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ABSTRACT 

In this thesis we present a parallel p ogramming language based 
on a parallel computation model known as data flow ache: as.. Syntac­
tically, the language resembles programming languag,es such as Algo 1 60, 
but does not: have GOTO's, WHILE-loops 1 and non-local var"ables, The 
attract·veness of this approach lies in the inherently determinate 
na.tur·e of data flow1 schemas and the possibility of fo,rma lizing the 
semantics of the language. within the forms. ism suggested by Scott and 
S trachey. The language provides programming features foir scream­
oriented co.mputation and inte.rcommunica ting sys t:ems. Re introduce 
the notions of proper initialization and termination of such systems. 
A subclass of determina,t:e systems in which these properties can be 
easily checked is defined and a translation into :r,ecur.sive data flow 
schemas is given. 
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Chapter 

Int oduction 

1. l Parallel Computation 

Over the past twenty years there have been many technical advances 

in the field of computing~ but achi ,evi:ng efficient a.nd effec ive 

utilization of computing r ,esources still eaia ·ns a significant problem. 

It is generally recognized that parallel computa t: · on provides for the 

speed-up of computations and for better u i ization of computing 

resources. The advantages of paral lelisrn unfortunately, are often 

overshadowed by the dif iculty of exploiting the nat:u1;al parallel' sm 

of computations in highly pa:rallel compu.t · ng systems. This if iculty 

s due mostly to the lack of a.de.qua e programming form.a isrns and 

appropriate computer stTuctures to support their efficient implementation. 

As the cost of software dev,elopment becomes higher and the design 

paramete s for digital system.s change, it: is · ncreasingly more impor ant: 

to consider he princip es by wh"c.h programming a guages and computer 

struccures may efficiently perform parallel computation. 

Co- ventional programming languages such as FORTRAN, Algo,1 60, and 

PL/I are essentially based on the centra ized sequential'. control structure 

of the Von eumann machi -e. Control primitives for parallel computation 

such as CALL and - AIT in PL/I, and synch:rooization schemes using semaphores 

a:od he semaphore primitives P and V introduced by Dijkstra [ 18 are 

natural ext:e sions of the sequential control co cept. Programs written in 

c::onventional languages which incorporate these paralle programming 

cons true ts are limited i the deg ee of parallelism they ,exhi b · r: 1 and the 

use of these primitives may in roduce undesirable side-effects. From a 

diffe ent point of view~ the difficulty in provi.ng the correccness of 

these programs also reflects the unsu·tabil t:y of conventiona prog:rarnmin,g 

languages for ara lel progracmning tasks. 

The lack o,f suitable lan~es as inhibited the developme t of 

parallel ccmputet·on techn ques with which many forms of computation such 

as pipeline 
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or multi-pass processes may be more naturally expressed. Because of the 

highly disparate s ructure o: existing highly parallel machines t:be. parallel 

computation. techniques used with highly parallel computers such as the ILLIAC 

IV or the coc STAR-100 are highly machine dependent and therefore are 

not applicable in general. 

In ~bat fo lows we shall discuss some fundamental coneept:s in 

parallel programming and rel.a ted issues. 

Par all e 11 sm 

The l:e.rm 11 parallelism11 gene.rally refers to the state of existence 

of concurrent activities or proc,esses (processes may be. conceptually parallel). 

Because of the limited degree of parallelism which is explicitly expressed 

usi g control primitives of conventional programming languages~ high 

perfonnance computers such as IBM 360/91 [ 2 ] and CDC 6600 [ 43 

have built-in hardware which analyzes segments of instruction sequences 

to deter-mine which instructions can be exec.ut:ed concur-r,e.ntly. The 

performance of these computers is, howevu highly dependent on the fre-

quern:. of JUMP ins ructi.ons. This approach often would require complex 

compile time analysis of a program in order to achieve an acceptab e 

level of utilization The overhead o,f the analysis is o,ften n.on-negli.gible 

owing to the complex ty of conventional languages. It is therefore 

desirable that a parallel programming language 'Should allow simple 

detection o.: potential parallelism ,of instructions. 

De terminacy 

A program is determinate if repeated execu ion with the same set of 

input data yields the same outp,ut.a. Non-determinacy may arise i.f concurrent 

processes sh.are common data Ol' if there are subcomputations which are 

inherently non-dete.rminate (such as random nwnber generators). The effect 

of non determinacy wheo not inte.nd'ed is undesirable. For instance~ the 

presence of non-d,eterminacy makes debugging and 'Program t_esting very 

difficult because repeated ,execution may not reveal certain errors .. One of 

the most significant drawbacks of extant: parallel programming languages is 

that r:he use of parallel computa.ti.on primitives may result in non~det:erminacy. 
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Deadlocks 

The issue of deadlocks received much attention as soon as primit ves 

for coordinating concur-rent processes such as 11 lock" and "unlock" were 

suggested r 14> 31 18 ] • The cost of programming errors resulting in 

deadlocks is often high since a significant ,quantity of ccmrpu ing 

resources may be wasted unti the situation is remedied I is therefore 

necessary that good high.er level features for parallel programming should 

guarantee t.hat: programs in the language would not cause d,eadlocks provided 

computing resources required for completing the computation is .allocated. 

C rrently there is a strong emphasis on the avoidance cf programrn ng 

,errors and the ease of proofs of correctness for programs. These principles 

should be stressed even more for pa-ralle programming languages because 

of the additional complexity introduced by parallel programming features. 

In addition to the limitations already pointed out, conventional 

programming languc1sges do not satisfy the re,quire.ment: of programming 

modularity. For example~ the use of primitives such as P and reg ires 

ames of semaphores to be speci ied in statements. As a result, routines 

employi g these primitives need to be modified when used in a differeot 

environment . This observatio is equally applicable to other control 

primitives such as co-routine p-rimit.ives which require that labels fo,r 

entry points or reactivation points be specified. 

L 2 Da a Flow Concepts 

In contrast to the notion of sequentia con t.rol of conventional 

programming languages, the "data lo,-r;1• 1 concept is based on the observation 

that an aper a tion (or a.n ins true tion) should be executed as soon as the 

required input operands are made availab e by the completion of operations 

supplying the inputs. Among the models o parallel c::omput.ation which 

iocorpo:r ate data flow concepts (Adams [ 1] Ba hrs 1 [ 4 l, Rodriguez [ 38 1) , 

the data~ schemas int.roduce.d by Fosseen [ 19 ] a.re inherently determinate 

and sufficiently expressive to encompass schemes which model programming 

features such as conditionals, while~ loops and procedure invocat.ioos. 

'!he. attractiveness of data flow schemas as the semantic basis of 
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p,arallel programming languages lies- in several properties: 

(i) pa alleliam at instruction level · s expo,sed; 

(ii) the. set of rul,es which governs the p:rogress of computations is 

relatively ,simple; 

(iii) any schema constructed from any int,erconnection of data flow 

schemas is determinate. 

Recently compute:r structures1,b.ased on data flow mode.ls have been 

specified by Misunas f 35 J and Rumbaugh [ 39 ] • In the architecture 

suggested by Misunas the efficiency of the execution of a program in the 

data flo"7 re,presentati.on is particularly indep:end,ent of the structure 

of the program; therefore~ the analysis of the behavior of a program is 

very much simplified. 

1.3 Statement of the Problem 

The objective of this thesis is to d,esign a textual language Yit:h 

data flow schemas as its semantic basis, .and to consider the applicability 

of data flow concepts to problems in c:u,:-rent parallel programming 

languages. The criteria which should be satisfied by the te.xtual language 

are the following; 

(1) The.re is a. simple translation of the language into data. flow schemas .. 

The simpU.c.ity of translation rule t:eflects the efficient implementation 

of the language on a data flow p,roc.,essor (computer which run.s on some 

data flow representation) and thus avo,ids the overhead often exist in the 

process of exploiting parallelism at the instruction evel 

(2) There is a compile !:i:me chiack for deadlocks~ 1f possible •. 

(3) The s,emantics of the language should be simple enough to suggest 

the possibility of fonnalization. 

(4 The language provides programning features for stream-o,riented 

computation. 

(5 ) The language provides progranming features for expressing a sys.t.em 

of interconnected modules (or processes) which communicate by exchanging 

data through crnnmunication c:.hannels. 

We have restricted the scope of this thesis to the follow ng domalns: 

(a) We shall be concerned Yith only determinate computations. The 

extensions to allow non-determinacy are not considered in this thesis and 

a e open p~oblems. 
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(b) The only data types we are interested in are integer and boolean 

types and data s true tures are not considered 

1,4 Svooe.sis of Thesis 

Chapt.e:r 2 introduces data flow schemas and defines certain suhc 'asses 

of data f OT,;! schemas which provide the framework fo the develo ent 

of the language in subsequent chapters. The class of ,!_ecursive !._ell 

formed (rwf) data flow schemas models p ogram con tructs of condit"onals 

and recursive procedures. A textual language TDFL (E_ext al ~ata !_low 

language) is defined to correspond to this class of data flow schemas. 

The l , guage adopts the single assignment rule which has been used by 

ether languages such as hat suggested by Enea and Tesle.r 42 ] • The 

eliminatioo of goto' s and non-local references results in the semantic 

simplicity of the language and also simplifies dramatically the 

trans ation into ~ data flow schemas. 

In chapter 3 we extend the language by defining s tteams and primi i ve 

operations on streams. he feasibility and expressiveness of che extensio 

for stream .. orient:ed computation a e demonstrated by two mt i-programs. The 

fir s t exhibits the degree of parallelism in which the simple task of 

adding a s~ream of numbers can be expressed. The second demonstrates 

the conceptual simpli.c.ity and he flexibility of problem rep esentation 

provided by s tl" eam-orien ted computations using the s · eve of Er a tos thene:s 

for gen er at ng primes. 

I chapter 4 ~e introduce a programming construe ~or describing a 

sys em of interconnected modules.. A summary of the results i the theory 

of determinate systems is also given.. These res.ults are he basis on wh ch 

we asse t the semantic simplicity of the construct.. Two portant 

properties of i erconnected modules are introduced: proper i itialization 

and proper termination. The ques ion of whether these pro erties are 

decidable for the gene al class of determinate systems has not been 

ex-plo -ed. 
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W,e then introd·uce a subclass of in.terconnec ted modu 'es in which 

both the compile time check for the two properties and the translation 

are possible. One of the main reasons why the translation fnto 1.;ecursive 

data flo1'l' schemas :l.s considered is that we feel that cycles if possible.~ 

should be removed unless the transla:tion process is unfe.asibl,e 

I n the final chapter we discuss some of the issues which we feel can 

be best treated after the presentation ,of t ·e language~ Some of these 

issues are: elimination ,of an iteration {or while_loop) construct. 

efficiency issues related to primitives for stream operation and the 

iring rule for procedure applications. Further wo k and r ,eseat'ch are 

suggested. 
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Chapter 2 

Data Flow Schemas and Basic Structure of the Langua_g_e. 

ln th.is chapter we introduce the data flow schemas and the rules of 

computation along l>l'i.th definitions a d illustrations of subclasses of data 

flew schemas. The class of data flow schemas which are ell formed serves 

as the basis for the semantics of the textual language TDFL (E;extual data 

.flow language ) . Syn actically the language resembles conve tional 

languages ut there a.re. major semantic diff,erences. A program in TDFL 

defines a data flow schema accordi.ng o t e translatio rules de ined in 

sec ion 2w3. An identifie• in a program may be thought of as a variable in 

the conventional sense• n this view an identi -ier can be assigned onl · once -
11global 11 (or 11 non-local 11

) variables as in Algol 60 are not allowed in TDFL . 

The exclusion of goto 1 s from TDFL is a oatural consequence of our preference 

fo the si ple. syn tac tic correspondence of TDFL with data. flow schemas. 

2.1 Data Flow Schemas. 

An (mc1) data flo.-, schema consists of a directed graph whose nodes are 

either links er actors and additional mechanisms and rules which defi e how 

computations proceed The notation and terminology of links and dif e~ent 

types of actors are shown io figure 2. 1. 

