
LAB1,0RATORY FOR , - ' - ~ MASSACHUSETTS
.. INSTITUTE OF

COMPUTER SCIE CE .. TECHNOLOGY

MIT /iLCS/TM-68

STREAM~O·RIENTED COMPUT'ATro,N IN
RECURSIVE D.A.T A FLOW SCHEMAS

Kung-Song Weng

October 1975

545 TECH '0LOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Clt1BRHX3E

IT/LCS/TM-68

STfEN+-0 IENTED COflJTATICN IN

PiOJRSivE MTA FLOI SCHEMAS

'~- Soot-; WENG

Ck:roBER 1975

W\.SSAlllJSETTS INSITME Cf TECH'OLCXiY
PRJJECT WtC

M4SSACHJSETTS 02139

STREAM-ORIENTED COMPOTAT]ON IN
RECURSIVE DATA FI...rnr1 SCHEMA.S

by

Kung-Song Weng

Submitted Co the Department of Electrical Engineering aod Co,mpute
Science on Sep t,ember 2 ~ 197 5 in partial fulfillment of the requi rernen ts
for t:be degree of Maste.:r of Sc· ,ence.

ABSTRACT

In this thesis we present a parallel p ogramming language based
on a parallel computation model known as data flow ache: as.. Syntac­
tically, the language resembles programming languag,es such as Algo 1 60,
but does not: have GOTO's, WHILE-loops 1 and non-local var"ables, The
attract·veness of this approach lies in the inherently determinate
na.tur·e of data flow1 schemas and the possibility of fo,rma lizing the
semantics of the language. within the forms. ism suggested by Scott and
S trachey. The language provides programming features foir scream­
oriented co.mputation and inte.rcommunica ting sys t:ems. Re introduce
the notions of proper initialization and termination of such systems.
A subclass of determina,t:e systems in which these properties can be
easily checked is defined and a translation into :r,ecur.sive data flow
schemas is given.

THESIS SUPERVISOR:· Jack B. Dennis
TITLE: Professor of Computer Science and Engineering

2

ACKNOWLEDGEMENT

I wish to express my gra..titude to Professor Jack B~ Dennis for

the invaluable guicial!l.ce and support throughout phases of t:his esea, ch.

I would. also like to thank David Ellis for hia constructive help in

tbe preparation of th"s t::hesis, aod David Misunas and Clem.et Leung for

provid · ng helpful comm.en s .. My spe•cial t ~anks are due to Glot:ia rsh.all

for tyPing the thesi .s and Michelle Hoshi. my wif,e .t for her patience,

understaruling and encou agement, includ·og the long hours she spent

in drawing the figures. Finally I would like to acknowledge P-rojec·t MAC

for the use of its faci li ti ,ea dur ·ng the preparation of r:his thesis.

Thia1, work was supported in part by the National Sc i ence Foundation

under the research grants G -34671 and DCR7u-21892.

3

TABLE OF CONTENTS

Sect.ion

Title Page

Abstract

Acknowledgements­

Table of Contents

Chapter l
Ll
1.2
l.3
Ll&

In trod uc cion
Parallel Computation
Dat:a Flow Concepts
Stacement o the Problem
Synopsis of Thesis

Chapter 2 Dat:a Flow Sche.ma.s and Basic . Structure of
the language

2.1 D~ca Flow Schemas
2 .2 Recursive ~Tell- Formed Data Flow Schemas
2 • 3 l_extua 1 Qa ta Flow !:anguage (TDF'L)

Chapter 3
3.1
3.2
3.3
3.4

Chapter 4
4. !.

4.2
4.3

4.3.1
4.3.2

4.4

Chapte,:- 5
5.1
5.2
5.3

Bib li ,ography

S t:rea.ins
Motivation
Semantics for Streams
Transla.tions
Ex.amp le Programs

Gommunicating Modules
Proper c:ies of Determinate Systems
Syntax ~nd Se1I1an tics for Comm.unica ting Modules
Wel -Behaved Modules
Semantic Extensions
Translation into Recursive Data Flow Schemas
Extensions

SUlmQary and Cone lusions
Summary and Discussion
Related Issues on Data Flow Schemas
Further Work and Research

4

1

2

3,

4

5
5
7
8
9

11

11
21
24

35
35
36

l
43

53
53
57
65
65 "
72
84

85
85
86
89

90

Chapter

Int oduction

1. l Parallel Computation

Over the past twenty years there have been many technical advances

in the field of computing~ but achi ,evi:ng efficient a.nd effec ive

utilization of computing r ,esources still eaia ·ns a significant problem.

It is generally recognized that parallel computa t: · on provides for the

speed-up of computations and for better u i ization of computing

resources. The advantages of paral lelisrn unfortunately, are often

overshadowed by the dif iculty of exploiting the nat:u1;al parallel' sm

of computations in highly pa:rallel compu.t · ng systems. This if iculty

s due mostly to the lack of a.de.qua e programming form.a isrns and

appropriate computer stTuctures to support their efficient implementation.

As the cost of software dev,elopment becomes higher and the design

paramete s for digital system.s change, it: is · ncreasingly more impor ant:

to consider he princip es by wh"c.h programming a guages and computer

struccures may efficiently perform parallel computation.

Co- ventional programming languages such as FORTRAN, Algo,1 60, and

PL/I are essentially based on the centra ized sequential'. control structure

of the Von eumann machi -e. Control primitives for parallel computation

such as CALL and - AIT in PL/I, and synch:rooization schemes using semaphores

a:od he semaphore primitives P and V introduced by Dijkstra [18 are

natural ext:e sions of the sequential control co cept. Programs written in

c::onventional languages which incorporate these paralle programming

cons true ts are limited i the deg ee of parallelism they ,exhi b · r: 1 and the

use of these primitives may in roduce undesirable side-effects. From a

diffe ent point of view~ the difficulty in provi.ng the correccness of

these programs also reflects the unsu·tabil t:y of conventiona prog:rarnmin,g

languages for ara lel progracmning tasks.

The lack o,f suitable lan~es as inhibited the developme t of

parallel ccmputet·on techn ques with which many forms of computation such

as pipeline

5

or multi-pass processes may be more naturally expressed. Because of the

highly disparate s ructure o: existing highly parallel machines t:be. parallel

computation. techniques used with highly parallel computers such as the ILLIAC

IV or the coc STAR-100 are highly machine dependent and therefore are

not applicable in general.

In ~bat fo lows we shall discuss some fundamental coneept:s in

parallel programming and rel.a ted issues.

Par all e 11 sm

The l:e.rm 11 parallelism11 gene.rally refers to the state of existence

of concurrent activities or proc,esses (processes may be. conceptually parallel).

Because of the limited degree of parallelism which is explicitly expressed

usi g control primitives of conventional programming languages~ high

perfonnance computers such as IBM 360/91 [2] and CDC 6600 [43

have built-in hardware which analyzes segments of instruction sequences

to deter-mine which instructions can be exec.ut:ed concur-r,e.ntly. The

performance of these computers is, howevu highly dependent on the fre-

quern:. of JUMP ins ructi.ons. This approach often would require complex

compile time analysis of a program in order to achieve an acceptab e

level of utilization The overhead o,f the analysis is o,ften n.on-negli.gible

owing to the complex ty of conventional languages. It is therefore

desirable that a parallel programming language 'Should allow simple

detection o.: potential parallelism ,of instructions.

De terminacy

A program is determinate if repeated execu ion with the same set of

input data yields the same outp,ut.a. Non-determinacy may arise i.f concurrent

processes sh.are common data Ol' if there are subcomputations which are

inherently non-dete.rminate (such as random nwnber generators). The effect

of non determinacy wheo not inte.nd'ed is undesirable. For instance~ the

presence of non-d,eterminacy makes debugging and 'Program t_esting very

difficult because repeated ,execution may not reveal certain errors .. One of

the most significant drawbacks of extant: parallel programming languages is

that r:he use of parallel computa.ti.on primitives may result in non~det:erminacy.

6

Deadlocks

The issue of deadlocks received much attention as soon as primit ves

for coordinating concur-rent processes such as 11 lock" and "unlock" were

suggested r 14> 31 18] • The cost of programming errors resulting in

deadlocks is often high since a significant ,quantity of ccmrpu ing

resources may be wasted unti the situation is remedied I is therefore

necessary that good high.er level features for parallel programming should

guarantee t.hat: programs in the language would not cause d,eadlocks provided

computing resources required for completing the computation is .allocated.

C rrently there is a strong emphasis on the avoidance cf programrn ng

,errors and the ease of proofs of correctness for programs. These principles

should be stressed even more for pa-ralle programming languages because

of the additional complexity introduced by parallel programming features.

In addition to the limitations already pointed out, conventional

programming languc1sges do not satisfy the re,quire.ment: of programming

modularity. For example~ the use of primitives such as P and reg ires

ames of semaphores to be speci ied in statements. As a result, routines

employi g these primitives need to be modified when used in a differeot

environment . This observatio is equally applicable to other control

primitives such as co-routine p-rimit.ives which require that labels fo,r

entry points or reactivation points be specified.

L 2 Da a Flow Concepts

In contrast to the notion of sequentia con t.rol of conventional

programming languages, the "data lo,-r;1• 1 concept is based on the observation

that an aper a tion (or a.n ins true tion) should be executed as soon as the

required input operands are made availab e by the completion of operations

supplying the inputs. Among the models o parallel c::omput.ation which

iocorpo:r ate data flow concepts (Adams [1] Ba hrs 1 [4 l, Rodriguez [38 1) ,

the data~ schemas int.roduce.d by Fosseen [19] a.re inherently determinate

and sufficiently expressive to encompass schemes which model programming

features such as conditionals, while~ loops and procedure invocat.ioos.

'!he. attractiveness of data flow schemas as the semantic basis of

7

p,arallel programming languages lies- in several properties:

(i) pa alleliam at instruction level · s expo,sed;

(ii) the. set of rul,es which governs the p:rogress of computations is

relatively ,simple;

(iii) any schema constructed from any int,erconnection of data flow

schemas is determinate.

Recently compute:r structures1,b.ased on data flow mode.ls have been

specified by Misunas f 35 J and Rumbaugh [39] • In the architecture

suggested by Misunas the efficiency of the execution of a program in the

data flo"7 re,presentati.on is particularly indep:end,ent of the structure

of the program; therefore~ the analysis of the behavior of a program is

very much simplified.

1.3 Statement of the Problem

The objective of this thesis is to d,esign a textual language Yit:h

data flow schemas as its semantic basis, .and to consider the applicability

of data flow concepts to problems in c:u,:-rent parallel programming

languages. The criteria which should be satisfied by the te.xtual language

are the following;

(1) The.re is a. simple translation of the language into data. flow schemas ..

The simpU.c.ity of translation rule t:eflects the efficient implementation

of the language on a data flow p,roc.,essor (computer which run.s on some

data flow representation) and thus avo,ids the overhead often exist in the

process of exploiting parallelism at the instruction evel

(2) There is a compile !:i:me chiack for deadlocks~ 1f possible •.

(3) The s,emantics of the language should be simple enough to suggest

the possibility of fonnalization.

(4 The language provides programning features for stream-o,riented

computation.

(5) The language provides progranming features for expressing a sys.t.em

of interconnected modules (or processes) which communicate by exchanging

data through crnnmunication c:.hannels.

We have restricted the scope of this thesis to the follow ng domalns:

(a) We shall be concerned Yith only determinate computations. The

extensions to allow non-determinacy are not considered in this thesis and

a e open p~oblems.

8

(b) The only data types we are interested in are integer and boolean

types and data s true tures are not considered

1,4 Svooe.sis of Thesis

Chapt.e:r 2 introduces data flow schemas and defines certain suhc 'asses

of data f OT,;! schemas which provide the framework fo the develo ent

of the language in subsequent chapters. The class of ,!_ecursive !._ell

formed (rwf) data flow schemas models p ogram con tructs of condit"onals

and recursive procedures. A textual language TDFL (E_ext al ~ata !_low

language) is defined to correspond to this class of data flow schemas.

The l , guage adopts the single assignment rule which has been used by

ether languages such as hat suggested by Enea and Tesle.r 42] • The

eliminatioo of goto' s and non-local references results in the semantic

simplicity of the language and also simplifies dramatically the

trans ation into ~ data flow schemas.

In chapter 3 we extend the language by defining s tteams and primi i ve

operations on streams. he feasibility and expressiveness of che extensio

for stream .. orient:ed computation a e demonstrated by two mt i-programs. The

fir s t exhibits the degree of parallelism in which the simple task of

adding a s~ream of numbers can be expressed. The second demonstrates

the conceptual simpli.c.ity and he flexibility of problem rep esentation

provided by s tl" eam-orien ted computations using the s · eve of Er a tos thene:s

for gen er at ng primes.

I chapter 4 ~e introduce a programming construe ~or describing a

sys em of interconnected modules.. A summary of the results i the theory

of determinate systems is also given.. These res.ults are he basis on wh ch

we asse t the semantic simplicity of the construct.. Two portant

properties of i erconnected modules are introduced: proper i itialization

and proper termination. The ques ion of whether these pro erties are

decidable for the gene al class of determinate systems has not been

ex-plo -ed.

