
't 
MASSACHUSETTS 

LABORATORY FOR INSTITUTE OF 
COMPUTER SCIENCE TECHNOLOGY 

(formerly Project MAC) 

MIT /LCS/IM-70 

AUTQ\V\TIC DESIGN OF DATA PROCESSING SYSID1S 

GREGORY R, RUTH 

FEBRUARY 1976 

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139 



MIT/LCS/TM-70 

Automatic Design of Data Processing Systems 

February 1976 

Gregory R. Ruth 

Laboratory for Computer Science 
(formerly Project MAC) 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

This work was supported by the Advanced Research t'rojects Agency of the Department of 
Defense and was monitored by the Office of Naval Research under Contract •N000li-75-C-
06Sl. 



ABSTRACT 

The design of data organization and data accessing procedures for data 

processing systems operating on large keyed files of data is a common and recurrent activity 

in modern data processing applications. A considerable amount of understanding and 

expertise in this area has been developed and it is time to begin codifying and automating 

this process. It should be possible to develop a system where the user has merely to 

specify the characteristics of his data objects and their interrelations and the system will 

automatically determine the data organizations and accessing procedures that are optimal 

for his application. The optimizer for Protosystem I (an automatic programming system 

prototype at MIT) provides an example of how such automation can be accomplished. 



Automatic Design of Data Processing Systems 

The design of data organization and data accessing procedures for data 

processing systems operating on large keyed files of data is a common and recurrent activity 

in modern data processing applications. A considerable amount of understanding and 

' 
expertise in the this area has been developed and it is time to begin codifying and 

automating this process. It should be possible to develop a system where the user has 

merely to specify the characteristics of his (input, output, and intermediate) data objects 

and their interrelations2 and the system will automatically determine the data organizations 

and accessing procedures that are optimal for his application. The optimizer for 

Protosystem I (an automatic programming system prototype at MIT's Project MAC) 

provides an · example of how such automation can be accomplished. This paper describes 

the theory and algorithms behind the· optimizer that is currently operational at Project 

MAC. 

Previous Work 

The first reported efforts in the area of formalizing data processing system 

design are those of Langefors5•6. He conceives a data processing system as a collection of 

processes or computations that operate on data files. In this model a file is a set of 

records, each with a single key and one or more data items. Each computation makes 

passes over ail of the records of its input files to produce records of its output files. A 

transport volume is associated with each file-computation pair (where the computation 



Automatic Design of Data Processing Systems 2 

reads or writes that file). This is defined to be the volume of the file (measured, say, in 

bytes) multiplied by the number of passes made by the computation over that file. · The 

design objective is the minimization of total system transport volume. Transport volume 

reduction is accomplished by merging computations (so that a file can be read once for all, 

rather than separately for each) and by merging files (thus eliminating key redundancy and 

making the resultant file physically smaller than the sum of the sizes of its component files). 

Nunamaker et al7 have analyzed this formulation and developed an algorithm for system 

optimization that generates all feasible mergings (by imphcit enumeration) and 

corresponding system configurations to find the one that minimizes trans'port volume. 

Because the computations generally involve very simple calculations, the bulk. of 

the processing cost for ·such systems is usually due to 1/0 charges. Thus, an optimization 

strategy that focuses mainly on I/0 reduction is appropriate. But implicit in the 

Langefors model are two simplifying assumptions that seriously weak.en it as a design 

optimization tool for practical systems: (I) that . I/0 costs depend directly on total transport 

volume as defined above, and (2) that all files have a single key. (Also ignored is the cost 

due to core residency charges, but in systems dominated by secondary-primary storage 1/0 

activity, this is a second order effect). 

In most operating systems, the user is charged primarily by the I/0 event (the 

transfer of a single second storage block to or from primary storage), rather than by total 

volume. Furthermore, the number of 1/0 events necessary when a computation processes 

a file depends on not just the total volume of the file, but also (I) the number of records in 

a block, (2) the number of records used by the computation, and (3) the access method (e.g. 

sequential, random). 



Automatic Design of Data Processing Systems 3 

The limitation of one key per record is completely artificial and at variance with 

practical reality. Files frequently have more than one key in their records (cf. Codd 1). 