Each ac t:or has an o,rdered set of input and output arcs. A cs pointing to 

a aode are input _rn of t::h.e , ode, and arcs leavi.ng it are called output .!!£.!· 

A gra h of an (m,n) schema must have m 11 k nod,es which do not have any input 

arcs (referred to as input links) and n link nodes which do ot ave any output 

arcs (output links) J and all other link nodes mus have one input al."C and at 

least one output arc emanating from it. In addition we require that the graph 

must be proper in the sense that each arc leaves fro an actor and terminates at 

an actor. 

Corresponding o the notion of a procedure as in Algol-like languages we 

define an(~) module to consist of a graph of an (m,n) schema and an initial 

configu:ratioo. A configuration is an assignm.en of _,okens , e2.ch accompanied by 

a label to so e arcs of the grap. An assignment of a token t:o an arc is 

represented by the presence of a solid circ_e on an arc. The label of a t:oken 
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a) link 

b) actors 

(i) termi nal 

sipk actor 

(iii) gates 

T gate 

2 

F gate 

[,i,gu:re 2.1 
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(ii) oper~tor 

the le t ter 1 f " denotes a 

function. under some 
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M ga t e 

T F 

Trees of nodes 



denotes the value carried by the token and may be omitted when the value is 

irrelevant to our discussion (refer to figure 2 • .3}. 

Informally. . the presence of a oken on an arc means that a value denoted 

by the label is made available to the ode to which ·the arc points. -e 

initi.a. configuration may be thought of as the initia 1zation of variables used 

in a procedure .• 

To describe. a ,computa.tion of an application of a module to some input. 

values we introduce the notio · o snapshots: 

A snapshot consists of a graph of a data flow module connected o a. 

ser: of input and output actors and a configura.t on. The diag.rams for 

input and output actors are shown in figure 2.2. The figure also sho~s 

how a graph of a da a flow module is connected to these actors. 

The compu tati9 cf a data flow module when .a.pp lied to a set of input 

values is described by a sequence of snapshots. The initial snapshot of the 

sequence shows che graph obtained from that: of the module as described above and 

.a configuration the same a.s cha of the module. In addition I each input a.c tor 

has a specification of what values are to be supplied to the inpu link node to 

"'bich it is connected during the computation. The computation advances from 

one snapshot co the next through the firing. of some node that is enabled in 

the first snapshot. The condition under which a node is enabled is depicted in 

figut"e 2. 3. T e firing rules fo the inpu and output actors a e also shown in 

figu~e 2.3. It should be noted that a necessary conditio for any node to 

be enabled s that ea.ch output arc does not ho d a token. 

Firing rules. 

Excepc: for gates, a nod,e is enabled when okens are presen on all input 

arcs and no token is present om t'h,e output arcs., Firing of such a node is 

initiated b absorbing tokens from the inpu.t arcs and completed by placing a 

token on each of the output arcs. The values of the output to,kens are funct:1.ona ly 

related to the values of the input tok,ens. The li ks simply replicate the 

values received for dist:ribut on to several actors, A sink actor ,;;,hen fired 

absorbs the input token. The ,effiect of firing an operate~ is to apply- to the 

input values v 1 , ••• > vm the function associated by an int,erpre a.tion with 
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a.) add i ti ona.1 actors 

~ a,c tor 

b) a snapshot 

Fip;u e 2.2 

An ( ~n} 

data flow module 

------

output actor 

Additiqnal actors and a snapshot 
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a) link 

➔ 

b) actors 

(t) ~ actor 

~ 
(ii) operator 

➔ 

The le ter 11 f'' denotes e func t · on defined over the domains 

(iil) gates 

T gate 

Figure 2 .3 Flrin rules 
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(iii) 

gate 

➔ 

M gate 

V 

T F 

V 

T F 

(1v) 
input actor 

Figure 2.3 (continued) 
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the nction letter written inside the operator to yield output values 

u11 •.• ~ un. Since 1:he. operators may not be defined for all types of 

values~ we require labels to be used to identify he type of the values 

for -which it is defined whenever ambiguity nu!Y arise ( see figure 2. 4) • 

We also require that a constant value operator should have an 

input arc serving as a trigger to th~ operator. 

the input arcs can be of any ype 

Figure 2. S constant functious 

The gates are special operators which require that the values 

carried by the tokens at the first input arcs a e boolean ~alues : 

{ ~rue, false) (see figure 2.2). For the rest of the thesis we shall 

refer to these • put arcs as control ~- The boolean \.'Blues are used 

to permit the outcome of tests performed by some operators t:o af-ect 1c:he 

"flow" of values to ac t:o:rs in the manner dese'ribed hereo • A T gate (F 

gate} passes a value presented at the second input arc on to the output 

a c if t:he boolean value received at the contra 1 arc is ue ( false) 

otherwise the value is discarded by not placing it on the output arc. The 

N gate (read as "merge gate") a lows a boolea: value t:o det:ermine which of 

the two input arcs passes a alue to its output arc. I f he boolean value 

~ arrives at the contro at"c, the. value pr,esent or next to arrive a.t 'the 

-input arc (the third nput arc) is passed. A value present at he 

F-input arc ( the second input .«c) is left undisturbed. The complementary 

action occurs for the boolean alue false. 
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(i) addition operator (ii), boolean operator (iii) test for 
equality 

:bool 

F gure 2.4 Exampl,e.s ,of actors with tyPed arcs 

1,2 ,3 2,3 2 ~3 

~ ➔ 0 ~ ➔ 0---B 
3 2 3 

9 ~ ~ ~ 
~ ~ ~ ~ -

not enabled not enabled 
Figure 2.6 An ex.amp le of a specifica ion for an input actor 

V 
ID 

---•-·-- ----------
y V 

l ------ ----

y denotes the initial configuration of the module 

Figu:r:e 2. 7 Wel 1-behaved module 
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An input actor is enabled when there is no token present on the output 

arc and he specified va ues have not been al placed on · he output arc .• 

Firing the input actor causes the next value in the specification to be 

placed o the output arc. An example of a specification is shewn in 

figure 2. 6, where the sequence of •ntegers 1 2, 3 written besides the 

input actor defined that the sequence of tokens placed on he output 

should be integer values 11 111 '' 2'', and 11 3" in this order. In the 

example~ the input actor after placing the value 1 311 on t;he output arc is 

never ,enabled agai - • The output actor simply absorbs the to en arrived 

at the input arc .• 

Well-Behaved Data Flow Modules 

ln the. rest; of the chapter we shall be interested in a cl ass of data 

flow modules which is a subclass of well-behaved data flow modules. A 

data flow module is we11- behav,ed if the conditions (1) and (ii) hold~ 

(i) One set of output va ues. is produced for each set 0£ 1-npu 

values (see figure 2.7). 

(ii) After a set of output values is absorbed the snapshot of the 

co.rnputation returns to its initial configuration Furthermore. 

we require that in the initial configuration no actor besides 

the inp.ut and output actors is enabled. 

Well-behaved data f1C1W modules are always functional in t e sense 

that a set of output values i:s determined uniquel by a set of inpu values. 

The unctionality of a ,well-behaved module follows from the fact that 

the links and actors are detennina.t.e systems as defined by Patil [ 36 L 
and the rules of behavi,or of a det•erminate sys tem ensures that the property 

of determinacy is preserved for the operation of interconnecting linka and 

actors o form a. data fl,ow schema. 

he data flow modules s1 and s2 shown in figure 2 .8 are well-behaved 

modules. The module s3 is not welt-behaved since the value carried by the 

token is different:: after a on-2:ero value arrives at the input. The module 

s4 is not well-behaved eit er. 

* is requirement is a stronger one than that defined by Dermis [ 12 ]. 
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a) b) 

l o a 

c ) b) 

0 

Figure 2.8 Examples of data flow modules 
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2. 2 Recursive ~ell-formed data flow schema,s 

T e data flow schemas described in the previous section do not 

define how a data flow odule may be employed in another module. We 

introduce module. application actor whose notation and he firing rule 

are shown in figure 2. 9. By allowing a name to be uniquely associa ed 

with a module, the name may appear inside a module application actor. 

A module application actor is enabled ~hen a token arrives at each input 

arc ,. The effect of firing the actor is to modify the snapshot by 

eplacing the actor lili th the module designated by the name ( see figure 2 .10) • 

We allow modules t ,o be recursively defined by allowing the name o f the 

module to be used in an application actor in itself. 

The introduction of recursive modules has resulted n the elimination 

of che iteration schema (figure 2. 8 (b)) from the class of re.cursive ~ell­

formed (rwf) data flow schemas defined below. 

An (m. n) rwf '!ata flow schema is an (m, a) data flow schema formed 

by any acyclic composition of component data flo~ subschemas, where 

each component is either a link, a sink,. an operator I a module 

application.,. or a rwf coodi tional subschema. 

An (tn, n) rwf module cons is ts of t:he graph of ao (m 1 n) t'l-lf schema 

and an initial ,configuration such that no token is assigned to any arc. 

Conditional Subschemas 

The diag~am of a conditional subschema is shown in figUI;e 2.11,, where 

the heavily darkened arcs a.re labetled by letters denoti g che oumber of 

arcs they represent. If P is a (q~a) subschema and Q is an (r, s ) subschema 

t:hen the conditional subschema is an (mts) subschema. The gates T, F, and 

~t actually represent co ,ections of gates of the same type· each of he gates 

has a control a:rc f - om the same source iodicat.ed by the Greek ette a. The 

subschema R is any acyclic composition o,f operators and has one output arc 

which must be of type boo ean. 

An rwf conditional subschema is a conditional subschema whose. 

compo ent subschemas P and Q are rwf schemas. 
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a) module M b) a corresponding 
module application actor 

l --------
y M 

1 n l 

b) the firing rule of module 9.J2Rlical:ion ac~or 

M 

Figure 2.9 

a) module M 

r: 
.,, 

✓ , 
I 

I 

'l 
\ 
\ 

' .... ,,,. - ... ,. 

... 
' \ 

> 

The notati,on a.nd firing rule for 
. a. module app lie:ation ac to,r 

... .J 

b) an i 1 ustration fo,: the firing rule 

;~---- -.. 
I 

\ 
I 

I , 
I 

f M ' I \ , ' ,. . 

Figure 2 .10 An illustration for the firing rule 
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Figure 2.12 shows an example of an rwf schema Fact which computes 

factorial function. 

Figure 2.11 

Fact 

boolean 

T F 

Figure 2 2 An rwf module. 
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2.3 I_extual ..Q.ata Io~ b_aaguage (TDFL) 

In this section -we des er ibe a textual language design based on the 

class of rwf-modules. The semantics of the language is defined by 

providing rules of translating a. program in TDFL into data. flow schemas. 

The .syntax of TD'FL is described in figure 2 13 where the notation. 11
( • • • 

is used to denote any numbe:r of re.petitions of the syntactic obj ects 

bound,ed by the braces. 

