
't
MASSACHUSETTS

LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

(formerly Project MAC)

MIT /LCS/TM-72

PROTOSYSTEM I :

.AN AIJT(Jv1ATIC PRffiRWMif'lJ SYSTEM PROTOlYPE

GREGORY R. RUTH

JULY 1976

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

CAMBRIDGE

MIT/LCS/TM-72

Protosystem I:

An Automatic Programming System Prototype

Gregory R. Ruth

July 1976

This work has been supported by .the
Advanced Research Projects Agency of . the
Department of Defense and was monitored
by the Office of Naval Research under
Contract #N00014- 75-C-0661

Massachusetts Institute of Technology

Laboratory for Computer Science

(formerly Project MAC)

MASSACHUSETTS 02139

Protosystem I: An Automatic Programming System Prototype

ABSTRACT

A model of the data processing system writing process is given in terms of

development stages. These stages correspond to the progression in the implementation and

design process from the highest level of abstraction (English system specifications) to the

lowest level (machine code). The issues and goals (including optimization of the product

data processing systems) involved in automating these stages are discussed and strategies

and methodologies used for doing so are developed.

Protosystem I, an automatic programming system prototype, is described. The

completed (and working) part automates three of the five stages identified in the proposed

model of the system writing process. The basic theory, methods and structure of this part

of the automatic programming systems are presented.

Protosystem I: An Automatic Programming System Prototype

Programming is the activity of going from a task specification to code capable of

performing the task on some actual computing system. This is essentia11y a problem

solving process. But over the years people have come to understand certain functions of

the programming process welt enough to automate them-that is to replace those functions

by programs. The most notable results were assemblers, compilers, and operating systems.

The gains realized from this automation were reduced operating errors, increased

complexity of systems which could be completed and more efficient use of resources (time,

people, machines) in the design-implement-evaluate cycle.

Our knowledge and understanding of programming is once again reaching a

level where a significant advance in automation is both necessary and possible. In fact, I

believe that the entire programming process can now be effectively automated. That is, a

system can be developed that will engage the user in English language discourse about a

desired task and will produce, as a result of the interaction with the user, a satisfactory

program. To demonstrate feasibility and gain insight into the issues and technology

involved in creating such a system, a prototype automatic programming system (Protosystem

I) for generating business data processing systems is currently being developed at MIT.

A Model of the Program Writing Process

The data processing system writing process may be conceived as a sequence of

phases leading from the conception of a system to its implementation as executable machine

code. A useful and plausible model for this sequence of phases is:

Protosystem I: An Automatic Programming System Prototype

Phase 1: Problem Definition (English ➔ OWL)

The system specification is expressed in domain dependent terms in English
that is understandable by the program developers.

Phase 2: General System Analysis and Design (OWL ➔ SSL)

The problem is reformulated in standard data processing terms and expressed
as an instance of a known solvable problem class (in our case a subset of the
class of all batch oriented dps's). Domain dependent policy and procedures are
worked out in detail at this stage.

Phase 3: System Implementation (SSL ➔ CDSL)

The system-the actual procedural steps and data representations and organiza­
tions-is constructed by intelligent selection from and adaptation of a number
of standard implementations possibilities.

Phase 4: Code Generation (CDSL -+ PL/I & JCL)

The design specifications are implemented in a high-level language (e.g. PL/I,
COBOL) in a fairly straightforward, but not totally mechanical, way.

Phase 5: Compilation and Loading (PL/I & JCL ➔ machine executable form)

A form is produced that that can be "understood" and executed by the target
computer.

2

These phases progress from a general notion of what -is to be done by the desired system

toward a detailed specification of how it can be accomplished. They also represent the

classes of design and implementation problems involved in program writing, progressing

from the most global and general considerations toward the most local and detailed issues.

Protosystem I seeks to automate the program writing process by automating and

tying together the phases described in the model given above. That is, Protosystem I is

Protosystem I: An Automatic Programming System Prototype

designed in such a way that there are explicit parts or stages corresponding to each of the

model phases. Each such stage embodies the knowledge and expertise of the human

agent(s) for the corresponding phase, so that, given the same or similar input, it can

intelligently produce comparable corresponding results. Drawing on experience gained in

recent artificial intelligence and knowledge based systems research, we have chosen to

represent the knowledge in each stage in the form of procedures as opposed to the

approach used, for example, in table driven compilers.