9

W,e then introd·uce a subclass of in.terconnec ted modu 'es in which

both the compile time check for the two properties and the translation

are possible. One of the main reasons why the translation fnto 1.;ecursive

data flo1'l' schemas :l.s considered is that we feel that cycles if possible.~

should be removed unless the transla:tion process is unfe.asibl,e

I n the final chapter we discuss some of the issues which we feel can

be best treated after the presentation ,of t ·e language~ Some of these

issues are: elimination ,of an iteration {or while_loop) construct.

efficiency issues related to primitives for stream operation and the

iring rule for procedure applications. Further wo k and r ,eseat'ch are

suggested.

10

Chapter 2

Data Flow Schemas and Basic Structure of the Langua_g_e.

ln th.is chapter we introduce the data flow schemas and the rules of

computation along l>l'i.th definitions a d illustrations of subclasses of data

flew schemas. The class of data flow schemas which are ell formed serves

as the basis for the semantics of the textual language TDFL (E;extual data

.flow language) . Syn actically the language resembles conve tional

languages ut there a.re. major semantic diff,erences. A program in TDFL

defines a data flow schema accordi.ng o t e translatio rules de ined in

sec ion 2w3. An identifie• in a program may be thought of as a variable in

the conventional sense• n this view an identi -ier can be assigned onl · once -
11global 11 (or 11 non-local 11

) variables as in Algol 60 are not allowed in TDFL .

The exclusion of goto 1 s from TDFL is a oatural consequence of our preference

fo the si ple. syn tac tic correspondence of TDFL with data. flow schemas.

2.1 Data Flow Schemas.

An (mc1) data flo.-, schema consists of a directed graph whose nodes are

either links er actors and additional mechanisms and rules which defi e how

computations proceed The notation and terminology of links and dif e~ent

types of actors are shown io figure 2. 1.

Each ac t:or has an o,rdered set of input and output arcs. A cs pointing to

a aode are input _rn of t::h.e , ode, and arcs leavi.ng it are called output .!!£.!·

A gra h of an (m,n) schema must have m 11 k nod,es which do not have any input

arcs (referred to as input links) and n link nodes which do ot ave any output

arcs (output links) J and all other link nodes mus have one input al."C and at

least one output arc emanating from it. In addition we require that the graph

must be proper in the sense that each arc leaves fro an actor and terminates at

an actor.

Corresponding o the notion of a procedure as in Algol-like languages we

define an(~) module to consist of a graph of an (m,n) schema and an initial

configu:ratioo. A configuration is an assignm.en of _,okens , e2.ch accompanied by

a label to so e arcs of the grap. An assignment of a token t:o an arc is

represented by the presence of a solid circ_e on an arc. The label of a t:oken

11

a) link

b) actors

(i) termi nal

sipk actor

(iii) gates

T gate

2

F gate

[,i,gu:re 2.1

12

(ii) oper~tor

the le t ter 1 f " denotes a

function. under some

interpreta tion

M ga t e

T F

Trees of nodes

denotes the value carried by the token and may be omitted when the value is

irrelevant to our discussion (refer to figure 2 • .3}.

Informally. . the presence of a oken on an arc means that a value denoted

by the label is made available to the ode to which ·the arc points. -e

initi.a. configuration may be thought of as the initia 1zation of variables used

in a procedure .•

To describe. a ,computa.tion of an application of a module to some input.

values we introduce the notio · o snapshots:

A snapshot consists of a graph of a data flow module connected o a.

ser: of input and output actors and a configura.t on. The diag.rams for

input and output actors are shown in figure 2.2. The figure also sho~s

how a graph of a da a flow module is connected to these actors.

The compu tati9 cf a data flow module when .a.pp lied to a set of input

values is described by a sequence of snapshots. The initial snapshot of the

sequence shows che graph obtained from that: of the module as described above and

.a configuration the same a.s cha of the module. In addition I each input a.c tor

has a specification of what values are to be supplied to the inpu link node to

"'bich it is connected during the computation. The computation advances from

one snapshot co the next through the firing. of some node that is enabled in

the first snapshot. The condition under which a node is enabled is depicted in

figut"e 2. 3. T e firing rules fo the inpu and output actors a e also shown in

figu~e 2.3. It should be noted that a necessary conditio for any node to

be enabled s that ea.ch output arc does not ho d a token.

Firing rules.

Excepc: for gates, a nod,e is enabled when okens are presen on all input

arcs and no token is present om t'h,e output arcs., Firing of such a node is

initiated b absorbing tokens from the inpu.t arcs and completed by placing a

token on each of the output arcs. The values of the output to,kens are funct:1.ona ly

related to the values of the input tok,ens. The li ks simply replicate the

values received for dist:ribut on to several actors, A sink actor ,;;,hen fired

absorbs the input token. The ,effiect of firing an operate~ is to apply- to the

input values v 1 , ••• > vm the function associated by an int,erpre a.tion with

13

a.) add i ti ona.1 actors

~ a,c tor

b) a snapshot

Fip;u e 2.2

An (~n}

data flow module

output actor

Additiqnal actors and a snapshot

14

a) link

➔

b) actors

(t) ~ actor

~
(ii) operator

➔

The le ter 11 f'' denotes e func t · on defined over the domains

(iil) gates

T gate

Figure 2 .3 Flrin rules

15

(iii)

gate

➔

M gate

V

T F

V

T F

(1v)
input actor

Figure 2.3 (continued)

16

T

ii '

' .J

putput actor

Firing rules

F

2

the nction letter written inside the operator to yield output values

u11 •.• ~ un. Since 1:he. operators may not be defined for all types of

values~ we require labels to be used to identify he type of the values

for -which it is defined whenever ambiguity nu!Y arise (see figure 2. 4) •

We also require that a constant value operator should have an

input arc serving as a trigger to th~ operator.

the input arcs can be of any ype

Figure 2. S constant functious

The gates are special operators which require that the values

carried by the tokens at the first input arcs a e boolean ~alues :

{ ~rue, false) (see figure 2.2). For the rest of the thesis we shall

refer to these • put arcs as control ~- The boolean \.'Blues are used

to permit the outcome of tests performed by some operators t:o af-ect 1c:he

"flow" of values to ac t:o:rs in the manner dese'ribed hereo • A T gate (F

gate} passes a value presented at the second input arc on to the output

a c if t:he boolean value received at the contra 1 arc is ue (false)

otherwise the value is discarded by not placing it on the output arc. The

N gate (read as "merge gate") a lows a boolea: value t:o det:ermine which of

the two input arcs passes a alue to its output arc. I f he boolean value

~ arrives at the contro at"c, the. value pr,esent or next to arrive a.t 'the

-input arc (the third nput arc) is passed. A value present at he

F-input arc (the second input .«c) is left undisturbed. The complementary

action occurs for the boolean alue false.

17

(i) addition operator (ii), boolean operator (iii) test for
equality

:bool

F gure 2.4 Exampl,e.s ,of actors with tyPed arcs

1,2 ,3 2,3 2 ~3

~ ➔ 0 ~ ➔ 0---B
3 2 3

9 ~ ~ ~
~ ~ ~ ~ -

not enabled not enabled
Figure 2.6 An ex.amp le of a specifica ion for an input actor

V
ID

---•-·-- ----------
y V

l ------ ----

y denotes the initial configuration of the module

Figu:r:e 2. 7 Wel 1-behaved module

18

An input actor is enabled when there is no token present on the output

arc and he specified va ues have not been al placed on · he output arc .•

Firing the input actor causes the next value in the specification to be

placed o the output arc. An example of a specification is shewn in

figure 2. 6, where the sequence of •ntegers 1 2, 3 written besides the

input actor defined that the sequence of tokens placed on he output

should be integer values 11 111 '' 2'', and 11 3" in this order. In the

example~ the input actor after placing the value 1 311 on t;he output arc is

never ,enabled agai - • The output actor simply absorbs the to en arrived

at the input arc .•

Well-Behaved Data Flow Modules

ln the. rest; of the chapter we shall be interested in a cl ass of data

flow modules which is a subclass of well-behaved data flow modules. A

data flow module is we11- behav,ed if the conditions (1) and (ii) hold~

(i) One set of output va ues. is produced for each set 0£ 1-npu

values (see figure 2.7).

(ii) After a set of output values is absorbed the snapshot of the

co.rnputation returns to its initial configuration Furthermore.

we require that in the initial configuration no actor besides

the inp.ut and output actors is enabled.

Well-behaved data f1C1W modules are always functional in t e sense

that a set of output values i:s determined uniquel by a set of inpu values.

The unctionality of a ,well-behaved module follows from the fact that

the links and actors are detennina.t.e systems as defined by Patil [36 L
and the rules of behavi,or of a det•erminate sys tem ensures that the property

of determinacy is preserved for the operation of interconnecting linka and

actors o form a. data fl,ow schema.

he data flow modules s1 and s2 shown in figure 2 .8 are well-behaved

modules. The module s3 is not welt-behaved since the value carried by the

token is different:: after a on-2:ero value arrives at the input. The module

s4 is not well-behaved eit er.

* is requirement is a stronger one than that defined by Dermis [12].

19

a) b)

l o a

c) b)

0

Figure 2.8 Examples of data flow modules

20

2. 2 Recursive ~ell-formed data flow schema,s

T e data flow schemas described in the previous section do not

define how a data flow odule may be employed in another module. We

introduce module. application actor whose notation and he firing rule

are shown in figure 2. 9. By allowing a name to be uniquely associa ed

with a module, the name may appear inside a module application actor.

A module application actor is enabled ~hen a token arrives at each input

arc ,. The effect of firing the actor is to modify the snapshot by

eplacing the actor lili th the module designated by the name (see figure 2 .10) •

We allow modules t ,o be recursively defined by allowing the name o f the

module to be used in an application actor in itself.

The introduction of recursive modules has resulted n the elimination

of che iteration schema (figure 2. 8 (b)) from the class of re.cursive ~ell­

formed (rwf) data flow schemas defined below.

An (m. n) rwf '!ata flow schema is an (m, a) data flow schema formed

by any acyclic composition of component data flo~ subschemas, where

each component is either a link, a sink,. an operator I a module

application.,. or a rwf coodi tional subschema.

An (tn, n) rwf module cons is ts of t:he graph of ao (m 1 n) t'l-lf schema

and an initial ,configuration such that no token is assigned to any arc.

Conditional Subschemas

The diag~am of a conditional subschema is shown in figUI;e 2.11,, where

the heavily darkened arcs a.re labetled by letters denoti g che oumber of

arcs they represent. If P is a (q~a) subschema and Q is an (r, s) subschema

t:hen the conditional subschema is an (mts) subschema. The gates T, F, and

~t actually represent co ,ections of gates of the same type· each of he gates

has a control a:rc f - om the same source iodicat.ed by the Greek ette a. The

subschema R is any acyclic composition o,f operators and has one output arc

which must be of type boo ean.

An rwf conditional subschema is a conditional subschema whose.

compo ent subschemas P and Q are rwf schemas.

21

a) module M b) a corresponding
module application actor

l --------
y M

1 n l

b) the firing rule of module 9.J2Rlical:ion ac~or

M

Figure 2.9

a) module M

r:
.,,

✓ ,
I

I

'l
\
\

' ,,,. - ... ,.

...
' \

>

The notati,on a.nd firing rule for
. a. module app lie:ation ac to,r

... .J

b) an i 1 ustration fo,: the firing rule

;~---- -..
I

\
I

I ,
I

f M ' I \ , ' ,. .

Figure 2 .10 An illustration for the firing rule

22

' ' ' \
I

I
t

Figure 2.12 shows an example of an rwf schema Fact which computes

factorial function.

Figure 2.11

Fact

boolean

T F

Figure 2 2 An rwf module.

23

2.3 I_extual ..Q.ata Io~ b_aaguage (TDFL)

In this section -we des er ibe a textual language design based on the

class of rwf-modules. The semantics of the language is defined by

providing rules of translating a. program in TDFL into data. flow schemas.

The .syntax of TD'FL is described in figure 2 13 where the notation. 11
(• • •

is used to denote any numbe:r of re.petitions of the syntactic obj ects

bound,ed by the braces.

Syntax

In TDFI. an underlined word is a reserved word, and a na111e can consist

of an alpha~numerical characters including u der-scores 11 11 whose first

character must be a letter. The type of an identifier is declared when

II

the ~ame is used by spec fying the tyPe oame: either integer (!a.!:,) or

boolean (~). We require that all identifiers appearing in an ioterface

must be typed and other identifiers need not be typed if no ambiguity arises

,.ri., program may have a list of modul,e definitions followed by a list: of

statements separated by semi~colons. A module if defined recursiv~ly must

use nllOdule as its heading, otherwise module is used. The interface defines

the formal param.e ters of the module by explicitly defining input and output

identifiers. We require tha there be at east one input and one output

identifier for each module and that there is at least one statemeIJt in the

body of a module or program. A statement is eith.er ao assignment a

module-call, or a conditional statement.