Syntax 

In TDFI. an underlined word is a reserved word, and a na111e can consist 

of an alpha~numerical characters including u der-scores 11 11 whose first 

character must be a letter. The type of an identifier is declared when 

II 

the ~ame is used by spec fying the tyPe oame: either integer (!a.!:,) or 

boolean (~). We require that all identifiers appearing in an ioterface 

must be typed and other identifiers need not be typed if no ambiguity arises 

,.ri., program may have a list of modul,e definitions followed by a list: of 

statements separated by semi~colons. A module if defined recursiv~ly must 

use nllOdule as its heading, otherwise module is used. The interface defines 

the formal param.e ters of the module by explicitly defining input and output 

identifiers. We require tha there be at east one input and one output 

identifier for each module and that there is at least one statemeIJt in the 

body of a module or program. A statement is eith.er ao assignment a 

module-call, or a conditional statement. 
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* < program > :;"' ~ [ < module > J < body > ;m:ogend 

< module > ::= < heading > < interface > { < module > * <body> m~nd 

< heading > :: = <name> ~ module I < name > : rmodule 

< interface > ::"' ( < in_list >; < out_list > ) 

* < body > ::- ( < statement: > ; ] < statement > 

<statement> :;c <assignment> j <conditional> I< module-call> 

< assignment > ::i= < exp > ➔ < id_list > 

<conditional>:;"' if< boolean exp> then <"body> 

else< body> 

end 

< module-call > ::a < name > ( < exp_list >• < out list > 

< module_applica ion > ,:::::, < name > ( < exp-list > ) 

< exp > ::= < id > I < arith_exp > l < boolean_exp > I < module_applica. ion > 

< a.irth_exp > ;:= usua ar"thmetic ,expressions I <module_ application> 

< ari th op > =~"" + I - I x I I 

< boolean_exp > ~,"' usual logical expressions I < module app ication > 

< b_op > :: ~ " I V I -, I > I < I -
< truth_value > !:= truth I false 

* < exp_ 1 is t > : ; "' { < exp > t < exp > 

* < id_ lis t > ;; = ( < id > ~} < id > 

< id. > :·"' < name > ( :< type> J 

< ype >::~integer I boolean 

< fo_list > ::= < id_list > 

< out_list > ::= < id_list > 

Fig,,ure 2 .13 svntax of TDF 

25 



An assignment has an expression to the. left o the assignment 

operator "➔11 , and a list of identifiers to the right. Each assignment 

statemeut may be egarded as defining the values of the identifiers to 

be the value of the e:xpression. arm.ally, if the expression is an 

ari.th_e:xp or a boolean_exp on y one identifier is i.n the id-lis • If 

more th.an one identifier ,exists, then they are all defined to have the 

same value. For a module_ application expression~ the number of iden ifiers 

in the id-list must match the number of ,output p,arameters as specified by 

the inter face of the module de ini tion; .similarly the number of ide , ti fie · s 

us.,ed as input parameters must match that of t.he defin:ttion 

A module call is another form of application of modules. A module 

cal is analiogoua to a procedure (or function) application in most of 

programmi.ng languages. For a con.ditional s tate.ment we require both branches 

of the conditional, ~ < body > and !!.!!. <body>, are specified followed 

by an end to delineate the conditional. 

Semantics 

A modul,e definition specifies a data flow module which tnay be used 

in a module_call or a 111odule_application.. The statements in the body of 

a module definition describes a. data flow module where an identifier may be 

regarded as specifying a link node. The exe.cution of a program then is 

the appl"cation of the data flow module described in the body. To maintain 

a straightforward correspondence between a program. and a data flow moduleJ 

several semantic constraints a.re impos•ed o · the language. The language 

under these constraints has characteristics of a :single. assignment language 

1n bich each identifier (or variable) stands for a well-defined value and 

cannot be updated ( i.e., reassigned another value). To describe the semant cs 

a defini ion is in order. 

A name is defined if either it: is used a.s a module name it appears 

in the < out_list > of a module_call or it appears on the right-hand 

side of an assignment statement. 
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a. Scope rules 

The scope rules for names used as module names and hoa ,e used as 

identifiers are different in the following way; 

(i) A module name defined in a modul,e is local to i, and within 

M the name extends in scope thr,oughout the modu e including other 

module definitions defined in This facilitates construction of 

m.odul,es employing ot er modules. 

(ii) A name used as an identifier (or non module name) is strictly 

local in the sense tha. the scope of an idenl:i 1e.r in a odule is 

bounded within t:he module and does not ext.e d into the bodies of 

module definiti,ons. Thus all identifiers in a module are either 

defined in the module or an input par.am.et er. 

b. Single assignment rule 

We require that -within the scope of a name it can be de fined only 

once except when the name is defined in the bod of branches of a 

condi iooal s tatrunent. The exception allows an identifier to be defined in 

both branches of a conditional, and within the body of each branch it mus 

satisfy c.be single assigwnent rule .. Without this ex,ception the "value" (in 

tbe sense discussed earlier ) of an identifier cannot be affected by the 

value of the boolean e:itpression. In the case when the identifier is 

defined io only one of the branches, the identifiel' may not be referenced 

outside of that conditional statement and can be efe:renced only within 

the body of the branch in which it is defined. Therefore an identifier 

defined in nested condi ional statements can be referenced outside of that 

nesting if and only if it is def·ned in all branches. An example is shown 

in figure 2.14 to illustrate the rule. 

The iden ifier 11 good" satisfies tbe single assign.met rule and can be 

re erenced outside the conditional c
1

• The. identifier ,.well 11 c ari be 

re·ferenced outside c
2 

but not outside C • 'Ba.d' cannot be :referenced 

except i' B1 and B4 • 
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c. Well-defined identifiers 

An identifier is well-d~fined :l f in the statement defining the 

identifier all ident:1 fiers referenced ere we l -defined in c:he preceding 

statements. 

An ·dentifier is .automa.ticallly wel -defined if no re.ference of other 

identifiers is made in the statement~ or if it is en input. 

Thus 't.18 require all identifiers to be well-defined and they must 

satisfy be singl,e assignment rule. This requirement guarantees that an 

identifier is properly defined in the sense that. it may be regarded as 

designacing a unique value. 

if X < 0 then -
else 

end 

F uure 2 • tu 

X ➔ good; } Bl 
good + 3 ➔ ba.d; 

2 X K ➔ good; 

if X < 5 

_then good ➔ well; }B3 
~lse 2 ➔ bad; }B4 c2 

bad ➔ well 

end• __ , 
well ➔ 8· J 

An exacnple for he .&jngle aua.gnment rule 

C 
1 

Wir:h these semantic constraints, ~e. can define the translation rules 

by associating ~ith each statement in the body of a module or a program 

a subgraph of the data .flow module it corresponds to. An assignment 

stat,ement is a speci.fication of how each link node rep-resented by 

identifiers and operators (including constant funct:io•n operators) are 

connected A condi tfo, al statement specifies a co:ndi tional subschema where 
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the statements t each body of a branch specifies the subschema in the 

conditional schema. A module call simply represents a module_applic:ation 

tn a data flow schema The rules of translatio are described below 

informal 1 y. ith the details given here the readers should be able to 

fot"malize the translation process o his own. 

Rules of Translation 

The translation rules are defined recursi ely and we always anslate 

a list of statements corresponding to he syntactic unit of< body >. 

We introduce sev,eral definitions used in the tra.ns ation rules. 

Def. Let L be a list of state ents then the · np~ and output of L denoted 

as I(L) and O(L) respectively are recursively defined as -ollows: 

(i ) for each assignment statement a. we define O(a) to be the set of 

identifiers defined by a~ and I(a) to be the set o f identifiers 

re erenced in 

( ii ) for each conditional statem.ent c: if 'B then P eb_e Q l!nd, 

we def ne O(C) .,. O(P) O(Q) 

I(C) = 1(B) U I(P) U I ('Q). 

That is~ the output Of C is the set: of identifiers common both to 

and Q. The set of input of C is the set of identifiers referenced 

and not defined in P and Q. 

(Hi) I(L) =- l J I (s) ~ lJ O(s) 
s~L sFL 

O( L) aa I J O(s ) 
sfL 

The set: of outputs of L is simply the union of the outputs of each 

statement s ~ L. The set of inputs consists of all iden.t i f ie.rs 

referenced but not defined in L. 

To t~anslate L into a graph of a data £lo~ module G(L) . we perfQrtn: 

(1 ) Determine the sets l ( L) and O(L). Fo~ each ident fier in the 

a ets we create a link abelled by t , e ide, t.ifier. bes e are input 

p 

in C 

links and output inks of the graph .. n addition to these links, we 

also create a specia link aode called trigger,, which 1s connected 

to all constant. function operators. (refer to figure 2 15) . 
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(i) module definition 

S module ( x i_p.t y in; ) 

--------

Body 

(H) 
---- . _...._ __ 

X int + 5 -, y int 

\ 

3> \ 
I 

I 
I 

I 

M( y . in.t, 5 
I 

z int ) I 
I 

I 
I 

I 
I ,, _.,,,, 

,.,. . 
tr1.gger 

= > 

z 

-U,gure 2.15 Exam.ples of translations 
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(ii) For each assigrunent whose< exp> is not a module application 

(refer to (iv)) we c eate an acyclic graph of operators according to 

t e rules of evaluation for the< el(p >. W,e also connect the input 

a.res of operators to the links labelled by identifiers appearing 

n the statement. For a constant '7alue we must ere.ate a cons ant 

function operator whose input is connected o the Uigger node 

crea ed in ( i) (refer to figure 2. 15) . 

(iii) For a conditional statement c : if B the, P else Q end, ·t:he 

following actions are erformed (refer to figure 2.16): 

(1) Trans ate P to obtain the graph G(P) and the sets (P) and O(P). 

(2) Similar y fo Q. 

(3) We create an acyclic graph of operators for the boolean 

expression BJ and connect he graph to links specified by I(B); 

the graph also has a oolean- value. outpu arc which is •connected 

to a link labelled b fo:t distributing the value to gates created 

in (4), (5)~ and (6) below. 

( 4) :For each id E I (P) we create a T gate which is connected to the 

li ks labelled id created in step (i) and step (iii) (1) 

The T gate has a contro arc from the node b as d-efined in (ii·) (3). 

We also create a T gate bo co ect he trigger 1 i k of G (P) 

to the link trigger in (i) 

(5) Similarly fo Q. except a.11 gates are. F gates •. 

( 6) For ,ea.ch id c A - 0 (P) n O(Q) ~ a merge gate is created• he 

output a.re is connected to the link nodes Labelled a.s id 

created ins ep (i) the input arc on the side of the symbol 

is connected to the It k also labelled as id in C(P) created 

during the translation of P; s:imila:r y we connect the other 

i , put arc on the F sfd,e of t e gate to the link id in G (Q) 

created when Q is translated The control a c is connected 

to the link b 

( 7) ~or each link node. labelled by an id E O (P) lj O (Q) but not 

belo ging to A (as in (6)) we connected t o a sink actor, 

since t ese ou puts are not referenced outside of the 

ccmd i i:iona 1 c. 
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A con.di tional s.tatem~nt 

if X >0 then .--.........., 

else 

end 

Translated conditional. 

I 
l 

' \ 

I 

I 
I 

\ 
\ 
\ 

Fi_g_ure 2. 16 

5 - out ; 
y+x-z 

w + y _.. temp 
temp )( 2 -z 

aubscbema 

z 

; 

I 
I 

/ ,,..,,..,,,, 

\ 
) 

' I 
I 
J 

An example for the translation rule (iii) 
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( v ) For ea.ch module_call o - module_application in additfon o 

connecting the module application actor tc proper ink nodes we 

must. provide a.n ~tra. input arc to t.he module_a.pplication actor 

f-rom the trigger link no-de defined. n (i). This is the result: of 

the decision to translate a module of m inputs and n outputs nto 

a data flow schema having o , e extra input. link as trigg_er. 

This concludes the translation , ules for a list of statements. We 

noted that in step (iii) (7). sink actors are used tc provide a place 

where. tokens may be discarded. The translatio t"Ules are not in ended 

to be optimal and in an imp ementatioa we ma.y perform some steps 

concurrently and the translation of each statemen may also be done. in 

parallel. 

We translate each module definitio by firs tra.nslati:ng the 

statements Lin the body l:o obtain the graph G(L) and the sets I(L) and 

O{L), then the set of links :t (L) corresponding to the input 

de.nti.Hers together with the special trigger link are chosen o be 

input links, and output links are selected from 0(1) and all other inks 

are connected to sink actors if they don't have any output arcs. We recall 

that for a p ogram satisfying Che constrain s of single assignment and 

well-defined identifiers a.11 id,Emtif e.rs in (L) should be inputs of the 

module. 

