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Protosystem I: An Automatic Programming System Prototype 

ABSTRACT 

A model of the data processing system writing process is given in terms of 

development stages. These stages correspond to the progression in the implementation and 

design process from the highest level of abstraction (English system specifications) to the 

lowest level (machine code). The issues and goals (including optimization of the product 

data processing systems) involved in automating these stages are discussed and strategies 

and methodologies used for doing so are developed. 

Protosystem I, an automatic programming system prototype, is described. The 

completed (and working) part automates three of the five stages identified in the proposed 

model of the system writing process. The basic theory, methods and structure of this part 

of the automatic programming systems are presented. 
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Programming is the activity of going from a task specification to code capable of 

performing the task on some actual computing system. This is essentia11y a problem 

solving process. But over the years people have come to understand certain functions of 

the programming process welt enough to automate them-that is to replace those functions 

by programs. The most notable results were assemblers, compilers, and operating systems. 

The gains realized from this automation were reduced operating errors, increased 

complexity of systems which could be completed and more efficient use of resources (time, 

people, machines) in the design-implement-evaluate cycle. 

Our knowledge and understanding of programming is once again reaching a 

level where a significant advance in automation is both necessary and possible. In fact, I 

believe that the entire programming process can now be effectively automated. That is, a 

system can be developed that will engage the user in English language discourse about a 

desired task and will produce, as a result of the interaction with the user, a satisfactory 

program. To demonstrate feasibility and gain insight into the issues and technology 

involved in creating such a system, a prototype automatic programming system (Protosystem 

I) for generating business data processing systems is currently being developed at MIT. 

A Model of the Program Writing Process 

The data processing system writing process may be conceived as a sequence of 

phases leading from the conception of a system to its implementation as executable machine 

code. A useful and plausible model for this sequence of phases is: 
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Phase 1: Problem Definition (English ➔ OWL) 

The system specification is expressed in domain dependent terms in English 
that is understandable by the program developers. 

Phase 2: General System Analysis and Design (OWL ➔ SSL) 

The problem is reformulated in standard data processing terms and expressed 
as an instance of a known solvable problem class (in our case a subset of the 
class of all batch oriented dps's). Domain dependent policy and procedures are 
worked out in detail at this stage. 

Phase 3: System Implementation (SSL ➔ CDSL) 

The system-the actual procedural steps and data representations and organiza­
tions-is constructed by intelligent selection from and adaptation of a number 
of standard implementations possibilities. 

Phase 4: Code Generation (CDSL -+ PL/I & JCL) 

The design specifications are implemented in a high-level language (e.g. PL/I, 
COBOL) in a fairly straightforward, but not totally mechanical, way. 

Phase 5: Compilation and Loading (PL/I & JCL ➔ machine executable form) 

A form is produced that that can be "understood" and executed by the target 
computer. 
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These phases progress from a general notion of what -is to be done by the desired system 

toward a detailed specification of how it can be accomplished. They also represent the 

classes of design and implementation problems involved in program writing, progressing 

from the most global and general considerations toward the most local and detailed issues. 

Protosystem I seeks to automate the program writing process by automating and 

tying together the phases described in the model given above. That is, Protosystem I is 
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designed in such a way that there are explicit parts or stages corresponding to each of the 

model phases. Each such stage embodies the knowledge and expertise of the human 

agent(s) for the corresponding phase, so that, given the same or similar input, it can 

intelligently produce comparable corresponding results. Drawing on experience gained in 

recent artificial intelligence and knowledge based systems research, we have chosen to 

represent the knowledge in each stage in the form of procedures as opposed to the 

approach used, for example, in table driven compilers. 

The products of each stage should not be so rigidly deterministic so that the 

courses of action in further stages are narrowly prescribed. They must be sufficiently 

general and malleable so that further stages can have the maximum freedom in making 

their design contributions in the most effective and efficient ways. Consequently, we have 

chosen in Protosystem I to make the product of each stage a descriptive representation of 

the dps in terms of concepts and considerations appropriate for the next stage of 

development. Such a description provides a medium in which the next stage can 

manipulate relevant concepts and analyze the dps for relevant properties, so that it can 

perform its design job more in the manner of a problem solver than in that of an 

automaton. In this way the programming process is conceived as the development of a 

succession of ever more precise system descriptions until, ultimately, a level is reached where 

every detail has been decided and the result is an executable computer program. 