This means that they can be sorted in more than one way. By the same token, a 

computation that processes such a file can process its records in more than one order by 

their keys. This affords the possibility of conflict either between two computations that 

process the records of a file in two different key orders, or between two files with different 

sort orderings that are processed by the same computation. · The manner in which such 

conflicts are resolved (e.g. re-sorting a file, using random instead of sequential access) will 

affect the total I/0 cost of the system. The possibility of sort order conflicts also 

complicates the evaluation of I/0 savings due to file and computation merging. 

The Protosystem I optimizer takes all of these design considerations into account. 

The Protosystem I MIS Model 

Protosystem I is an automatic programming system for generating batch oriented 

MIS's. Such systems involve a sequence of runs or Job steps that are to be performed at 

specified times. They are assumed to involve significant 1/0 activity due to repetitive 

processing of keyed records from large files of data. Systems such as inventory control, 

payroll, and employee or student record keeping systems are of this type. 

Central to the design of such systems is the notions of the data set. A data set is 

a collection of similar data that are to be processed in a similar way. An example is the 

set of all inventory levels in a warehousing MIS. In the domain of Protosystem I a data 

set is assumed to consist of fixed format records (e.g. one for the level of each inventory 

item). Associated with each record are data ttems and keys. The key values of a record 



Automatic Design of Data Processing Systems 4 

uniquely disting_uish it (e.g. the Inventory data set can be keyed by item since there is only 

one level (record] per item) and so can be used to select it. Thus, a data set is essentially 

the same as a Codd relation I and its keys are what Codd calls primary keys. 

The repetitive application of an operation to the members of a data set or sets is 

termed a computatton. The order of application of the operation by a computation is 

assumed to be unimportant to the user; in fact, he may think of them as being performed 

in parallel. However. every computation does, in fact, process its inputs serially, according 

to a particular ordering (chosen by Protosystem I) on their keys. Computations typically 

match data items from different data sets by their keys and operate on the matching items 

to produce a corresponding output data item. For example, an order filling computation 

matches the total orders for a given item against the inventory level of that item and 

determines the amount of that item to be shipped. Computations may also group the 

members of a data set by common keys and operate on each group to produce a single 

corresponding output. Following our example, suppose that item orders can come from 

several sources, so that both the item and the source of an order are needed (as keys) to 

distinguish it. To form the total of all orders for each item, a system must group the 

orders by item and sum over the order amounts in each group. 

In this context, then, data processing system design is the process of constructing 

computations and data sets and determining the best access methods and organizations for 

them. In the domain of Protosystem I only three types of file organizations and three 

types of accessing methods are considered. The organizations are: 

Consecutive Records are organized solely on the basis of their successive 
physical location in the file. For Protosystem I records in a sequentially organized 



Automatic Design of Data Processing Systems 5 

data set are required to be completely ordered. 

Index Sequential Records are organized in such a way that by reference to indices 
associated with the data set it is possible to quickly locate any record and read or 
update them. Additions or deletions do not require a rewrite of the file. 

Each index-sequential data set has a particular sort ordering (determined by 
the optimizer) associated with it and usually the records are nearly ordered in this 
way physically. 

Regional (2) Records are stored in a "random" manner but there is a mapping 
function from the keys of a record to its physical address. 

The accessing methods are: 

Sequential For regional (2) and consecutive data sets, records can be read and 
processed in the physical order in which they appear in the data file. For an index 

· sequential data set the operating system's sequential access software delivers records in 
the sort order associated with the data set. 

Random Records are referenced (read, updated, added, or deleted) through the _ 
values of keys supplied by the computation. This method is applicable only for 
accessing regional (2) data sets or for reading index sequential datasets. 

Core Table An input file is initially read into core in its entirety; an output file, 
after being assembl~d in core, is sequentially copied onto the device where it will 
reside when finished with. Records are accessed in core sequentially if their sort 
order agrees with the processing order of the computation; otherwise, by binary 
search. Directly organized data sets are accessed by hashing. 

The Optimization Criterion 

Optimization, as viewed by this part of Protosystem I is simply cost minimization. 