The graph translated from the body of a pTogram should not have any 

input lh1ks except the link trigger> since thet"e are: no · puts ~o a pr:ogram 

The outpu~ links of the graph are a 1 connected to sink actors. 

The data flow modules coir-responding to module definitio sand he 

program consist of the tt'anslated graph and an initlal config acion which 

is empty in the sense that no oken is assigned to any arc. The execution 

of a pl'.'ogram is to apply the data- flow module to input actor which fires 

only once (see figure 2 17). 

data flow module for 
a. program P 

P: 

etrigger Execution 

the input actor 
fires o 1 once with 

_ __.__any value. 

p 

Figure 2.1 7 -~ program 
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Summary 

In this chapter we have defined TDFL by describing a translation 

rule of a program into a data flow module The language, however can be 

defined independently of data flow schemas. A program may be thought of 

as defining a function associated ~ith each module and a set of 

identifiers representing some we.11.-deft·ed values according to the 

statements. 

A simple module to compute the greatest coliml.On. dev.lsor using 

Euclid I s algorithm is shown below: 

Euc lids: rmodul,e (X : integer, Y : integer: gcd : integer) 

if x ,_ y then y ➔ gcd 

else 
if K> y then X - "1 _.. z; 

Euclids (y ~z) - gcd 

else y - X - Z~ 

Euclids (x ,z) 
end 

... gcd 

,end 
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Chapter 3 

3., Streams 

The types of computation exp"essible in data flow schemas 

encompass a large class of computations over sequences of values. In 

this chapter we describe an e.xt:ens ion to TDF which provides a. basis 

for the expression of computation on 11 streamsu ('We shall use the word 

synonymously with "sequences ) of values. 

3.1 Motivation 

In many programming applications we would like to describe a 

computation as a function defined over streams of input values and output 

values. For example, in applications involving signal decoding.,, a decoder 

may be described as a transforma.tion on the sequenc,e of i put signals 

hich produces a sequence of characteis or words. This transformal:ion in 

many cases can be though of as a function defioed on sequences of signals 

or symbols. In computer systems input and output routines ar,e more easily 

understood as compueations over sequences of characters (or possibly 

sequences of compacted symbols). We can view the structural organization 

of a com iler, for in·stance, as hav ng several hases. 

These phases are often treated as a set of co ,;-outines betyeen which 

sequences of items -epresentin.g syntactic components of the compiled ·program 

are passed. Thus a lexical analyzer receives a s equ,e.nce of characters 

and generates a sequence of words, and a syntax analyier may be constructed 

to receive a sequence o words and produce a sequence of data structur,es 

r,ep-resenting some syntactic component of a program such as a s atement or a 

block. 

Comp tation s of this kind are often represented by co-~outines. The 

advantages of co-routine structures are poioted out by Conway [ 7 J and 

Knuth [ 27 ] The co-routine primit_"ves, however, are not suitable when 

parallelism is desired. This is a significant drawback since there 

generally is a substantial degree of parallelism in !:bese computations. 

The lack of su.i table programming language cons true ts for such computations 

has mot vated the use of da Ca flow schemas as the bas is for a programming 

language which can support computation on streams. 



As pointed out in section 2.2> a data flow schema may be used to 

define a computation on sequences of values onarestricted use cf 

data low schemas however, is not desirable. We ther,efore int-roduce 

some basic operations in TDFL as primitives from which programs fo 

stream- oriented computation can be constructed. ln what follows we 

spec fy the semanti,cs for the extended TDFL and the rules of translation 

into data fl,ow schemas, 

3.2 Semantics for Streams 

The ext,ended syntax for TDFL is shown in figure 3 . 1 ~ere the extensions 

of the syntax is enclosed by dashed boxes. For computation 

on streams, we define ~o new types stream integer (or st int) and stream 

boolean (or il bool) in addition to int~ger end boolean ypea. For 

convenience we shall refer to the st U and ~ bool types as str,eam types, 

and t e int or bool types as simple types An ,empty stream is a stream 

with no items. Syntactically, a stream- value is demoted as an ordered 

sequence cf constants of the same type bounded by square. brackets 11 
[

11 and 

111
] 

11 with the ordering from left to, right.. Thus an intege stream consis,t 

of the integers 7,5, 9and 11 in this orde r is written as [7, 5 9, 11] An 

empty stream is therefore. denoted by ( L and a stream with the single 

integer S is denoted by [5]. 
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<exp>::~< arith_exp > I < booleari~exp >I< module_appl"cation > I 
-- ~ --7 

•< stream e.xp >, 
L - - _-_ - J 

r ~ ;t;~_ex;; ~ :: < s;:e~~;r~t~;; (;; in_1ts7; ) 1<;-t;e~=c~n-;ta;i~ i 
I 
11 < stream_operator > ~ :"" ~ I eon-s • 
I I 
I< stream_const:ant:s > : := < boolean_stream > I < inte.ger_stream > 1 

~ I 
< int:egel' stream > ; :"" [( < integer > - < int,eger > ] I I ] I 

I - * 
L- _ _::_b~ole~ =~t:e~_>_:_:_~ ~ _<_t:~1:_-~a:u.: ~>~ _ <:_ ~~t~ ~al~_> J_I_ [ 2 J 

. r - ,_ - - - - -- - , 
< a.rith_exp > : :-- usual arithmetic expression I I first < in_list > 
< boolean_exp > : : = usual boolean expr,ession I 11 empty < L-i_list > : t , ____ ---- -

Fig,ure 3 1 Extended sznta.x for TDFL 

I n TDFL In data. flow schemas 

r 1.s, 9,111 est 11 9 5 7 

• )t -- • >--- ••-•>- ,.>-
t 1 

est 

rs l est 5 . ,.. 
Figure 3.2 Examples and Representation in Dat:a, Flow Schema 
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In data flow schemas an integer stream is, represented as a seque.nce 

of integ,er values followed by a special token designated as ~nd of stl'eam 

Soken (est) • Figure 3. 2 i .llustrates ho,w a s Cream is represented , 

In the ex ended TOFL we allow assignment of s treaw expressions. to 

stream typed id,entifiers. We shal 1 describe the semantics of the operations 

empty, fi~s, t, !.!.21:1, .and con-a in terms of the ,effects on stream values. 

The notation and e.xamp es are shown in figure 3. 3 ;: data flow schemas 

defining these o,pel"ations are shown in figure 3.4 1 where tbe operator ~ 

is a I: es t for the s pee i al value .ill, whose output is ~ 1 f the input to ken 

is ~ and fals e otherwise. The operato,:, ~ ia not allowed in t:he 

extended TDFL and hence safeguards against ill-fo,rmed sequences of tokens. 

Note that these data flow schemas have non-empty initial configuration and 

when a, s.equence of tokens representing a st.ream passes through. these 

operators the initial configuration is reestablished 

( i ) eJ!ll!tY 

he operator em,pty is a predicate requiring an input of typ,e stream 

and an output of type bool ,. If ,i: is of type stream~ hen. the value of 

empty(x) is~ if xis an empty strearn;otherwise it is fa se. 

(ii) first and est 

The operator first requires an :l.nput of type. stream l,,thicb must not 

be an emp,ty stream and yields a simple value which is the first item 

in the stream. The operator !:_ill is also defined only on non-empty 

stream values• the output of !!!!:, wheo appl i ,ed to a stream x is the 

stream obtained from x by removing the firs item. 

(ii i ) con-s 

The o,perator con-s requires two inputs. Let X be of typ,e stream 

and be of the con-esponding sim:e:le type (e.g .~ if X is ty-ped as 

stream i~ tege.r then y must be of type integer); !:hen the output of 

con-s (y,x) is a stream resulting from attaching y t .o the begin ing 

of the stream x. 

Thus. if z is defined as: 

con-s (y: int x: st i.nt) ➔ z : tl int; 

then first(z) yields the value designated by y and !:!!_!(z) yields the 

stream designated by x. 
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(i) empty 
stream 

boolean 

(ii) firs 

streacn 

s► 

s. fI!P e 

rest 
stream. 

> 
: stream 

(ii·) con-s 

stream [2 ~3] 

3) 

Figure 3.3 Notac'ons aud examples for ope ations on st.ream. 
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(a) the opera or e_os (,!.nd .e.f ,!_tream) 

(b) first 

.,, .. .,. 
' 

.,. 
✓ 

' / / '\ I ' I 

' I ' I 

' I \ I 

' • I t 
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----·- - ---- - --... 
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~ 

any integer or 
boo lean value 

.... ... , ,,. 
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I 

I 
I 
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r 
l 

\ 

' 
.... ✓ _ ... 

x stream 

Figure 3.4 Stream operators 
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In figure 3. ,4 we a so define an operator ~ which pro-duces two 

outputs corresponding to first(x) and !fil(x) whe applied to the input 

.scream x. 

3.3 Translat ons 

The translation rules for a program in the extended TDFL described 

in section 3~2 are basically he same as those descr"bed in section 2.3, 

with the exception of the following: 

a~ Constant tream values should be translated in to data flow 

schelll.a.s which gene.rate he stream when a. token is received for 

triggering the generation of the sequence of tokens 

from 1:he trigger link node. 

b. Translation rules or conditional statements must be amended so 

t:hat the semantics of an assignment statement embedded in a co ditional 

will be properly defined as described be.'..ow. 

Constant Stream OperatoTs 

The translation rule for constant st:ream value is illustrated by 

an example sh~ :n figure 3. 5. he notation for a cons t .ant stream 

operator is simply to write the constant value in the opera.tor. The 

operator .lli is a consta t. operator which generates the special token est. 

The reade should note that for an empty stream Olil 'I the ~ t:oken is 

generated. 

Conditional Statements 

The translation ru es described in section 2.3 can be ap-plied directly 

to a progr using str,eams in he extended TDFL when there are. no 

conditional statements. As de•scribed in the semantics we would like to 

use an identifier to stand for a stream, the semantics of the condi iona 

statement: 

(a) if x > 0 the.n Y: st-ream ➔ z: stream 

,else [2,3~4] ➔ 2. 

end 

is naturally understood as: 
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A co stant function [1.2 .31 

notation 

da. _a flow schemas 
,-... -- """"-- ___ , __ ,_,_ - ~-- ----- ...... ,. 

l 
I 

' I 
I 
J 
l 
I 
I 
I 
I 

Fi ure 3.5 An exa , le of c_onstant function for a stream v~lue 

stream X 

z stream 

F T 

z : stream 

Fi.gure 3.6 A conditional schema improperly translated. 
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(~) if xis greater than O, then ;11; is defined 1:0 have the value of y 

which is a stream, otherwise the constant stream value is assigned~ 

The translation rule when applied to the example above yields a 

data flow schema as .shown in figure 3.6. From the discussion in section 

2. 3, readers, should. be ab · e t:o ve ify that the boolean ope.rator 11>11 

receives only a singl,e token from the link actor labelled as 11x 11 during 

the ,computation of t.he program. Each gate actor, t.herefore~ rec ,eives 

only one control tokien, i. e ,., a boolean value ~ which implied that the link 

ac.tor z receiv,es only one token rather than a stream. 

o provide a translation rule t o support the. semantics exemplified 

by (P) we introduce new types of gates Ts~ Fs~ and Ms corresponding to 

'T, F and et'ge gates, r:espec tively. The no ation and data. flow schemas for 

the gates are shown in figure 3.7. The ts and Fs gates allow a stream 

to pass upon receiving a p-rope:r boolearn value. The Ms gate selects the 

input arc from which a scream value is to be passed to the output 

ae-,cording to the boolean value received. 

The translation rule (iii) specified in section 2 .3 is modified in 

parts (4,), (5) :t and. (6) as fo lows~ 

(4 ) ' For each id € I(P) l,'\'e create a T gate with proper connections if 

the id is of type simple, otherwise a Ts gate is employed. 

( 5) 1 Similarly for Q except gates. are either F or rs. 
(6)' For each id e A "" O(P) n O('Q) J a merge ga.te is created if the 

id :ls of type simph, otherwise an Ms gate is used. 