Put another way, we have borrowed from structured programming the notion of 

program development by successive refinement, but we have approached this by extending 

the levels of language-machine, assembly, and compiler-to include the very high level 

language, SSL, and an English-like language, OWL. We recognize that to succeed with 
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this method one must make appropriate abstractions so that the more abstract statements of 

the problem lend themselves to further refinement While the wide use of business data 

processing systems in the past two decades has not led to the definition of standard modules 

which would handle any situation, it has led to a better understanding of the useful 

abstractions in that field. We believe that these abstractions can be grouped naturally 

according to the phases of the dps development process. 

Efficiency Enhancement in System Development 

To produce a credable and practical result an automatic programming system 

must perform a reasonable degree of optimization. Current formal optimization methods 

pertain mainly to the compilation level, prindpalty because this is the only phase of the 

program writing process that has been automated. When the entire program development 

process is automated, new, additional types of optimization will have to be included. The 

combination (for the sake of I/0 efficiency) of computations accessing the same data set is 

an example. At compilation time the decision to include these computations in the same 

job step or not to do so has already been made. If they are not in the same job step (and 

hence compiled separately) the opportunity for optimization has already been lost. Even 

if they are in the same job $tep, the compiler can derive little, if any, information about 

their I/0 characteristics. Therefore, it has no basis on which to evaluate the relative 

efficiency of possible combinations and is incapable of making an intelligent optimization 

decision. 

This type of optimization problem in not unique. It should be easy for the 

reader to think. of many other examples where it is impossible to perform adequate 
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optimization of the type necessary if we wait until Phase 5 to do it. The information 

needed to make good design decisions of a more g1oba1 nature is just not available at that 

stage. That is, the (so-ca11ed "high levelj compiler language is too low level to allow the 

system specification to be expressed in a form where such optimization issues wi11 be 

apparent 

The various possible types of optimizations fall quite naturally into categories 

that correspond to the program writing levels in our model. For instance, the combination 

of computations as in the above example is something that should be considered during 

Phase S (system implementation) where the data and computational interrelationships 

among conceptual processing units are most evident. Problems involving machine 

language inefficiencies should be handled in a later phase. 

An attempt to apply an optimizing process at a higher stage than that to which it 

pertains would require an overspecified system description at that level; that is, a 

description containing details extraneous to the purpose of that stage. Trying to apply a 

transformation at a later stage than that to which it naturally corresponds would effectively 

require "unprogramming" (translation from a lower level description to a higher level one). 

This would be a difficult, if not impossible, task. It would also require the lower phase to 

contain knowledge which belongs at a higher level. Optimizations are most effectively 

performed at their corresponding level of translation, where exactly the sort of information 

and visibi1ity needed is present. Since a11 levels of program writing are included in our 

automatic programming system, there is no need for overspecification or unprogramming. 

At each stage in an automatic programming system inteJligent, efficiency en­

hancing design and implementation require: knowledge of possible ways of implementing 
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each requirement determined and described by the previous stage, methods for evaluating 

alternate designs so that the best choice can be made, and information on which such 

decisions can be based. The first two of these embody the expertise of the human agents 

for the the corresponding phase of each stage and are built into the programs for that 

stage. 

The information used to make decisions is specific to the particular dps con­

struction project It consists of three parts: (1) the design decisions that have been made 

so far for the dps part under consideration and for all parts relevant to the further 

development of that part, (2) the consequences that a decision will have on further 

development. and (3) the environment in which that part and related parts will operate. 

The first of these is provided by the description output of the previous stage, which is 

input to the present stage. It also includes the current partially determined description of 

the dps being produced by the present stage. This contains the decisions that have been 

made so far in this stage. 

The second type of information is of two kinds: (a) knowledge of the effects of 

a decision on others to be made in the same stage and (b) knowledge of its effects on 

decisions to be made in later stages. Information of type (a) is provided by maintaining a 

global awareness within each stage of its aggregate design contribution. Type (b) 

information is commonly provided by feedback in the non-automated program de­

velopment process. Consider the problem of avoiding machine language inefficiencies. 