Further, because the MIS's are assumed to be IiO intensive, this is equated with access 

minimization. An access is defined as the reading or writing of a single secondary storage 

block, which corresponds to a single operating system II? event. In Protosystem I, for a 

particular data set a block consists of a fixed number of records. 



Automatic Design of Data Processing Systems 6 

Example 

A simple example of an MIS in the domain ·of Protosystem I is the store chain 

inventory and warehousing system shown in Fig. 1 (boxes indicate computations and arrows 

represent data flows). This system contains computations that update the inventory levels 

file to reflect shipments received from suppliers, find the total amount of each item ordered 

by all stores, fill the orders, determine the total reductions in inventory, adjust the levels file 

accordingly, check for the necessity of restocking orders, and make orders to the proper 

suppliers. 

This example illustrates some of the important factors in data processing design. 

Consider the FI LL ORDERS computation. For each item that is ordered by some store a 

shipment quantity is determined. It could be implemented by considering each possible 

combination of values for the keys STORE and ITEM, determining whether the conditions 

are suitable for producing a shipment record (viz. that the item in .question has been 

ordered by the store under consideration), and if so applying the associated operation to 

generate such a record. This requires a test for every possible combination and each test 

involves a probe to one or more of the input data sets. Since on a given day not all of 

the stores will order and mo~t that do will order only a fraction of the possible items, such 

an implementation would involve an unnecessarily large number of useless accesses. In 

contrast, since it can be determined (by analyzing the FI LL ORDERS computation) that the 

operation will be applicable only when there is a record in QUANT I TIES ORDERED, the 

computation could be designed to consider only those store and item combinations for 

which there are records in QUANTITIES ORDERED. In this case the computation is said to 



yesterday•a 
final 
inventory 

update 
i nventory 

beg inning 
inventory 

supplier 
shipments 
received 

quantities of each 
item ordered by stores 

fil I orders 

l 
quanti ty of each item 
ahipped to each store 

s um shipped items 
over a 11 stores 

iot~I items shipped 

adjust inventory 

f Ina I inventory 

reorder calculation 

reorder amounts 

HG.I 

sum item orders over 
a 11 stores 

total item orders 

Simple Store Chain Inventory and Warehousing System 

'1 . 



Automatic Design of Data Processing Systems 8 

be drtven by QUANT I TI ES ORDERED, and QUANT! TI ES ORDERED is said to be its drtvtng data 

set. Note that not every input to a computation is a suitable driver; for the UP0A TE 

INVENTORY computation only YESTERDAY'S FINAL INVENTORY will do--if SHIPMENTS 

RECE I VEO were used it might not contain a record for each item, causing BEGINNING 

INVENTORY to be incomplete. 

Another factor in optimization is illustrated by the UPDATE INVENTORY 

computation. If the records of SHIPMENTS RECEIVED are consecutively organized and 

sorted in the same order as those of the driver (YESTERDAY'S FINAL INVENTORY) it can be 

used in the order in which it is stored. This means that blocking can be used to minimize 

accesses; if there are B records per block and N records in shipments received, the number 

of accesses necessary will be no greater than N/B + I. However, if the two inputs are not 

sorted in the same order, the computation will have to search (usually requiring more than 

one access) for each record of SHIPMENTS RECEIVED when it is needed. Alternatively, 

SHIPMENTS RECEIVED might be given regional (2) organization and accessed randomly; 

but the blocking advantage would be lost. 

These considerations of driving data sets, consecutive data set organization, 

compatible sort orderings and blocking will figure importantly in the design process. 

The Optimizer 

In Protosystem I the optimizing designer of data set organization and data 

processing (called the opttmtzer) is given a relational description of the basic data 

aggregates and the relations among them. (Fig. 2 is an example of such a description for 

the MIS of Fig. I.) Its job is to 



CALCULATIONS EVERY DAY 

BEGINNING-INVENTORY IS FINAL-INVENTORY(l DAY AGO)+ SHIPMENTS-RECEIVED. 