The result of applying the modified translation rule to the statement 

(a) is s hown in figure 3. 8 . The reader should be able to verify that 

the translated data flow schema doe.s implement the semantics described in (.B). 

3.4 Example Programs 

In this section we demonstrate how computations om s .reams may be 

defined in TDFL. The examples chosen are based on comput:atio,ns on integer 

values. We believe that by e.x-tending the domain of the language to include 

st.ring values and data structures, programs in other are.as of application 

can be expressed with the same degr,ee of clarity as that exhibited by the 

examples~ 
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trigger stream .simple 

Figure 3.8 A properly translated data flow schema. 
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Exa1D.ple I. Computing the sum of integer va ues in a. stream. 

We shall pl!'esent two programs. The first ut:Ui~es a. stJ:"aightforward 

method of adding each i .t:em in the str,eam to the accumulated partial sum. 

The other computes the sum by a method commonly kno,wn as 11binary tree. 

addition." only the module definitions of these programs are presented. 

Program la. Serial addition. 

serial: :rmodule(par tial _ sum : int, input ~ .2S int. , sum Y!f) 
if empty (input) then partial_swn _. sum; 

else get: (input) -+ head : int, tail ! !,l lnt 

partial_sum + head ➔ n.e:w_sum : int 

serial (new_sum, tail) ➔ sum; 

end 

mend 

Program Ih. Binary tree addition. 

Firstly e define a module "alternate11 as follows: 

al te.rnate :· rmodule (X : _st int; ¾ : !!_ int• x2 : fil. i1tt) 

if empty (X) tbe:.n [ ] ➔ xl ~. 

else 

end 

[ ] ➔ X2 

get(X) ➔ head ~ int~ tail 

alternate (tail) -+ x2 , x
3 

~ons (head, x3) ➔ x1 

st int· ---· 

T e effect of applying 1'aU:eniate1 to an input st:ream is to produce 

~o streams which are obtained by alternately assigning tokens in the 

input :stream to each str,eam. Therefore, the applicaeion, alternate 

([lt2,,3,4,5]) yields two streams [1,3~51 and [2~4J. 

Tbe module II al ternat:e 11 is the.n employed in the module "binary-add 11 

.assuming that t.he sum cf an empty stream is zero. 

46 



bi ary_add : rmodule (input ; s~ int; sum int) 

if empty (in-put)~ 0-+ sum 

,else get (input) ➔ hea.d 1, tail; 

if empty (tan) .then head ➔ sum 

end 

~-

else alternate (input ) ➔ x~y 

bina.ry_add (x) + bi ary_add(y) ➔ sum 

end 

'!he module hinary_add involves itself recursively if the fnput 

stream contains at least two items, otherwise i I: returns the value cf the 

ooly item in the stream, or it t'eeurns zero as the sum if !:he stream is 

empty. The data flow schema for the module binary_add is sho\m in 

figure 3. 9. The graph of he snapshot :resulting from the applies. c ion 

of the module to the inpu · [1, 2,3~4, 5] is shown in figure 3.10, where 

for simplicity e do not show gates and boolean operators The net of 

actors contained in the triangle with shaded Hoes distributes the 

numbers in the input stream tote binary~tree-like structure of "plus 

operators 

P~rogr.am II. Computing all primes less than n. 

We shall use a variat:ion o the method known as 1:.he siei,e of 

Eratosthenes by representing the aieve as a stream of integer alues. 

e a .gorithm is described as; 

a. Given input n ; int, generate a stream of integer values 

consi:s ting af a 2' followed by all odd numbers less than or equal 

ton in ascending order for n.:::, 2. 

o:r: n < 2, an ·empty stream is ge: erated. 

b. Recursively delete multiples of prunes using the module delete_np. 

The module ''generate" wh.ic.h performs wha · is specified in part a is 

described belo'W: 
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generate module (n : int; out : !,! ill) 
if n < 2 then ( J ➔ out 

mend 

else evecy_otber (3,n) ➔ odd_seq• 

con s. (2.,. odd_seq) ➔ out 

every_other : rmodule ( .eb : int 1 up : i t; out il .!!!!) 
if lb > up then [ ] ➔ out 

else tb + 2 ➔ next; 

,every_ o,ther (next up) temp~ 

con-s(.tb, temp) ➔ out 

To perfo:nn deletion of non-prime numbers we define the module 

delete_np which uses "delete" as building, blocks; 

delete_n.p: rmodute (:tn: st int; out: g int) 

if £111Pty (in) then [ ] ➔ out 

mend 

!l._s _get (in) ➔ prime, tail· 

end 

delete (prime, tail) ➔ new; 

delete_np (new) ➔ temp : st int• 

con-s (prime, temp) ➔ out 

delete nnodule (base ~ int~ in : s~t int; out : st int) 

if empty (in) then [ J ➔ out 

else g_e~ (in) ➔ head, tail; 

end 

mod (head, base) ➔ residue; 

delete (base, tail) ➔ temp; 

if residue - 0 

then temp ➔ out: 

else con-s (head, t ,emp) ➔ out 

e_nd 

so 



The module 11mod 11 is the modulo function. The module delete_np 

simply removes he first item in the input stream and pass.es i as a 

prime number to the output; this prime is then used to remove non 

primes in the remaining sequence of va uea by calling 11delete11
• 

The. main U'IOdule 11prime 11 is defined as; 

p im.e : module (input : int; prime_stream : il !n!.) 
generate (n) ➔ integer_stream : ,!! int; 

del,ete_np (int,ege _stream) ➔ prime_stream 

mend. 

The. structure of the program is easily seen in a snapshot of the 

computation; again, gates and other boolean operators are not shor.m in 

figure 3.1 for simplicity,. 

ote that the paxal lelism is ex.hi bi ted by the possib y concurrent 

firing of da.ts flow operators in different activations of the module 
11 delete_np. 11 
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Chapter 4 

4. Communicating Modules 

The extension of TDFL defined in chapter 3 allows us to define 

modules fer computations over s reams. The language• however, does ao t 

ave semantic constructs for describing computa ions expressed as a 

system of nterconnected modules comnunicatiag by passing data through 

coTm!lunicatio channels. This notion of interconnected modules arises 

from ou familiarity with the method by which we describe. hardware 

systems and i: terprocess, communication in operating systems. 

n this chapter we shall be concerned with systems which are determinate. 

We hope th t proper semantics o:r expressing determinate systems may provide 

a firm foundation for achieving a better unders !:anding fcir a more gen ra 

class of paralle ,computation W,e present a S\llll!Dary of some relevan 

resu l:s in the theory of par.all el computation in section 4. 1. t hese results 

· ustify our intention to provide a semantic construct for interco nected 

.systems explic ted section 4.2. We also define the notion of proper 

'nitializaticn and proper terminatio; programs haviag .t ese propert ies are. 

desirable for reasons de ailed lat&. 

It is evident that we may not be able to determine whether the 

initializa.tion and termination are proper in geue al without significant 

analysis of the properties of each module. Therefore, an incompletely analyzed 

system may run into deadlocks. W,e pro-pose in section 4.3 an extension of 

well-behaved modules. The systems COtlSt.ructed f om these components which are 

well~hehaved modules have a necessary and sufficient condition for prope 

initialization; t anslation into reou sive data f ow schemas can be defined 

as in section 4.3.2. 

In sec !:ion 4. ,4 we discuss s ,everal extensions which can bie useful 

4.1 Properties of determinate systems 

Int uitively a ystem is dete.nninate if repeated application to the same 

se t. o- i.npu c auses precisely the same set of outputs to be produced .. In 

an asynchronous system the order in which each input is presented and each 

output is produced is immater al provided the complete ou put: is produced ac: 

some finite time aft er the comp le t:e set of input ia assimilated ( or absorbed ) 

by the s ystem. A generalization is to consider a sys em o, be determinate 

when the puts and outputs are sequences of values ( see figure 4.1 ) . 
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The system s2 is determinate if for . the same se~ of input: 
sequences the aet of output sequences produced is t.be same. 

Figure 4. l De terminate systems. 
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The intuitive co,ncept of determinate system is formalbed and the 

propercies of inte.rco ecte systems whose components are determinate 

are s tudi,ed by Patil [ 36 ) • We S1JllJIDarize some. of the results below• 

readers are referred to Patil [36] for de.tailed defini ions and 

furt er discussions. 

Closure property of determinate svstetns 

(i) Any finite in erconnect ,on of detenninate systems is determinate 

provided the communicatio mechanism between them satisfies the 

c _ash a free property. 

(ii) communication mec anism is clash-free if: 

given any sequence of signals (or values denoted by the signals) 

observed at the se.nder s end of the c.ommu ication mechanism, the 

same sequence is eventually observed a.t the other ,end and the 

receiving system is guara teed to have assirn" lated all the signals 

in he same order 

( i 1 i) Some of the cl ash- free communication mech an i ams are 

a. fifo queues whic may be fin.ite or unbounded; 

b. ready and acknowledge signaling conventions. 

As an example, actors of data flow scherna.s are detertni.na.te systems; 

and s ce t:he firing rules are defin,ecl as to be clas -free, any system 

of interconnected actors is determinate. 'th~ attractiveness of the 

closure property is the most important reaso why data flow schemas are 

chosen as the bas1s for expressing determinate parallel computation~ 

The results a.hove do not suggest how the collective behavior of the 

system can be abstracted from the behavior o, ~ he subsystems and the 

closure prope ty does not justify t e u e of recursive subsystems. 

Rece t developments i formal semantics have introduced lattice 

theory a a basis for defining semantics of progranming languages (Scott 

[ 40 ] ~ S tr a.chey [ 41 ] ) • e theory has also been int1:oduced as a 

theoretical ba.s e fer determinate systems by Kahn [ 25 J. In ~hat follows 

we only Slll:I!ma.t'iie the results and discuss seve~al implications which are 

relevant to furthe d'i.acourse. 
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In th.e forma.lbation of determinate. systems in lattice theory the 

communication mechanism c ,onsists of ifo queues of unbounded length_ 

The result is the simplification of the charact,erizati,on of determinate 

systems a.s continuous functions over lattices, of signal sequences. The 

closure property of determina.t,e syst:ems is reformulated as: 

An intercon:nectio of determ.i ate systems also cleiines a 

continuous function over the lattice ,of signal history. 

From the results of la.tt:ice theory, ,one can also define the 

continuous function characterizing the collective behavi,or of the system 

from the set of continuous functions which is t.he abs tra.c tion of the 

behavior of the subsystems. Furthermore~ the use of recursive activation 

of subsystems is justified. 

The unification of semantic basis fo determinate systems and 

programming langu.age.s h a powerful argument for co,ns truct:ing parallel 

computation based on functions defined over signal seq·uences. The 

unifica.t on has the added advantage of making existing techniques for 

proving correctness of programs (Vuillemi.n [ 46 ]) applicable. to proving 

properties of determinate systems. 

In the actual implementation of a language suP:pOl'."ting computat ·,on as 

suggested one must understand the i.mplicatio,n of the requirement for 

unbounded fifo queues as the communication mechanism. If the implementation 

cannot: provide sufficient computing resources to simulate the effec.ts of 

unbounded fifo queues, the outputs of the determinate computa:ti,on may be 

le.ss than what could be expected otherw-ise (in the sense tha'I: t.he expected 

output is not compl,et:ely produced.). om a different perspective, a 

language designer should ensure that the comnunication mechanism provided 

by a language must be properly defined. so that the semantics of communication 

mechanism satisfies the requirement. 

It should be noted:, however~ that in such a language one must be able 

to prove that the program does not require, unbound,ed. computing resources. 
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4. 2 Syntax and Semantics of Coumunicating Modules 

The extended TDFL in section 3. 2 can be used to, specify any acyclic 

connection of data flow modlilles by module_ca 1 ls er- module_applicaticms 

Here we int -oduce the co struct < performJrcmp > to describe a system 

of int,erconnected modules. Figure 4.2 shows the syntax where the body 

is comp ised of a subse o statements allowed in TDFL. This restriction 

is only to simplify the complexity and may be elimi.oat.ed when the basic 

semantics is understood. hroughout the rest of the discussion we sha 

conform to this restriction. 