A number of such inefficiencies can be eliminated simply by fin ding better sequences of 

instructions to implement the constructs of the next higher level language; but others can 

only be prevented by using only algorithms (which are determined at a higher level) that 
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require constructs that can be efficiently implemented. In the latter case one could 

imagine a strong interaction between levels, for in choosing an algorithm it would be 

necessary to determine whether the constructs it requires could be implemented efficiently. 

We believe that in the semi-repetitive design of business data processing systems this strong 

interaction is not required. We eliminate most difficulties by removing from the design 

any algorithm which has not been part of an efficient implementation. 

We can do this because our goal is not to be the first to· create radically new 

systems, but to implement standard systems quickly, cheaply, and accurately. The semi­

repetitive nature of the design of dps software also makes it possible to get ball-park. 

estimates of cost without detailed coding of key sections. One could cite, for example, 

estimating systems like SCERT which have been in commercial use for some time. 

~ stated above, we take the view (also held by some structured programming 

advocates) that one design phase should be completed before the next is begun. Because 

we are automating the design process, we can make many passes through the whole process 

in the time formerly required for a single pass. Feedback from several passes, including 

evaluation by the using organization, we hold to be critical. Feedback. among phases as 

they run greatly complicates the design process. We feel that it will not yield a cor­

responding improvement in results. It opens the door to the design of incredibly complex 

"heterarchicai- systems where control of the program development process would dance 

unpredictably among the various stages in a complicated way. To avoid the complexities 

of a heterarchically structured system, we have outlawed feedback. Instead, each stage has 

a gross model (often implicit) of the stage following it. In this way it can see the basic 

ramifications of its design decisions in the next stage by effectively interrogating its own 
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model of that stage, rather than having to rely on that stage to feed information back. 

The third type of information needed in the design and implementation process 

has to do with the context in which the dps will operate, namely: (a) the ma­

chine/operating-system configuration on which the ultimate dps code wilt be executed and 

(b) the characteristics of the data it wilt receive and produce. Because machine/operating­

system configurations are standard and relatively few in number, type (a) information is 

encoded directly into the automatic programming system in the form of separable, 

interchangeable modules; the automatic programming system is thus specialized to a 

particular configuration by selecting the appropriate module (e.g. the 0S/360 module). 

Further installation dependent information (e.g. the number and type of secondary storage 

devices) is supplied directly by the user. Information of type (b), concerning types and 

quantities of, and interrelationships among, data processed by the dps, is too broad and 

varied in nature to be entirely supplied by, or derived from, an initial user statement of any 

reasonable length. The inclusion of all facts that might possibly become relevant to 

design decisions would require much effort. Much information is difficult to obtain and 

most would never be used. Therefore, it is best to require special information from the 

user only when it becomes important in the course of the development process. To do this 

the automatic programming system must be able to ask. the user specific questions as 

additional information becomes necessary. 
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The Development of Protosvstem I 

The research and development of Protosystem I at MIT's Laboratory for 

Computer Science (Project MAC) began in 1971. Early on it became apparent that the 

natures of the technologies to be used in the first (or ·cop") part of the system (Phases I 

and 2) and the latter (or "bottom•) part of the system (Phases 3 and 4) were clearly 

different Consequently the work was divided two parallel efforts: · (I) a top-part-of-the­

system effort, essentially of an Artificial Intelligence nature, involved with the 

comprehension of natural language by machines, user requirements acquisition, model 

formation, problem solving and the development of a supporting high-level 

language/system called OWL, and (2) a bottom-part-of-the-system-effort addressing the 

problems of implementation and optimization of a program given an abstract relational 

specification (ultimately to be passed down from the top part of Protosystem I) of what it is 

to do. The bottom part of Protosystem I has been completely implemented in the 

M ACLISP language and is operational on the MIT Laboratory for Computer Science 

PDP-10 computers. Research and development on the top part, being considerably more 

ambitious and novel, is somewhat less mature. It is not expected to cross the threshold of 

practical applicability for another five years, and so will not be discussed further in this 

article. 

A structural diagram, indicating the major modules, flows of control and flows of 

data in the bottom part of Protosystem I is shown in Fig. 1. The following sections give an 

explanation of the working of this part of the automatic programming system. 
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The Protosystem I Data Processing System Model and the System Specification Language 

Protosystem I handles a restricted but significant subset of all data processing 

applications: 1/0 intensive batch oriented systems. Such systems involve a sequence of 

runs or job steps that are to be performed at specified times. They are assumed to 

' 
involve significant 1/0 activity due to repetitive processing of keyed records from large 

files of data. Systems such as inventory control, payroll, and employee or student record 

keeping systems are of this type. 