The products of each stage should not be so rigidly deterministic so that the

courses of action in further stages are narrowly prescribed. They must be sufficiently

general and malleable so that further stages can have the maximum freedom in making

their design contributions in the most effective and efficient ways. Consequently, we have

chosen in Protosystem I to make the product of each stage a descriptive representation of

the dps in terms of concepts and considerations appropriate for the next stage of

development. Such a description provides a medium in which the next stage can

manipulate relevant concepts and analyze the dps for relevant properties, so that it can

perform its design job more in the manner of a problem solver than in that of an

automaton. In this way the programming process is conceived as the development of a

succession of ever more precise system descriptions until, ultimately, a level is reached where

every detail has been decided and the result is an executable computer program.

Put another way, we have borrowed from structured programming the notion of

program development by successive refinement, but we have approached this by extending

the levels of language-machine, assembly, and compiler-to include the very high level

language, SSL, and an English-like language, OWL. We recognize that to succeed with

Protosystem I: An Automatic Programming System Prototype 4

this method one must make appropriate abstractions so that the more abstract statements of

the problem lend themselves to further refinement While the wide use of business data

processing systems in the past two decades has not led to the definition of standard modules

which would handle any situation, it has led to a better understanding of the useful

abstractions in that field. We believe that these abstractions can be grouped naturally

according to the phases of the dps development process.

Efficiency Enhancement in System Development

To produce a credable and practical result an automatic programming system

must perform a reasonable degree of optimization. Current formal optimization methods

pertain mainly to the compilation level, prindpalty because this is the only phase of the

program writing process that has been automated. When the entire program development

process is automated, new, additional types of optimization will have to be included. The

combination (for the sake of I/0 efficiency) of computations accessing the same data set is

an example. At compilation time the decision to include these computations in the same

job step or not to do so has already been made. If they are not in the same job step (and

hence compiled separately) the opportunity for optimization has already been lost. Even

if they are in the same job $tep, the compiler can derive little, if any, information about

their I/0 characteristics. Therefore, it has no basis on which to evaluate the relative

efficiency of possible combinations and is incapable of making an intelligent optimization

decision.

This type of optimization problem in not unique. It should be easy for the

reader to think. of many other examples where it is impossible to perform adequate

Protosystem I: An Automatic Programming System Prototype 5

optimization of the type necessary if we wait until Phase 5 to do it. The information

needed to make good design decisions of a more g1oba1 nature is just not available at that

stage. That is, the (so-ca11ed "high levelj compiler language is too low level to allow the

system specification to be expressed in a form where such optimization issues wi11 be

apparent

The various possible types of optimizations fall quite naturally into categories

that correspond to the program writing levels in our model. For instance, the combination

of computations as in the above example is something that should be considered during

Phase S (system implementation) where the data and computational interrelationships

among conceptual processing units are most evident. Problems involving machine

language inefficiencies should be handled in a later phase.

An attempt to apply an optimizing process at a higher stage than that to which it

pertains would require an overspecified system description at that level; that is, a

description containing details extraneous to the purpose of that stage. Trying to apply a

transformation at a later stage than that to which it naturally corresponds would effectively

require "unprogramming" (translation from a lower level description to a higher level one).

This would be a difficult, if not impossible, task. It would also require the lower phase to

contain knowledge which belongs at a higher level. Optimizations are most effectively

performed at their corresponding level of translation, where exactly the sort of information

and visibi1ity needed is present. Since a11 levels of program writing are included in our

automatic programming system, there is no need for overspecification or unprogramming.

At each stage in an automatic programming system inteJligent, efficiency en­

hancing design and implementation require: knowledge of possible ways of implementing

Protosystem I: An Automatic Programming System Prototype 6

each requirement determined and described by the previous stage, methods for evaluating

alternate designs so that the best choice can be made, and information on which such

decisions can be based. The first two of these embody the expertise of the human agents

for the the corresponding phase of each stage and are built into the programs for that

stage.

The information used to make decisions is specific to the particular dps con­

struction project It consists of three parts: (1) the design decisions that have been made

so far for the dps part under consideration and for all parts relevant to the further

development of that part, (2) the consequences that a decision will have on further

development. and (3) the environment in which that part and related parts will operate.

