresponds to the initial i.d. on input µ(x). 

Let T be the semigroup presentation given above. Note that we 

can consider T to be a commutative Thue system. Consider the com­

mutative semiThue system S which consists of T's commutative and 

counter rep1~sentation rules (both directions"-") and the forward direc-

tional state rules ( 11➔11 ) of T. Let S be the derives relat ion for the 

commutative semiThue system Sand let; be its reflexive transitive s 
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* completion. Define T and T similarly for T. 

Lemma 1: If J' is the next Ld . of J, then WJ i WJ 1 • 

Proof: This should be clear from the construction. For example 

if J = (q,9,11) and 6(q,+,+) = (q' ,+,+) 

2n+l_9 9 kn -·11 11 
w1 = qa1 b1c

1 
d 

* 2n+l_9 9 ·11 kn-11 by the commutativity relations 
WJ S a 1 b1qd c 1 

2n+l_9 9 11 kn-11 S a 1 b1hd c 1 state rule 

* 9 2n+l_9 kn-11 11 
8 b 1

a1 hc
1 

d commutativity 

n+l n 
b9 2 -lOb 'd k -12dll state rule S lal lq cl 

* 2n+l_lO 10 kn-12 12 
S q'al bl cl d commutativity 

W k h . f fu = kn or .JJ;b = 2n+l e remar tat i r.u r 
1 then we cannot carry out 

this derivation; but then of course M by hypothesis does not increase coun-

2n+l h . . kn ter one when it contains or counter two wen it contains . 

* Lemma 2: Let X and Y be two i.d. words. Asst.nne X - Y by use of only 

the counter representation and commutativity relations. Asswne 

XS z1 by a state rule and Y 8 z2 by a state rule. Then the state 
J. 

rule used is the same and z
1 
~ z2 by use of only the counter representation 

and cormnutativity relations. 

Proof: Since X and Y are congruent i.d. words, X and Y must contain 

the same state or auxiliary generator symbol q. 

Case 1: If q is an auxiliary generator symbol, then the state 
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rule applicable at both X and Y must have been the same one, since ,'.n 

auxiliary generator symbol appears on the left hand side of only one 

of the state relations. 

A state rule of this case replaces an auxiliary generator symbol 

by a state symbol and changes c
1 

toad (or vice versa) and b
1 

to an 

a 1 (or vice versa). Hence i.d. words z
1 

and z
2 have the same q symbol, 

1i, • 2 1u • z d JLb + + 2n+ 1. 11, 
~ in 1 =~in 2 , an T 

1 
••• ~n+2 

in z2 . Hence z
1 

and 22 are congruent i.d. words. 

Case 2: Let q be a state symbol. Since X and Y are congruent i.d. 

words, 41:ci in X = :/1,d in Y and J/,1:, + . 1 + 2n+l.dlb in X 
' n+2 

n+l 
= #b 1 + .•• + 2 • :/lb n+2 in Y. 

By definition of i.d. words the presence of a c 
1 

and d, (and also 
n+ 

an+2 and b
1

) is mutually exclusive in an i.d. word. But there is only 

one state rule applicable for each q•(cn+l or d)·(an+2 or b
1

) combina­

tion. Hence the state rule applicable at congruent i.d. words X and Y 

must have been the . same one . 

If the state rule used was a q c ➔ Q, then necessarily 
n+2 a n+l a 

J( 

X Y = an+2qacn+l and obviously Qa ~ Qa. 

Otherwise, the state rule used simply replaced a state symbol by an 

auxiliary generator symbol. Since the same change is made in X and Y, 

z
1 

and 2
2 

are congruent i.d. words. 

From Lemmas 1 and 2 and an induction on the number of state rules 

used in a de.·ivation follows: 

Lemma 3: Given input µ 1x), the counter machine halts in unique 



accepting 

system S. 

state q iff Iq
0

c 
1 a n+ 

22 

Q in the commutative serniThue 
a 

The corrnnutative semiThue system S has a Church-Rosser-like 

property: 

Lemma 4: If Xis an i.d. word and Xi Y
1 

and Xi Y2 then there exists 

* * z such that Y
1 

S Zand Y
2 8 Z. 

Proof: Consider the following diagram: 

derivation 
for Y

1 

Figure 1 

--)-.,- y2 

~ 
derivation for Y

2 

Consider the first time in which a state rule is applied in the 

derivation for Y
1 

and the first time in which a state rule is applied 

in the derivation for Y
2

• (If there are no state rules used in either 

derivation or only on one then the proof is obvious.) 



I 

I 
I 
' 

I 
I 
I 

i.e.: 

state 
rule 

X * 

* 

C 

* 
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state 
rule 

Figure 2 

D 

* But then according to lennna 2, C - D by use of only the commutativ-

ity and the counter representation relations. By continuing in this 

manner (that i s, by induction on the sum of the number of state rules 

* used in the derivation for Y
1 

and Y
2

) we get that either Y ⇒ Y or 
1 S 2 

* * * Y2 S Y
1 

(or both). Hence there exists Z such that Y1 S Zand Y2 S Z. 

* * Lemma 5 : For every i. d. word W, w ⇒ Qa iff W 8 Qa• T 

f l. * * Proo : It is obvious that if w ⇒ Q , then W ::, Qa, since every rule s a T 

of Sis also a rule of T. 

1. Parts o f the proof of this lerrnna are bas ed upon the argument 
originally used by Post in [37]. 
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* * We now show that if WT Qa then W S Qa. The proof i s by contra-

diction . We assume that there exists an i.d . word W for * which W ⇒ Q, 
T a 

* * but it is false that W S Q • Because w ¥ Qa, there must be a derivation a 

w = WO T wl T · · · T wn = Qa · 

* Because it is false that w0 8 Qa, there must be an i < n such that 

* * it is f alse that Wi 8 Qa, but Wi+l S Qa• Let R be the r ule of T used for 

* w ~ W . R is not a rule of S, since otherwise W
1
. ⇒8 Qa. Thus the 

i T i +l 

-1 1 -1 
inverse R is a rule of S. • By application of R we have that 

* Wi+l S Wi. Further, because Wi+l S Qa• there exists W such that 

* such that w. I 1.+ 
⇒ w ⇒ s s 0 • 

·a' for if this was not true, Wi+l = Q ; but then 
a 

Qa ⇒ w.' wh ich is impossible since no rule of Sis applicable to Q . s l. a 

From Wi+l s wi and Wt+l s w, we get by lemma 4 that there exists 

* * * W' such t hat W. ⇒ W' and WSW'. But W S Qa also. Hence by another 
1. s 

"I: application of lemma 4 we get that there exists W" such that W' ⇒ W" and s 
* Q =- W" . But then W" mus t equal Q since the only W" such that s , 

a a 
°1< * * Qa W" is Q • Hence w. ⇒ w' ⇒ W" = Qa' contradicting our asswnption. s a 1. s s 

From Lemmas 3 and 5 Proposition 1 follows. 

* Proposit i on 2~ Let x E ( s 1 ,s2} • The presentation constructed above 

for x i s l og-space computable by an IOTM. 

Proof : We seek to construct an IOTM which given x will print out the 

I . The inve~se of a rule A ➔ Bis defined to be B ➔ A. 
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presentation on the output tape using storage space S(n) = log non 

the worktapes. 

Let x = x
1 

.•• x • n· 

It is clear that the counter representation relations 

-a 
3 

an+lan+l .... an+2 

may be computed from x using storage space S(n) = log n: a portion 

of the worktape for recording the subscript number of a generator 

is sufficient. 

algcl bq.d 
J 

There will be a fixed number of tracks on the worktape to 

record a
0

+2 , cn+l' a1 , c
1

, b1 , d's subscript number. The IOTM 

will have the information of the counter machine' s state table 

within its state table. The IOTM then simply cycles through all 

state and counter position possibilities. The IOTM will have one 

track to record where we are in the subscripting of the new generators. 