A simple example of such a dps is a software system to perform the inventory 

and warehousing activities in the following case: 

The A & T Supermarket chain consists of 500 stores served by a 
centrally located warehouse. There are 4000 items, supplied by the warehouse, 
that these stores can carry. 

Every day the warehouse receives shipments from suppliers and 
updates its inventory level records accordingly. 

It also receives orders from the stores for various quantities of items. 
If for a particular item there is sufficient stock to fill alt of the orders for that 
item, the warehouse simply fills the orders as made; but if there is insufficient 
stock it ships partial orders proportional to fraction of the total quantity 
ordered that is on hand. 

Inventory records are adjusted to reflect the decrease in levels. 
Finally, a daily check is made on the inventory levels of all items. 

If the level of an item is tower than 100 the warehouse orders 1000 more units 
of that item from the appropriate supplier. 

In order for the bottom part of Protosystem I to implement such a data processing 

system application the basic aggregate data entities and their interrelationships must be 

determined. This determination can be made from the English task description by a 

consultant or by a sophisticated, natural language comprehending software system (e.g. the 

top-part of Protosystem I) that has embedded in it his knowledge and experience about 
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business systems and data processing. 

Consider the inventory updating activity of the second paragraph. There are 

three aggregate data entities involved: (1~ the set of quantities received from suppliers, 

(2) the set of closing inventory levels for the previous day, and (3) the set of the updated 

inventory levels to be used for filling store orders. Such collections of simi1ar data that 

are to processed in a similar way are termed data sets. In the domain of Protosystem I a 

data set is assumed to consist of fixed format records (e.g. one for the level of each 

inventory item). Associated with each record is a data ttem (e.g. the level of an inventory 

item) and Ju,ys. The key values of a record uniquely distinguish it (e.g. the inventory data 

set can be keyed by item since there is only one level [record] per item) and so can be used 

to select it Thus, a data set is essentially the same as a Codd relation and its keys are 

what Codd calls primary keys. 

Let us call the three data sets described in the last paragraph SHIPHENTS-RECE IVED, 

FINAL-INVENTORY and BEGINNJN&-INVENTORY. The relationship between the BEGINNING-INVENTORY 

data set and the SHIPMENTS-RECEIVED and FINAL-INVENTORY data sets may be described as: 

For every item: 

the beginning inventory level of that item 
(i.e. the value of the data item for the record in BEGINNING-INVENTORY 
for that item) 

is the closing inventory level of that item from the previous day 
{i.e. the value of the data item in the record of FI HAL- INVENTORY for 
the same item) 
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plus the quantity of that item received 
(i.e. the value of the data item in the record of SHIPMENTS-RECEIVED 
for the item in question), 

if any. 
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This relationship is expressed more succinctly in SSL (the §ystem ~ecification Language): 

BEGINNING•INVENTORY IS FINAL-INVENTORY(l DAY AGO)+ SHIPMENTS-RECEIVED 

Implicit in this statement is that the addition operation is performed for each item and that 

if one of the operands is missing (e.g. if no chicken noodle soup was received today) it is 

treated as having a zero value. The repetitive application of an operation to the members 

of a data set or sets such as this is termed a computatton. The order of applications of the 

operation to the records of its input data sets by a computation is assumed to be 

unimportant to the user; in fact, he may think of them as being performed in parallel. 

However, every computation does, in fact, process its inputs serially, according to a 

particular ordering (chosen by Protosystem I) on their keys. Computations typically match 

records from different data sets by their keys (as above) and operate on the matching 

records to produce a corresponding output record. A computation may also group the 

members of a data set by common keys and operate on each group to produce a single 

corresponding output Returning to our example, note that item orders can come from 

different sources (stores), so that both the item and the source of an order are needed (as 

keys) to distinguish it. To form the total of all orders for each item, a computation must 

group the orders by item and sum over the order amounts in each group. In SSL this 

would be expressed as: 
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TOTAL-ORDERS FOR EACH ITE" IS THE SU" OF THE QUANTITY-ORDERED-BY-STORE 

Fig. 2 shows the structure of the A & T inventory and warehousing data processing system 

in terms of computations (boxed) and data sets (unboxed). The complete SSL description 

of A & T dps is given in Fig. 3. Note that in addition to the relational statements a list of 

data sets must be included to indicate the keys by which they are accessed. 