The first of these is provided by the description output of the previous stage, which is

input to the present stage. It also includes the current partially determined description of

the dps being produced by the present stage. This contains the decisions that have been

made so far in this stage.

The second type of information is of two kinds: (a) knowledge of the effects of

a decision on others to be made in the same stage and (b) knowledge of its effects on

decisions to be made in later stages. Information of type (a) is provided by maintaining a

global awareness within each stage of its aggregate design contribution. Type (b)

information is commonly provided by feedback in the non-automated program de­

velopment process. Consider the problem of avoiding machine language inefficiencies.

A number of such inefficiencies can be eliminated simply by fin ding better sequences of

instructions to implement the constructs of the next higher level language; but others can

only be prevented by using only algorithms (which are determined at a higher level) that

Protosystem I: An Automatic Programming System Prototype 7

require constructs that can be efficiently implemented. In the latter case one could

imagine a strong interaction between levels, for in choosing an algorithm it would be

necessary to determine whether the constructs it requires could be implemented efficiently.

We believe that in the semi-repetitive design of business data processing systems this strong

interaction is not required. We eliminate most difficulties by removing from the design

any algorithm which has not been part of an efficient implementation.

We can do this because our goal is not to be the first to· create radically new

systems, but to implement standard systems quickly, cheaply, and accurately. The semi­

repetitive nature of the design of dps software also makes it possible to get ball-park.

estimates of cost without detailed coding of key sections. One could cite, for example,

estimating systems like SCERT which have been in commercial use for some time.

~ stated above, we take the view (also held by some structured programming

advocates) that one design phase should be completed before the next is begun. Because

we are automating the design process, we can make many passes through the whole process

in the time formerly required for a single pass. Feedback from several passes, including

evaluation by the using organization, we hold to be critical. Feedback. among phases as

they run greatly complicates the design process. We feel that it will not yield a cor­

responding improvement in results. It opens the door to the design of incredibly complex

"heterarchicai- systems where control of the program development process would dance

unpredictably among the various stages in a complicated way. To avoid the complexities

of a heterarchically structured system, we have outlawed feedback. Instead, each stage has

a gross model (often implicit) of the stage following it. In this way it can see the basic

ramifications of its design decisions in the next stage by effectively interrogating its own

Protosystem I: An Automatic Programming System Prototype 8

model of that stage, rather than having to rely on that stage to feed information back.

The third type of information needed in the design and implementation process

has to do with the context in which the dps will operate, namely: (a) the ma­

chine/operating-system configuration on which the ultimate dps code wilt be executed and

(b) the characteristics of the data it wilt receive and produce. Because machine/operating­

system configurations are standard and relatively few in number, type (a) information is

encoded directly into the automatic programming system in the form of separable,

interchangeable modules; the automatic programming system is thus specialized to a

particular configuration by selecting the appropriate module (e.g. the 0S/360 module).

Further installation dependent information (e.g. the number and type of secondary storage

devices) is supplied directly by the user. Information of type (b), concerning types and

quantities of, and interrelationships among, data processed by the dps, is too broad and

varied in nature to be entirely supplied by, or derived from, an initial user statement of any

reasonable length. The inclusion of all facts that might possibly become relevant to

design decisions would require much effort. Much information is difficult to obtain and

most would never be used. Therefore, it is best to require special information from the

user only when it becomes important in the course of the development process. To do this

the automatic programming system must be able to ask. the user specific questions as

additional information becomes necessary.

Protosystem I: An Automatic Programming System Prototype 9

The Development of Protosvstem I

The research and development of Protosystem I at MIT's Laboratory for

Computer Science (Project MAC) began in 1971. Early on it became apparent that the

natures of the technologies to be used in the first (or ·cop") part of the system (Phases I

and 2) and the latter (or "bottom•) part of the system (Phases 3 and 4) were clearly

different Consequently the work was divided two parallel efforts: · (I) a top-part-of-the­

system effort, essentially of an Artificial Intelligence nature, involved with the

comprehension of natural language by machines, user requirements acquisition, model

formation, problem solving and the development of a supporting high-level

language/system called OWL, and (2) a bottom-part-of-the-system-effort addressing the

problems of implementation and optimization of a program given an abstract relational

specification (ultimately to be passed down from the top part of Protosystem I) of what it is

to do. The bottom part of Protosystem I has been completely implemented in the

M ACLISP language and is operational on the MIT Laboratory for Computer Science

PDP-10 computers. Research and development on the top part, being considerably more

ambitious and novel, is somewhat less mature. It is not expected to cross the threshold of

practical applicability for another five years, and so will not be discussed further in this

article.