TOTAL-ITEM-ORDERS IS SUMS OF GROUPS QUANTITY-ORDERED-BY-STORE BY ITEM 

QUANTITY-SHIPPED-TO-STORE IS 

QUANTITY-ORDERED-BY-STORE 

QUANTITY-ORDERED-BY-STORE 

IF BEGINNING INVENTORY IS GREATER 
THAN TOTAL - ITEM-ORDERS 

* (BEGINNING-INVENTORY/ TOTAL-ITEM-ORDERS) 
IF BEGINNING INVENTORY IS NOT 
GREATER THAN TOTAL - ITEM-ORDERS 

TOTAL-SHIPPED IS SUMS OF GROUPS OF QUANTITY-SHIPPED-TO-STORE BY ITEM 

FIHAL-!NVENTORY IS BEGINNING-INVENTORY· TOTAL-SHIPPED 

REORDER-AMOUNTS IS 1000 IF FINAL-INVENTORY IS LESS THAN 100 

DATA SET TABLE 

(BEGINNING-INVENTORY DAY ITEM) 
(FINAL-INVENTORY DAY ITEM) 
(ORDERS-TO-SUPPLIERS DAY ITEM) 
(QUANTITY ORDERED-BY-STORE DAY ITEM) 

(QUANTITY-SHIPPED-TO-STORE DAY ITEM STORE) 
(TOTAL-ITEM-ORDERS DAY ITEM) 
(TOTAL-SHIPPED DAY ITEM) 

Figure 2 
Relational Description for the MIS of Figure I 

' 



Automatic Design of Data Processing Systems 10 

(l) design the keyed files--in particular their 

(a) contents (information contained) 

(b) organization (direct, consecutive, or index sequential) 

(c) storage device 

(d) associated sort orderings (by key values) 

(2) design each job step of the MIS--namely 

(a) which computations it includes 

(b) its accessing methods (sequential, random, core table) 

(c) its driving data set(s) 

(d) the order (by key values) in which it processes the records of its input data sets 

(3) determine whether sorts are necessary and where they should be performed 

(4) determine the sequence of the job steps 

All d_esign decisions are made in an effort to minimize the total number of 

accesses that must be performed in the execution of the MIS. In preparation for this 

design process an analysis of the MIS description is performed in order to determine 

properties relevant to making good decisions. Among these properties are the candidates 

for driving data sets for each computation and the average and maximum sizes of each 

data set (the latter may require some interrogation of the user). During the design process 

the user may be asked to give further information9 that can be used to determine the sizes 

of newly designed data sets. 



Automatic Design of Data Processing Systems 11 

Access Minimization 

There are three major techniques that the Protosystem I uses in designing MIS's 

so as to minimize accessing: (1) making use of data set blocking, (2) aggregating data sets, 

and (3) aggregating computations. 

Blocking 

Since an access is defined as a reading or writing of a block of records, accesses 

can be reduced if blocking factors greater than one are used and if processing and data set 

organizations are arranged in such a way that the records of a block can be used at the 

same time. Where core table access is not possible (i.e. when the whole file will not fit in 

' 
available core} this means that a data set must be accessed sequentially (and therefore have 

consecutive or index sequential organization) and it must be sorted in an order that is the 

same as processing order(s) of the computation(s) accessing it. When core table access is 

possible for a data set the number of accesses is just the number of blocks in the data set; 

regardless of whether the data set's sort order matches the processing order of accessing 

computations, each block need be accessed just once to get it into or out of core. 

Because blocking is the most effective way of reducing accesses, the optimizer 

tries to make it possible for the sort orders of data sets that are too big for core table access 

to match the processing orders of their accessing computations in as many cases as possil;>le. 

However, unresolvable conflicts among sort order preferences can and will arise. 

Sometimes it is advantageous to introduce resorting computations so that a data set can 

have two or more differently sorted versions. 



Automatic Design of Data Processing Systems 12 

Aggregating Data Sets and Computations 

The relational description of the MIS identifies the baste data entities and 

operations. The straightforward implementation of such a description is to make one 

data set for each data entity and one computation for each operation. This can be 

considered as the tnlttal conftguratton to be manipulated by the designer. The designer 

combines or aggregate data sets and computations in order to reduce accesses. 

The aggregation of data sets produces a data set in which there is one record for 

each set of records in the original data sets that match (by keys). For example, the 

aggregate of the data sets in Figs. 3.a and 3.b is shown in Fig. 3.c 

3) 
2) 

2) 
4) 

male-employees(dept) female-employees(dept) 

a. b. 