The word I may be constructed in log space, since the construe-

tion is f°.b. if x. = sl 1 1 1 

b.b. if x. s2 ' 
l:S:i:S:n 

i. 1 1 

and this can be done in log space. Thus the two words can be printed 

in log space. It is also clear that the IOTM can print all the 
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generators in log space (since it kept track of the highest subscript 

number used). a 
Note that the presentation constructed used at most c

1
n generators 

and c
1

n relations for some constant c
1 

(depending on the machine). 

Each relation was of fixed size. The word I was of length proportional 

ton. Hence, since each generator may need log n symbols to represent 

it, we have 

Proposition 3: The length of the presentation constructed above is 

of length less than or equal to cnlogn for some constant c • . 

This completes the proof of Theorem 1. 

An alternative proof of the theorem 

A.R. Meyer has observed that it is possible to prove our lower 

bound of space n/logn directly in terms of linear space-bounded 

Turing machines. We sketch now this proof. 

* Let x = x
1 

... xn be an input word in (0,1} and let M be a 

linear space-bounded Turing machine with state transition function o. 
I 

We again construct a presentation which (informally speaking) 

simulat es the state transition function of M. The presentation 

i construc ted uses generators a . , h., lSi:;;n, and generators q., lSiSn 
1. 1. J ' 

OSjQTI, where m + 1 is the number of states of the Turing machine. 

where f(x.) =[ a. l. 1. 

b. 
1. 

f(x) 

X = 0 
i 

n 

x. = 1, l:5:iSn. 
1. 
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Let o(qj,y) = (qk,D,z), where y E : 0,1} , DE :L,R}, and z E :0,1}, 

denote that if the Turing machine is in state q. reading symbol y, 
J 

then it changes state to state qk, prints new symbol z, and moves 

the head in direction Done cell (L denotes left, R denotes right). 

For each state transition rule of }1 we construct n - 1 relations 

in the presentation. 

then 

0 or 1 

we include for each i, l<iSn, the relations 

i i-1 
,if 0 a.q. -

8 iqk z = 
1. J 

i i-i 
'if 1. a.q. - biqk z = 

1. J 

If o(q.,0) = (qk,R,z), where z = 0 or 1, we include for l~i<n: 
J 

i i+l 
if 0 a.q. .. 8 iqk z = 

1. J 
i b i+l • if z = 1. 

aiqj .. iqk 

If o(q.,l) = (qk,L,z), then for l<i.Sn: 
J 

i i-1 
if 0 biqj .. aiqk ' 

z = 

i i-1 
if b.q. .. biqk ' 

z = 1. 
1. J 

If 5(q.,1) = (qk,R,z), then for lSi<n: 
J 

i i+l if 0 b.q. .. aiqk z = 
1. J 

i b i+l if z b.q. .. iqk ' 
= 1. 

1. J 

Assume without loss of generality that M halts in unique accepting 
I 

state q, scanning its leftmost cell, with the tape containing all zeros. 
a 

Then the two words we test for equality in the semigroup are I and 

1 
q ala2 • . . .. • a a 

The remaining details of the proof are analagous to the one 
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presented above. 

Remark on Alternate Notation 

It should be noted that the definition used for the size of the 

word problem used an unary-like notation; thar. is, one wrote "a·a• ••• a" 
~ 

rather than the exponent notation "a
2

" where z is a binary (or some 

other radix) notation fork. 

Proposition: Consider uniform word probleras for connnutative semigroups. 

One can translate efficiently ( that is, in log space) a word problem 

of size n in the exponent notation to an equivalent one of size at most 

Snlogn in the unary-like notation. 

Proof: Suppose for example that in the exponent notation 

we had the relation 

= a*z b*z c*z where a,b,c are generators, 
j2 k2 t2' 

z. (the exponent) is a binary number of length i, and* is a special 
1 

delimiter symbol. 

Let j = max(j
1
,j 2); k = max(k

1
,k2); t = rnax(t

1
,t2). 

In the unary-like notation we would include the relations 

aj+laj+l = aj+2 
/ 

a a = a a a - a j-2 j - 2 j-1 j+k-2 j+k-2 - j+k-1 
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and t h e relation 

~ ~ ~ 
jl letters k

1 
letters t

1 
letters 

= 
~ ~ ·- ~ -- (1) 

j
2 

letters k
2 

letters t
2 

letters 

where the letters in (1) are determined by a method analogous to 

the one used in our lower bound proof, e.g. a*z. , where z. 
J1 J1 

is transformed to f (x. ) • • • f (x
1
), 

J1 ~ 

= 

= 1 

= 1 

X •• ,,. • X 
J 1 1 

and i = 

and i .L. 
-t-

1 

1 
j 1 letters 

where f(xi) -C:i-l :: 
i(empty string) :x: = o. 

i 

Thus instead of a relation in the exponent notation of length 

jl + k
1 

+ t
1 

+ j 2 + k
2 

+ t 2 we would have relations of total length 

less than or equal to log(j + k + t)(j
1 

+ k
1 

+ t
1 

+ j 2 + k
2 

+ t 2) 

+ 4(j+k+t)log(j+k+t) in the unary notation. 

In general, let S be the sum of the lengths of the binary exponents 

used in all the relations in the exponent notation. Let R be the 

total length of all the relations in the exponent notation. Then in 

the corresponding unary-like notation the total length of the relations 

would be at most 5logS·R. 

A similar method works for the two input words. Hence we can 

construct an , equivalent word problem of size at most 5nlogn in the 

unary-like notatibn. □ 

We remark that we can improve the lower bound for the uniform 

word probler. by a log n f ac tor if we allow presentations in exponent 

notation . In fact with this notation one can show that the uniform 
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word problem for commutative semigroups with eight generators requires 

at least linear space on a Turing machine. (This follows directly by 

the counter machine proof.) Indeed the number of generators needed 

appears to be the major distinction between the two notations. 

We remark also that if the fixed word equivalence problem or the 

word problem for fixed commutative semigroups uses exponent notation, 

then these problems can be solved in linear time on a Turing machine. 

(These latter results will be discussed in more detail at the end of 

section three.) 

Remark: If one uses a double exponential notation, that is, if one 

2z 
w:rites a 1 , where z is a number represented in binary (so that one can. 

2n 
express numbers of size 2 with a length n formula), then one can show 

that an exponential space lower bound holds for the uniform problem (in 

fact for corrnnutative semigroups with only 8 generators). Moreover an 

analysis of the Emelichev-Hermann solution shows that one also can 

obtain an exponential space upper bound for the problem with this notation 

(in fact for arbitrary number of generators). (These latter results 

will be discussed in more detail in section two.) 
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Section 2 - Commutative Semigroups and Vector Addition Systems 

As mentioned earlier, it is known that the word problem for finitely 

presented commutative semigroups is solvable; in fact there are at least 

five different solutions cited in the literature: Malcev [33], Emelichev [8], 

Tseiten [40), Rabin [38), and Biryukov [6]. We have however at present 

been unable to obtain two of these solutions, Tseiten's and Rabin's. 

We now briefly note the remaining three. 

1. Malcev showed that finitely presented commutative semigroups are 

residually finite and hence they have a solvable word problem. [A 

semigroup Sis residually finite iff for any two elements a,b ES, a i b, 

there exists a homomorphism h of S onto a finite semigroup such that 

h(a) f h(b).J Basically what this says is the following: we know that 

we can recursively enumerate all pairs of equivalent words. The residual 

finiteness property is then used to recursively enumerate pairs of inequiva­

lent words. No bound on complexity follows from this proof. 