Semantics 

A perfonn,_group defines a "block0 in the sense that all identi iere 

are local except those appea.ri:ng in the interface. The ide ti fiers 

which appear in the interface are "non- ocal 11 in the sense that they 

extend their scopes throughout the body of the module o 'the p Ogram 

containing t e perform_group as a statement. 

A perfoEm_group can be defined to be a module by specifying a name. 

An id,entifier of simple typ,e designates a link acto through which only 

a token carrying a s.imple value may pass. 

Identifiers cf type stream designate link actors through ~hich a 

sequence of values forming a stream must pass . 
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< module > : := < name > ; < perform_group > 

< s tat.eme t > : := < perform_group > 

< pe.rform_gro,up > . :- puform < intel'face > < p_ body > pend 
* -< p_bod > : :- { < p,erform_statement >; J < perform statement > 

< perfottn_statement > : := < module_call > I < imited_assignment > 

< limi.t:e.d_assignment > : :"" < H.mi.te.d expression > ➔ < id_ ist > 

< li ted_expression > • ,.,, con-s ( < simple_primary > < id > ) I 
I < module_ application > l < s - ple_prim.ary > 

< simp,le_primary > : :"" < id > I <integer> I < trutb_value > 

Figure 4. 2 

Extensions of syntax for < pe:rform_gr,ou.p > 

The statements in the body of a pe.rform_grou-p specify a data flow 

schema which may be cyclically c,ormected. We, do not enforce the 

requirement that an ide,ntifier must. be defined in a statement befor,e any 

reference to it within a perform__group; therefore~ cyclic con ,ections 

can be spec· fied. We impose an additional constrain.t that data flow 

schemas specified by statem.ents cann.ot have links of simple types on any 

cycle. Thus all links lying on a cycle must be of ty-pe stream. 

Initializations for he system described by a perfo m group a~e 

defined by a set of assigllIO,ents using con-s ope ators. For simplicity> 

this way of describing initialization may be preferred to the provision of 

ne~ Language constructs for this purpose. 

Figure 4.3 shws ~ example of the use of a pe:rformJrou to specify 

a data flow schema; notice that the box enclosed by broken ines contains 

statements which are used for specifying initializations, and that be 

con.sta'llt values correspond to constant value actors whose inputs are frotn 

the trigger link. The reader may have noticed that the modules are n01: 
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input 

bool 

from trigger l "nk 

perform-group specif cation ,of above S!1Stem 

M
2 

(input, t 4- t ,, t 3); 

M1(x i5~t1) ➔ t 2; 

M
3
(t

2
,t

3
; t

6
, output, z )• 

--- -, 
con--s ( c.rue~ t 6 ) ➔ t

5
; 

con-s (x2 t
5

) ➔ t
4 

I_ - - - - - - - - - - - - - -
pend 

Figure 4,. 3 A per fonrL....g.t'Oup 
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diagrammed as m.odule_application .actors. Thi.s is because an important 

discrepancy exists for the semantics of the ·module:...calls and module 

applications in perform__groups: they should be understood as macro­

expansions in the conventional sense and not a.s module_application 

actors which are replac ,ed by the corresponding modules according t:o 

the fi ing rule specified in s ,ection 2.2. That is,, module_calls are 

regarded as specification.s of data flow schemas whose m.odule_application 

actors are all replaced by the corresponding data flow schemas. Because 

a data flow schema may involve itself recursively, this replacement 

process must be simulated rather than actually performed. Semantics ly, 

howevel", w:e may regard a recursive da.ta flow 1!u:hema speci ried in a. 

per ot"m_group a.s an infinite structure obtained by the above-mentioned 

replacement process. (A correct implementation for s :mulatin,g the 

replacement process is to regar:-d a module_ca.11 or modul,e_a.pplication 

specified . n a perforn:i__g:r:oup as a special module_applicat. o. actor 

which iB enabled whenever the firs.t token. arrives at one of its input 

arcs.) 

We ex lain the reason "Why this discrepancy arises using a very 

simple example shown in. .figu.re 4.4. The modul,e 1. simply multiplies 

the i:nputs by tw'o. The modu e M
2 

adds pairwise integers from two input 

streams The module M is constrocted as shewn in tbe d:Lagr am. For a 

module_application actor of MJ the fir ng rule is that the actor is no 

enabled until one token is present. on each input arc. As a result no 

outp~t arrives at the link z until some token arrives at y. lf the 

module M is substituted in place of t:he l!lOdule application actor~ (refer 

to figure 4. (ii),. where we hav,e 1, troduced the notation for denoting a 

substituted module)~ z wou d receive some outputs some time after~ 

receives inputs from regardless of whether any input has arrived at 

the input y. 
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Ml 

Mi . . 

rmodule (x ~ !,! int• z : !£. int) 

if empty(x) then [ ] ➔ z 

else zet(x) ➔ bead,. tail; 

t,;_ (tail) ➔ more; 

con-s (2 x head, more) ➔ z 

end 

mend 

rmodule (y, ll in_t. z . st int; w ll int) . 
g empty(y) v em.ptt(z) 

then [ ] ➔ y 

else g_et(y) ➔ y
1
,y

2
; 

g_et(z) ➔ z
1
,z

2
• 

M2(Y2, z2) ➔ Ql; 

con-s(y1 z
1

• w
1

) ➔ ~ 

M module (x !! int, y st .int · z il ~, w s~ int) 

Mi(x;z)• 

M
2

(y,z•w) 

(i) mo<lule_a-pplication actor 
for M 

(ii) the modul,e is substi uted for 
he actor 

notation 

Figure 4 4 An Exmle 

61 



Discussion 

Modules defined over streams provide a semantic basis fol' 

d,escribing; an interconnected system satisfying the 1;,equirement that 

the odules communicate by unbounded fifo queues. This claim is 

justified by ·no ing that ith! - each module the chain.s of stream 

operators actually simulate unbounded fifo queues.. ThereforeJ provided 

that during the computation the computing resources do 

n.ot exceed physical limits I the whole system can be characterized as a 

continuo,us func ti.on as suggested by Kahn [ 25 ] • 

re shal 1 de fine two concepts which are important to tbe further 

discussiou. 

Def. Let S be a determinate system in which some links are designated 

a.s inputs and outputs. Then S is properly initialized if the 

computation does not d·eadlock (in the sense ,of reaching a configuration 

in ~hich no actors are enabled) before all outputs produced are terminated 

by end of s tr,ea:m tokens (es!)~ and S h w operly terminating 1 f after all 

outputs a.Te tenc:inated by end of stream tokens, 1:he computation does not 

undergo infinite number of firing of actors. 

Figuratively, if ,one waits at the outputs of a system which is not 

properly initialized. 1:he.n there is no way of knowing when no more outputs 

are to be produced. The situation of indefinite waiting is also undesirable 

because of the inefficient utiliza:t:tOl.l of computing resources caused 

by deadlocks. A system which is not properly terminating may run 

indefinitely after all outputs are produced. Since a sys.tern is defined 

only in terms of the input aod output behavior al computati,ons performed 

after outputs are completed are unnecessary and a waste of resources. 

Figure 4.5 shows three examples constructed from the module M whkh 

produces an output steam by adding pairwise. the integers in the two 

1npu.t streams. The first example is an improperly i .nitialized system 

because of the la.ck of any initial value for the second input of M. The 

example (ii) shews the situation where the sequence of tokens provided by 

the cycl~cally connected module never terminates. In the last example (iU) 

an initialization is provided for the .system s
3

; the system is both 
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properl initialized and te.rm.inating because it is guaranteed to p oduce 

a stream as its output and no more computation is t itiated a ter the 

module 1-f receives an ~st from the first input 11 in. ' 

The properties of proper initialization and termination are easy 

to check for the particular examples shown because the behavior of the 
module M (in terms of 1:he umber of inputs required to generate some 
number of outputs) is independent 0 t e values of inputs. This is not 

the case in general since the behavior of a module may be highly dependent 

o the input values . 

M 

if empty (x) V empty(y) then [ 1 sum 

~ get(x) ~ first rest_x; 

end 

S,&(y) ➔ first__y~ rest_)•; 

first_x + f1rst_y ➔ temp; 

M(rest_x, res _y) ➔ r,est sum· 

con-s( emp, res _sum) ➔ sum 

(i) improper initia iiation 

S 1 ; per form ( in : st i t ; out ~ ~ Ll ) 
M ( i, loop oop) ; 

loop ➔ out 

Figure 4. 5 Examples for the Intitializatio and 
ermination 
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(ii) proper initialization. but improper _termination 

s2 : perform (in : ll int: ; out ; ll int) 

M(x 1 y emp) ; 

con-s (5~ temp) ➔ generate; 

(in, generate; out) • 

generate ➔ x,y 

The graphical representaeion looks like: 
y 

f~o trigger 

1----------'•out 

(iii) pro_per initiali.zati,on and termination 

S 3 ! perform ( in : st int • 9ut : st int) 

M (in, loop ; ,out) ; 

con-s (5, out) loop 

pend 
from trigge 

Figure 4. 5 (continued) 
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4. 3 Well-Behaved odu_}j!s 

In this sectio · 'We will be co cerued with a sys em specified by 

a perform_group in wh."ch all modules are either efined ove.r simple values 

or are extended lor.i'ell-behaved modules as described in what follows .• 

4.3.1 Semantic Extensions 

In this section we define a semantic exte sion of well-beh vecl modules. 

so that interconnected sys·tems can be cons true ted from these modules. 

Let M b e ai (m n) module whose inputs and outputs are of simple i::ype, 

then the extension of M, de oted as M1 is defined ove.1: tream values 

as -o lows: (Note th.at !:he module M may incorpo,..ate submodules which us,e 

st: ea.ms. The requirement tha all inputs and ou puts are of either 

boolean or integer type means that the module M must be well-behaved. ) 

d all 1dentifie.rs x1 , ... 7 Xn and y
1 

• _. ,Yn urus t be of consistent t pes 

wit:h the cor • esponding parameters of the module. M rt 

rmodule (x1 : ~~ ••• ,xn : M.. ; y
1 

: st:p • .,yn st) 

if empty(1½_) V n V empty(x ) 

then [ ] ➔ Yp ... , y n 

else g~t (x1) ➔ first x1 , rest_x1• 

g_et (x) ➔ first~, rest X • 
n - n - n 

M(first x ; ••• first x • first v , ••• , first_y ) . 
- 1 ' - m" ....,, l ' 

M1 (rest_x ... ~1 rest_xm; rest,_y
1 

••• , rest_yn)· 

,con-s (first_yl" rest 
1

) -+ Y
1

; 

con-s (firstJn, -rest_yn) ➔ Y, 

end 

mend. 

There ore the extended module produces output st-reams whose length, 

i e •• the number of simp e values Jn a stre , is the same as the shortest 

stream presen e at he inputs. A simple example is shown ll figure 4.6. 
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M modn] e (n ; int , m int sum B!E,) 

m + n ➔ sum 

mend 

Then. the ass.igpment s tat:ement: 

M' ( [l, 2,, 3], [l • 2 J) ➔ 

produces as the result iralue cf ~, [2 1,4]. 

[2 ,4) 

[1,2] 

Figure 4 6 An Illusttatiom for an ExtEmde_d Module 

x(nT) 

~ 

y(nT) 

The second-order difference equ.at:ion is 

y(nT} = k
1 
y((n-l)T) + k 2y( (n-2) T) + x(nT) - Lx( (n-1) T), where the 

initial values for y( - T):, y(,-2T) 1, and x(-T) are zero. 