A structural diagram, indicating the major modules, flows of control and flows of

data in the bottom part of Protosystem I is shown in Fig. 1. The following sections give an

explanation of the working of this part of the automatic programming system.

e
I

*
Translator

\
\

e 8 ta base - .. Q.uestion
Answerer

I

• Job Cost
Estimator

/

E{

Data flow - - - -
Calls---

\
\

Transf er of control ======

\

'---

/
/

' '
\

\

\

I
1 ~

' Optimizing
Designer ,,

/

I ~

PL/I
Generator

' ' \ B '
' ~

JCL
Generator I

I

Figure 1

Structural
Analyzer

Protosystem I: Structure of the Bottom Part

10

Protosystem I: An Automatic Programming System Prototype 11

The Protosystem I Data Processing System Model and the System Specification Language

Protosystem I handles a restricted but significant subset of all data processing

applications: 1/0 intensive batch oriented systems. Such systems involve a sequence of

runs or job steps that are to be performed at specified times. They are assumed to

'
involve significant 1/0 activity due to repetitive processing of keyed records from large

files of data. Systems such as inventory control, payroll, and employee or student record

keeping systems are of this type.

A simple example of such a dps is a software system to perform the inventory

and warehousing activities in the following case:

The A & T Supermarket chain consists of 500 stores served by a
centrally located warehouse. There are 4000 items, supplied by the warehouse,
that these stores can carry.

Every day the warehouse receives shipments from suppliers and
updates its inventory level records accordingly.

It also receives orders from the stores for various quantities of items.
If for a particular item there is sufficient stock to fill alt of the orders for that
item, the warehouse simply fills the orders as made; but if there is insufficient
stock it ships partial orders proportional to fraction of the total quantity
ordered that is on hand.

Inventory records are adjusted to reflect the decrease in levels.
Finally, a daily check is made on the inventory levels of all items.

If the level of an item is tower than 100 the warehouse orders 1000 more units
of that item from the appropriate supplier.

In order for the bottom part of Protosystem I to implement such a data processing

system application the basic aggregate data entities and their interrelationships must be

determined. This determination can be made from the English task description by a

consultant or by a sophisticated, natural language comprehending software system (e.g. the

top-part of Protosystem I) that has embedded in it his knowledge and experience about

Protosystem I: An Automatic Programming System Prototype 12

business systems and data processing.

Consider the inventory updating activity of the second paragraph. There are

three aggregate data entities involved: (1~ the set of quantities received from suppliers,

(2) the set of closing inventory levels for the previous day, and (3) the set of the updated

inventory levels to be used for filling store orders. Such collections of simi1ar data that

are to processed in a similar way are termed data sets. In the domain of Protosystem I a

data set is assumed to consist of fixed format records (e.g. one for the level of each

inventory item). Associated with each record is a data ttem (e.g. the level of an inventory

item) and Ju,ys. The key values of a record uniquely distinguish it (e.g. the inventory data

set can be keyed by item since there is only one level [record] per item) and so can be used

to select it Thus, a data set is essentially the same as a Codd relation and its keys are

what Codd calls primary keys.

Let us call the three data sets described in the last paragraph SHIPHENTS-RECE IVED,

FINAL-INVENTORY and BEGINNJN&-INVENTORY. The relationship between the BEGINNING-INVENTORY

data set and the SHIPMENTS-RECEIVED and FINAL-INVENTORY data sets may be described as:

For every item:

the beginning inventory level of that item
(i.e. the value of the data item for the record in BEGINNING-INVENTORY
for that item)

is the closing inventory level of that item from the previous day
{i.e. the value of the data item in the record of FI HAL- INVENTORY for
the same item)

Protosystem I: An Automatic Programming System Prototype

plus the quantity of that item received
(i.e. the value of the data item in the record of SHIPMENTS-RECEIVED
for the item in question),

if any.