The Translator and the Data Set Language 

It is characteristic of the data processing systems which Protosystem I proposes to 

treat that the calculations themselves are easily dealt with and that it is the structuring and 

manipulation of the masses of data involved that occupies by far the greater part of the 

Stage 3 implementation activity. Additiona11y, the moving and storage of aggregate data 

entities must be determined before the operations on their members can be considered. 

Consequently, the development process at Stage 3 is data set oriented. Therefore, to 

facilitate the design process the SSL dps description is first analyzed from this point of 

view and re-expressed in a more appropriate medium, DSL (the Data §.et Language). 

This reformulation is performed by the Translator module. 

The determination of dps characteristics that can aid in the development of the 

dps design is made with the aid of the Structural Analyzer and included in the Translator's 

output description. This output is ca11ed the UDSL (Unconstrained Data ~et Language) 

description, because most design details remain unbound (undecided) in it As such it 

forms the skeleton of the dps description ultimately to be produced by Stage 3. 

One useful piece of information determined by the Structural Analyzer is the set 
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COMPUTATION DIVISION 

BEGINNING-INVENTORY IS FINAL- INVENTORY(l DAY AGO)+ SHIPMENTS-RECEIVED 

TOTAL -ORDERS FOR EACH ITEM IS THE SUH OF THE QUANTITY-ORDERED-BY-STORE 

QUANTITY-SHIPPED-TO-STORE IS 

QUANTITY-ORDERED-BY-STORE 

QUANTITY-ORDERED-BY-STORE 

IF BEGINNING INVENTORY IS GREATER 
THAN TOTAL- ITEM-ORDERS 

• (BEGINNING-INVENTORY/ TOTAL-ITEM-ORDERS) IF BEGINNING INVENTORY IS NOT 
GREATER THAN TOTAL - ITEM-ORDERS 

TOTAL-SHIPPED FOR EACH ITEM IS THE SUH OF QUANTITY-SHIPPED-TO-STORE 

FINAL- INVENTORY IS BEGINNING-INVENTORY - TOTAL-SHIPPED 

REORDER-AMOUNTS IS 1000 IF FINAL-INVENTORY IS LESS THAN 100 

DATA DIVISION 

FILE SHIPMENTS-RECEIVED 
COMPUTED EVERY DAY 
KEY ITEM 

FILE BEGINNING-INVENTORY 
COMPUTED EVERY DAY 
KEY ITEM 

FILE FINAL-INVENTORY 
COMPUTED EVERY DAY 
KEY ITEM 

FILE QUANTITY-ORDERED-BY-STORE 
COMPUTED EVERY DAY 

· KEY ITEM 
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COMPUTED EVERY DAY 
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COMPUTED EVERY DAY 
KEY ITEM 
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COMPUTED EVERY DAY 
KEY ITEM 

FILE REORDER-AMOUNTS 
COMPUTED EVERY DAY 
KEY ITEK 

Figure 3 
SSL Relational Description for the A & T Data processing System 
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of drtvtng data stt candidates for each computation. A driving data set is an input data 

set that is guaranteed to have a data item for every tuple of key values for which the 

computation can produce an output The computation, then, instead of having to loop 

over an possible combinations of values for the k.eys of the inputs, can be driven by the 

driving data set in that it only has to consider those key value combinations for which the 

driving data set contains records. 

Another type of information the Structural Analyzer determines is directly related 

to our desire to specify data set organizations and orders and computation accessing 

methods and orders in such a way as to minimize the cost of operating the dps. Because a 

dps typically involves the repetitive application of stmple calculations to large quantities of 

data we make the first-order approximation that the cost of operation is due entirely to 

data accessing (reading and writing). · Our design, therefore, focuses on minimizing the 

total number of 1/0 events. 

Accordingly, the Structural Analyzer also determines predicates that are the 

conditions under which a data item will be generated and under which a data item will be 

used by a computation. For example, a store will be shipped an item if (it is true that) 

that store ordered that item and there was sufficient inventory to fill the order; the order 

allocation step will use the inventory level for a particular item if some store ordered it. 