24

* < program > :;"' ~ [< module > J < body > ;m:ogend

< module > ::= < heading > < interface > { < module > * <body> m~nd

< heading > :: = <name> ~ module I < name > : rmodule

< interface > ::"' (< in_list >; < out_list >)

* < body > ::- (< statement: > ;] < statement >

<statement> :;c <assignment> j <conditional> I< module-call>

< assignment > ::i= < exp > ➔ < id_list >

<conditional>:;"' if< boolean exp> then <"body>

else< body>

end

< module-call > ::a < name > (< exp_list >• < out list >

< module_applica ion > ,:::::, < name > (< exp-list >)

< exp > ::= < id > I < arith_exp > l < boolean_exp > I < module_applica. ion >

< a.irth_exp > ;:= usua ar"thmetic ,expressions I <module_ application>

< ari th op > =~"" + I - I x I I

< boolean_exp > ~,"' usual logical expressions I < module app ication >

< b_op > :: ~ " I V I -, I > I < I -
< truth_value > !:= truth I false

* < exp_ 1 is t > : ; "' { < exp > t < exp >

* < id_ lis t > ;; = (< id > ~} < id >

< id. > :·"' < name > (:< type> J

< ype >::~integer I boolean

< fo_list > ::= < id_list >

< out_list > ::= < id_list >

Fig,,ure 2 .13 svntax of TDF

25

An assignment has an expression to the. left o the assignment

operator "➔11 , and a list of identifiers to the right. Each assignment

statemeut may be egarded as defining the values of the identifiers to

be the value of the e:xpression. arm.ally, if the expression is an

ari.th_e:xp or a boolean_exp on y one identifier is i.n the id-lis • If

more th.an one identifier ,exists, then they are all defined to have the

same value. For a module_ application expression~ the number of iden ifiers

in the id-list must match the number of ,output p,arameters as specified by

the inter face of the module de ini tion; .similarly the number of ide , ti fie · s

us.,ed as input parameters must match that of t.he defin:ttion

A module call is another form of application of modules. A module

cal is analiogoua to a procedure (or function) application in most of

programmi.ng languages. For a con.ditional s tate.ment we require both branches

of the conditional, ~ < body > and !!.!!. <body>, are specified followed

by an end to delineate the conditional.

Semantics

A modul,e definition specifies a data flow module which tnay be used

in a module_call or a 111odule_application.. The statements in the body of

a module definition describes a. data flow module where an identifier may be

regarded as specifying a link node. The exe.cution of a program then is

the appl"cation of the data flow module described in the body. To maintain

a straightforward correspondence between a program. and a data flow moduleJ

several semantic constraints a.re impos•ed o · the language. The language

under these constraints has characteristics of a :single. assignment language

1n bich each identifier (or variable) stands for a well-defined value and

cannot be updated (i.e., reassigned another value). To describe the semant cs

a defini ion is in order.

A name is defined if either it: is used a.s a module name it appears

in the < out_list > of a module_call or it appears on the right-hand

side of an assignment statement.

26

a. Scope rules

The scope rules for names used as module names and hoa ,e used as

identifiers are different in the following way;

(i) A module name defined in a modul,e is local to i, and within

M the name extends in scope thr,oughout the modu e including other

module definitions defined in This facilitates construction of

m.odul,es employing ot er modules.

(ii) A name used as an identifier (or non module name) is strictly

local in the sense tha. the scope of an idenl:i 1e.r in a odule is

bounded within t:he module and does not ext.e d into the bodies of

module definiti,ons. Thus all identifiers in a module are either

defined in the module or an input par.am.et er.

b. Single assignment rule

We require that -within the scope of a name it can be de fined only

once except when the name is defined in the bod of branches of a

condi iooal s tatrunent. The exception allows an identifier to be defined in

both branches of a conditional, and within the body of each branch it mus

satisfy c.be single assigwnent rule .. Without this ex,ception the "value" (in

tbe sense discussed earlier) of an identifier cannot be affected by the

value of the boolean e:itpression. In the case when the identifier is

defined io only one of the branches, the identifiel' may not be referenced

outside of that conditional statement and can be efe:renced only within

the body of the branch in which it is defined. Therefore an identifier

defined in nested condi ional statements can be referenced outside of that

nesting if and only if it is def·ned in all branches. An example is shown

in figure 2.14 to illustrate the rule.

The iden ifier 11 good" satisfies tbe single assign.met rule and can be

re erenced outside the conditional c
1

• The. identifier ,.well 11 c ari be

re·ferenced outside c
2

but not outside C • 'Ba.d' cannot be :referenced

except i' B1 and B4 •

27

c. Well-defined identifiers

An identifier is well-d~fined :l f in the statement defining the

identifier all ident:1 fiers referenced ere we l -defined in c:he preceding

statements.

An ·dentifier is .automa.ticallly wel -defined if no re.ference of other

identifiers is made in the statement~ or if it is en input.

Thus 't.18 require all identifiers to be well-defined and they must

satisfy be singl,e assignment rule. This requirement guarantees that an

identifier is properly defined in the sense that. it may be regarded as

designacing a unique value.

if X < 0 then -
else

end

F uure 2 • tu

X ➔ good; } Bl
good + 3 ➔ ba.d;

2 X K ➔ good;

if X < 5

_then good ➔ well; }B3
~lse 2 ➔ bad; }B4 c2

bad ➔ well

end• __ ,
well ➔ 8· J

An exacnple for he .&jngle aua.gnment rule

C
1

Wir:h these semantic constraints, ~e. can define the translation rules

by associating ~ith each statement in the body of a module or a program

a subgraph of the data .flow module it corresponds to. An assignment

stat,ement is a speci.fication of how each link node rep-resented by

identifiers and operators (including constant funct:io•n operators) are

connected A condi tfo, al statement specifies a co:ndi tional subschema where

28

the statements t each body of a branch specifies the subschema in the

conditional schema. A module call simply represents a module_applic:ation

tn a data flow schema The rules of translatio are described below

informal 1 y. ith the details given here the readers should be able to

fot"malize the translation process o his own.

Rules of Translation

The translation rules are defined recursi ely and we always anslate

a list of statements corresponding to he syntactic unit of< body >.

We introduce sev,eral definitions used in the tra.ns ation rules.

Def. Let L be a list of state ents then the · np~ and output of L denoted

as I(L) and O(L) respectively are recursively defined as -ollows:

(i) for each assignment statement a. we define O(a) to be the set of

identifiers defined by a~ and I(a) to be the set o f identifiers

re erenced in

(ii) for each conditional statem.ent c: if 'B then P eb_e Q l!nd,

we def ne O(C) .,. O(P) O(Q)

I(C) = 1(B) U I(P) U I ('Q).

That is~ the output Of C is the set: of identifiers common both to

and Q. The set of input of C is the set of identifiers referenced

and not defined in P and Q.

(Hi) I(L) =- l J I (s) ~ lJ O(s)
s~L sFL

O(L) aa I J O(s)
sfL

The set: of outputs of L is simply the union of the outputs of each

statement s ~ L. The set of inputs consists of all iden.t i f ie.rs

referenced but not defined in L.

To t~anslate L into a graph of a data £lo~ module G(L) . we perfQrtn:

(1) Determine the sets l (L) and O(L). Fo~ each ident fier in the

a ets we create a link abelled by t , e ide, t.ifier. bes e are input

p

in C

links and output inks of the graph .. n addition to these links, we

also create a specia link aode called trigger,, which 1s connected

to all constant. function operators. (refer to figure 2 15) .

29

(i) module definition

S module (x i_p.t y in;)

Body

(H)
---- . _...._ __

X int + 5 -, y int

\

3> \
I

I
I

I

M(y . in.t, 5
I

z int) I
I

I
I

I
I ,, _.,,,,

,.,. .
tr1.gger

= >

z

-U,gure 2.15 Exam.ples of translations

30

(ii) For each assigrunent whose< exp> is not a module application

(refer to (iv)) we c eate an acyclic graph of operators according to

t e rules of evaluation for the< el(p >. W,e also connect the input

a.res of operators to the links labelled by identifiers appearing

n the statement. For a constant '7alue we must ere.ate a cons ant

function operator whose input is connected o the Uigger node

crea ed in (i) (refer to figure 2. 15) .

(iii) For a conditional statement c : if B the, P else Q end, ·t:he

following actions are erformed (refer to figure 2.16):

(1) Trans ate P to obtain the graph G(P) and the sets (P) and O(P).

(2) Similar y fo Q.

(3) We create an acyclic graph of operators for the boolean

expression BJ and connect he graph to links specified by I(B);

the graph also has a oolean- value. outpu arc which is •connected

to a link labelled b fo:t distributing the value to gates created

in (4), (5)~ and (6) below.

(4) :For each id E I (P) we create a T gate which is connected to the

li ks labelled id created in step (i) and step (iii) (1)

The T gate has a contro arc from the node b as d-efined in (ii·) (3).

We also create a T gate bo co ect he trigger 1 i k of G (P)

to the link trigger in (i)

(5) Similarly fo Q. except a.11 gates are. F gates •.

(6) For ,ea.ch id c A - 0 (P) n O(Q) ~ a merge gate is created• he

output a.re is connected to the link nodes Labelled a.s id

created ins ep (i) the input arc on the side of the symbol

is connected to the It k also labelled as id in C(P) created

during the translation of P; s:imila:r y we connect the other

i , put arc on the F sfd,e of t e gate to the link id in G (Q)

created when Q is translated The control a c is connected

to the link b

(7) ~or each link node. labelled by an id E O (P) lj O (Q) but not

belo ging to A (as in (6)) we connected t o a sink actor,

since t ese ou puts are not referenced outside of the

ccmd i i:iona 1 c.

31

A con.di tional s.tatem~nt

if X >0 then .--..........,

else

end

Translated conditional.

I
l

' \

I

I
I

\
\
\

Fi_g_ure 2. 16

5 - out ;
y+x-z

w + y _.. temp
temp)(2 -z

aubscbema

z

;

I
I

/ ,,..,,..,,,,

\
)

' I
I
J

An example for the translation rule (iii)

32

(v) For ea.ch module_call o - module_application in additfon o

connecting the module application actor tc proper ink nodes we

must. provide a.n ~tra. input arc to t.he module_a.pplication actor

f-rom the trigger link no-de defined. n (i). This is the result: of

the decision to translate a module of m inputs and n outputs nto

a data flow schema having o , e extra input. link as trigg_er.

This concludes the translation , ules for a list of statements. We

noted that in step (iii) (7). sink actors are used tc provide a place

where. tokens may be discarded. The translatio t"Ules are not in ended

to be optimal and in an imp ementatioa we ma.y perform some steps

concurrently and the translation of each statemen may also be done. in

parallel.

We translate each module definitio by firs tra.nslati:ng the

statements Lin the body l:o obtain the graph G(L) and the sets I(L) and

O{L), then the set of links :t (L) corresponding to the input

de.nti.Hers together with the special trigger link are chosen o be

input links, and output links are selected from 0(1) and all other inks

are connected to sink actors if they don't have any output arcs. We recall

that for a p ogram satisfying Che constrain s of single assignment and

well-defined identifiers a.11 id,Emtif e.rs in (L) should be inputs of the

module.

The graph translated from the body of a pTogram should not have any

input lh1ks except the link trigger> since thet"e are: no · puts ~o a pr:ogram

The outpu~ links of the graph are a 1 connected to sink actors.

The data flow modules coir-responding to module definitio sand he

program consist of the tt'anslated graph and an initlal config acion which

is empty in the sense that no oken is assigned to any arc. The execution

of a pl'.'ogram is to apply the data- flow module to input actor which fires

only once (see figure 2 17).

data flow module for
a. program P

P:

etrigger Execution

the input actor
fires o 1 once with

_ __.__any value.

p

Figure 2.1 7 -~ program

33

Summary

In this chapter we have defined TDFL by describing a translation

rule of a program into a data flow module The language, however can be

defined independently of data flow schemas. A program may be thought of

as defining a function associated ~ith each module and a set of

identifiers representing some we.11.-deft·ed values according to the

statements.

A simple module to compute the greatest coliml.On. dev.lsor using

Euclid I s algorithm is shown below:

Euc lids: rmodul,e (X : integer, Y : integer: gcd : integer)

if x ,_ y then y ➔ gcd

else
if K> y then X - "1 _.. z;

Euclids (y ~z) - gcd

else y - X - Z~

Euclids (x ,z)
end

... gcd

,end

34

Chapter 3

3., Streams

The types of computation exp"essible in data flow schemas

encompass a large class of computations over sequences of values. In

this chapter we describe an e.xt:ens ion to TDF which provides a. basis

for the expression of computation on 11 streamsu ('We shall use the word

synonymously with "sequences) of values.

3.1 Motivation

In many programming applications we would like to describe a

computation as a function defined over streams of input values and output

values. For example, in applications involving signal decoding.,, a decoder

may be described as a transforma.tion on the sequenc,e of i put signals

hich produces a sequence of characteis or words. This transformal:ion in

many cases can be though of as a function defioed on sequences of signals

or symbols. In computer systems input and output routines ar,e more easily

understood as compueations over sequences of characters (or possibly

sequences of compacted symbols). We can view the structural organization

of a com iler, for in·stance, as hav ng several hases.