---. 3) 
2) 

4) 

male-&-female
employees(dept) 

c. 

Figure 3: Data Set Aggregation 

where a record is represented by a tuple whose last element is the key value and whose first 

elements are the data items. 

Data set aggregation is advantageous when two or more data sets are read or 

written by the same computation. Accesses can be saved if the shared data sets are 

aggregated and processing is arranged so that a single record of the aggregate can be 

accessed where more than one record from each of the unaggregated· data sets would have 



· Automatic Design of Data Processing Systems 13 

to be accessed without aggregation. 

Two other ways of reducing the number of accesses are illustrated in Figs. 4.a 

and 4.b (circles represent data sets, boxes represent computations). It may be 

advantageous to combine computations that read the same data set so that they can all 

. \ 

access a record at the same time; if their processing orders for the shared data set agree, 

each record to be accessed can be read once for all, rather than once for each computation. 

This is called hortzontal aggregatton (Fig. 4.a). 

V erttcal aggregation refers to combining two computations when the output of 

one is used as the input to the other and their processing orders agree (Fig. 4.b); in that 

case, the second computation does not have to read the output records of the first--they can 

simply be passed from the one computation to the other as needed. 

The aggregation of computations is more than a simple merging. Looping 

redundancy is eliminated sc that the composite result is more efficient than its components 

separately. 

General Design of the Optimization 

The access minimizations techniques given above require that the key order of 

processing agree in a special way with the organization of the data being processed. This 

is where the fundamental difficulty in optimization lies. A data set's organization and the 

accessing method of a computation using it cannot be determined independently of each 

other or of other data set organizations and computation accessing methods. The 

organization of a data set limits the ways in which it can be practically accessed by a 

computation, and, conversely, the accessing method of a computation restricts the practicable 



- - > 

Figure 4.a: Horizontal Aggregation of Computations 

Figure 4.b: Vertical Aggregation of Computations 
Automatic Design of Data Processing Systems 

14 



Automatic Design of Data Processing Systems 15 

organizations of a data set that it accesses. Furthermore, a da·ta set is typically accessed by 

more than one computation with possibly conflicting preferences for its organization; and 

a computation accesses more than one data set with conflicting preferences for accessing 

methods. Finally, data set organization constraints tend to propagate through 

computations, because it is most efficient for a computation to write its outputs in the same 

key order in which it reads its inputs, since that is the order in which the output records 

will be generated. So, optimization of the type we are considering is necessarily be a 

problem in global compromise. 

The straightforward solution of evaluating the cost of every possible combination 

of assignments of sort order, device, organization, and access method for data sets and 

computations in every possible aggregation configuration to determine the least expensive is 

ruled out by the sheer combinatorics involved. Even with mathematical and special 

purpose tricks it would be impossibly slow. 

To make optimization tractable a heuristic approach must be taken. First 

different kinds of decisions (e.g. choice of driving data sets, which objects to aggregate) 

must be decoupled wherever possible. Further decoupling must _be judiciously introduced 

where it is not strictly possible, for the sake of additional simplicity. Such forced 

decoupling does not mean, though, that decisions that are in fact coupled are treated as if 

they were independent. The decoupled decisions are still made with 'a certain awareness of 

their effects on other decisions. Finally, as a first order approximation, the optimizer does 

what is reasonable locally, and then adjusts somewhat for global realities. 



Automatic Design of Data Processing Systems 16 

The Optimization Algorithm 

Our optimization algorithm consists of the following 7 steps: 

I. Development of maximal potential for reducing accesses through blocking for the 
initial configuration. 

2. Aggregating computations where advantageous in the current context. 

3. Aggregating data sets where advantageous in the current context. 

4. Iteration over steps 2 and 3 until no further aggregation is suggested. 

5. Determination of driving data sets. 

6. Determination of device and organization for each data set and of access method 
for each co_mputation. 

7. Determination of optimal blocking factors. 

Step I: Setting Up the Initial Configuration to Take Advantage of Blocking 

The determination of mutually agreeable sort orders for computations and data 

sets that will allow maximal advantage to be taken of blocking (which requires matching 

sort orders and sequential accessing where core table access is not possible) must be 

considered first in the optimization process. Aggregation and other optimization 

techniques are of little value if they force sorting or other methods of accessing (that can 

require orders of magnitude more 1/0 events than sequential accessing). 