2. Biryukov has shown that the set of words equivalent to a fixed 

word in a commutative semigroup is an effectively constructable semi­

linear set. From this construction the solvability of the word problem 

follows easily . However the procedure given by Biryukov for constructing 
I 

this set relies for termination upon the theorem that any sequence of 

incomparable elements in Nk (partially ordered in the usual way) is 

finite. One ·~an show that, in terms of the size of the initial vector, 

the maximum difference between two elements in the sequence , and the 

number of dimensions, that a lower bound on the possible length of an 
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arbitrary incomparable sequence is the nonprimitive recursive function 

Ackermann's function [18). Thus unless one can give a new proof for 

termination for Biryukov's procedure, we are not able to derive a good 

b d f 
. 1. upper oun rom it. 

3. We have recently obtained a copy of Emelichev's solution. 

Emelichev points out that the word problem for cormnutative semigroups 

is closely related to a subcase of the membership problem for a polynomial 

in a finitely generated polynomial ideal. From a paper by Hermann[22] 

and also of Seidenberg [42] on the 1atter subject and a few obvious 

simplifications we can show that an exponential space upper bound holds 

for the uniform word problem for commutative semigroups. (This solution 

will be presented in more detail in a forthcoming paper.) 

Vector Addition Systems 

We discuss now the close relation of the word problem for commutative 

semigroups to the reachability problem for vector addition systems, 2• an 

open problem in the theory of computation of several years standing [25]. 

Definition: Let N denote the nonnegative integers. Let Z denote the 

integers. A vector addition system Vis a pair <I,P> where I, the initial 

vector, is a vector in Nk, and P, the set of periods, is a finite set of 

vectors in Zk. 

1. I should ·tote that the solvability of the equivalence, inclusion, and 
many othet problems also follows from this construction (ref. section 
4). 

2. This relation was apparently first observed by Michael Rabin [25]. 
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The reachability set R(V) for the vector addition system Vis the 

set of all vectors of the form I+ p1 + •.• + pn such that ViS:n (n~O), 

p. E P and I +.t1p. ~ O. 
l. J= J . 

The uniform reachability problem is: given a vector addition 

system V and vector J, is J E R(V)? 

We show that the word problem for commutative serniThue systems is 

recursively equivalent to the reachability problem. 

Consider a conunutative serniThue system S. Note that in general a 

rule of S might have the same letters on both sides, for example a ➔ ab. 

We now show: 

Lenuna: For any commutative semiThue system S over the alphabet 

(a1 , .•• , an) we can find a commutative semiThue system S' over the 

2n letters ~a
1

, a'} such that 
n 

* -1: 1) X ⇒ Yin S iff X ⇒ Yin S' and 

2) S' does not have the same letter on both sides in 

any of its relations. 

Proof: For every relation A ➔ Bin S we form the relation A ➔ B' in 

S' , where B' is the result of substituting a'. for each a. in B. 
l. l. 

In addition we include in S' the relation a.~ a'. for each i, 
l. l. 

1 S: i S: n. 

It should be clear that the S' constructed satisfies conditions 

1) and 2). 

For a w0rd X over the alphabet (a
1

, ••. , an} define 

be the number of occurrences of the letter a . in X. 
l. 

"#a. 
l. 

in X" to 
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Let Snow satisfy condition 2 of the lemma above. With each 

relation r: A ➔ Bin S we associate the integer vector pr= (x
1

, ... , 
[(#aiinA), if a. occurs in A 

1 

where x. = #a. in B, if a. occurs in B 
1 1. 1 

o . , otherwise. 

With a word X over the alphabet (a
1

, ... , a} we associate the non­
n 

negative vector vX = (x1 , ••• , xn), where xi= #ai in X. With a 

commutattve semiThue system S we associate the set of periods P
8

, 

where P = s Up , R the set of relations in S. . r 
rER 

Then 

Lemma: For all words X, Y and commutative semiThue systems S 

* X ⇒ Yin S if£ vy ER(< vX, P8 >). 

By reversing the above correspondence we can for each vector 

addition system V =<I, P > construct a commutative semiThue system 

SV and a word XI such that J ER(< I, P >) iff XI: x
1 

in SV. 

We thus see that the word problem for commutative semiThue 

systems is recursively solvable iff the reachability problem for 

vector addition systems is recursively solvable. Clearly then the 

word problem for commutative semigroups is simply the subcase in which 

all the rewriting rules are bidirectional or symmetric. 

Remark: An alternate notational device often used instead of vector 

addition s ys t ems is Petri nets. For a definition of this notation 

see [ 17] , ( 18] , or [ 26]. 

X ), 
n 
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Section 3 - Semilinearity and Commutative Semigroups 

In this section we shall present an algotithm for the construction 

of the semilinear set of equivalent words to a given word in a cormnuta­

tive semigroup. The algorithm presented here is based in part upon the 

solution by Biryukov and in part upon a slightly different solution by 

Rackoff [39]. 

Let I E Nk, p ~ Nk, P finite. Define a linear set L(I;P) to be the 

set of all vectors of the form I + nlPl + ... + n p , n. EN, P. E P, mm 1. 1. 

1 ~ i ~ m. If p = ¢, let 
✓ 

L(I;P) = (I}. Note that a linear set can be 

considered as a vector addition system in which the periods are all 

nonnegative. Define a semilinear set S to be a finite union of linear 

sets all of the same dimension; i.e. S = L
1 

U L2 U ••. U Lt, where Li 

is a linear set. Let J = {J1 , •.• , Jr}' where Ji E Nk. Define L(J;P) 

to be L(J1 ;P) U L(J2 ;P) U ••• U L(Jr;P).· 

Let A= (a1, ••• , ak) and B = (b1, ••• , bk) be vectors in Nk. 

k Define the relation 11
~

11 between two vectors A,B EN: A~ B iff 

a. ~ b. for each i, 1 ~ i ~ k. Define A< B iff A~ Band A/ B. 
1. 1. 

We shall say that two vectors A,B E Nk are incomparable if neither 

A~ B holds nor A~ B holds. The following is a well-known result (17]: 

Any set of mutually incomparable elements in Nk is finite. Let T 

be a subset of Nk; define min T to be the set of minimal elements of T 

(with respec: to the relation '!<n). Note that min T, being a set of 

incomparable vectors, is always finite. 
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Note that we can identify words given over k generators in a 

connnutative semigroup with k-tuples of nonnegative integers. We shall 

identify two words X and Y which-correspond to the same k-tuple; we 

shall say that X = Y for two words X,Y iff X equals Y except for a 

possible reordering of the letters. Because of this identification 

between words and k-tuples of nonnegative integers, we shall freely 

switch between the notation and operations of one and the other whenever 

it is convenient to do so. 

Theorem 1: The set of words equivalent to any given word in a finitely 

d • i i il. 1. presente conunutative sem group s a sem inear set. 

Nonconstructive Proof: Let C be the given word. 

Definition: Let A and B be words. We shall say that Bis a unit 

for A iff AB is equivalent to A in the connnutative semigroup. 

Let E = min(words equivalent to C}. 

Let U = min(words that are units for C}. 

Claim: S = L(E;U) is the set of all words equivalent to C. 

Proof: 1. It is clear that if YES then Y is equivalent to C. 

2. Consider an arbitrary word Y equivalent to C. If Y is 

a minimal such word then it is included in E. If it is not, then there 

exists e . EE such that Y = e.Y'. Since the quotient
2

• of two equivalent 
i i 

words is a unit (for those words), Y' is a unit. If Y' is a minimal 

unit for C, then Y1 EU. Otherwise there exists D. EU such that 
i 

1. Since every finitely generated connnutative semigroup is finitely 
presented [40], [14], this result in fact holds for any finitely 
generated connnutative semigroup. 