13

This relationship is expressed more succinctly in SSL (the §ystem ~ecification Language):

BEGINNING•INVENTORY IS FINAL-INVENTORY(l DAY AGO)+ SHIPMENTS-RECEIVED

Implicit in this statement is that the addition operation is performed for each item and that

if one of the operands is missing (e.g. if no chicken noodle soup was received today) it is

treated as having a zero value. The repetitive application of an operation to the members

of a data set or sets such as this is termed a computatton. The order of applications of the

operation to the records of its input data sets by a computation is assumed to be

unimportant to the user; in fact, he may think of them as being performed in parallel.

However, every computation does, in fact, process its inputs serially, according to a

particular ordering (chosen by Protosystem I) on their keys. Computations typically match

records from different data sets by their keys (as above) and operate on the matching

records to produce a corresponding output record. A computation may also group the

members of a data set by common keys and operate on each group to produce a single

corresponding output Returning to our example, note that item orders can come from

different sources (stores), so that both the item and the source of an order are needed (as

keys) to distinguish it. To form the total of all orders for each item, a computation must

group the orders by item and sum over the order amounts in each group. In SSL this

would be expressed as:

Protosystem I: An Automatic Programming System Prototype 14

TOTAL-ORDERS FOR EACH ITE" IS THE SU" OF THE QUANTITY-ORDERED-BY-STORE

Fig. 2 shows the structure of the A & T inventory and warehousing data processing system

in terms of computations (boxed) and data sets (unboxed). The complete SSL description

of A & T dps is given in Fig. 3. Note that in addition to the relational statements a list of

data sets must be included to indicate the keys by which they are accessed.

The Translator and the Data Set Language

It is characteristic of the data processing systems which Protosystem I proposes to

treat that the calculations themselves are easily dealt with and that it is the structuring and

manipulation of the masses of data involved that occupies by far the greater part of the

Stage 3 implementation activity. Additiona11y, the moving and storage of aggregate data

entities must be determined before the operations on their members can be considered.

Consequently, the development process at Stage 3 is data set oriented. Therefore, to

facilitate the design process the SSL dps description is first analyzed from this point of

view and re-expressed in a more appropriate medium, DSL (the Data §.et Language).

This reformulation is performed by the Translator module.

The determination of dps characteristics that can aid in the development of the

dps design is made with the aid of the Structural Analyzer and included in the Translator's

output description. This output is ca11ed the UDSL (Unconstrained Data ~et Language)

description, because most design details remain unbound (undecided) in it As such it

forms the skeleton of the dps description ultimately to be produced by Stage 3.