As explained above it is necessary for the sort order of a data set that is not core 

table accessible to be made the same as the processing order of a computation that accesses 

it in order to reduce accesses by that computation by blocking. But there are user 

constraints on data set sort orders and inherent preferences of computations for constraints 



Automatic Design of Data Processing Systems 17 

on their sort orders that must be taken into account, too. As a result of these each 

computation and data set will have a sort order constraint (SOC) restricting the possible 

sort orders it may be given. 

For example, a data set D(key1, key2, key3) may have the SOC that its records be 
sorted on key2 first. Then the optimizer could decide to sort them first by key I and 
then by key3 under key2, or vice versa. 

Th~ factors that affect SOC's are: 

1. User constraints The user may specify that inputs or outputs have a particular 
associated SOC. 

2. Uniqueness A particular computation presents the same SOC to all of the data 
sets that it reads or writes; and a particular data set presents the same SOC to all of 
the computations that read or write it 

3. Parallelism A computation outputs records in the same key order in which its 
inputs are read. 

4. Computation Preferences: The optimizer prefers that the input data set to a 
grouping computation be sorted first by the keys that distinguish the groups it 
operates on. That way, it can be designed to process one group at a time. 
Otherwise groups must be processed in parallel, requiring costly accesses if the core 
available for buffering is insufficient. 

5. Sequential Access Preference (to take advantage of blocking) 

Two SOC's for which there is a common possible sort ordet are called conststent. 

If a data set and a computation accessing it have consistent SOC's both can be assigned the 

same SOC (one that conforms to each of their original SOC's), thus insuring potential for 

sequential access and blocking. 

In general it will not be possible to satisfy all preferences and constraints 

simultaneously. Conflicts arise preventing the sequential accessing of every data set. At 



Automatic Design of Data Processing Systems 18 

best, therefore, the optimizer can only try to find the cheapest compromise. What it aims 

for is the maximization of the total volume of data accessed sequentially. Even here it 

must to make concessions to practicality. That is, it tries to come as close as possible to 

this maximum without expending an unreasonable amount of effort. 

Its method is to follow the implications of the initial constraints and preferences 

throughout the network of computations until conflicts arise, and then try to resolve those 

conflicts as advantageously as possible. It tries to associate with each computation and 

data set a minimimally restrictive SOC that is consistent with its own preference (if any) 

and with all of the constraints on and preferences for the SOC's of all of the immediately 

adjacent objects in the net (for data sets this is the set of all accessors, and for computations 

this is the set of all inputs and outputs). Insofar as this is possible it has what it wants; 

otherwise it has discovered a conflict of interest, which it attempts to resolve in such a way 

that the greatest volume possible of records involved can be accessed sequentially. 

We have found that this simple SOC assignment algorithm produces good, if. not 

optimal, results in the systems we have tested. This occurs because typically (1) there are 

very few conflicts and (2) those that do occur are generally simple and local phenomena. 

When an assignment of minimally restrictive, "consistent-as-possible• SOC's has been 

determined for all of the objects in the system heuristic aggregation of computations and 

data sets can be performed. It is not advantageous to aggregate computations and data 

sets if this will increase the 1/0 cost by precluding sequential accessing that may have been 

possible before aggregation. So, the aggregation of two data sets or computations will be 

permitted only if their SOC's are consistent. On the other hand, unnecessarily restrictive 



Automatic Design of Data Processing Systems 19 

SOC constraints would prevent aggregations that would otherwise be possible. Thus the 

emphasis on finding mtntmally restrictive SOC's. 