2. Z is the quotient of words X and Y iff X - YZ. 
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Y' = D.Y", and (since the quotient of two units is obviously a unit) 
l. 

Y" is a unit. Continuing in this manner we see that Y' is expressible 

by a product of units in U. 

Constructive Proof: Let K(G,M) ·denote the commutative semigroup given 

by the generators G = (a
1

, a} and the defining relations M = 
n 

f Aj = B j I j = 1, ••• , m}. 

We construct two sequences E0 , E
1

, ••• , ••• and u
0

, u
1

, ••• , 

of finite sets of nonempty words. Here the set E. contains certain 
1. 

words equal in K(G,M) to c, while the set u
1 

contains some of the units 

of C. In order to construct the sequences we set 

2) Assume we have already constructed E., U .• 
1. 1. 

Let ct= 'max r IA.j IB.j}, where for a word W, lw I 
l~j ~ . J , J 

denotes the length of the word W. 

Assume u = ro 
i · 1' 

We will let E! denote the set consisting of all those words D 
1. 

such that 

- PA. 
J 

= PB. in the semigroup 
J 

- D, for some Ct E E1 , some word P, 

some integers r , 0 ~ rt ~ ex, 1 ~ t ~ k, and some equation (A. = B.) E M. 
t J J 

We let U! denote the set of words obtained by adding all possible 
l. 

quotients of pairs of words of (E. U E~) to U .• Denote the closure of 
1. 1. 1. 

U' with resp,-ct to quotient s by U'.'. Note that U" is finite (assuming 
i 1. i 

E. and U. are). 
1. l. 
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Define E ~ min(E. U E!) and 
i+l i i 

Ui+l ~ min Ui. 
The .algorithm terminates when we find an i + 1 such that E. 

l. 

Proposition 1: The algorithm given above terminates. 

Proof: The sets E. have the following two properties by construction: 
l. 

Property One: 

Property Two: 

The elements of a set E. are mutually incomparable. 
l. 

To form Ei+l no element of Ei is discarded unless it 

is replaced by a smaller element; i.e. for every element e EE. - E 
· 1. i+l 

there is a strictly smaller element e
0 

E Ei+l· 

Lerrana 1: An element of Ei+l is not strictly greater than any element 

of any E . , j ~i+l. 
J 

Proof: Let e E Ei+l; 

false that x < e. 

we wish to show that ~x EE., 0 ~ j ~ i+l, it is 
J 

Assume the contrary; let j be the largest integer~ i+l such that 

there exists x EE. such that x < e. By property one, j ~ i. Then 
J 

property two would imply the existence of an element x
0 

E Ej+l such 

that x0 ~ x . But then x0 < e, contradicting maximality of j. 

Lerrana 2· Any element of E. is greater than or equal to some element 
l. 

of E. for each j ~ i. 
J 

Proof: Directly from property two. 

Lerrana 3: If Ei; Ei+l' then there exists e such that e E Ei+l' but 

e i E •• 
l. 

Proof: Directly from property two. 
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Lennna 4: Ei+l - Ei = Ei+l -j~iEj. 

Proof: We need only show that if e E Ei+l - Ei, then e <l. Ej for j < i. 

Suppose e EE. for some j < i. Choose the largest such j. Then 
J 

by property two, there is an e' E Ej+l such that e' < e, and by lemma 

2 there is an e" E Ei+l such that e" ~ e' < e contradicting property 

one. 

Lemma 5: It is not possible that for infinitely many k's,\ J Ek+l• 

Proof: Suppose for infinitely many k's, Ek# ~+l· Then (by lermnas 3 

and 4) we can pick out an infinite sequence w. of elements that are all 
1 

distinct. By lemma 1 for i,j such that i < j, either w. <w or else 
J i 

w. and w. are incomparable. That is, the sequence w. is an infinite 
1 J 1 

nonincreasing sequence of distinct elements. But by a simple and well-known 

extension to the theorem that all sets of incomparable elements (in J<) 
are finite, this is impossible. 

Hence there exists k
1 

such that ~l = Et, for all t ~ k
1

• 

Lemma 6: There exists an integer k ~ 0 such that\= Ek+l and Uk= Uk+l· 

Proof: The sets U. also satisfy properties 1 and 2, so the same proof 
1 

implies that there exists k2 such that Uk = Ut' for all t ~ k
2

• 
2 

Therefore there exists k3 such that Ek =~+land Uk = Uk +l· 
3 3 3 3 

Definition: Let k be the least integer such that Ek= \+i and Uk= Uk+l· 

Let E =~and U = Uk. 

Proposi~ion ). L(Ei;Ui) ~ L(Ei+l ;Ui+l); Ei ~ L(Ei+l;Ui+l). 

Proof: By construction of the sets E. 
1 

and U'., if e E (Ei U E'.), then 
1+ 1 l. 

for sorae f E Ei+l and g E Ui' e = fg. 
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By definition of the sets u1 and Ui+l and the fact that if a set 

W of words is closed under quotients, L(O; min(W)) ;::2 W, if g EU'.', · 
1. 

then g E L(O;Ui+l). Since Di~ Ui, ~ Ui this is also true if g E ui 

or g E u;. 
1. 

Hence e E L(f;Ui+l) ~ L(Ei+l;Ui+l); therefore Ei U Ei ~ L(Ei+l;Ui+l). 

Hence L(Ei U E1;ui) ~ L(Ei+l;Ui+l). In particular L(Ei;Ui) ~ L(Ei+l;Ui+l), 

Ei ~ L(Ei+l;Ui+l). 

Proposition 3: The equation C =Dis satisfied in K(G,M) iff DE L(E;U). 

Proof: 1. Since the quotient of two equivalent words is a unit (of the 

words) and the quotient of two units (of a word) is also a unit (of the 

word), all words in E are equal to the word C, while all words of U 

are units of the word C. Hence if Dis in the semilinear set generated 

by E and U, then C = D. 

2. Assume that C =Din K(G,M). Then t here exists distinct words 

F. - F'.A . = F'.B. - Fj+l J J 1. • J l. • 
J J 

1 :s: j ~ k-1, 

where A. = B 
i. 

is an equation of M. 
1. • 

J J 

We will show by induction on j that F. E L(E;U). For j = 1 
J 

this follows from the fact that [C} = E
0 

and proposition 2. Assume 

now that F. E L(E;U). Then F. == e u ... u where e
1 

E E and u
1 

E 
J J 1 1 t 

1 :s: P, :s: t. Consider now the least i in which all of e and u P, has 
1 

appeared in the sets E.' u. in our construction. Consider the 
l. 1. 

equation F. ~ F'.A. = F'.B. - FJ.+l Note of course that we need 
J J l.. J 1.. 

J J 

u, 

to use at most a units in the formation of A. ; say the ones used were 
l. • 

J 



... ,u (s ~ a). 
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But, by construction of E'., a word Y that is 
l. 

the result of applying a rule to e
1
u

1
•••Us is a member of E{; note 

also that u 
1

, ••• , u are in U. 
1 

(since they are minimal). Hence 
s+ t 1.+ 

by proposition 2 Fj+lE L(Ei+l;Ui+l) and hence Fj+l E L(E;U). 

Q.E.D. 

From this constructive proof and the fact that the uniform 

membership problem for semilinear sets is decidable we obtain: 

Corollary: The word problem for commutative sernigroups is decidable. 

Theorem 2: The fixed word equivalence problem for finitely presented 

commutative semigroups (ref. section 1) may be solved in real time on 

a Turing machine. 