One useful piece of information determined by the Structural Analyzer is the set

yesterday's
final

supplier
shipments

quantities of each
item ordered by s tores

i n•s,....: rL...y_· __ ...____ recj i ved

update
inventory

beginning
inventory

fit I orders

quantity of each Item
shipped to each store

sum shipped items
over all stores

total items shipped

adjust Inventory

f i na I inventory

reorder calculation

reorder amounts

Figure 2

sum item orders over
a 11 stores

total item orders

A & T Inventory and Warehousing System

15

COMPUTATION DIVISION

BEGINNING-INVENTORY IS FINAL- INVENTORY(l DAY AGO)+ SHIPMENTS-RECEIVED

TOTAL -ORDERS FOR EACH ITEM IS THE SUH OF THE QUANTITY-ORDERED-BY-STORE

QUANTITY-SHIPPED-TO-STORE IS

QUANTITY-ORDERED-BY-STORE

QUANTITY-ORDERED-BY-STORE

IF BEGINNING INVENTORY IS GREATER
THAN TOTAL- ITEM-ORDERS

• (BEGINNING-INVENTORY/ TOTAL-ITEM-ORDERS) IF BEGINNING INVENTORY IS NOT
GREATER THAN TOTAL - ITEM-ORDERS

TOTAL-SHIPPED FOR EACH ITEM IS THE SUH OF QUANTITY-SHIPPED-TO-STORE

FINAL- INVENTORY IS BEGINNING-INVENTORY - TOTAL-SHIPPED

REORDER-AMOUNTS IS 1000 IF FINAL-INVENTORY IS LESS THAN 100

DATA DIVISION

FILE SHIPMENTS-RECEIVED
COMPUTED EVERY DAY
KEY ITEM

FILE BEGINNING-INVENTORY
COMPUTED EVERY DAY
KEY ITEM

FILE FINAL-INVENTORY
COMPUTED EVERY DAY
KEY ITEM

FILE QUANTITY-ORDERED-BY-STORE
COMPUTED EVERY DAY

· KEY ITEM

FILE QUANTITY-SHIPPED-TO-STORE
COMPUTED EVERY DAY
KEYS ITEM, STORE

FILE TOTAL-ITEM-ORDERS
COMPUTED EVERY DAY
KEY ITEM

FILE TOTAL-SHIPPED
COMPUTED EVERY DAY
KEY ITEM

FILE REORDER-AMOUNTS
COMPUTED EVERY DAY
KEY ITEK

Figure 3
SSL Relational Description for the A & T Data processing System

16

Protosystem I: An Automatic Programming System Prototype 17

of drtvtng data stt candidates for each computation. A driving data set is an input data

set that is guaranteed to have a data item for every tuple of key values for which the

computation can produce an output The computation, then, instead of having to loop

over an possible combinations of values for the k.eys of the inputs, can be driven by the

driving data set in that it only has to consider those key value combinations for which the

driving data set contains records.

Another type of information the Structural Analyzer determines is directly related

to our desire to specify data set organizations and orders and computation accessing

methods and orders in such a way as to minimize the cost of operating the dps. Because a

dps typically involves the repetitive application of stmple calculations to large quantities of

data we make the first-order approximation that the cost of operation is due entirely to

data accessing (reading and writing). · Our design, therefore, focuses on minimizing the

total number of 1/0 events.

Accordingly, the Structural Analyzer also determines predicates that are the

conditions under which a data item will be generated and under which a data item will be

used by a computation. For example, a store will be shipped an item if (it is true that)

that store ordered that item and there was sufficient inventory to fill the order; the order

allocation step will use the inventory level for a particular item if some store ordered it.

These predicates, together with basic information concerning the sizes of data sets in the

dps, are used by the Q.uestion Answerer to determine the average and maximum sizes of

files (proposed by the Optimizing Designer) and the average number of a file's records a

computation will access.

Protosystem I: An Automatic Programming System Prototype 18

The Design Criterion and the Job Cost Estimator

The design criterion for Protosystem I is the minimization of the dollars and

cents cost of running the final dps program on the target machine/operating system

configuration. Because the dps's are assumed to be 1/0 intensive, as a first approx­

imation, this can be equated with access minimization. An access in this sense is defined

as the reading or writing of a single secondary storage block, which corresponds to a single

operating system 1/0 event In Protosystem I, for a particular data set a block consists of a

fixed number of records.

With this approximation the relative costs of alternative dps design config­

urations can often be assessed without knowledge of the particular target configuration.

But sometimes actual cost estimates, provided by the Job Cost Estimator, are necessary.

This module must thus contain knowledge of the charging scheme and operating

characteristics of the target configuration (in our case the OS/S60 configuration).

Optimization with respect to a different configuration and/or charging scheme would

require the substitution of a new appropriately tailored module.

The Question Answerer

The function of the Q.uestion Answerer is to supply answers to questions from the

Optimizing Designer about the average sizes (in records) of abstract aggregate data entities.

Two examples of such data aggregates are a file and the collection of records in a file that

are accessed by a particular computation. Each "question" sent to the Q.uestion Answerer

is in the form of a predicate describing the conditions under which a record wilt · be in the

Protosystem I: An Automatic Programming System Prototype 19

data aggregate in question. For example, if there are records in FINAL INVENTORY, QUANTITY

RECEIVED and BEGINNING INVENTORY for only those items have non-zero quantities, the the

predicate

or
there is a record in FINAL INVENTORY (for a given item)

there is a record in QUANTITY RECEIVED (for a given item)

describes an event equivalent to •there is a record in BEGINNING INVENTORy" for a given item.

The Q.uestion Answerer makes use of the simplifying assumption that all records in an

abstract aggregate data entity are equally likely to be present. Thus, if the maximum size

of a data aggregate is well defined (e.g. BEGINNING INVENTORY can be no larger than the set of

all items carried by the warehouse), its average size can be calculated by multiplying the

probability that the event that the typical record in it will be present by its maximum size.