Step 2: Computation Aggregation 

Computations are considered for aggregation if they are have consistent SOC's 

and access a common data set. This data set may be either a common input (horizontal 

aggregation) or a common intermediate data set--that is, the output of one and and input to 

the others (vertical aggregation). In order to preserve existing sequential accessing 

potentials, the SOC of the aggregate must be consistent with each of the SOC's of the 

aggregated computations. Further, to avoid unnecessarily precluding otherwise possible 

aggregations, the SOC assigned to the aggregate is the minimally restrictive mutual 

restriction of the SOC's of the components. Nevertheless, it will not be uncommon for the 

SOC of the aggregate to be more constrained than the SOC's of the computations that 

went into it. This means that the decision to make a particular aggregation may prevent 

other aggregations (by virtue of SOC inconsistency) that were formerly possible. For 

example, computations A, B, and C may be pairwise aggregatable but the aggregation of an 

three may be impossible; that is, if, say, A and B are aggregated, the SOC of the result 

may be inconsistent with that of C, even though the SOC of A is consistent with that of C, 

and the SOC of B is consistent with that of C. 

Finding an exact optimum by considering all possible combinations of all possible 

aggregations is again precluded by sheer combinatorics. The heuristic approximation is 

made that what is optimal locally is good for the system, and again we have observed (and 

conjecture) that the simplicity of typical systems is such that this is a viable approach. 



Automatic Design of Data Processing Systems 20 

The optimizer considers aggregation candidates two at a time. As the order of 

treatment is significant, ·the policy is (locally) to consider aggregations in order of the 

number of 1/0 events they are expected to save. Furthermore, classes of aggregations are 

performed in the following order: 

l. vertical aggregations 

2. horizontal aggregation of computations reading co~mon system inputs 

3. other horizontal computation aggregations 

Vertical aggregations are considered to have a higher priority than the horizontal variety 

because the former may result in the entire elimination of data sets; that is, the data sets 

involved will neither have to be read nor written. Horizontal aggregations that eliminate 

reads of system inputs are pref erred over other horizontal aggregations because such inputs 

often reside on such storage media as magnetic tape and cards, which are relatively 

inconvenient and costly to access repeatedly. 

· Step 3: Data Set Aggregations 

Data sets are considered for aggregation if they have consistent SOC's, are· not 

system inputs or outputs, and are both outputs of a common computation and inputs to 

another common computation. As with computations, care must be taken so that the SOC 

of ~he aggregate is consistent with each of the SOC's of the aggregated data sets, in order 

to preserve whatever sequential accessing potentials may exist. As the introduction of 

arbitrary constraints can prevent otherwise possible aggregations here too, the SOC 

assigned to the aggregate is the minimally restrictive mutual restriction of the SOC's of the 



Automatic Design of Data Processing Systems 21 

components. But again, the SOC of the aggregate may be more constrained than the 

SOC's of the data sets that went into it, so a particular aggregation may prevent others, and 

the order in which they are performed is important. 

The optimizer considers those computations with more than one output in order 

of the total volume in records that they process. For each computation its largest output 

data set is considered for aggregation with as many of the others (in order of their size} as 

possible, the criteria for aggregation being that SOC's be consistent and that the total cost 

of reading the aggregate (by all computations for which it is an input) is lower than the 

total cost without aggregation. 

Step 4: Aggregation Iteration 

Computation and data set aggregation are repeated until no further aggregation 

is possible. This iteration is necessary because the aggregation of data sets may make 

further pairwise computation aggregations feasible, and similarly, the aggregation of 

computations may make additional pairwise data set aggregations feasible. 

Step 5: Driving Data Set Determination 

Choosing driving data sets for each computation is straightforward. 

Empirically, about 85~ of the computations in the initial (before aggregation) system 

configuration are found to have a only a single candidate. Aggregation further decreases 

the number of cases where there are multiple candidates. For each of the (few) remaining 

computations for which a candidate must be chosen, determinations of the tota 1 average 

accesses necessary for each are made (possibly requiring the user to supply information 



Automatic Design of Data Processing Systems 22 

about data set sizes) and the accessing minimizing candidate is chosen. 

Step 6: Device, Organization, and Access Method Determination 

Some assignments of device and organization for data sets will already have been 

made by the user. Typically he has specified the devices and organizations for the system 

inputs and outputs. Reports generally have device PRINTER and so must be 

consecutively organized. Additionally, driving data sets are constrained to be accessed 

sequentially by the computations they drive; and so their organizations are either 

consecutive or index sequential. 