Proof: By a theorem of Fischer, Meyer, and Rosenberg [13} and Laing [29} 

the elements of a fixed semilinear set (using the notation referred to 

in section 1) can be recognized in real time on a Turing Machine (in 

fact by a Turing machine which manipulates its worktapes only as a 

counter machine does). The result follows by Theorem 1. 

Recall that we have identified a word given over n generators in 

a commutative semigroup with an-tuple of nonnegative integers. We 

shall identify the pair of words X,Y with the 2n-tuple in which Xis 

identified with the first n-tuple and Y is identified with the second 

n-tuple. 

The fol. owing theorem is due to M.A. Taiclin. 

Theorem 3: The set of pairs of equivalent words of a finitely 

presented commutative semigroup is an effectively constructable 
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semilinear set. 

Proof: Taiclin (451,(46],[481 has shown that the set of 2n-tuples 

of pairs of equivalent words is definable by a Presburger formula with 

2n free variables and that this Presburger formula is effectively 

constructable. But Ginsburg and Spanier (161 have shown that the set . 

definable by a Presburger formula is an effectively constructable 

semilinear set. 

Theorem 4: The word problem for a fixed finitely presented commutative 

semigroup (ref. section 1) may be solved in real time on a Turing 

machine. 

Proof: Same as Theorem 2. 

Remark: If one uses an exponent notation for the fixed word equivalence 

problem or the word problem for fixed commutative semigroups (see the 

remarks at the end of section one), one may show the following results: 

Theorem: The fixed word equivalence problem may be solved in linear 

time on a Turing machine. The word problem for a fixed 

finitely presented commutative semigroup may be solved in linear­

time on a Turing machine. 

These results follow since one can recognize the elements of a 

fixed semilinear set (using this notation) in linear time on a Turing 

machine. (This follows by modifying Laing's proof.) 
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Section 4 - ·Related Algorithmic Problems 

In this section we first study the computational complexity of 

some other algorithmic problems for corranutative semigroups. We then 

briefly consider the complexity of some problems for vector addition 

systems. 

Boundedness Problem. 

Consider the problem of determining whether or not·a word has a 

finite or bounded number of words equivalent to it in a presentation 

of a commutative semigroup. There are again two problems which we can 

consider, namely: 1. the boundedness problem for a word in a fixed 

presentation of a connnutative semigroup, that is, given an arbitrary 

word X and a fixed presentation P0 , are finitely or infinitely mnny 

words equivalent to X in P
0
?; and 2. the uniform boundedness problem, 

i.e. given an arbitrary word X and an arbitrary presentation P, are 

finitely or infinitely many words equivalent to X in P?. 

Recall from section 3 the identification we made between words 

given over n generators with n-tuples of nonnegative integers, and the 

identification of pairs of words with 2n-tuples of nonnegative integers. 

Let S be a set of n-tuples. Let r
1

, r 2 be a partition of 

and j
1 

< j 2 ::: < j k' n-

Say 

The (domain) projection of S onto r
1 

is denoted TTI (S) 
/ 1 

I = 
1 
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and is defined to be 

...,_ 
For any a= (a

1
, ••• ,an-k) the projection of S onto r

1 
restricted 

...,, 

by~ is denoted TT~ (S) and is defined to be 
1 

11
1 

(((s
1

,s2 , ... ,sn) ES I (V.R.,~n-k)[sj =a,e]}). 
1 £, 

Theorem 1: Consider a presentation P0 of a commutative semigroup. 

The set of words which have an infinite number of words equivalent 

to them in P0 is an effectively constructable semilinear set. 

Proof: Let the presentation P0 haven generators. By Theorem 3 of 

section 3 we know that the set of pairs of equivalent words in P
0 

is an effectively constructable semilinear set of 2n-tuples. Let 

S be that set, and let S = L1 U ••• U ~' where Li is a linear set. 

Let (X,Y) denote the 2n-tuple identified with the pair of words 

X,Y. Let (0,Z) denote the 2n-tuple which contains zeroes in the 

first n-tuple and whose second n-tuple is then-tuple identified with 

word Z. 

A word X has an infinite number of words equivalent to it iff 

there exists at least one linear set L. such that (X,Y) EL. for 
l. l. 

some word Y and L. has a period of the form (0, Z), for some word z. 
l. 

Let L. , ••• , L. be the linear sets which have a period of 
il ij 

the form (0, Z) . 

Let S' = L. UL. U ••• UL .• 
1

1 
1

2 
1

j 
I 

Apply a (domain) projection to S' onto the first n coordinates. 
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Call the resulting set S''; by results of Ginsburg and Spanier [15], 

S" is an effectively constructable semilinear set. S" is the desired 

set. 

Corollary: The boundedness problem for a fixed presentation of a 

connnutative semigroup may be solved in real time on a Turing machine. 1 • 

Theorem 2: The uniform boundedness problem requires space at least 

proportional to n/logn on a multitape Turing machine. 

Proof: Modify the construction given in section one for the lower 

bound by adding the additional state rule Q tt Q Q. Then the input 
a a a 

µ(x) is accepted by the counter machine iff IxqOcn+l has an infinite 

number of words equivalent to it. 

Regularity Problem 

Let S be a semigroup. We shall say that an element a ES is 

regular iff there exists x ES such that a= a:x:a. We shall say that 

a word A is regular iff the element which A represents is regular. 

A semigroup Sis regular iff all elements of Sare regular. 

The question of regularity is concerned with the existence of 

partial inverses in semigroups and is of interest in the theory 

of semigroups (see Lyapin (32] for examples and further details). 

We will be concerned with the question of testing whether a word 

A i s regular. As usual, we consider both the problem for fixed 

presentationi and the problem for arbitrary presentations. 

Theorem 3: Consider a presentation P
0 

of a commutative semigroup. 

\ 
The set of words which are regular in the semigroup given by P

0 
is 

1. We assume t he notation defined at the beginning of section one. 
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an effectively constructable semilinear set. 

Proof: Let the presentation P0 haven generators. Let S be the 

effectively constructable semilinear set of pairs of equivalent 

words in Po· Let 

Let I (i) be 

of periods of L .• 
1. 

s 

the 

::: L 
1 

u ... u 1ic' where L. 
1. 

initial vector of L. and 
1. 

is a linear set. 

i pi } (pl' ... ' the 
n. 

1 

Let Ii,l denote the first n-tuple of the 2n-tuple I(i) and 

Ii' 2 denote the second n-tuple of I(i). 

Similarly let P~,l denote the first n-tuple of Pi and pi, 2 
J j j 

i denote the second n-tuple of P .• 
J 

Fix i. Consider the set of simultaneous linear diophantine 

inequalities over the variables 

set 

1i,2 +.ti- p~,2 
J=l J tj (*) 

The set of nonnegative integer solutions to a set of simulataneous 

linear diophantine inequalities is an effectively constructable 

semilinear set (see van Leeuwen [52]). 

i 
Let S be the semilinear set for the set of diophantine 

inequalities 

set. For X 

i i i i (*). Let S = L1 U .•• UL , where L. is 
mi J 

= (a
1

, .•. ,a), define X' to be then-tuple 
n. 

1. 

a linear 

n . i 1 
.ti-1 a. p . , • 
]= J J 

Define (L~)' to be the linear set whose initial vector is the 'of 
J 

i 
the initial vector of L . and whose periods are the 'of the periods 

J 
i 

of L . • 
J 

Let Ti= L(Ii'l;(Si)') . By slightly extending a result in 

Ginsburg and Spanier [15], one can show that if Eis a semilinear set 
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and I a nonnegative vector, that L(I;E) is a semilinear set. tlence 

Ti is a semilinear set. 