These predicates, together with basic information concerning the sizes of data sets in the 

dps, are used by the Q.uestion Answerer to determine the average and maximum sizes of 

files (proposed by the Optimizing Designer) and the average number of a file's records a 

computation will access. 
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The Design Criterion and the Job Cost Estimator 

The design criterion for Protosystem I is the minimization of the dollars and 

cents cost of running the final dps program on the target machine/operating system 

configuration. Because the dps's are assumed to be 1/0 intensive, as a first approx­

imation, this can be equated with access minimization. An access in this sense is defined 

as the reading or writing of a single secondary storage block, which corresponds to a single 

operating system 1/0 event In Protosystem I, for a particular data set a block consists of a 

fixed number of records. 

With this approximation the relative costs of alternative dps design config­

urations can often be assessed without knowledge of the particular target configuration. 

But sometimes actual cost estimates, provided by the Job Cost Estimator, are necessary. 

This module must thus contain knowledge of the charging scheme and operating 

characteristics of the target configuration (in our case the OS/S60 configuration). 

Optimization with respect to a different configuration and/or charging scheme would 

require the substitution of a new appropriately tailored module. 

The Question Answerer 

The function of the Q.uestion Answerer is to supply answers to questions from the 

Optimizing Designer about the average sizes (in records) of abstract aggregate data entities. 

Two examples of such data aggregates are a file and the collection of records in a file that 

are accessed by a particular computation. Each "question" sent to the Q.uestion Answerer 

is in the form of a predicate describing the conditions under which a record wilt · be in the 
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data aggregate in question. For example, if there are records in FINAL INVENTORY, QUANTITY 

RECEIVED and BEGINNING INVENTORY for only those items have non-zero quantities, the the 

predicate 

or 
there is a record in FINAL INVENTORY (for a given item) 

there is a record in QUANTITY RECEIVED (for a given item) 

describes an event equivalent to •there is a record in BEGINNING INVENTORy" for a given item. 

The Q.uestion Answerer makes use of the simplifying assumption that all records in an 

abstract aggregate data entity are equally likely to be present. Thus, if the maximum size 

of a data aggregate is well defined (e.g. BEGINNING INVENTORY can be no larger than the set of 

all items carried by the warehouse), its average size can be calculated by multiplying the 

probability that the event that the typical record in it will be present by its maximum size. 

If there is no meaningful maximum size (as, for example, with a data set that is the 

collection of all outstanding purchase orders) the average size of the data aggregate must be 

determined directly. 

The Q.uestion Answerer maintains a data base of all of the event probability and 

size information given by the user. When asked a question it attempts to find the 

associated size or probability directly. Failing this, it will try to calculate the probability of 

the event in question happening from those of its sub-events and its knowledge of event 

independence and correlation within the dps. If the information on hand is insufficient 

to answer the question, the Q.uestion Answerer obtains enough additional information from 

the user (through a flexible line of questioning) to do so. The new information thus 

gained is stored in the data base for future reference. 
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The Optimizing Designer 

The Optimizing Designer is the heart of Stage S; all of the other modules in this 

stage exist merely to serve it. When the translation from SSL to UDSL has been 

completed, control passes to the Optimizing Designer. This module is responsible for 

constructing job steps to implement computations and files to implement data sets. In 

particular its job is to: 

1. design each keyed file-in particular its 

a. contents (information contained) 

b. 0S/360 organization (consecutive, index sequential, or regiona1(2)) 

c. storage device 

d. associated sort ordering (by key values) 

e. blocking factor (number of records per block) 

2. design each job step of the dps-namely 

a. which computations it includes 

b. its accessing method (sequential, random, core table) 

c. its driving data set(s) 

d. the order (by key values) in which it processes the records of its input data sets 

S. determine whether sorts are necessary and where they should be performed 

4. determine the sequence of the job steps 

The Optimizing Designer performs dynamic analysis (analysis of the operating behavior) 

on the dps to propose and evaluate alternative design configurations. Occasionally, static 
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analysis (analysis of system structure and interrelationships) of such tentative configurations 

is also necessary, and this is obtainedd through calls to the Structural Analyzer. When 

additional information is needed to mak.e evaluations and decisions the Q.uestion Answerer 

and the Job Cost Estimator are called. 