Within this context the remaining assignments are made by cases. The 

optimizer considers one data set at a time and binds its device and organization and the 

accessing methods of each accessing computation before considering the next. If a data 

set has no SOC conflicts with its accessors it is given consecutive organization, sequential 

access, and (unless otherwise specified by the user) device DISK. If it is a system input 

that is only partially sorted core table access is used if its size permits; otherwise a sorting 

computation is inserted. 

If a data set has SOC conflicts with its accessors and it is core table size, all 

accessors access it by core table. 

If a data set has a SOC conflict and is too big for core table access there are 

three alternatives: 

1. give it consecutive organization, have the compatible computations access it 
sequentially, and insert sorting computations to produce versions that can be accessed 
by the rest of the computations. 



i 

Automatic Design of Data Processing Systems 23 

2. give it index sequential organization, have the compatible computations access it 
sequentially and the others randomly 

3. give it direct organization and have all accessors access it randomly 

Each alternative assignment is sent to the job cost estimator and the one that minimizes cost 

is chosen. 

Step 7: Determination of Blocking Factors 

Choice of blocking factors can be postponed to the very last step in the 

optimization process. The cost of accessing as a function of the block size drops initially 

as block size increases; but then it hits a minimum and begins to r~se as core residency 

charges become significant. However, for the costing scheme we have studied the 

minimum usually occurs either beyond the operating system's block size limit or so close to it 

that the core residency does not play a significant role in cost. 

So the optimal assignment of blocking factors by minimizing total system cost (as 

a function of the blocking factor) is determined subject to the constraints that the blocking 

factor be less than the operating system prescribed upper limit (e.g. no block can be larger 

than a single disk track} and that the total buff er space at any time cannot exceed the 

available core. 

Experience 

While this process will not find the true optimum, it produces a good and usually 

near-optimal solution for real and honest problems. The reason for this is that, from our 

experience so far, in typical systems global effects are weak, Step 1 (SOC determination) 



Automatic Design of Data Processing Systems 24 

does a good job of bringing the consequences of these global effects down to a local level, 

and after that what is "reasonable" to do in a fairly local context is almost always good (if 

not best) for the overall system design. 

The approach described in this paper is wholly within the spirit of state of the 

art MIS design. The goal is to get a system that works and works well. Designers do 

not expend inordinate amounts of time and energy to get as close to an optimum as possible 

unless timing and/or cost constraints are absolutely critical. Although our optimizer lacks 

the cleverness and special case knowledge of a competent system designer we believe that 

the indefatigable, meticulous application of sound (though not perfect) optimization rules 

will more than compensate for this. Even with the few, relatively simple, systems that 

have been worked oh so far, the optimizer has proposed designs which were not at all 

obvious, but which, under careful scrutiny, proved to be quite good. 



Automatic Design of Data Processing Systems 25 

References 

I. Codd,E.F. A Relational Model of Data for Large Shared Data Banks, Comm. ACM 13, 
6 (June 1970), 377-387. 

2. Early, J. Relational Level Data Structures For Programming Languages, Comp. 
Sci. Dept., U. of California, Berkeley, 1973. 

3. Hammer, M., Howe, W. and Wladawsky, I. An Overview of a Business Definition 
System, ACM. S/GPLAN Nottces, 9, 4, April 1974. 

i. Kornfeld, W. Methodology for Optimization in Automatic Programming Systems, 
unpublished B.S. thesis, Project MAC, MIT, 1975. 

5. Langefors, Borge Somne approaches to the Theory of Information Systems, BIT, 3 
(1963), pp. 229-254, 

6. Langefors, Borge Information System Design Computations Using Generalized Matrix 
Algebra, BIT, 5 (1965), pp. 96-121. 

7. Nunamaker, J. F. Jr., Nylin, W. C. Jr., and Konsynski, B. Jr. Processing Systems 
Optimization tahrough Automatic Design and Reorganization of Program Modules, 
lnformattons Systems (tou ed.), pp. 311-336, Plenum, 1974. 

8. Ruth, G. Internal Memo 16: Status of Protosystem I, Project MAC, MIT, 1975. 

9. Ruth, G. Internal Memo 21: The New Q.uestion Answerer, Project MAC, 1975. 