Then T = T1 U ••• U Tk is the desired set. 

Corollary: The regularity problem for a fixed presentation of a 

commutative semigroup may be solved in real time on a Turing machine. 

Theorem 4: The uniform regularity problem requires space at least 

proportional to n/logn on a multitape Turing machine. 

Proof: Modify the construction given in section one by adding the 

state relation Q - I q c I q c Q. a x O n+l x O n+l a 

regular iff the counter machine accepts input µ(x). 

Definition: Let s
1

, s
2 

be elements of a commutative semigroup; we 

shall say that s 2 divides s
1 

iff ~s
3 

ES such that s
1 

= s
2
s

3
• We shall 

say that a word s2 divides a word s
1 

iff the element which s2 represents 

divides the element which s
1 

represents. Equivalently, we can say 

that a word s2 divides a word s
1 

iff there exists a word S' such that 

s
1 

= S' in the commutative semigroup and S' > s
2

• 1• Divisibility is 

closely related to the coverability relation defined in Karp and Miller[25]; 

i.e. a word s
1 

covers a word s2 iff there exists a word S 1 such that 

s
1 

= S' in the commutative semig~oup and S' ~ s
2

• 

Since regularity is a special case of either the divisibility or 

the coverability problem (namely take s
2 

= s
1
s

1
) we immediately have 

1. Let X and Y be words. Let IX and Iy be then-tuples identified with 

X and Y respectively. Th~n we shall say that X > Y iff IX> IY. 
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the following result: 

Theorem 5: The uniform divisibility problem requires space at least 

proportional to n/logn on a multitape Turing machine; the uniform 

coverability problem requires space at least proportional to n/logn 

on a multitape Turing machine. 

Theorem 6: Consider a presentation P0 of a commutative semigroup. 

The set of pairs of words X, Y such that X cov·ers Y in the presentation 

P
0 

is an effectively constructable semilinear set. 

Proof: Let S be the effectively constructable semilinear set of 

pairs of equivalent words in P
0

• 

Let S = L
1 

U ... U Lk, where Li is a linear set. 

Let Li have initial vector Ii and periods ~P~, ... , 
. i 1 . 

As before, let I' denote the first n-tuple of Ii, 

second n-tuple of Ii, P~'l the first n-tuple of P~, and p~• 2 the 
J J J 

i 
second n-tuple of P .• Again let (X,Y) denote the 2n-tuple identified 

J 

with the pair of words X,Y. 

Let "ii 

Let p~ = ((P1'1,Q) I Q ~ P~'2}. 
J J 

i 
n. 

i Let L. = L(I; .u~ p.). 
i J= J 

Observe that L. is an effectively constructable semilinear set. 
i 

Let S = L1 U 

Sis the desired set. 

Corollary: 1~e set of pairs of words X, Y such that Y divides X in 

presentation P
0 

is an effectively constructable sernilinear set. 
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Proof: Let S, S be as in the proof of the above theorem. Let S' 

be the effectively constructable semilinear set of those words which 

have only finitely many words equivalent to them in P
0

. Let S" = S 1 X rfl-.l. 

Let S"' = s· 1 n S. Then S - S'11 is an effectively constructable 

semilinear set (15] and is the desired set. 

Corollary: The coverability problem for a fixed presentation may be 

solved in real time on a Turing machine; the divisibility problem for 

a fixed presentation may be solved in real time on a Turing machine. 

We remark that the reachability tree construction (see Karp and 

Miller [25], Keller [26], or Hack [17]) may be used to uniformly solve 

1 2. the boundedness, regularity, divisibility, and coverability prob ems. 

However the algorithm relies for termination upon incomparability in 

Nk and this reasoning is of the type that does not enable one to derive 

primitive recursive complexity bounds. 

We note however that since the (uniform) boundedness, regularity, 

divisibility, and coverability problems are all efficiently reducible 

to the word problem and since the latter is solvable in exponential 

space, we have the following result: 

Theorem 7: The uniform problems of boundedness, regularity, divisibility, 

and coverability may all be solved in exponential space on a Turing 

machine. 

L "X 11 denot ~s cartesian product. 

2. Biryukov's algorithm may also be used to solve these problems. 
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Complexity of Word Problems for Abelian Grouos 

He now consider abelian groups and their presentations. Consider 

a set of generators G = (a1 , (1) 

and a set of defining relations of the form A. = B., 1 ~ i ~ m (2), 
1. 1 

where A. and B. are words over G. 
1 1 

To the set of generators (1) we add the new generators 

(3) and to the defining relations (2), the new 

-1 -1 . 
relations aiai = A, ai ai = A, 1 ~ 1 ~ n, (4), where A denotes the 

empty word. As is well-known, the commutative semigroup given by 

generators (1) and (3) and defining relations (2) and (4) is an abelian group. 

This group we call the abelian group given by generators (1) and 

defining relations (2). 

Note that words in an abelian group may be considered to have 

generators with negative coefficients, For a word X in an abelian 

group over generators (1), define X' to be the integer n-tuple 

(x
1

, •.. , xn), where xi= #a1 in X. 

Lemma 1: Let X and Y be words. X =Yin the abelian group given 

by (1) and (2) iff the set of linear diophantine equations 
m 

X' = Y' + i~l (B1 - A1)ti has an integer solution (t
1

, t 2 , ••• , tm). 

Proof: Obvious. 

Theorem 8: The uniform word problem for finitely presented abelian 

groups may be solved in polynomial time on a Turing machine. 

Proof: We c. ·n test whether a set of linear diophantine equations 

has any integer solutions or not in polynomial time (See Knuth [28], 

Karp [24]). The theorem follows by the preceding lermna. 
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Corollary: The uniform word problem for commutative semigroups with 

cancellation may be solved in polynomial time on a Turing machine. 

Proof: Let X and Y be words whose generators have only nonnegative 

exponents. According to a theorem in Lyapin [32), X =Yin the 

corrunutative cancellation semigroup given by (1) and (2) iff X = Y ·~ · 

in the abelian group given by (1) and (2). 

Theorem 9 (Tseiten): Let a corrunutative semigroup be given by 

generators (1) and defining relations (2). Leth be the maximium 

coefficient of a generator in the set of words (A., B.}. Assume that 
. L i 

the two words X and Y are such that the coefficients of all the 

generators of both words are greater than or equal to h(m+l). Then 

X =Yin the corrunutative semigroup given by (1) and (2) iff X =Yin 

the abelian group given by (1) and (2). 

Proof: See Emelichev (10]. 

Theorem 9 says that there exists a polynomial time algorithm 

for a large subclass of the word problems for commutative semigroups. 

I should remark that theorem 9 is of interest not only for this 

reason. Indeed it was a basic lemma in Taiclin's proof of Theorem 3, 

section 3. It is also of importance in obtaining polynomial time 

algorithms for many other algorithmic problems for conrrnutative semigroups. 
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Polynomial Time Algorithms for Commutative Semigroups 

Unit Semigroup Problem 

Consider the problem of determining whether an arbitrary presentation 

defines the unit semigroup11equivalently whether a word is equivalent to 

all other words in that presentation). 

Theorem 10: The problem of determining whether an arbitrary presentation 

defines the unit semigroup may be solved in polynomial time on a Turing 

machine. 