All design decisions are made in an effort to minimize the total number of 

accesses that must be performed in the execution of ·the dps. There are three major 

techniques that the Optimizing Designer uses toward this end: 

I. Designing files and job steps in such a way as to take advantage of blocking Accesses 

can be reduced if files are given blocking factors greater than one and if processing and 

file organizations are designed in such a way that the records of a each block. can be used 

consecutively. 

2. Aggregating data sets If two or more data sets that are accessed by the same 

computation are combined into one file (see Fig. 4) and processing is arranged so that a 

single record of the aggregate can be accessed where more than one record from each of 

the otherwise unaggregated files would have been accessed, accesses can be saved. 

S. Aggregating computations When two or more computations access the same data set and 

the orders in which they process the records of that data set are the same, it may be 

advantageous to combine them into a single job step. Then each record of the shared 

data set can be accessed once for all, rather than once for each computation (see Fig. 5). 

These access minimizations techniques require that the key order of processing 

agree in a special way with the organization of the data being processed. This is where 
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Figure 4: Data Set Aggregation 

(The N;J are values of data items and the numbers are values of the key DEPT) 
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Figure 5.a: Horizontal Aggregation of Computations 
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Figure 5.b: Vertical Aggregation of Computations 
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the fundamental difficulty in optimization lies. A data set's organization and the 

accessing method of a computation using it cannot be determined independently of each 

other or of other data set organizations and computation accessing methods. The 

organization of a data set limits the ways in which it can be practically accessed by a 

computation, and, conversely, the accessing method of a computation restricts the practicable 

organizations of a data set that it accesses. Furthermore, a data set is typically accessed by 

more than one computation with possibly conflicting preferences for its organization; and 

a computation accesses more than one data set with conflicting preferences for accessing 

methods. Finally, data set organization constraints tend to propagate through. 

computations, because it is most efficient for a computation to write its outputs in the same 

key order in which it reads its inputs (since that is the order in which the output records 

will be generated). So, optimization of the type we are considering is necessarily be a 

problem in global compromise. 

The straightforward solution of evaluating the cost of every possible combination 

of . assignments of sort order, device, organization, and access method for data sets and 

computations in every possible aggregation configuration to determine the least expensive is 

ruled out by the sheer combinatorics involved. Even with mathematical and special 

purpose tricks it would be impossibly slow. 

To make optimization tractable a heuristic approach must be taken. First 

different kinds of decisions (e.g. choice of driving data sets, which objects to aggregate) 

must be decoupled wherever possible. Further decoupling must be judiciously introduced 

where it is not strictly possible, for the sake of additional simplicity. Such forced 

decoupling does not mean, though, that decisions that are in fact coupled are treated as if 
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they were independent The decoupled decisions are still made with a certain awareness of 

their effects on other decisions. Finally, as a first order approximation, the optimizer does 

what is reasonable locally, and then adjusts somewhat for global realities. While we make 

no claim that this approach will lead to the true optimum, it does produce good and usually 

near-optimal solutions for real and honest problems. 

Stage i: Code Generation 

Stage i of Protosystem I consists of the PL/I and JCL Generator modules. The 

PL/I Generator takes the fully specified output of Stage 3 (the CDSL or Constrained Data 

§.et Language description) as input and produces PL/I code for each job step. This 

involves the determination and arrangement of PL/I 1/0 specifics, the construction of the 

data processing loops, and the programming of the necessary calculations. The JCL 

Generator then writes IBM 0S/360 JCL and ASP instructions for the 1/0, administration 

and scheduling of the compilation and execution of the dps job and job steps. 

Conclusion 

A model of the data processing system implementation process has been presented 

and a blue-print, based on that model, for automating the entire process has been 

developed. Protosystem I is a project to exhibit the feasibility of these ideas. Already, 

two of the four heretofore manual phases of the software writing process have been 

automated and are capable of producing acceptable implementations. The automation of 

the remaining two phases should easily fall within the realm of presently developing 

technologies within the next decade. 
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Directions for further investigation include: 

expansion of the design repertoire-additional data structures (e.g. hierarchical files, 

inverted files), the use of Early's iteration inversion ideas, etc. 

enlargement of the class of dps's handled (e.g. admitting other types of computations, 

on-line systems) 

development of peripheral automatic technologies--for example, automation of 

incremental changes to dps's with minimal perturbation/maximal efficiency 

automatic development of dps back-up and restart capabilities 
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