If there is no meaningful maximum size (as, for example, with a data set that is the

collection of all outstanding purchase orders) the average size of the data aggregate must be

determined directly.

The Q.uestion Answerer maintains a data base of all of the event probability and

size information given by the user. When asked a question it attempts to find the

associated size or probability directly. Failing this, it will try to calculate the probability of

the event in question happening from those of its sub-events and its knowledge of event

independence and correlation within the dps. If the information on hand is insufficient

to answer the question, the Q.uestion Answerer obtains enough additional information from

the user (through a flexible line of questioning) to do so. The new information thus

gained is stored in the data base for future reference.

Protosystem I: An Automatic Programming System Prototype 20

The Optimizing Designer

The Optimizing Designer is the heart of Stage S; all of the other modules in this

stage exist merely to serve it. When the translation from SSL to UDSL has been

completed, control passes to the Optimizing Designer. This module is responsible for

constructing job steps to implement computations and files to implement data sets. In

particular its job is to:

1. design each keyed file-in particular its

a. contents (information contained)

b. 0S/360 organization (consecutive, index sequential, or regiona1(2))

c. storage device

d. associated sort ordering (by key values)

e. blocking factor (number of records per block)

2. design each job step of the dps-namely

a. which computations it includes

b. its accessing method (sequential, random, core table)

c. its driving data set(s)

d. the order (by key values) in which it processes the records of its input data sets

S. determine whether sorts are necessary and where they should be performed

4. determine the sequence of the job steps

The Optimizing Designer performs dynamic analysis (analysis of the operating behavior)

on the dps to propose and evaluate alternative design configurations. Occasionally, static

Protosystem I: An Automatic Programming System Prototype 21

analysis (analysis of system structure and interrelationships) of such tentative configurations

is also necessary, and this is obtainedd through calls to the Structural Analyzer. When

additional information is needed to mak.e evaluations and decisions the Q.uestion Answerer

and the Job Cost Estimator are called.

All design decisions are made in an effort to minimize the total number of

accesses that must be performed in the execution of ·the dps. There are three major

techniques that the Optimizing Designer uses toward this end:

I. Designing files and job steps in such a way as to take advantage of blocking Accesses

can be reduced if files are given blocking factors greater than one and if processing and

file organizations are designed in such a way that the records of a each block. can be used

consecutively.

2. Aggregating data sets If two or more data sets that are accessed by the same

computation are combined into one file (see Fig. 4) and processing is arranged so that a

single record of the aggregate can be accessed where more than one record from each of

the otherwise unaggregated files would have been accessed, accesses can be saved.

S. Aggregating computations When two or more computations access the same data set and

the orders in which they process the records of that data set are the same, it may be

advantageous to combine them into a single job step. Then each record of the shared

data set can be accessed once for all, rather than once for each computation (see Fig. 5).

These access minimizations techniques require that the key order of processing

agree in a special way with the organization of the data being processed. This is where

?.2

3) 2)
2) 4)

MALE-EMPLOVEES<DEPT) FEMALE-EMPLOYEES(OEPT)

3)
2)
4)

MALE-&-FEMALE-EMPLOYEES(OEPT)

Figure 4: Data Set Aggregation

(The N;J are values of data items and the numbers are values of the key DEPT)

2 3

-->

Figure 5.a: Horizontal Aggregation of Computations

-->

Figure 5.b: Vertical Aggregation of Computations

Protosystem I: An Automatic Programming System Prototype 24

the fundamental difficulty in optimization lies. A data set's organization and the

accessing method of a computation using it cannot be determined independently of each

other or of other data set organizations and computation accessing methods. The

organization of a data set limits the ways in which it can be practically accessed by a

computation, and, conversely, the accessing method of a computation restricts the practicable

organizations of a data set that it accesses. Furthermore, a data set is typically accessed by

more than one computation with possibly conflicting preferences for its organization; and

a computation accesses more than one data set with conflicting preferences for accessing

methods. Finally, data set organization constraints tend to propagate through.

computations, because it is most efficient for a computation to write its outputs in the same

key order in which it reads its inputs (since that is the order in which the output records

will be generated). So, optimization of the type we are considering is necessarily be a

problem in global compromise.