Fig:w:-e 4 . 7 An E_xample from Signal Process!,ng Application la second ord_~_r 
,digU:al _filter ) •. 
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We believe that the proposed e.xtension is a natur 1 one and semantically 

it is also easy t:o understand. We should mention that one of the most: 

important p~operties of he extension is that the checks for p oper 

initialization and termination can 'be done without detailed analysis 

of the module. • 

The utility of the extended well behaved module is seen i the 

example bor owed from the descriptive method of a digital filter in 

signa processing applications _(see figure 4. 7) The operator ~ 
-1 

designates unit time delay which is simply an a.re: in the corresponding 

diagram drawn in the data. flow sc. ema. form, figure 4 8. The co stants 

k 1 k
2

, and -L along the arcs are to be in erpreted as the constant 

factor by which the v lues passing through the arcs must be tiplied; 

the equivalence o,f a constant f ctor is shown as a module in figure 4.8. 

The initial! ation is shown in figure ,4.8 by con-s operators The 

erform-grou.p defin.ing the system shown in figure 4.8 is given in 

figure ,4. 9. As the reader may notice,. the restricted syntax for 

perfonu,;roup resu ts in athe.r cumbersome module d ,efinitions for c
1 

c
2 

a.ncl 

c
3

• We believe that proper synt.aetic sugaring may ermina e c:his 

problem. 

~------~--,_.. __ .........,_._____ ___ _ 
F: 

rigger 

l 
I 
I 
J 

I 
I 
I 

' I I 
J 

------------- - -~ ---· -----~-Y 

Figure 4.8 
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modu ,e (x : _int y !nC) C 
I 

( - L) X X ➔ y 

mend 

C 2 module (x : int ; y !!:!,) 

Kl XX ➔ y 

rnen_d 

c 3 module (x : int ; y int) 

K2 X X ➔ y 

mend 

Add: module. (x1 : int: , x2 : int , 
3 

.int , x:
4 

int y i_!'lt) 

X + );;2 + X3 + X4 ➔ y 

mend 

F : perform (x : st _int ·, y : ll int:) 

con-s(O,x) ➔ t ; ci(t
1

) -+ -
2

; 

con-s(O t
3

) ➔ t
4

; c2(t
4

) ➔ t
7

; 

con-s(O t) ➔ t • c'(t) ➔ t
6

: ---- ' t s~ 3 s · 
Add'(t

6
,t

2
,x,t

7
) ➔ t

3
; 

Figure 4.9 
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Proper Ini tia.lizatio:n a:nd Pr,oper Tet:mi.nation 

An extended well-behaved data flow schema behaves like an actor 

which _ s enabled when a token is present: at ea.ch input: arc. If oo est 

t .oken is presen:t. the effect ,of firing is to produce. output values from 

the input values according to the well behav,ed module If any input 

token is an ,es~,, the effect of firing is to absorb all tokens arriving 

at: each input and to put one ~ t:oken on each of the out:puts. 

Fig~re 4.10 illustrates the behavior of the extended module M1 

described above. The diagram ( i) shows the fi , ing rule wheu a token 

carrying a simp!!, value arrives at each input: of M' ~ the outputs 

u1 •••• ~ n is the same as what would be produced by M if the input 

v
1 

t ••• ,vm were given,. The dis.gram (ii) shows t e situation l,,Then for 

the first time~ any of the inputs to M' is an eEl_t token (there may be 

more than one such input). The. diag -am (iii) exhibits the behavior of 

M1 after the situation described by (ii) has occurred; note that some 

of the arcs may not have any tokens if hey have already received~ 

tokens and the input tokens are simply absorbed without any more output 

being produced. 

There is an almost exact correspondence between a sy.stem of 

e tended well-behaved modu es and a marked graph (Hack 20 ] ) exce.p 

that the behavior of the extended module after :receiving the first est 

oken is different. This difference~ howe,,,er,. does not invalidate the 

applicability of t e necessary and sufficient condition for Uveness to 

determine tmether a system is properly initialized. e quote the neces• 

saxy and sufficient cond tion. for liveness of a marked graph: (We refer 

the rea:de.r to Hack [ 20 ) 

Let G be a marked graph, then. the initial marking is live if and 

only if there is at least one tokien on each directed eye e of G. 

T e co esponding n,ecessary and sufficient condition for proper 

initialization of a syste S is the .followi.ng: 

A system Sis properly initialized if and only if there exists 

at least one initialization (represented by the presen~e of a ,con-a 

o erator) on each directed cycle in 

Examples are showti in figure. 4.11, where we ha.ve adopted an abbreviation 
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(i) when no est token. bas ,ever been presented at inputs: 

(ii) when for t:he first t:ime an~ token is present at some input: 

est 
0 -

Some other v'.s may be est tokens~ for ex.ample tbe arc a: bas an est token . 
1 

(iii) after (ii) bas occurTed: 

Some arc should not hold any 
toke -s if an.@..§.! token has 
be·ng received such as a. 

Fb:u:re 4.10 

1 

The behavior of an extention of M 



(i) abbreviation 

X y 

trigger 

X y 

is represented as x ••----4••---►~ y 
V 

is represented as 

(ii) an imeroeerly in'tial'zed system 

s1: perform (x 1:st, x .·,==-»-~ 

The system has the outermost cycle ot being ioitialized. 

(· ) a ptoperlv initialized sxstem 

y 

Figure , 11 Examples f,EI initializations. 
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for representing initializations as shown in (i) The system s
1 

is 

not properly initialized becaus e the outermost cycle does not contain 

any initialization. The system s2 is properly initialized and there 

a.re two eye 1 es containing two initializations. 

I n seccion 4.3. 2 we give the rules of t-ranslatio,n for a system 

of extended well-behaved modules. The translation rules are defined 

such that: the condition for proper initialization. can be checked 

and he resulting recursive data flow· schema is always properly 

terminating even when the translated system is not. 

4 3 2 Translation into Recursive Data Fl~ Schema 

The translation rules given here use l:he property of marked 

graphs that if the initialization of a graph is live the initial 

configuration is reestablished after all nodes (corresponding to well­

be.haved modules) fire once. The process of reestablishing t.he initial 

configuration is called an i _terat:ion. Therefore 1 in a system of 

extended well - behaved modules~ e ach time an iteration is com-ple ed a 

token "1ould have been absorbed by the. module t ,o which an input link is 

connected. he re.cursive data flow schema resulted from the translation 

actual y performs in each recursive ac civation the computation requir,ed 

for each iteration. Because some of the modules may receive end of 

stream tokens, part of the system 1llaY not be performing any computation. 

It is necessary that the recursive schema pro,perly determines which part 

of t.he co putaticm needs not be pel"f,ormed .• 

We define rhe follmdng notations to facilitate the defi ition of 

the rules of transla iou, under the assumption that we are translating 

the data flow schema specified by a perform_group which is named S. 

(This assumption simplifies the trandation rule since o 1 iden i fiers 

appear in the interface of the perform_group and thus circumvent the. 

undesirable complexity introduced by the existence: of constants o 

other kinds of expressions in the interface.) 
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Def. Ist{S) 

Ii (S) s mp 

Ost(S) 

0 simp(S) 

L(S) 

V(S) 

Translacion Rul~s 

denotes t:he set of in.put links which are inputs 

of S and are of type stream.. 

denotes the set of input links which are of type 

simple. 

denotes the set: of output links which are of type 

stream 

denotes the set of output links whic are of type 

simple. 

denote.s the set of link actors whose input arcs are 

int tialized by the presence of tokens. ote that 

an initialization may be made by an input; in such 

cases the i .dentif ier of the input is written next 

to t e token [se.e fig~ 4.11] ) 

denotes the set of links designa.t:ed by identifiers 

whic'h appear a s labels for the tokens indicating 

lni tial:lzations . (Refer to figure 4. Il ( i) and ( ii) • ) 

The working of the translation assumes th.e e istence of a graphical 

representa.tion for the schema S and some ,effective way of manitmlat ng 

representations of graphs. We b elieve that this assumption results in 

easily understandable translation rules. We sball outline the 

translation rules below, then each step is tu,:;panded in detail later 

Step(i) 

In this step, we obtain two schemas E and from the schema. s. 
The schema F corresponds t:o the pert of S 1<1hich ·is specified by 

st:atements involving o:nly simple values; therefore it is acyclic. if 

·the semantic les are observed The schema E corresponds to the. part 

of S which is specified by sta.temeots involving stream values. The 

schema Eis obtained by bt'eaking up the cycles in at link nodes in 

the set L(S) and should o t have any cycles if he system S is pr,operly 

initialized. Intuitively, t:he sch~ E contahu; acyclic data f101w 

schemas which perform the compu ati.on required to complete an iteration .. 
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Step (ii) 

We embed the subschemas of ~ in conditi,onal schemas. The purpose 

of this em.bedding is to avoid performing the computation which is not 

nec.essary ow-i.ng to the behavtol' of S after some exte.nded well-behaved 

modules have received est tokens. We cal 1 the resultant a.chem.a E • • 

St;e;e (iii) 

e use the schema E '1 to construct a reclll'sive data flow schema R 

expressed in TDFL by allowing 1est tokens and the predi.cate ~- This 

recursive schema simulates the computation of the part of S consisting 

of extended well-behaved modules The ·recursive activation of R stops 

when all outputs ar,e termf ated by est tokens (i.e.~ R is properly 

terminating). 

Step (iv) 

The desired scbema. T consists of a m.odul,e_eall of the schema F 

and a module_call of the schema R. 

We ·n,ow present the transla.ti,on rules and simple ex.amp es are used 

for illustration. 

(i) The schema Scan be partitioned into two subschemas s
1 

and s
2 

connec !:ed a.s shown in figure 4.12 The schema s1 corresponds to the 

part of S which is specified by stat,ements in:volving only simple values; 

that is 1, it: co t.ains all links associated with simple type identifiers 

and a actors defined over simple values including constant value actor.s. 

The schema s
2 

corresponds to the part of S which i .s specified by statements, 

involving stream values and therefore includes all extended modules and 

the con-s ope ators. The schema is simply the schema s1 with the modules 

replaced by the corresponding module_applicat.ion actors, and with the 

addition of a new set of links W(S) as shown in figure 4.13 (Note that 

links are a so provided as output links of constant value actors.) 

The schema is obtained from s
2 

with the following rules: 
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s 
2 

Figur~ 4.12 
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from consta 
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a 

of s 

trigger 

0 
simp 



(i) Y E: L(S) 

x:stream 

(ii) y C L(S) 

\ I x: stream ... _.,./ 

W(S) 

I simp 

~ 

fl"Om 
::"\-constant 
.,,,- ) value 

actors 

. . 

trigger 

0 
simp 

Figure 4.13 The schema F 

: simple 

x:str,eam 

y 1 e L 1 (S) 

X y• 'I 

Figut'e 4.14 Splitting 
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a. Replace all cob.-s: operators, by arcs as shown in figure 4. 4 (i) . 

b. 8plit each link y in L(S) as exemplified in fig,ure 4.14 (ii) by 

creating a new link y 1 e: L' (S) and reconnecting the input arc of 

y to y'. 

The effect of the splitting: c .f links is to break the cycles of the 

schema s2 at the points where initializations are defined,. 

c. Define input and output inks of the schema Eby 

In - st(S) U L(S) 

and out ; o
8

t(S) U L' (S). (Refer to figure 4. 15.) 

The example illustrating this step ::l,s shown in figure 4.16. 