These phases are often treated as a set of co ,;-outines betyeen which

sequences of items -epresentin.g syntactic components of the compiled ·program

are passed. Thus a lexical analyzer receives a s equ,e.nce of characters

and generates a sequence of words, and a syntax analyier may be constructed

to receive a sequence o words and produce a sequence of data structur,es

r,ep-resenting some syntactic component of a program such as a s atement or a

block.

Comp tation s of this kind are often represented by co-~outines. The

advantages of co-routine structures are poioted out by Conway [7 J and

Knuth [27] The co-routine primit_"ves, however, are not suitable when

parallelism is desired. This is a significant drawback since there

generally is a substantial degree of parallelism in !:bese computations.

The lack of su.i table programming language cons true ts for such computations

has mot vated the use of da Ca flow schemas as the bas is for a programming

language which can support computation on streams.

As pointed out in section 2.2> a data flow schema may be used to

define a computation on sequences of values onarestricted use cf

data low schemas however, is not desirable. We ther,efore int-roduce

some basic operations in TDFL as primitives from which programs fo

stream- oriented computation can be constructed. ln what follows we

spec fy the semanti,cs for the extended TDFL and the rules of translation

into data fl,ow schemas,

3.2 Semantics for Streams

The ext,ended syntax for TDFL is shown in figure 3 . 1 ~ere the extensions

of the syntax is enclosed by dashed boxes. For computation

on streams, we define ~o new types stream integer (or st int) and stream

boolean (or il bool) in addition to int~ger end boolean ypea. For

convenience we shall refer to the st U and ~ bool types as str,eam types,

and t e int or bool types as simple types An ,empty stream is a stream

with no items. Syntactically, a stream- value is demoted as an ordered

sequence cf constants of the same type bounded by square. brackets 11
[

11 and

111
]

11 with the ordering from left to, right.. Thus an intege stream consis,t

of the integers 7,5, 9and 11 in this orde r is written as [7, 5 9, 11] An

empty stream is therefore. denoted by (L and a stream with the single

integer S is denoted by [5].

36

<exp>::~< arith_exp > I < booleari~exp >I< module_appl"cation > I
-- ~ --7

•< stream e.xp >,
L - - _-_ - J

r ~ ;t;~_ex;; ~ :: < s;:e~~;r~t~;; (;; in_1ts7;) 1<;-t;e~=c~n-;ta;i~ i
I
11 < stream_operator > ~ :"" ~ I eon-s •
I I
I< stream_const:ant:s > : := < boolean_stream > I < inte.ger_stream > 1

~ I
< int:egel' stream > ; :"" [(< integer > - < int,eger >] I I] I

I - *
L- _ _::_b~ole~ =~t:e~_>_:_:_~ ~ _<_t:~1:_-~a:u.: ~>~ _ <:_ ~~t~ ~al~_> J_I_ [2 J

. r - ,_ - - - - -- - ,
< a.rith_exp > : :-- usual arithmetic expression I I first < in_list >
< boolean_exp > : : = usual boolean expr,ession I 11 empty < L-i_list > : t , ____ ---- -

Fig,ure 3 1 Extended sznta.x for TDFL

I n TDFL In data. flow schemas

r 1.s, 9,111 est 11 9 5 7

•)t -- • >--- ••-•>- ,.>-
t 1

est

rs l est 5 . ,..
Figure 3.2 Examples and Representation in Dat:a, Flow Schema

37

In data flow schemas an integer stream is, represented as a seque.nce

of integ,er values followed by a special token designated as ~nd of stl'eam

Soken (est) • Figure 3. 2 i .llustrates ho,w a s Cream is represented ,

In the ex ended TOFL we allow assignment of s treaw expressions. to

stream typed id,entifiers. We shal 1 describe the semantics of the operations

empty, fi~s, t, !.!.21:1, .and con-a in terms of the ,effects on stream values.

The notation and e.xamp es are shown in figure 3. 3 ;: data flow schemas

defining these o,pel"ations are shown in figure 3.4 1 where tbe operator ~

is a I: es t for the s pee i al value .ill, whose output is ~ 1 f the input to ken

is ~ and fals e otherwise. The operato,:, ~ ia not allowed in t:he

extended TDFL and hence safeguards against ill-fo,rmed sequences of tokens.

Note that these data flow schemas have non-empty initial configuration and

when a, s.equence of tokens representing a st.ream passes through. these

operators the initial configuration is reestablished

(i) eJ!ll!tY

he operator em,pty is a predicate requiring an input of typ,e stream

and an output of type bool ,. If ,i: is of type stream~ hen. the value of

empty(x) is~ if xis an empty strearn;otherwise it is fa se.

(ii) first and est

The operator first requires an :l.nput of type. stream l,,thicb must not

be an emp,ty stream and yields a simple value which is the first item

in the stream. The operator !:_ill is also defined only on non-empty

stream values• the output of !!!!:, wheo appl i ,ed to a stream x is the

stream obtained from x by removing the firs item.

(ii i) con-s

The o,perator con-s requires two inputs. Let X be of typ,e stream

and be of the con-esponding sim:e:le type (e.g .~ if X is ty-ped as

stream i~ tege.r then y must be of type integer); !:hen the output of

con-s (y,x) is a stream resulting from attaching y t .o the begin ing

of the stream x.

Thus. if z is defined as:

con-s (y: int x: st i.nt) ➔ z : tl int;

then first(z) yields the value designated by y and !:!!_!(z) yields the

stream designated by x.

38

(i) empty
stream

boolean

(ii) firs

streacn

s►

s. fI!P e

rest
stream.

>
: stream

(ii·) con-s

stream [2 ~3]

3)

Figure 3.3 Notac'ons aud examples for ope ations on st.ream.

39

(a) the opera or e_os (,!.nd .e.f ,!_tream)

(b) first

.,, .. .,.
'

.,.
✓

' / / '\ I ' I

' I ' I

' I \ I

' • I t

' ! I I I I t II
I I ' 11
f I } ' ' \ \ ~, \ true I

\ - -, \ ,
' I ' /

/ / ,,, ... _.,,. - __ .,,,,,.

~
: simple 1 .

... -
✓

f
I
I
I
I
I
I
I
f
I
I
I
I
I

'

: stream
----·- - ---- - --...

' l /
I
I
I

' I
' I
I
I
I
I
I

I
'

~

any integer or
boo lean value

.... ... , ,,.
I'

I

I
I
I
r
l

\

'
.... ✓ _ ...

x stream

Figure 3.4 Stream operators

40

'

J
/

/

\
I
I
I
j

I
t
I

'

\
I
I
I
I
j

t'rue I

----✓

I
I
r
I
I

In figure 3. ,4 we a so define an operator ~ which pro-duces two

outputs corresponding to first(x) and !fil(x) whe applied to the input

.scream x.

3.3 Translat ons

The translation rules for a program in the extended TDFL described

in section 3~2 are basically he same as those descr"bed in section 2.3,

with the exception of the following:

a~ Constant tream values should be translated in to data flow

schelll.a.s which gene.rate he stream when a. token is received for

triggering the generation of the sequence of tokens

from 1:he trigger link node.

b. Translation rules or conditional statements must be amended so

t:hat the semantics of an assignment statement embedded in a co ditional

will be properly defined as described be.'..ow.

Constant Stream OperatoTs

The translation rule for constant st:ream value is illustrated by

an example sh~ :n figure 3. 5. he notation for a cons t .ant stream

operator is simply to write the constant value in the opera.tor. The

operator .lli is a consta t. operator which generates the special token est.

The reade should note that for an empty stream Olil 'I the ~ t:oken is

generated.

Conditional Statements

The translation ru es described in section 2.3 can be ap-plied directly

to a progr using str,eams in he extended TDFL when there are. no

conditional statements. As de•scribed in the semantics we would like to

use an identifier to stand for a stream, the semantics of the condi iona

statement:

(a) if x > 0 the.n Y: st-ream ➔ z: stream

,else [2,3~4] ➔ 2.

end

is naturally understood as:

41

A co stant function [1.2 .31

notation

da. _a flow schemas
,-... -- """"-- ___ , __ ,_,_ - ~-- ----- ,.

l
I

' I
I
J
l
I
I
I
I

Fi ure 3.5 An exa , le of c_onstant function for a stream v~lue

stream X

z stream

F T

z : stream

Fi.gure 3.6 A conditional schema improperly translated.

42

(~) if xis greater than O, then ;11; is defined 1:0 have the value of y

which is a stream, otherwise the constant stream value is assigned~

The translation rule when applied to the example above yields a

data flow schema as .shown in figure 3.6. From the discussion in section

2. 3, readers, should. be ab · e t:o ve ify that the boolean ope.rator 11>11

receives only a singl,e token from the link actor labelled as 11x 11 during

the ,computation of t.he program. Each gate actor, t.herefore~ rec ,eives

only one control tokien, i. e ,., a boolean value ~ which implied that the link

ac.tor z receiv,es only one token rather than a stream.

o provide a translation rule t o support the. semantics exemplified

by (P) we introduce new types of gates Ts~ Fs~ and Ms corresponding to

'T, F and et'ge gates, r:espec tively. The no ation and data. flow schemas for

the gates are shown in figure 3.7. The ts and Fs gates allow a stream

to pass upon receiving a p-rope:r boolearn value. The Ms gate selects the

input arc from which a scream value is to be passed to the output

ae-,cording to the boolean value received.

The translation rule (iii) specified in section 2 .3 is modified in

parts (4,), (5) :t and. (6) as fo lows~

(4) ' For each id € I(P) l,'\'e create a T gate with proper connections if

the id is of type simple, otherwise a Ts gate is employed.

(5) 1 Similarly for Q except gates. are either F or rs.
(6)' For each id e A "" O(P) n O('Q) J a merge ga.te is created if the

id :ls of type simph, otherwise an Ms gate is used.

The result of applying the modified translation rule to the statement

(a) is s hown in figure 3. 8 . The reader should be able to verify that

the translated data flow schema doe.s implement the semantics described in (.B).

3.4 Example Programs

In this section we demonstrate how computations om s .reams may be

defined in TDFL. The examples chosen are based on comput:atio,ns on integer

values. We believe that by e.x-tending the domain of the language to include

st.ring values and data structures, programs in other are.as of application

can be expressed with the same degr,ee of clarity as that exhibited by the

examples~

49

Ts gate

Ts

Fs gat:e

Ms gate

1s

r

' I I
\

'

(
I
I
I
I
I
~

I
I
I
I
I
I
I

x r a,tream ---- ----------

--------·----✓
z : stream

I
I
I

' /JI

y

-- -- --- ---

'--~- ------ -- __ .,,,,

I
I
I
I
J
I

/
/

---- ---- --~-
Figure J.7 Gat~s for streams.

44

control

I
I
1:

I
I
I
I
I

)
/

trigger stream .simple

Figure 3.8 A properly translated data flow schema.

45

Exa1D.ple I. Computing the sum of integer va ues in a. stream.

We shall pl!'esent two programs. The first ut:Ui~es a. stJ:"aightforward

method of adding each i .t:em in the str,eam to the accumulated partial sum.

The other computes the sum by a method commonly kno,wn as 11binary tree.

addition." only the module definitions of these programs are presented.

Program la. Serial addition.

serial: :rmodule(par tial _ sum : int, input ~ .2S int. , sum Y!f)
if empty (input) then partial_swn _. sum;

else get: (input) -+ head : int, tail ! !,l lnt

partial_sum + head ➔ n.e:w_sum : int

serial (new_sum, tail) ➔ sum;

end

mend

Program Ih. Binary tree addition.

Firstly e define a module "alternate11 as follows:

al te.rnate :· rmodule (X : _st int; ¾ : !!_ int• x2 : fil. i1tt)

if empty (X) tbe:.n [] ➔ xl ~.

else

end

[] ➔ X2

get(X) ➔ head ~ int~ tail

alternate (tail) -+ x2 , x
3

~ons (head, x3) ➔ x1

st int· ---·

T e effect of applying 1'aU:eniate1 to an input st:ream is to produce

~o streams which are obtained by alternately assigning tokens in the

input :stream to each str,eam. Therefore, the applicaeion, alternate

([lt2,,3,4,5]) yields two streams [1,3~51 and [2~4J.

Tbe module II al ternat:e 11 is the.n employed in the module "binary-add 11

.assuming that t.he sum cf an empty stream is zero.

46

bi ary_add : rmodule (input ; s~ int; sum int)

if empty (in-put)~ 0-+ sum

,else get (input) ➔ hea.d 1, tail;

if empty (tan) .then head ➔ sum

end

~-

else alternate (input) ➔ x~y

bina.ry_add (x) + bi ary_add(y) ➔ sum

end

'!he module hinary_add involves itself recursively if the fnput

stream contains at least two items, otherwise i I: returns the value cf the

ooly item in the stream, or it t'eeurns zero as the sum if !:he stream is

empty. The data flow schema for the module binary_add is sho\m in

figure 3. 9. The graph of he snapshot :resulting from the applies. c ion

of the module to the inpu · [1, 2,3~4, 5] is shown in figure 3.10, where

for simplicity e do not show gates and boolean operators The net of

actors contained in the triangle with shaded Hoes distributes the

numbers in the input stream tote binary~tree-like structure of "plus

operators

P~rogr.am II. Computing all primes less than n.