The straightforward solution of evaluating the cost of every possible combination

of . assignments of sort order, device, organization, and access method for data sets and

computations in every possible aggregation configuration to determine the least expensive is

ruled out by the sheer combinatorics involved. Even with mathematical and special

purpose tricks it would be impossibly slow.

To make optimization tractable a heuristic approach must be taken. First

different kinds of decisions (e.g. choice of driving data sets, which objects to aggregate)

must be decoupled wherever possible. Further decoupling must be judiciously introduced

where it is not strictly possible, for the sake of additional simplicity. Such forced

decoupling does not mean, though, that decisions that are in fact coupled are treated as if

Protosystem I: An Automatic Programming System Prototype 25

they were independent The decoupled decisions are still made with a certain awareness of

their effects on other decisions. Finally, as a first order approximation, the optimizer does

what is reasonable locally, and then adjusts somewhat for global realities. While we make

no claim that this approach will lead to the true optimum, it does produce good and usually

near-optimal solutions for real and honest problems.

Stage i: Code Generation

Stage i of Protosystem I consists of the PL/I and JCL Generator modules. The

PL/I Generator takes the fully specified output of Stage 3 (the CDSL or Constrained Data

§.et Language description) as input and produces PL/I code for each job step. This

involves the determination and arrangement of PL/I 1/0 specifics, the construction of the

data processing loops, and the programming of the necessary calculations. The JCL

Generator then writes IBM 0S/360 JCL and ASP instructions for the 1/0, administration

and scheduling of the compilation and execution of the dps job and job steps.

Conclusion

A model of the data processing system implementation process has been presented

and a blue-print, based on that model, for automating the entire process has been

developed. Protosystem I is a project to exhibit the feasibility of these ideas. Already,

two of the four heretofore manual phases of the software writing process have been

automated and are capable of producing acceptable implementations. The automation of

the remaining two phases should easily fall within the realm of presently developing

technologies within the next decade.

Protosystem I: An Automatic Programming System Prototype 26

Directions for further investigation include:

expansion of the design repertoire-additional data structures (e.g. hierarchical files,

inverted files), the use of Early's iteration inversion ideas, etc.

enlargement of the class of dps's handled (e.g. admitting other types of computations,

on-line systems)

development of peripheral automatic technologies--for example, automation of

incremental changes to dps's with minimal perturbation/maximal efficiency

automatic development of dps back-up and restart capabilities

Acknowledgements

The author wishes to thank Bill Martin, the originator of many of the ideas in

this paper, and Mike Hammer, whose numerous comments, criticisms and suggestions were

indispensable.

Protosystem I: An _Automatic Programming System Prototype

BIBLIOGRAPHY

I. Batzer, R., "Automatic Programming", Institute Technical Memo, University of Southern
California--Information Sciences Institute, 1973.

2. Codd, E. F., "A Relational Model of Data for Large Shared Data Banks",
Communtcattons of the ACM, 13,6 (June 1970), pp. 377-387.

3. Early, J., "Relational Level Data Structures For Programming Languages", Computer
Science Department, University of California, Berkeley, 1973.

4. Hammer, M., Howe, W. and Wladawsky, I., "An Overview of a Business Definition
System", ACM S/GPlAN Nottces, 9, 4, April 1974.

5. Hawkinson, I., "The Representation of Concepts In OWL", Fourth International Joint
Conference on Artificial Intelligence, Sept. 1975. ·

6. Nunamaker, J. F. Jr., Nylin, W. C. Jr., and Konsynski, B'. Jr. "Processing Systems
Optimization through Automatic Design and Reorganization of Program Modules",
lnformatton Systems (Tou ed.), pp. 311-336, Plenum, 1974.

7. Ruth, G. "Automatic Design of Data Processing Systems", Third ACM Symposium on
Principles of Programming Languages, Jan. 1976.

8. Ruth, G. "The New Q.uestion Answerer", Automatic Programming Group Internal
Memo 21, MIT Laboratory for Computer Science, 1975.

9. Sussman, G . "A Computational Model of Skill Acquisition", MIT AI TR-297, MIT
Artificial Intelligence Laboratory (August 1973)

27