Proof: Let the presentation have generators G = (a
1

, ... , an} and 

defining relations A. = B., j = 1, ••• ,m. We seek to determine whether 
J J 

a1 = a2 = ••• = an and a1a 1 = a 1• 

Define the canonical set Ci of a generator ai as the minimal 

sets;;; G such that if Xis a word such that a~= X for some power q 
1 

then the generators contained in X are contained in C.. By using a. 
1. 

simple algorithm first observed by Biryukov [5] we can determine 

what C. is in polynomial time. 
1 

Clearly C. must equal G for each i if the semigroup is to be unit. 
1 

It is also clear that if the semigroup is to be unit, that each a 
i 

must be regular. There is an algorithm in Emelichev [11], which given 

a generator a. will: 
1 

1 1. f h . d 2• 11 d . • t e generator a. is non egenerate it wi etermine 
1 

1. The unit semigroup is the semigroup consisting of one element. 

2. A generator a. is nondegenerate if no equation of the form a
1 

= N 
holds, where 1 N is a word that does not contain a .• A generator is 
degenerate if it is not riondegenerate. 1 



whether a. is regular or not. 
]. 
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2. if the generator a. is degenerate, then it will either determine 
l. 

whether a. is regular or not, or it will determine that a. is degenerate-" 
l. l. 

and will find a word N such that a. == N, where ,!ra. in ~1 == 0. In case 
l. 1 

a. is degenerate the algorithm wili then eliminate a. from the presenta-
l. 1 

tion by substituting N for a. in all relations that contain a .. 
l. 1 

By making modifications to this algoritlnn, this algorithm will 

run in polynomial time. 

Now, since Ci== G, there exists q such that ai == X, where the word 

X contains every generator: Furthermore since a. is regular, an 
1 

• 2 
equation ai == aiy holds, where Y is some word. Leth equal the 

maximwn coefficient of a generator in the words (Aj = Bj I j == 1, ••• ,m}. 

Let r == h(m+l). 

== qryqr-1 Then a. a. 
1 1 

Hence a. is equal to a word where the coefficient of each generator 
l. 

in the word is greater than or equal tor. 

r r r 
Let x

0 
be the word a

1
a2 ·••an. 

Hence to test whether a1 == a 2 == 

to test whether all words greate~ tban x
0 

are equal. But by Tseiten's 

lemma this is true iff all words greater than x
0 

are equal in the 

corresponding abelian group which is true iff t he corresponding group 

consists of l'ne element. But we may test whether an abelian group is 

a unit group in polynomial time; i.e. by testing whether a
1 

= a 2 = == a 
n 
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We point out now that several algorithmic problems for commuta­

tive semigroups can be solved in polynomial time on a Turing machine. 

In particular each of the following problems can be solved in polynomial 

time: 

1. Whether an arbitrary word in an arbitrary presentation has 

finite or infinite type (order). [An elements of a semigroup has 

i 
infinite type iff each of the elements s (i~l) are different; an 

elements has finite type iff it does not have infinite type (i.e. 

iff there exists i, j, i # j, such that si = sj). A word has the 

f h 1 h . h . ]l. type o tee ement w ic it represents. 

2. Whether the semigroup denoted by an arbitrary presentation 

has a . finite number of elements or not. 

3. Whether a nondegenerate generator in an arbitrary presentation 

2. 
is regular or not. 

Whether the semigroup denoted by an arbitrary presentation 

is regular or not. 

4. Whether the semigroup denoted by an arbitrary presentation 

has a zero or not. [z ES is a zero of a commutative semigroup iff 

zs = z, for alls ES.] 

5. Whether the semigroup denoted by an arbitrary presentation 

1. We remar, '. that the question of whether there exists j > 1 such 

that s 1 = sj can be shown to require space at least proportional 
to n/logn on a Turing machine. 

2. We remark that the question of whether a degenerate generator is 
regular or not can be shown to require space at least proportional 
to n/logn. 



I 
I 

I ' 

55 

is nilpotent or not. [A se.migroup S with zero z is said to be 

nilpotent iff there eiists a positi~e integer k such that sk = z 

for a 11 s E S. ] 

6. Whether the semigroup denoted by an arbitrary presentation 

is a group or not. 

7. Whether the semigroup denoted by an arbitrary presentation 

-has an identity element or not. [i is an identity element of S 

iff is= s for alls Es.) 

Whether a nondegenerate generator in an arbitrary presenta­

tion has a unit or not. 1 · 

These results follow for the main part by an analysis of the 

algorithms given in Biryukov[5] and Emelichev[9], [10], [11]. 

However in certain cases (in particular for problems 1,2,3,6, and 7) 

certain modifications have to be made to the algorithms in order 

that they run in polynomial time. 

Vector Addition Systems 

We now briefly consider the complexity of some problems for 

vector addition systems (V.A. systems). 

We shall assume that n-tuples are represented using binary 

1. We remar. '. that the question of whether a degenerate generator has 
a unit or not can be shown to require space at least proportional 
to n/logn. 
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notation for the component integers. That is, we represent a vector 

or n-tuple as (a1 , a 2 , ••• ,. an), where ai is an integer represented 

in binary. 

He define a synnnetric vector addition system as a vector addition 

system V =<I, P > in which Vp E P, -p E P. By the remarks concerning 

alternate notation at the end of section one and by use of the 

correspondence between vector addition systems and commutative semiThue 

systems, we immediately have the following result: 

Theorem 11: The uniform reachability problem for symmetric vector 

addition systems requires space at least proportional ton on a 

multitape Turing machine. 

Define the uniform membership problem for linear sets as follows: 

Given an arbitrary vector J, an arbitrary vector I, and an arbitrary 

set of periods P, is J E L(I;P)? We assume as in vector addition 

systems binary notation for the component integers. 

Let NP denote the class of languages which can be accepted in 

nondeterministic polynomial time on a Turing machine. 

Lemma: The uniform membership problem for linear sets is NP-cornplete. 1• 

Proof: 1. We first prove that the problem is NP-hard. We do this 

by showing that a known NP-hard problem can be efficiently reduced to 

it. 

1. We refer the reader to Karp [24] for definitions of the terms 
NP-cornple:e and polynomial time reducibility. This lerrnna was 
observed in conversations with A.R. Meyer. 
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' 
Definition: The Subset Sum Problem is defined as follows: 

Given an input (k1 , k2 , •.• , kn+l) of n+l nonnegative 

integers (represented in binary), does there exist a set S ~ (1, 2, ..• , -h} 

such that j~S kj = kn+l· 

The Subset Sum Problem is known to be NP-hard. We now show that 

we can efficiently reduce the Subset Sum Problem to the uniform 

membership problem for linear. sets. 

Given an input (k1 , k2 , ••• , kn+l), construct vector J = (1, 1, .•• ,1, kn+l), 

initial vector I= (0, 0, .•. , 0), and the set P of 2n periods: 

(0~ 1, 0, .•. , 0, 0), ••• , (O, ... , 0, 1, k ), (0, ••. , 0, 1, 0)1 (that is, 
n 

P contains those periods which have a 1 in the ith position, k. in the n+lst 
1. . 

position and zeroes everywhere else, and those which have a 1 in the ith 

position and zeroes everywhere else). 

Then there exists a subset S ~ (1, 2, ••• , n} such that 

}-:; k. = k +l iff J E L(I;P). 
jES J n 

Since this reduction can be constructed in polynomial time, 

the uniform membership problem for linear sets is NP-hard. 

2. We now show that the uniform m~~bership problem for linear 

sets is in :.-rP. 

We can solve the uniform membership problem of linear sets by 

determining whether a set of linear diophantine equations has any 

nonnegative ·· nteger solutions or not; that is, to test whether J E L(I; P) 

. ,, . , P 1 we simply have to determine whether m., 

J I+ t 1P1 + ... + tmPm 

i.e. J - I= t 1P1 + ... + tmPrn 
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has any nonnegative integer solutions. By a recent result of Sieveking (43], 

we can determine whether a set of linear diophantine inequalities has 

any integer solutions or not in nondeterministic polynomial time, and 

hence can determine whether a set of linear diophantine equations has 

any nonnegative integer solutions or not in nondeterministic polynomial 

time. □ 

Since linear sets are simply the subcase of vector addition systems 

in which the periods are all nonnegative, we can immediately conclude 

that a very special subcase of the reachability problem is at least 

NP-hard. 