We shall use a variat:ion o the method known as 1:.he siei,e of

Eratosthenes by representing the aieve as a stream of integer alues.

e a .gorithm is described as;

a. Given input n ; int, generate a stream of integer values

consi:s ting af a 2' followed by all odd numbers less than or equal

ton in ascending order for n.:::, 2.

o:r: n < 2, an ·empty stream is ge: erated.

b. Recursively delete multiples of prunes using the module delete_np.

The module ''generate" wh.ic.h performs wha · is specified in part a is

described belo'W:

47'

bina1:y-add / trigger
: sl: int ---

Ct.

- - p

a

Figure J.9 'Binary-add

48

I,.igure 3. 0

...

' [1 ~2 ,3 ,4 ~s]

\

' I
I

alter
nate

' ' l
' ' \

nt

\2
\
\
\
\
I

' t
I
I

I

'4
' I

I

A snapshot for binary-add

49

I

generate module (n : int; out : !,! ill)
if n < 2 then (J ➔ out

mend

else evecy_otber (3,n) ➔ odd_seq•

con s. (2.,. odd_seq) ➔ out

every_other : rmodule (.eb : int 1 up : i t; out il .!!!!)
if lb > up then [] ➔ out

else tb + 2 ➔ next;

,every_ o,ther (next up) temp~

con-s(.tb, temp) ➔ out

To perfo:nn deletion of non-prime numbers we define the module

delete_np which uses "delete" as building, blocks;

delete_n.p: rmodute (:tn: st int; out: g int)

if £111Pty (in) then [] ➔ out

mend

!l._s _get (in) ➔ prime, tail·

end

delete (prime, tail) ➔ new;

delete_np (new) ➔ temp : st int•

con-s (prime, temp) ➔ out

delete nnodule (base ~ int~ in : s~t int; out : st int)

if empty (in) then [J ➔ out

else g_e~ (in) ➔ head, tail;

end

mod (head, base) ➔ residue;

delete (base, tail) ➔ temp;

if residue - 0

then temp ➔ out:

else con-s (head, t ,emp) ➔ out

e_nd

so

The module 11mod 11 is the modulo function. The module delete_np

simply removes he first item in the input stream and pass.es i as a

prime number to the output; this prime is then used to remove non

primes in the remaining sequence of va uea by calling 11delete11
•

The. main U'IOdule 11prime 11 is defined as;

p im.e : module (input : int; prime_stream : il !n!.)
generate (n) ➔ integer_stream : ,!! int;

del,ete_np (int,ege _stream) ➔ prime_stream

mend.

The. structure of the program is easily seen in a snapshot of the

computation; again, gates and other boolean operators are not shor.m in

figure 3.1 for simplicity,.

ote that the paxal lelism is ex.hi bi ted by the possib y concurrent

firing of da.ts flow operators in different activations of the module
11 delete_np. 11

51

(i)

___, __ ,.. delete....., _ _ ~

input
- np

prime-stream. !1 i •t

(ii)

input

prime

1

prime-stream ~(-------~ -------!------~

first act·vation of
delete np

\ \
\ ,

k-th activation of
delete-np

figt re 3.11 A suaoshot fqr '~iu::twe'11
•

52

Chapter 4

4. Communicating Modules

The extension of TDFL defined in chapter 3 allows us to define

modules fer computations over s reams. The language• however, does ao t

ave semantic constructs for describing computa ions expressed as a

system of nterconnected modules comnunicatiag by passing data through

coTm!lunicatio channels. This notion of interconnected modules arises

from ou familiarity with the method by which we describe. hardware

systems and i: terprocess, communication in operating systems.

n this chapter we shall be concerned with systems which are determinate.

We hope th t proper semantics o:r expressing determinate systems may provide

a firm foundation for achieving a better unders !:anding fcir a more gen ra

class of paralle ,computation W,e present a S\llll!Dary of some relevan

resu l:s in the theory of par.all el computation in section 4. 1. t hese results

· ustify our intention to provide a semantic construct for interco nected

.systems explic ted section 4.2. We also define the notion of proper

'nitializaticn and proper terminatio; programs haviag .t ese propert ies are.

desirable for reasons de ailed lat&.

It is evident that we may not be able to determine whether the

initializa.tion and termination are proper in geue al without significant

analysis of the properties of each module. Therefore, an incompletely analyzed

system may run into deadlocks. W,e pro-pose in section 4.3 an extension of

well-behaved modules. The systems COtlSt.ructed f om these components which are

well~hehaved modules have a necessary and sufficient condition for prope

initialization; t anslation into reou sive data f ow schemas can be defined

as in section 4.3.2.

In sec !:ion 4. ,4 we discuss s ,everal extensions which can bie useful

4.1 Properties of determinate systems

Int uitively a ystem is dete.nninate if repeated application to the same

se t. o- i.npu c auses precisely the same set of outputs to be produced .. In

an asynchronous system the order in which each input is presented and each

output is produced is immater al provided the complete ou put: is produced ac:

some finite time aft er the comp le t:e set of input ia assimilated (or absorbed)

by the s ystem. A generalization is to consider a sys em o, be determinate

when the puts and outputs are sequences of values (see figure 4.1) .

SJ

(i)

to tk t
VI

.
•U

9···~
• k s s . ~-·➔ s l l l

(ii)

. . .

V • • •• V l L-----m. J m, n

I:.
k

. ••> V V U U m~6 rn,s....__ __ _____.. n ~2 n,1

t
lJ u j •.• ul 1 r----- b l '

The system s2 is determinate if for . the same se~ of input:
sequences the aet of output sequences produced is t.be same.

Figure 4. l De terminate systems.

54

The intuitive co,ncept of determinate system is formalbed and the

propercies of inte.rco ecte systems whose components are determinate

are s tudi,ed by Patil [36) • We S1JllJIDarize some. of the results below•

readers are referred to Patil [36] for de.tailed defini ions and

furt er discussions.

Closure property of determinate svstetns

(i) Any finite in erconnect ,on of detenninate systems is determinate

provided the communicatio mechanism between them satisfies the

c _ash a free property.

(ii) communication mec anism is clash-free if:

given any sequence of signals (or values denoted by the signals)

observed at the se.nder s end of the c.ommu ication mechanism, the

same sequence is eventually observed a.t the other ,end and the

receiving system is guara teed to have assirn" lated all the signals

in he same order

(i 1 i) Some of the cl ash- free communication mech an i ams are

a. fifo queues whic may be fin.ite or unbounded;

b. ready and acknowledge signaling conventions.

As an example, actors of data flow scherna.s are detertni.na.te systems;

and s ce t:he firing rules are defin,ecl as to be clas -free, any system

of interconnected actors is determinate. 'th~ attractiveness of the

closure property is the most important reaso why data flow schemas are

chosen as the bas1s for expressing determinate parallel computation~

The results a.hove do not suggest how the collective behavior of the

system can be abstracted from the behavior o, ~ he subsystems and the

closure prope ty does not justify t e u e of recursive subsystems.

Rece t developments i formal semantics have introduced lattice

theory a a basis for defining semantics of progranming languages (Scott

[40] ~ S tr a.chey [41]) • e theory has also been int1:oduced as a

theoretical ba.s e fer determinate systems by Kahn [25 J. In ~hat follows

we only Slll:I!ma.t'iie the results and discuss seve~al implications which are

relevant to furthe d'i.acourse.

55

In th.e forma.lbation of determinate. systems in lattice theory the

communication mechanism c ,onsists of ifo queues of unbounded length_

The result is the simplification of the charact,erizati,on of determinate

systems a.s continuous functions over lattices, of signal sequences. The

closure property of determina.t,e syst:ems is reformulated as:

An intercon:nectio of determ.i ate systems also cleiines a

continuous function over the lattice ,of signal history.

From the results of la.tt:ice theory, ,one can also define the

continuous function characterizing the collective behavi,or of the system

from the set of continuous functions which is t.he abs tra.c tion of the

behavior of the subsystems. Furthermore~ the use of recursive activation

of subsystems is justified.

The unification of semantic basis fo determinate systems and

programming langu.age.s h a powerful argument for co,ns truct:ing parallel

computation based on functions defined over signal seq·uences. The

unifica.t on has the added advantage of making existing techniques for

proving correctness of programs (Vuillemi.n [46]) applicable. to proving

properties of determinate systems.

In the actual implementation of a language suP:pOl'."ting computat ·,on as

suggested one must understand the i.mplicatio,n of the requirement for

unbounded fifo queues as the communication mechanism. If the implementation

cannot: provide sufficient computing resources to simulate the effec.ts of

unbounded fifo queues, the outputs of the determinate computa:ti,on may be

le.ss than what could be expected otherw-ise (in the sense tha'I: t.he expected

output is not compl,et:ely produced.). om a different perspective, a

language designer should ensure that the comnunication mechanism provided

by a language must be properly defined. so that the semantics of communication

mechanism satisfies the requirement.

It should be noted:, however~ that in such a language one must be able

to prove that the program does not require, unbound,ed. computing resources.

56

4. 2 Syntax and Semantics of Coumunicating Modules

The extended TDFL in section 3. 2 can be used to, specify any acyclic

connection of data flow modlilles by module_ca 1 ls er- module_applicaticms

Here we int -oduce the co struct < performJrcmp > to describe a system

of int,erconnected modules. Figure 4.2 shows the syntax where the body

is comp ised of a subse o statements allowed in TDFL. This restriction

is only to simplify the complexity and may be elimi.oat.ed when the basic

semantics is understood. hroughout the rest of the discussion we sha

conform to this restriction.

Semantics

A perfonn,_group defines a "block0 in the sense that all identi iere

are local except those appea.ri:ng in the interface. The ide ti fiers

which appear in the interface are "non- ocal 11 in the sense that they

extend their scopes throughout the body of the module o 'the p Ogram

containing t e perform_group as a statement.

A perfoEm_group can be defined to be a module by specifying a name.

An id,entifier of simple typ,e designates a link acto through which only

a token carrying a s.imple value may pass.

Identifiers cf type stream designate link actors through ~hich a

sequence of values forming a stream must pass .

57

< module > : := < name > ; < perform_group >

< s tat.eme t > : := < perform_group >

< pe.rform_gro,up > . :- puform < intel'face > < p_ body > pend
* -< p_bod > : :- { < p,erform_statement >; J < perform statement >

< perfottn_statement > : := < module_call > I < imited_assignment >

< limi.t:e.d_assignment > : :"" < H.mi.te.d expression > ➔ < id_ ist >

< li ted_expression > • ,.,, con-s (< simple_primary > < id >) I
I < module_ application > l < s - ple_prim.ary >

< simp,le_primary > : :"" < id > I <integer> I < trutb_value >

Figure 4. 2

Extensions of syntax for < pe:rform_gr,ou.p >

The statements in the body of a pe.rform_grou-p specify a data flow

schema which may be cyclically c,ormected. We, do not enforce the

requirement that an ide,ntifier must. be defined in a statement befor,e any

reference to it within a perform__group; therefore~ cyclic con ,ections

can be spec· fied. We impose an additional constrain.t that data flow

schemas specified by statem.ents cann.ot have links of simple types on any

cycle. Thus all links lying on a cycle must be of ty-pe stream.

Initializations for he system described by a perfo m group a~e

defined by a set of assigllIO,ents using con-s ope ators. For simplicity>

this way of describing initialization may be preferred to the provision of

ne~ Language constructs for this purpose.

Figure 4.3 shws ~ example of the use of a pe:rformJrou to specify

a data flow schema; notice that the box enclosed by broken ines contains

statements which are used for specifying initializations, and that be

con.sta'llt values correspond to constant value actors whose inputs are frotn

the trigger link. The reader may have noticed that the modules are n01:

58

input

bool

from trigger l "nk

perform-group specif cation ,of above S!1Stem

M
2

(input, t 4- t ,, t 3);

M1(x i5~t1) ➔ t 2;

M
3
(t

2
,t

3
; t

6
, output, z)•

--- -,
con--s (c.rue~ t 6) ➔ t

5
;

con-s (x2 t
5

) ➔ t
4

I_ - - - - - - - - - - - - - -
pend

Figure 4,. 3 A per fonrL....g.t'Oup

I
I
I
I

ll 1 t

diagrammed as m.odule_application .actors. Thi.s is because an important

discrepancy exists for the semantics of the ·module:...calls and module

applications in perform__groups: they should be understood as macro­

expansions in the conventional sense and not a.s module_application

actors which are replac ,ed by the corresponding modules according t:o

the fi ing rule specified in s ,ection 2.2. That is,, module_calls are

regarded as specification.s of data flow schemas whose m.odule_application

actors are all replaced by the corresponding data flow schemas. Because

a data flow schema may involve itself recursively, this replacement

process must be simulated rather than actually performed. Semantics ly,

howevel", w:e may regard a recursive da.ta flow 1!u:hema speci ried in a.

per ot"m_group a.s an infinite structure obtained by the above-mentioned

replacement process. (A correct implementation for s :mulatin,g the

replacement process is to regar:-d a module_ca.11 or modul,e_a.pplication

specified . n a perforn:i__g:r:oup as a special module_applicat. o. actor

which iB enabled whenever the firs.t token. arrives at one of its input

arcs.)