(ii) There are three su.bsteps a, b and c. Let o € Out, then by Dep,(o) 

we mean the set: of input links in In which have a directed path leading 

to the link o in the scheme E. 

a. For each o e: Out, we create a subschema g(o) of E which contains 

all intermediate links and act.ors on the ·path1;; between inks in 

Dep(o) and the link o,; the arcs which emanate from these act:ors 

but. do not lie on t.he paths, are terminated by sink actors (see 

figure 4 17 (a)). Note that this process tn fact: may duplic.ate 

actors as h the case 'in the figure 4.18 (a). This is because of 

our intention to makie the translation rule as s.imple as possible., 

b .. The subschema g(o) is embedded in a conditi,onal sc.hema, as sbown 

in figure 4.17(b), after the links x1 e Dep(o) and o are reamed to 

be x1 and o', respectively.. We shall cal the resultant c,ondit:ional 

schema C(o). The schema P eouta,ins tests for end ,of stream tokens 

and b<>olean operators such that the output value is~ if none of 

the input tokens to ,each input link x
1 

€ dep(o) is an.!!!!, token and 

is false otherwise. The conditional schema, therefot'e, yields the 

output computed by g(o) if the output of :Pis true; otherwise it 

yields an est token.. In.formally, the conditional schema may 

''propagate'' the !!!_ token (tokens) and thereby simulate the behavior 

of S when some ill tokens are received by some modules. Examples are 

s,hown ·in figure 4 .18 ( b) .• 
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S: 

~ 

E: 

,,, 
/ 

I 
I 
I 
I 

' \ 

F" gure 4.15 

' \ 
\ 
\ 
I 
I 

'.C'he schema 

F: 

E: 

z 

~ 
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..... __ ,,,,,., 
w' e: W(S) 
z I£ L' (S) 
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(a) a subschema g(o) 

x. € Dep(o) 
l 

g(o): 

(b) embedded subschema 

C,(o): 

a: 

~ 
• 

0 

X 

0 

X 
n 

(*) P produces a.!:.!!:!! value if none of x;,s is the est token, 

otherwise a falee va ue is produced. 

Figure ~.17 Embedding of a subschema g(o) 
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(a) using ~he example shown in figuer 4.16 

(b) 

In.,.{½ ~z} Out"" {y2 ,z
1

} 

g(y2) 

embedding of g(y} and g(z') 
.2 

I 
11 

\ 

Xz I , 
I 

I 
I 
\ 
\ 

z 

_, 

\ 

' ' I 
,I 

a: 

---..-

a: 

g(z') 

z• 

er 

\ 
\ 

a I 
I 
I 
I 
J 

I 

' I 
J 
) 

I 
/ .,,,,. 

C(z 1 ) : 

x2 z 

,,•-- .. 
/' 

1 the s:aa:ie as '\ 
IC(y

2
) except I 

l g(y2) is J 
replaced by J 

g(z I) ..' __ ...,_ -~' 
ZI 

Figure 4.18 Examples for step (ii) 
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(c) 

E I ; 

F'gure 4. 8 ~continuedl 
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c ~ be. schema. E' merges all input inks of C(o) for o E: Out, 

which has the same identifiers a.s labels. The sets of input and 

output links of E 1 are a.imply In and Out~ r espective ly. This step 

is demonstrated y figure 4 . 18(c). The :reader should note that the 

computation carried out by E I a.ctually perfonns the computation 

required to comple te an iteration (i.e .• , the process of reestablis'b­

ing ini ial ,c:onfigurat.iori in the sense of ini eial markings of 

marked graphs as exemp ified by figur,e 4 .11) in S, if the modules 

do not eceive any _fil tokens. 

{iii) As described informally previously, the schema E' performs the 

computation required in o•ne iteration. The schema R simply repeates 

recu sively iterations. and. terminates when all outputs are completed (i.e .• J 

when the o•utput:s of the module call to E I yields ol' ••.• ok ~ ,e,s t ) as te.s ted 

by the conditional A (see figure 4.19). The recursive schema R is define d 

as, fo 1 lo,ws : 

Let ip, • , im e Ist (S) 

o11 ••• ,ck c Ost(S) 

t 1 , ••. ,tn e L(S) 

.t{ .- •• , t~ E: (S), 

then we define a module E fTom the schema E 1
: 

<body> specifying the schema E' 

~. 
The modu e for the S•chema R ia expressed iu TD'FL by allowing est as a 

constant value and eo~ as a predicate,, as shown in figure 4. 19. -ote that 

the function o~ the group of statements in B is to 0 absorb 1
' one more 

token frOD1 each input. in Ist,1 and that the function cf the group C is 

to put one more token on each output i Ost whene\Fer one iteration is 

completed. 
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R 

B 

A 

if empt;.y (i1) then est ➔ 
1

; [ 1 ➔ _I
1 

. 

else get (i1) ➔ 1
1

, r_I
1 

end; 

( simi!at" y for i 2 ~ • • , im) 

!! ~(01 ) A ••• A ~(Ok) 

then [ J ➔ 01'. ~. i Ok; 

est ➔ t1 ~ . . . , .e, ~ 

~ 

C 

end 

R(r_I1~•••, r_Im, L1~••• Ln• 

r......,:o , ,.. r_ok~ t1~ ... .e~); 

if ~(o
1

) !£!!! r_;0
1 
➔ o

1 
~lse con-s(01 r_o1) ➔ o1 
end 

Figure 4-. 9 The schema R 
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(iv) La.stly, 

le.t j 
1

, ••• ,j a 'e Isimp Pr ... ,.pb t: Osinrpt and wi, ••• ~wt e: W(S), 

then ~he odule Fis defined as follows: 

F : module (j l, ...... j a; Pp ••• , Pb, w :1 ••• ,, wt) 

<body> specifying the schema 

mend. 

The module T below is the res:u t of the translati,on of S 

T : module (list of input id Is, list of output icP s) 

F (j 1' • • • ,. j a; Pp • u , Pb, t.11 ,,. • • • wt) : 

R(i1 , ••• ,im' wp·••iwt; 

01,·••,ok, Ji,·· ,t~) 
mend 

The module T performs the computation corresponding to that of s
1 

first and the outputs w1 , ••• ~wt are used as initial values to s2• 

4.4 Extensfons 

As described in section 4.,2 1 a perf.onu_ group may be named as a 

module. We did not, however, allow recursive perform_groups. This 

extension p-rovides more gene: ali ty, and 111a,y be embedded in the language. 

We have restricted the. kind of assignments allowable in a perfor:m_ group. 

Some extensions such as the inclusion of first, get and stream valued 

cons tan ta can be useful. I t is an open issue whether conditionals should 

be allowed in a perform_group,. 
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Chapt,er 5 

Summary and Conclusion 

In this thesis we presented a parallel programming language wh ch 

is inherent y determinate he s.emanttcs of the angua_ge is given by 

providing rules for translation into recursive data flow schemas. The 

language incorporates important features which contribute to the 

semantic: simplicity of the anguage: single assignment, explicit 

declaration of inputs and outputs of a. module,, .st.ream-oriented computation~ 

and co structs for defining a system of inter-communicating modu1 ,es. 

In sec ion 5.11 ve shall discuss some additional issues related to the 

above features. We have avoi,ded hese discussi.,ons thus fa:r in order to 

prevent readers from befog side-tracked and with the hope tha.t we can 

provide a more complete and coherent point of view. Section .5 2 points 

out several issues on data flow schemas and their implementation. 

'Exte sions of the language and areas for further research are suggest.ed in 

section 5.3. 

5.1 Stmm1ary and dis,cusaion 

In chapter 2 we introduced data flow schemas and the basic structure 

of TDFL he class of rwf data flow schemas exc udes iteration schemas 

aa a result o - several considerations. Fi st, the semantic.a of iterati,o , 

schemas involves the update of an identifi.e:t and theirefore does not conform 

with single as sig:nment. Second I lile feel that efficiency arguments against 

t'ecursion are · ot justified in ge e al and that the recursive form of 

describing iterative processes in an asynchronous system may result in 

faster completion of the computation. Third, in the computer archi.tec.tur,e 

proposed by Dennis, Misunas [ 14- ] iteration schemas ·need to be 

modif ,ed by adding gates to revent the arbitratio network from possibly 

hanging up (Misunas [ 35 ]) • The elimination of n.on-local identifiers 

results in .simple translation rules for TDFt and avoids the ques tior.i of 

whether non-local identifiers should have static or dynamic binding 

The explicit distinction of inputs and outputs of a module is a 

natural consequence of t he single assignment rule and circumvents the 

semantic complexi ty i ntroduced by defining parameter p•assing conventiops , 
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We may relax the t"equirement that all identifiers be we.1 .-defined by 

allowing references to identifiers to precede their de ioitions. 

Chapter 3 1 traduced n,ew pri:mi t:1.ves which provide for computations 

over streams .. By el1mi.nat1ng end of stream tokens (est) and the 

predicate. end ,of stream (eqs) from the language TDFL one can guarantee 

that ill-formed s,equences of tokens will not occur. 

In chapter 4 we summ.ariz,ed some of the results in the heo of 

puallel computation on determinate systems. The behavio of oterconnected 

data flow odules is shown to be properly abstracted in r:erms o,f 

lattice theoretical functions 1 which suggests the possibility of unifying 

the se antics of the language within the framework of the Scott-Strachey [40] 

mathematical approach. (As. a side issue we must. point out that in forming the 

lattice of the partial ordering for stt"eams one mus include the est 

token as pa?"t of the signal histo,ry.) 

The concepts of proper initialization and termination were discussed. 

We believe that any program should either be ex-pressed i the subs,et of 

the language guaranteeing that thes e p'l!'operties exist or else are 

specifically proved to satisfy these. proper ties. We defined a subclass of 

determinate systems composed of extended well~ behaved modu es and gave 

necessary and sufficient conditions for determination of proper 

initialization. Trans ation i:nto properly term.tnating recursive data 

floYI' scbe.m.as is also given for the subclass. 

5 ,. 2 Related Issues on D1ata Flow Schemas 

he firing rule of the module_ application actor requires a token be 

present on each input arc for the act:o to be enabled This requirement 

actually makes a computation less asynchronous since all inputs are 

guaranteed to arrive if 1:here is no non-terminating computati.on which does 

not generat,e any outputs.. The f,easibility ,of relaxing the firing rule 

fol:' the module_app,lication actor should be considered seriously t e,rpecially 

if it should result in higher d,egree of parallells:m than what would be 

,otherwis,e. As a result the semantics of odule_call in a parform gr,oup 

can be greatly simplified. 
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Co sider for examplet the program shown in figure .5.1. The 

activation of he module generates a snapshot as shown io figure 5~2, 

where only get and con s operators are shown. The long chains of get 

and con-s ope a ors cause substantial inefficiency i the implementation 

for da.ta flm.1 schemas actua ly generates these chains, since tokens must 

travel thr,ough the ,chains whose lengths keep on increasing as new 

activa ions a.re invoked. This need not be the case if the implementation 

sinru ates the effect of these chains. For instance, arrays may be 

employed or some mechanism for dynamically shorteni g the chains could be 

devised. 

Chopper ; modu e (x ; st int y : tl int) 

if empty (x) then [ ] ➔ y 

~ get (x) ➔ x_he,11d 1 x_ est; 

if x_ head < 0 then [ ] -+ y 

Fig,ure 5.1 
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x_head { 
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I 

.... ~ 
\--
' last 

activation 

Figure 5.2 Chains of stream operators 
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5 3 Further Work and Research 

The language TDFL is minimal in. the sense that many desirable 

features are not included for simplicity and can be added if so chosen. 

For example new data type such as stri '& and data structures based on 

the acyclic structure of C:Bt (D,en -1s [ 10 ] ) may be included,. and cormnon 

occurences of nested condi tiona.ls may be reduced by case st at:,e:ments. 

Computations involving data st.rue tu: es often exh:l.bi t high degree of 

parallelism. An example is the simultaneous activation of processes 

operating on each component of a data structure.. A for all construct ma:y 

be defi ,ed for ,expressing this kio.d of parallelism. Primitives for 

converting a data structure to a stream comprised of substructures and 

vie e versa a:y also prove use. ful. 

It is st, 11 an open area of research to deftne a set of primitiv,es 

for non-determinate c ,omputations. When a data st.ructure is shared the 

"Monitor' concept advocated by Hoare [ 21 ] may prove adequate. 

Techniques for optimization and transformations which are applicable 

to data flow schemas to gain efficiency and more para le Us s ti 1 need 

to be investigated. 
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