Remark: We shall occasionally consider vector addition system without. 

a fixed initial vector. That is, we shall sometimes consider vector 

addition systems as a set of periods, and be concerned with such 

questions as: is vector J reachable from v ector I in the vector addition 

system V = < P >, where Pis a set of periods. 

Definition 

Let V be a vector addition system. Let* represent the don't 

care symbol. We shall say that a function£: N ➔ N is weakly computable 

by V if given an initial vector I with x in a specified input coordinate 

and a standard initial marking in the other coordinates if for every 

0 $ y $ f(x) there is a vector reachable from I of the form 

(*, *, ... , *, y), and conversely that every vector reachable from I 

has the form(*,*, ••• ,*, y), where O $ y s f(x). We define ''weakly 

computable" by a commutative semigroup similarly; that is, a function 
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f: N ➔ N is weakly computable by a cormnutative semigroup if given a 

word X = a~Z, where Z is some fixed word over generators 

if for every O ~ y ~ f(x) there is a word Y equivalent to X where 

#an in Y = y, and conversely that every word Y equivalent to X has 

#a in Y = y, where O ~ y ~ f(x). n 

Michel Hack [18) has shown 

a } , 
n 

Theorem 12: For any n, there is a vector addition system which weakly 

computes a function at least as large as the nth Ackermann function. 

One can in fact show that vector addition systems can exactly 

weakly compute the 2nd and 3rd Ackermann functions: squaring and 

exponentiation. It appears that V.A. systems can exactly compute 

the nth Ackermann function, although the details for this have not 

been verified yet. 

Theorem 12 has been used to show that there are vector addition 

systems whose reachability sets, although finite, grow as large as 

Ackermann's function of the size of the vector addition system. 

However: 

Theorem 13: f(x) 
2 

= X is not weakly computable by a cormnutative 

semigroup. 

Proof: Assume that f is weakly computable by a cormnutative semigroup 

presentation P with n generators. Recall that the set of pairs of 

equivalent words of Pis a semilinear set S of 2n dimensions. Then 

the projecti)n of S onto coordinates (1, n+l, n+2, ... ' 2n} restricted 

by the standard marking on coordinates (2, ••• , n} is a semilinear 

set S'. Now apply a (domain) projection to S' on the first and last 
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2 
coordinates. The result is [(x,y) I y::;;x } is semilinear. But this 

2 is impossible, since according to Ginsburg and Spanier [16], ( (x,y) I y~x} 

is not a semilinear set. 

There thus is a substantial difference between the functions 

which vector addition systems can weakly compute and the functions 

which commutative semigroups can weakly compute. 

Boundedness and Coverability for Vector Addition Systems 

Let V be a vector addition system and I a nonnegative vector. 

Consider the following problems: 

1. Boundedness Problem: Is the reachability set R(I) finite? 

2. Coverability Problem: Given a vector J, does there exist 

KE R(I) such that K ~ J? 

By a fixed vector addition system v0 , we shall mean a fixed 

set of periods P0 . By the boundedness problem for a fixed vector 

addition system we shall mean the following problem: Given a vector 

I, is the r eachabiiity set R(I) finite in the vector addition system 

Lemma: Consider a fixed vector addition system v
0

• The set of vectors 

with infinite reachability sets in v0 is a semilinear set. 
I 

Proo f (Noncons t ructive): Note that if a vector I has an infinite 

reachability set, then all vectors greater than I also have infinite 

reachability sets. 

Let T equal the min of the set of vectors that have inf inite 

reachability sets. 
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Tis finite. 

Let S = (JI J is a vector and 3K ET such that J ~ K}. 

Sis semilinear and is the desired set. 

Corollary: The set of vectors with finite reachability sets in a fixed 

vector addition system v
0 

is a semilinear set. 

Proof: The complement of a semilinear set is a semilinear set [15]. 

Corollary: The boundedness problem for a fixed vector addition system 

may be solved in linear time on a Turing machine. 

Lemma: Consider a fixed vector addition system v
0

• The set of pairs 

of vectors X, Y such that X covers Yin v0 is not in general a semilinear 

set. 

Corollary: Consider a fixed vector addition system with a fixed initial 

vector r0. The set of vectors X such that I 0 covers Xis not in general 

a semilinear set. 

Proofs: This follows by a technique similar to the one Rabin used in [1] 

to show that reachability sets of vector addition systems are not in 

general semilinear. See [1] for further details. 

We remark: 

Lemma: Consider a fixed vector addition system v
0 

with a fixed initial 

The set of vectors X such that X covers I 0 is a semilinear 
I 

set. 

Lerrana: Consider a fixed vector addition system v0 with a fixed initial 

vector I 0 • ' 'he set ~J I J E R(I0) and J has a finite reachability set} 

is not in general a semilinear set . The set (J I J E R(I0) and J has 

an infinite reachability set} is not in general a semilinear set. 
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It is known that by use of the reachability tree construction (25) 

that one may uniformly solve either the boundedness problem or the 

coverability problem for vector addition systems. We remark that by 

the correspondence between vector addition systems and connnutative 

semigroups: 

Theorem: The uniform boundedness problem for synnnetric vector addition 

systems requires space at least proportional ton on a Turing machine. 

The uniform coverability problem for synnnetric vector addition 

systems requires space at least proportional ton on a Turing machine. 

Remark added: R.J. Lipton [31] has just recently shown that the uniform 

reachability and boundedness problems for vector addition systems 

requires exponential space on a Turing machine. However Lipton's proof 

does not (i~ediately) extend to the case of sywnetric vector addition 

systems. 

Definition: 

Let X and Y be two arbitrary words and let P and Q be two arbitrary 

connnutative semiThue systems. The uniform equivalence problem is 

defined as follows: Is the set of words derivable from X in corrnnutative 

semiThue system P the same as the set of words derivable from Yin 
I 

connnutative semiThue system Q? The uniform inclusion problem is: Is 

the set of words derivable from X in P contained in the set of words 

derivable from Yin Q? These problems have been shown to be unsolvable 

by Hack [20] and Rabin [1]. 

Remark: Although at first glance it might appear that the word problem 

problem for conunutative semigroups and the derivation problem for 
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commutative semiThue systems are similar, in fact it appears likely 

that there is a significant .difference between them. For example, 

it is known that the uniform equivalence and inclusion problems are 

unsolvable for commutative semiThue systems, while these problems 

are solvable for commutative semigroups. We have also seen that 

commutative semiThue systems can exactly weakly compute functions 

at least as large as the nth Ackermann function, while commutative 

2 
semigroups cannot even weakly compute f(x) = x. However these differences 

have been for sets of words and no one at present (to the author' s 

knowledge) has been able to prove that such a difference exists for 

the word problem itself. 

Remark: Recall Tseiten 1 s example (in section one) of a simple presenta­

tion with an unsolvable word problem. One might ask if one can construct 

a simple presentation that is almost commutative (in the sense that 

it lacks the relation ab= ba for only one pair of generators a, b) but 

that has an unsolvable word problem. In fact it turns out that it is 

possible to construct such presentations, but for uninteresting reasons. 

For, by a simple observation of Hall's [21], it turns out that given 
~ 

a presentation with m generators and r relations with an unsolvable 

word problem, that one can construct a presentation with 2 generators 

and the same number (r) of relations that is also unsolvable. 
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