We ex lain the reason "Why this discrepancy arises using a very

simple example shown in. .figu.re 4.4. The modul,e 1. simply multiplies

the i:nputs by tw'o. The modu e M
2

adds pairwise integers from two input

streams The module M is constrocted as shewn in tbe d:Lagr am. For a

module_application actor of MJ the fir ng rule is that the actor is no

enabled until one token is present. on each input arc. As a result no

outp~t arrives at the link z until some token arrives at y. lf the

module M is substituted in place of t:he l!lOdule application actor~ (refer

to figure 4. (ii),. where we hav,e 1, troduced the notation for denoting a

substituted module)~ z wou d receive some outputs some time after~

receives inputs from regardless of whether any input has arrived at

the input y.

60

Ml

Mi . .

rmodule (x ~ !,! int• z : !£. int)

if empty(x) then [] ➔ z

else zet(x) ➔ bead,. tail;

t,;_ (tail) ➔ more;

con-s (2 x head, more) ➔ z

end

mend

rmodule (y, ll in_t. z . st int; w ll int) .
g empty(y) v em.ptt(z)

then [] ➔ y

else g_et(y) ➔ y
1
,y

2
;

g_et(z) ➔ z
1
,z

2
•

M2(Y2, z2) ➔ Ql;

con-s(y1 z
1

• w
1

) ➔ ~

M module (x !! int, y st .int · z il ~, w s~ int)

Mi(x;z)•

M
2

(y,z•w)

(i) mo<lule_a-pplication actor
for M

(ii) the modul,e is substi uted for
he actor

notation

Figure 4 4 An Exmle

61

Discussion

Modules defined over streams provide a semantic basis fol'

d,escribing; an interconnected system satisfying the 1;,equirement that

the odules communicate by unbounded fifo queues. This claim is

justified by ·no ing that ith! - each module the chain.s of stream

operators actually simulate unbounded fifo queues.. ThereforeJ provided

that during the computation the computing resources do

n.ot exceed physical limits I the whole system can be characterized as a

continuo,us func ti.on as suggested by Kahn [25] •

re shal 1 de fine two concepts which are important to tbe further

discussiou.

Def. Let S be a determinate system in which some links are designated

a.s inputs and outputs. Then S is properly initialized if the

computation does not d·eadlock (in the sense ,of reaching a configuration

in ~hich no actors are enabled) before all outputs produced are terminated

by end of s tr,ea:m tokens (es!)~ and S h w operly terminating 1 f after all

outputs a.Te tenc:inated by end of stream tokens, 1:he computation does not

undergo infinite number of firing of actors.

Figuratively, if ,one waits at the outputs of a system which is not

properly initialized. 1:he.n there is no way of knowing when no more outputs

are to be produced. The situation of indefinite waiting is also undesirable

because of the inefficient utiliza:t:tOl.l of computing resources caused

by deadlocks. A system which is not properly terminating may run

indefinitely after all outputs are produced. Since a sys.tern is defined

only in terms of the input aod output behavior al computati,ons performed

after outputs are completed are unnecessary and a waste of resources.

Figure 4.5 shows three examples constructed from the module M whkh

produces an output steam by adding pairwise. the integers in the two

1npu.t streams. The first example is an improperly i .nitialized system

because of the la.ck of any initial value for the second input of M. The

example (ii) shews the situation where the sequence of tokens provided by

the cycl~cally connected module never terminates. In the last example (iU)

an initialization is provided for the .system s
3

; the system is both

62

properl initialized and te.rm.inating because it is guaranteed to p oduce

a stream as its output and no more computation is t itiated a ter the

module 1-f receives an ~st from the first input 11 in. '

The properties of proper initialization and termination are easy

to check for the particular examples shown because the behavior of the
module M (in terms of 1:he umber of inputs required to generate some
number of outputs) is independent 0 t e values of inputs. This is not

the case in general since the behavior of a module may be highly dependent

o the input values .

M

if empty (x) V empty(y) then [1 sum

~ get(x) ~ first rest_x;

end

S,&(y) ➔ first__y~ rest_)•;

first_x + f1rst_y ➔ temp;

M(rest_x, res _y) ➔ r,est sum·

con-s(emp, res _sum) ➔ sum

(i) improper initia iiation

S 1 ; per form (in : st i t ; out ~ ~ Ll)
M (i, loop oop) ;

loop ➔ out

Figure 4. 5 Examples for the Intitializatio and
ermination

63

(ii) proper initialization. but improper _termination

s2 : perform (in : ll int: ; out ; ll int)

M(x 1 y emp) ;

con-s (5~ temp) ➔ generate;

(in, generate; out) •

generate ➔ x,y

The graphical representaeion looks like:
y

f~o trigger

1----------'•out

(iii) pro_per initiali.zati,on and termination

S 3 ! perform (in : st int • 9ut : st int)

M (in, loop ; ,out) ;

con-s (5, out) loop

pend
from trigge

Figure 4. 5 (continued)

64

out

4. 3 Well-Behaved odu_}j!s

In this sectio · 'We will be co cerued with a sys em specified by

a perform_group in wh."ch all modules are either efined ove.r simple values

or are extended lor.i'ell-behaved modules as described in what follows .•

4.3.1 Semantic Extensions

In this section we define a semantic exte sion of well-beh vecl modules.

so that interconnected sys·tems can be cons true ted from these modules.

Let M b e ai (m n) module whose inputs and outputs are of simple i::ype,

then the extension of M, de oted as M1 is defined ove.1: tream values

as -o lows: (Note th.at !:he module M may incorpo,..ate submodules which us,e

st: ea.ms. The requirement tha all inputs and ou puts are of either

boolean or integer type means that the module M must be well-behaved.)

d all 1dentifie.rs x1 , ... 7 Xn and y
1

• _. ,Yn urus t be of consistent t pes

wit:h the cor • esponding parameters of the module. M rt

rmodule (x1 : ~~ ••• ,xn : M.. ; y
1

: st:p • .,yn st)

if empty(1½_) V n V empty(x)

then [] ➔ Yp ... , y n

else g~t (x1) ➔ first x1 , rest_x1•

g_et (x) ➔ first~, rest X •
n - n - n

M(first x ; ••• first x • first v , ••• , first_y) .
- 1 ' - m",, l '

M1 (rest_x ... ~1 rest_xm; rest,_y
1

••• , rest_yn)·

,con-s (first_yl" rest
1

) -+ Y
1

;

con-s (firstJn, -rest_yn) ➔ Y,

end

mend.

There ore the extended module produces output st-reams whose length,

i e •• the number of simp e values Jn a stre , is the same as the shortest

stream presen e at he inputs. A simple example is shown ll figure 4.6.

65

M modn] e (n ; int , m int sum B!E,)

m + n ➔ sum

mend

Then. the ass.igpment s tat:ement:

M' ([l, 2,, 3], [l • 2 J) ➔

produces as the result iralue cf ~, [2 1,4].

[2 ,4)

[1,2]

Figure 4 6 An Illusttatiom for an ExtEmde_d Module

x(nT)

~

y(nT)

The second-order difference equ.at:ion is

y(nT} = k
1
y((n-l)T) + k 2y((n-2) T) + x(nT) - Lx((n-1) T), where the

initial values for y(- T):, y(,-2T) 1, and x(-T) are zero.

Fig:w:-e 4 . 7 An E_xample from Signal Process!,ng Application la second ord_~_r
,digU:al _filter) •.

66

We believe that the proposed e.xtension is a natur 1 one and semantically

it is also easy t:o understand. We should mention that one of the most:

important p~operties of he extension is that the checks for p oper

initialization and termination can 'be done without detailed analysis

of the module. •

The utility of the extended well behaved module is seen i the

example bor owed from the descriptive method of a digital filter in

signa processing applications _(see figure 4. 7) The operator ~
-1

designates unit time delay which is simply an a.re: in the corresponding

diagram drawn in the data. flow sc. ema. form, figure 4 8. The co stants

k 1 k
2

, and -L along the arcs are to be in erpreted as the constant

factor by which the v lues passing through the arcs must be tiplied;

the equivalence o,f a constant f ctor is shown as a module in figure 4.8.

The initial! ation is shown in figure ,4.8 by con-s operators The

erform-grou.p defin.ing the system shown in figure 4.8 is given in

figure ,4. 9. As the reader may notice,. the restricted syntax for

perfonu,;roup resu ts in athe.r cumbersome module d ,efinitions for c
1

c
2

a.ncl

c
3

• We believe that proper synt.aetic sugaring may ermina e c:his

problem.

~------~--,_.. __,_._____ ___ _
F:

rigger

l
I
I
J

I
I
I

' I I
J

------------- - -~ ---· -----~-Y

Figure 4.8

67

modu ,e (x : _int y !nC) C
I

(- L) X X ➔ y

mend

C 2 module (x : int ; y !!:!,)

Kl XX ➔ y

rnen_d

c 3 module (x : int ; y int)

K2 X X ➔ y

mend

Add: module. (x1 : int: , x2 : int ,
3

.int , x:
4

int y i_!'lt)

X +);;2 + X3 + X4 ➔ y

mend

F : perform (x : st _int ·, y : ll int:)

con-s(O,x) ➔ t ; ci(t
1

) -+ -
2

;

con-s(O t
3

) ➔ t
4

; c2(t
4

) ➔ t
7

;

con-s(O t) ➔ t • c'(t) ➔ t
6

: ---- ' t s~ 3 s ·
Add'(t

6
,t

2
,x,t

7
) ➔ t

3
;

Figure 4.9

68

tall identifiers a: e of tyPe
.ll~i

Proper Ini tia.lizatio:n a:nd Pr,oper Tet:mi.nation

An extended well-behaved data flow schema behaves like an actor

which _ s enabled when a token is present: at ea.ch input: arc. If oo est

t .oken is presen:t. the effect ,of firing is to produce. output values from

the input values according to the well behav,ed module If any input

token is an ,es~,, the effect of firing is to absorb all tokens arriving

at: each input and to put one ~ t:oken on each of the out:puts.

Fig~re 4.10 illustrates the behavior of the extended module M1

described above. The diagram (i) shows the fi , ing rule wheu a token

carrying a simp!!, value arrives at each input: of M' ~ the outputs

u1 •••• ~ n is the same as what would be produced by M if the input

v
1

t ••• ,vm were given,. The dis.gram (ii) shows t e situation l,,Then for

the first time~ any of the inputs to M' is an eEl_t token (there may be

more than one such input). The. diag -am (iii) exhibits the behavior of

M1 after the situation described by (ii) has occurred; note that some

of the arcs may not have any tokens if hey have already received~

tokens and the input tokens are simply absorbed without any more output

being produced.

There is an almost exact correspondence between a sy.stem of

e tended well-behaved modu es and a marked graph (Hack 20]) exce.p

that the behavior of the extended module after :receiving the first est

oken is different. This difference~ howe,,,er,. does not invalidate the

applicability of t e necessary and sufficient condition for Uveness to

determine tmether a system is properly initialized. e quote the neces•

saxy and sufficient cond tion. for liveness of a marked graph: (We refer

the rea:de.r to Hack [20)

Let G be a marked graph, then. the initial marking is live if and

only if there is at least one tokien on each directed eye e of G.

T e co esponding n,ecessary and sufficient condition for proper

initialization of a syste S is the .followi.ng:

A system Sis properly initialized if and only if there exists

at least one initialization (represented by the presen~e of a ,con-a

o erator) on each directed cycle in

Examples are showti in figure. 4.11, where we ha.ve adopted an abbreviation

69

(i) when no est token. bas ,ever been presented at inputs:

(ii) when for t:he first t:ime an~ token is present at some input:

est
0 -

Some other v'.s may be est tokens~ for ex.ample tbe arc a: bas an est token .
1

(iii) after (ii) bas occurTed:

Some arc should not hold any
toke -s if an.@..§.! token has
be·ng received such as a.

Fb:u:re 4.10

1

The behavior of an extention of M

(i) abbreviation

X y

trigger

X y

is represented as x ••----4••---►~ y
V

is represented as

(ii) an imeroeerly in'tial'zed system

s1: perform (x 1:st, x .·,==-»-~

The system has the outermost cycle ot being ioitialized.

(·) a ptoperlv initialized sxstem

y

Figure , 11 Examples f,EI initializations.

7

for representing initializations as shown in (i) The system s
1

is

not properly initialized becaus e the outermost cycle does not contain

any initialization. The system s2 is properly initialized and there

a.re two eye 1 es containing two initializations.

I n seccion 4.3. 2 we give the rules of t-ranslatio,n for a system

of extended well-behaved modules. The translation rules are defined

such that: the condition for proper initialization. can be checked

and he resulting recursive data flow· schema is always properly

terminating even when the translated system is not.

4 3 2 Translation into Recursive Data Fl~ Schema

The translation rules given here use l:he property of marked

graphs that if the initialization of a graph is live the initial

configuration is reestablished after all nodes (corresponding to well­

be.haved modules) fire once. The process of reestablishing t.he initial

configuration is called an i _terat:ion. Therefore 1 in a system of

extended well - behaved modules~ e ach time an iteration is com-ple ed a

token "1ould have been absorbed by the. module t ,o which an input link is

connected. he re.cursive data flow schema resulted from the translation

actual y performs in each recursive ac civation the computation requir,ed

for each iteration. Because some of the modules may receive end of

stream tokens, part of the system 1llaY not be performing any computation.

It is necessary that the recursive schema pro,perly determines which part

of t.he co putaticm needs not be pel"f,ormed .•

We define rhe follmdng notations to facilitate the defi ition of

the rules of transla iou, under the assumption that we are translating

the data flow schema specified by a perform_group which is named S.

(This assumption simplifies the trandation rule since o 1 iden i fiers

appear in the interface of the perform_group and thus circumvent the.

undesirable complexity introduced by the existence: of constants o

other kinds of expressions in the interface.)

72

Def. Ist{S)

Ii (S) s mp

Ost(S)

0 simp(S)

L(S)

V(S)

Translacion Rul~s

denotes t:he set of in.put links which are inputs

of S and are of type stream..

denotes the set of input links which are of type

simple.

denotes the set: of output links which are of type

stream

denotes the set of output links whic are of type

simple.

denote.s the set of link actors whose input arcs are

int tialized by the presence of tokens. ote that

an initialization may be made by an input; in such

cases the i .dentif ier of the input is written next

to t e token [se.e fig~ 4.11])

denotes the set of links designa.t:ed by identifiers

whic'h appear a s labels for the tokens indicating

lni tial:lzations . (Refer to figure 4. Il (i) and (ii) •)

The working of the translation assumes th.e e istence of a graphical

representa.tion for the schema S and some ,effective way of manitmlat ng

representations of graphs. We b elieve that this assumption results in

easily understandable translation rules. We sball outline the

translation rules below, then each step is tu,:;panded in detail later

Step(i)

In this step, we obtain two schemas E and from the schema. s.
The schema F corresponds t:o the pert of S 1<1hich ·is specified by

st:atements involving o:nly simple values; therefore it is acyclic. if

·the semantic les are observed The schema E corresponds to the. part

of S which is specified by sta.temeots involving stream values. The

schema Eis obtained by bt'eaking up the cycles in at link nodes in

the set L(S) and should o t have any cycles if he system S is pr,operly

initialized. Intuitively, t:he sch~ E contahu; acyclic data f101w

schemas which perform the compu ati.on required to complete an iteration ..

73

Step (ii)

We embed the subschemas of ~ in conditi,onal schemas. The purpose

of this em.bedding is to avoid performing the computation which is not

nec.essary ow-i.ng to the behavtol' of S after some exte.nded well-behaved

modules have received est tokens. We cal 1 the resultant a.chem.a E • •

St;e;e (iii)

e use the schema E '1 to construct a reclll'sive data flow schema R

expressed in TDFL by allowing 1est tokens and the predi.cate ~- This

recursive schema simulates the computation of the part of S consisting

of extended well-behaved modules The ·recursive activation of R stops

when all outputs ar,e termf ated by est tokens (i.e.~ R is properly

terminating).

Step (iv)

The desired scbema. T consists of a m.odul,e_eall of the schema F

and a module_call of the schema R.

We ·n,ow present the transla.ti,on rules and simple ex.amp es are used

for illustration.

(i) The schema Scan be partitioned into two subschemas s
1

and s
2

connec !:ed a.s shown in figure 4.12 The schema s1 corresponds to the

part of S which is specified by stat,ements in:volving only simple values;

that is 1, it: co t.ains all links associated with simple type identifiers

and a actors defined over simple values including constant value actor.s.

The schema s
2

corresponds to the part of S which i .s specified by statements,

involving stream values and therefore includes all extended modules and

the con-s ope ators. The schema is simply the schema s1 with the modules

replaced by the corresponding module_applicat.ion actors, and with the

addition of a new set of links W(S) as shown in figure 4.13 (Note that

links are a so provided as output links of constant value actors.)

The schema is obtained from s
2

with the following rules:

74

s
2

Figur~ 4.12

75

from consta
· value

a

of s

trigger

0
simp

(i) Y E: L(S)

x:stream

(ii) y C L(S)

\ I x: stream ... _.,./

W(S)

I simp

~

fl"Om
::"\-constant
.,,,-) value

actors

. .

trigger

0
simp

Figure 4.13 The schema F

: simple

x:str,eam

y 1 e L 1 (S)

X y• 'I

Figut'e 4.14 Splitting

76

y:stt"eam

a. Replace all cob.-s: operators, by arcs as shown in figure 4. 4 (i) .

b. 8plit each link y in L(S) as exemplified in fig,ure 4.14 (ii) by

creating a new link y 1 e: L' (S) and reconnecting the input arc of

y to y'.

The effect of the splitting: c .f links is to break the cycles of the

schema s2 at the points where initializations are defined,.

c. Define input and output inks of the schema Eby

In - st(S) U L(S)

and out ; o
8

t(S) U L' (S). (Refer to figure 4. 15.)

The example illustrating this step ::l,s shown in figure 4.16.

(ii) There are three su.bsteps a, b and c. Let o € Out, then by Dep,(o)

we mean the set: of input links in In which have a directed path leading

to the link o in the scheme E.

a. For each o e: Out, we create a subschema g(o) of E which contains

all intermediate links and act.ors on the ·path1;; between inks in

Dep(o) and the link o,; the arcs which emanate from these act:ors

but. do not lie on t.he paths, are terminated by sink actors (see

figure 4 17 (a)). Note that this process tn fact: may duplic.ate

actors as h the case 'in the figure 4.18 (a). This is because of

our intention to makie the translation rule as s.imple as possible.,

b .. The subschema g(o) is embedded in a conditi,onal sc.hema, as sbown

in figure 4.17(b), after the links x1 e Dep(o) and o are reamed to

be x1 and o', respectively.. We shall cal the resultant c,ondit:ional

schema C(o). The schema P eouta,ins tests for end ,of stream tokens

and b<>olean operators such that the output value is~ if none of

the input tokens to ,each input link x
1

€ dep(o) is an.!!!!, token and

is false otherwise. The conditional schema, therefot'e, yields the

output computed by g(o) if the output of :Pis true; otherwise it

yields an est token.. In.formally, the conditional schema may

''propagate'' the !!!_ token (tokens) and thereby simulate the behavior

of S when some ill tokens are received by some modules. Examples are

s,hown ·in figure 4 .18 (b) .•

77

S:

~

E:

,,,
/

I
I
I
I

' \

F" gure 4.15

' \
\
\
I
I

'.C'he schema

F:

E:

z

~

78

..... __ ,,,,,.,
w' e: W(S)
z I£ L' (S)

2

(a) a subschema g(o)

x. € Dep(o)
l

g(o):

(b) embedded subschema

C,(o):

a:

~
•

0

X

0

X
n

(*) P produces a.!:.!!:!! value if none of x;,s is the est token,

otherwise a falee va ue is produced.

Figure ~.17 Embedding of a subschema g(o)

79

(a) using ~he example shown in figuer 4.16

(b)

In.,.{½ ~z} Out"" {y2 ,z
1

}

g(y2)

embedding of g(y} and g(z')
.2

I
11

\

Xz I ,
I

I
I
\
\

z

_,

\

' ' I
,I

a:

---..-

a:

g(z')

z•

er

\
\

a I
I
I
I
J

I

' I
J
)

I
/ .,,,,.

C(z 1) :

x2 z

,,•-- ..
/'

1 the s:aa:ie as '\
IC(y

2
) except I

l g(y2) is J
replaced by J

g(z I) ..' __ ...,_ -~'
ZI

Figure 4.18 Examples for step (ii)

80

(c)

E I ;

F'gure 4. 8 ~continuedl

81

c ~ be. schema. E' merges all input inks of C(o) for o E: Out,

which has the same identifiers a.s labels. The sets of input and

output links of E 1 are a.imply In and Out~ r espective ly. This step

is demonstrated y figure 4 . 18(c). The :reader should note that the

computation carried out by E I a.ctually perfonns the computation

required to comple te an iteration (i.e .• , the process of reestablis'b­

ing ini ial ,c:onfigurat.iori in the sense of ini eial markings of

marked graphs as exemp ified by figur,e 4 .11) in S, if the modules

do not eceive any _fil tokens.

{iii) As described informally previously, the schema E' performs the

computation required in o•ne iteration. The schema R simply repeates

recu sively iterations. and. terminates when all outputs are completed (i.e .• J

when the o•utput:s of the module call to E I yields ol' ••.• ok ~ ,e,s t) as te.s ted

by the conditional A (see figure 4.19). The recursive schema R is define d

as, fo 1 lo,ws :

Let ip, • , im e Ist (S)

o11 ••• ,ck c Ost(S)

t 1 , ••. ,tn e L(S)

.t{ .- •• , t~ E: (S),

then we define a module E fTom the schema E 1
:

<body> specifying the schema E'

~.
The modu e for the S•chema R ia expressed iu TD'FL by allowing est as a

constant value and eo~ as a predicate,, as shown in figure 4. 19. -ote that

the function o~ the group of statements in B is to 0 absorb 1
' one more

token frOD1 each input. in Ist,1 and that the function cf the group C is

to put one more token on each output i Ost whene\Fer one iteration is

completed.

82

R

B

A

if empt;.y (i1) then est ➔
1

; [1 ➔ _I
1

.

else get (i1) ➔ 1
1

, r_I
1

end;

(simi!at" y for i 2 ~ • • , im)

!! ~(01) A ••• A ~(Ok)

then [J ➔ 01'. ~. i Ok;

est ➔ t1 ~ . . . , .e, ~

~

C

end

R(r_I1~•••, r_Im, L1~••• Ln•

r......,:o , ,.. r_ok~ t1~e~);

if ~(o
1

) !£!!! r_;0
1
➔ o

1
~lse con-s(01 r_o1) ➔ o1
end

Figure 4-. 9 The schema R

83

(iv) La.stly,

le.t j
1

, ••• ,j a 'e Isimp Pr ... ,.pb t: Osinrpt and wi, ••• ~wt e: W(S),

then ~he odule Fis defined as follows:

F : module (j l, j a; Pp ••• , Pb, w :1 ••• ,, wt)

<body> specifying the schema

mend.

The module T below is the res:u t of the translati,on of S

T : module (list of input id Is, list of output icP s)

F (j 1' • • • ,. j a; Pp • u , Pb, t.11 ,,. • • • wt) :

R(i1 , ••• ,im' wp·••iwt;

01,·••,ok, Ji,·· ,t~)
mend

The module T performs the computation corresponding to that of s
1

first and the outputs w1 , ••• ~wt are used as initial values to s2•

4.4 Extensfons

As described in section 4.,2 1 a perf.onu_ group may be named as a

module. We did not, however, allow recursive perform_groups. This

extension p-rovides more gene: ali ty, and 111a,y be embedded in the language.

We have restricted the. kind of assignments allowable in a perfor:m_ group.

Some extensions such as the inclusion of first, get and stream valued

cons tan ta can be useful. I t is an open issue whether conditionals should

be allowed in a perform_group,.

84

Chapt,er 5

Summary and Conclusion

In this thesis we presented a parallel programming language wh ch

is inherent y determinate he s.emanttcs of the angua_ge is given by

providing rules for translation into recursive data flow schemas. The

language incorporates important features which contribute to the

semantic: simplicity of the anguage: single assignment, explicit

declaration of inputs and outputs of a. module,, .st.ream-oriented computation~

and co structs for defining a system of inter-communicating modu1 ,es.

In sec ion 5.11 ve shall discuss some additional issues related to the

above features. We have avoi,ded hese discussi.,ons thus fa:r in order to

prevent readers from befog side-tracked and with the hope tha.t we can

provide a more complete and coherent point of view. Section .5 2 points

out several issues on data flow schemas and their implementation.

'Exte sions of the language and areas for further research are suggest.ed in

section 5.3.

5.1 Stmm1ary and dis,cusaion

In chapter 2 we introduced data flow schemas and the basic structure

of TDFL he class of rwf data flow schemas exc udes iteration schemas

aa a result o - several considerations. Fi st, the semantic.a of iterati,o ,

schemas involves the update of an identifi.e:t and theirefore does not conform

with single as sig:nment. Second I lile feel that efficiency arguments against

t'ecursion are · ot justified in ge e al and that the recursive form of

describing iterative processes in an asynchronous system may result in

faster completion of the computation. Third, in the computer archi.tec.tur,e

proposed by Dennis, Misunas [14-] iteration schemas ·need to be

modif ,ed by adding gates to revent the arbitratio network from possibly

hanging up (Misunas [35]) • The elimination of n.on-local identifiers

results in .simple translation rules for TDFt and avoids the ques tior.i of

whether non-local identifiers should have static or dynamic binding

The explicit distinction of inputs and outputs of a module is a

natural consequence of t he single assignment rule and circumvents the

semantic complexi ty i ntroduced by defining parameter p•assing conventiops ,

85

We may relax the t"equirement that all identifiers be we.1 .-defined by

allowing references to identifiers to precede their de ioitions.

Chapter 3 1 traduced n,ew pri:mi t:1.ves which provide for computations

over streams .. By el1mi.nat1ng end of stream tokens (est) and the

predicate. end ,of stream (eqs) from the language TDFL one can guarantee

that ill-formed s,equences of tokens will not occur.

In chapter 4 we summ.ariz,ed some of the results in the heo of

puallel computation on determinate systems. The behavio of oterconnected

data flow odules is shown to be properly abstracted in r:erms o,f

lattice theoretical functions 1 which suggests the possibility of unifying

the se antics of the language within the framework of the Scott-Strachey [40]

mathematical approach. (As. a side issue we must. point out that in forming the

lattice of the partial ordering for stt"eams one mus include the est

token as pa?"t of the signal histo,ry.)

The concepts of proper initialization and termination were discussed.

We believe that any program should either be ex-pressed i the subs,et of

the language guaranteeing that thes e p'l!'operties exist or else are

specifically proved to satisfy these. proper ties. We defined a subclass of

determinate systems composed of extended well~ behaved modu es and gave

necessary and sufficient conditions for determination of proper

initialization. Trans ation i:nto properly term.tnating recursive data

floYI' scbe.m.as is also given for the subclass.

5 ,. 2 Related Issues on D1ata Flow Schemas

he firing rule of the module_ application actor requires a token be

present on each input arc for the act:o to be enabled This requirement

actually makes a computation less asynchronous since all inputs are

guaranteed to arrive if 1:here is no non-terminating computati.on which does

not generat,e any outputs.. The f,easibility ,of relaxing the firing rule

fol:' the module_app,lication actor should be considered seriously t e,rpecially

if it should result in higher d,egree of parallells:m than what would be

,otherwis,e. As a result the semantics of odule_call in a parform gr,oup

can be greatly simplified.

86

Co sider for examplet the program shown in figure .5.1. The

activation of he module generates a snapshot as shown io figure 5~2,

where only get and con s operators are shown. The long chains of get

and con-s ope a ors cause substantial inefficiency i the implementation

for da.ta flm.1 schemas actua ly generates these chains, since tokens must

travel thr,ough the ,chains whose lengths keep on increasing as new

activa ions a.re invoked. This need not be the case if the implementation

sinru ates the effect of these chains. For instance, arrays may be

employed or some mechanism for dynamically shorteni g the chains could be

devised.

Chopper ; modu e (x ; st int y : tl int)

if empty (x) then [] ➔ y

~ get (x) ➔ x_he,11d 1 x_ est;

if x_ head < 0 then [] -+ y

Fig,ure 5.1

87

else. chopper (x_r,est) ➔ y_rest;

~ {x_head y_rest) ➔ y

I
I /

""res7
'y

x_head /

I
I
I
I

' I f',
I
\

first acl:ivati 10J

I
I

'/...
head/

I
I
r

.... [
'1

\
\
\

second \
activation\

\

I
I

I

'

I
I

I
I

I
I

I
I
I

X rest: ,-
fl',,

x_head {

I
I
I
I

.... ~
\--
' last

activation

Figure 5.2 Chains of stream operators

88

5 3 Further Work and Research

The language TDFL is minimal in. the sense that many desirable

features are not included for simplicity and can be added if so chosen.

For example new data type such as stri '& and data structures based on

the acyclic structure of C:Bt (D,en -1s [10]) may be included,. and cormnon

occurences of nested condi tiona.ls may be reduced by case st at:,e:ments.

Computations involving data st.rue tu: es often exh:l.bi t high degree of

parallelism. An example is the simultaneous activation of processes

operating on each component of a data structure.. A for all construct ma:y

be defi ,ed for ,expressing this kio.d of parallelism. Primitives for

converting a data structure to a stream comprised of substructures and

vie e versa a:y also prove use. ful.

It is st, 11 an open area of research to deftne a set of primitiv,es

for non-determinate c ,omputations. When a data st.ructure is shared the

"Monitor' concept advocated by Hoare [21] may prove adequate.

Techniques for optimization and transformations which are applicable

to data flow schemas to gain efficiency and more para le Us s ti 1 need

to be investigated.

89

~IiLHGRAPHY

l. Adams D.A. A Computation Model ith Ds.ta Flow Sequencing. Technical
Report CS 117, Compute Science Dept. School of Humanities and
Sciences, Stanford Univ.~ Stanford., Calif. , Dec. 1968 .

2. Anderson, D •. , F.J. Sparacio, and R.M. Tomasulo. The IBM S stem/360
Model 91: Machine Philosophy and tnstruc tion Handling. .!]fil Journal
of Reseat'lch ~ Development, 1~, 1 (Jan. 1967). 8 - 2.4.

3. Anderson~ J.P. Prog am Structures for Parallel Pt'ogrmmrd.ng. Comm.
~' ~ (Dec. 1965) 786- 788.

4. Bahrs A. Operation Patterns (An extensible model of an extensible
language.). ~- £!! Theoretical_ Programming~ ovos i birsk ~ U. S.S. R. ,
August 1972 (preprint).

5. Balze-r R • Port; A Method for Dynamic Inte.rprogram Cotli!IIlUnication
and Job Control. ~• AFlPS ~-, 39.

Barnes, G B. ~ _!!. al. The Illiac IV Computer. IEE'$ Transactions on
C,omputers, £:!I, !!_ (Aug. 1968)t 746-757.

7. Conway, M.E A Multiprocessor System Design. !?roe !J:££, 23, (1963),
139- 146

8. Dahl, 0.-J~ ~ al. SIMULA. 67. Norweigian Computing Center, Oslo~
Norway.

9. Dennis, J.B. First Version of a Data Flew Procedure Language. Lecture
- o!:es in Compu.te.t' Sdence, 191 (G. Goos and J. Hart:man·s~ Eds .),
Springer-Verlag, N. Y., 1974~ 362-376.

10. Dennis, J.B. On the Design an.d Specification of a Common Base
Language. Proc. £! the. .§:me. !m_ Computers a_nd AutowataJ Polytechnic
Press of the Polytechnic Insti ute of 'Brooklyn~ 1971 47 - 74.

11. Dennis, J.B. Coroutines and Parallel Computation. Proc. Princeton
Confe-re.nc ,e, 1971.

12. Dennis 1 J •. B. and J.B. osseen tntroduction to Data Flow Schemas.
CSG Memo 81-1~ Project MAC, .r.T., Cambridge, Mass.

13. Dennis, J.B. • and D. P. Mis unas. A Com.put.er Arc hi ec tu.re for Highly
Parallel Signal Processing. .R!.2£· of the ACM 19]4 National Conference~

.Y •• Nov. 1974~ 402-409.

14. Dennis, J.B. end D. P. M!:sun.as. A Preliminary Arch.itecture for a
Basic: Data-Flow Processor Pt:oc. of ~ Second An.nu_al ~- £!!_
Co puter Architecture - IEEE, N. Y. ~ Jan •. 1975> 126-132.

9'0

15 Dennis~ J.B. , and E. C. Van Horn, Programning Semantics for
Multiprogramming Computat: ons. Comm. AC , 2. (Mar. 1966) 143-155.

16 Ellis, D.J. Semantics of Data Structures and References. Report
TR-134, Project MAC, M. I. T. ,. Cambridge. Mass., Aug. 1974.

17. Dijkstra~ E.W. Notes on S uctured Prcgrantming. Seructured
Programming. Academic Pr·ess~ 1972.

18. Dijkstra, E.W. Coaoperating Sequential Processes. Pr,ogt:anmin,g,
Languages. F. Ge.nu.ys~ Ed.• Academic ?ress, 19'684

19. Fosseen, J. B Represen ation of Algori runs by Maximally Parallel
Schema a. S. M Thesis, Dept. of E .• E. ~ M. I. T. , Cambridge Mass

20. Rack, I. H. T. Analysis of Froduc tion Schemata by Petri Nets. Report
TR-94, Project MAC, .I.T., Cambridge, Mass. 1972.

21. Hoare~ C.A R. Monitors: An Operating Syst,em St, ucturing Concept.
CS73-401 Dept. of Ccmpute:r Science~ Stanford Univ., 1973.

22 .. Hoare 1 C.A.R Towards a Theory of Para lel Programni.ng. OPerating
System Techniques (ed. C.A.R. Hoare and R •• Perrott), Academ c Press,
London, 1972 .

23. Hoare~ C.A.R. Paxallel Pt'ogr·amm.ing: An Axiomatic Approach. MetllO AIM
219J Stanford Artificial Intelligence Lab., Stanford Univ • . Calif.~
1973.

24. Kahn, G. A Preliminary Theory for Par all e 1 Programs • In terna 1 Memo
lnstitut de Rech. d 1 inform. et d'Automat., Rocquencourt, France, 1973.

25 Xahn, G. The Semantics of a Simple Language for Parallel F~ogrammins.
Proe:. IFIP Cong C~nferecce, 1974.

26. Karp 1 R.M I and R.E. Miller. Properties of a Model for Parallel
Computations: Determinacy, ermination. Queuing. ~ Journal of
App ied Mat.hematics, 14 (Nev. 1966) ~ 1390 1411.

27. Knuth, D. E. Fundamental Algorithms. The Ari: ,of ProgrSJilmin,s Vol.
Addison-Wesley.

28. Knuth, D. • Structured Programming w. th GOTO Statements. Computing
Surveys of the ACM~ .&_,. No. 4, Dec. 1974 .•

29. Kogg,e, R.M. ~ and H. S. Sto e. A Parallel Algorithm for the Efficient
Solution oi a General Class of Recurrence Equations. STAN-CS-72-298
Dept. of Compute.r Scie ce , Stanford Univ., Calif., 1972.

91

30. KosinskiJ P.R~ A Data. Flow Language for Operat:ing Systems Programmb1g.
Proc. of the ACM SIGPLAN~SIGOPS Interface eeting ,, SIG PLAN otic,es, ~'
9 (Sept:° 1973~89'- 94.

31. Krieg, B. A Class of Recursive Co,routtnes. ~., IFIP Cong. Conferenc,e,
l.974.

32. tamp-or t, L. The Par a.lle.l Execution of Do Loops • £2!!!!!. of !!!£. AC_M , !l,
o. 2, F,eb. 1974.

33. Lau,esen, S,. A Large Semaphore 'Based Operating System. ~ of _!!!,
~~ lB, No., 7 July 1975.

34. Le.vi tt~ K. • The Application of Program Proving Techniques to the
Verification of Synchronization Processes. Pro_c ug£, 1972.

35. Misunas, D. P. A Computer A1;cbit:e.e ture for Data Flow Processor. S. M.
Thesis Dept. of Electrical Engineering,, M.LT. J Cambridge. Mass., 1974.

36. Patil, S.S. Closure Property ,of Interconnected Systems. Record of t~e
Pro,;~ t MAC .conference .Q! Concurr,ent. Systems ~ Parallel Computation,
AC l.Y.,, 1970.

37. Ramamoothy c.v. 1 and M.J. Gonzalez. A Survey of Techniques for
Recognizing Parallel Processable Streams tn Computer Programs.
Pr~c. FJCC', 1969 1 1-15.

38. Rodriguez~ J E. A Graph Model for Para lel Computation. Re.,port TR.-64~
Project MAC, M. LT., Cambridge, Mass,, Sept 1969

39. Rumbaugh, J .E A Parallel. Asynchronous Co111puter Architecture for
Data Flo11.1 Programs. Report TR-150> Project MAC~ M.I.T. ~ Gamb~'dge,
Ma,ss. 1975 .,

40.. Scott D • ., and. C. Strachey. Toward a Mathematical Smnantics for
Computer Languages. ~- of the ~- £!! Computers and utcmata~
Polytecfo:dc Institute of Brooklyn, Apr .• 1971, 19-46.

4-1. Strachey, c.~ and C.P. Wadsworth. Continuations ~M A athematical
Semantics for Handling Full Jumps. Technical Monog ·aph RPG-11,
oxford Univ. Computing Lab., P:rograuming Re.search Group Jan. 1974.

42. Tesler~ L.G. axtd H.J. Enea. A Langua_ge for Concurrent Processes.
1!££_. SJCC, 1968.

43,. Thom ton, J.E. Parallel Operations in Control Data 6600. AFIPS
Conference ~- j , 26, Part lI ~ AFI:PS Press,, Montvale, N. J. , 1964, 33-41.

44. TOlll8sulo, R.M An Efficient Algorithm for)q)loiting Multiple
Ari t.bm.etic Uni ts • _M Journal £:! Re_searcb ~ Development t 11, 1
{Jan. 1967), 25,-3.3.

92

45 Traub, J.F.,, (ed.). Complexity of Segu8JJ,tia.1 and Parallel Numerical
A go itbms. Academic Press, N.Y •• 1973.

46 Vuille:min, J .F. Proof Techniq,ues for Recursive PrograIDB .. Memo AIM~21,8
Stanford Artificial Intelligence Lab. 1 Stanford 'Univ., Calif~, 1973.

47. Zahn> C. T. A Control Statement f,or Natura Top Down Programming •.
Presented at Symp on Pr,og11;amning Languages~ Paris~ 1'974.

93

