' ‘\"-‘ : MASSACHUSETTS
LABORATORY FOR e MASL :

A INSTITUTE OF
COMPU1 };:R tSqCIENCE TECHNOLOGY
i_jhrmeﬂ'}r m}'r'ct‘ {1AC)

= =

. MIT/LCS/TM-78

IMPROVING INFORMATION STORAGE RELIABILITY
USING A DATA NETWORK

ARTHUR J. BenuaMmIN

Octoeer 1976

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM-78

IMPROVING INFORMATION STORAGE
RELIABILITY USING A
DATA NETWORK

Arthur Jay Benjamin

October 1976

MIT/LCS/TM-78

IMPROVING INFORMATION STORAGE RELIABILITY

USING A DATA NETWORK

Arthur Jay Benjamin

October 1976

This research was sponsored in part by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2095 which was
monitored by the Office of Naval Research under contract No. WOO014-75-C-0661.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

ACKNOWLEDGMENTS

The success of any research project depends wupon the interaction of
ideas among interested people. The research reported in this thesis is the
result of many comments and criticisms from the people around me.

First, I would like to thank Professor 3altzer, my thesis supervisor,
for encouraging the discovery of new insights by helping to define the essence
of tne problem. His continued patience, interest, and comments have helped
ooth the development of the ideas, as well as their presentation in this
tnesis.

Buring the implementation phases of the research, Haj Kanodia, Ken
Pogran, and Doug Wells nave been invaluable in providing the necessary details
for using the ARPAnet. Similarly, Jerry Farrell and Hal Murray at the
Computer Corporation of America have been very helpful in providing assistance
in using the Datacomputer. The Computer Corporation of America has been very
generous in making the Datacomputer facility available for this research.

Finally, thanks go to Nancy Federman, Harry Forsdick, Jeff Goldberg,
Doug Hunt, Allen Luniewski, Drew Mason, and Dave HReed, not only for their
technical contributions, but also for the interesting distractions which they
provided to help put this project in perspective.

e
]

(9]
o
o

Q)
-l

IMPROVING INFORMATION STORAGE RELIABILITY
USING A DATA NETWORK #*
by

Arthur Jay Benjamin

ABSTRACT

dackup and recovery methods using magnetic tapes are common in computer
utilities, since information stored on-line is subject to damage. The serial
access nature of the tape medium severely restricts the flexibility and
simplicity of accessing and managing the stored data. A method using a data
network will be deseribed, to present a backup mechanism which takes advantage
of a large, inexpensive, random access remote data storage facility to provide
data access and management functions that are more flexible than those
provided by a traditional backup facility. Although data transfer rates will
ve reduced, data access and management will be simplified, and system
availability will be improved. The work desecribed is based on a network

backup facility built for the Multics computer ubtility, using the ARPAnet.

Thesis Supervisor: Jerome H. Saltzer

¥ This report is based upon a thesis of the same title submitted to the
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, on September 27, 1976 in partial fulfillment of the
requirements for the Degree of Master of Science.

-4 -

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS +eescosnssssssssovscnnsssssassnnsssscsssbsststrasnnmanensans 2
DEDICATION .ccscccnssssncrssssssnsasnnmasnsassssssnsnnissssssnnsnanssnsans 3
ABSTRACT sueeccusauesnsssnssasssssttcssssssnsnascisnsasrsssasssisssnsnnsens 4
TABLE OF CONIENTS cassieasnsnsasannsnansnsssosssssasssanansnnasossosssais 5

LIST OF FIGURES saciiincenconunnssnssnssisnnnnssnsraassssssssssisssvsnanas 7

Chapter 1 Introduction

1 1 BaCkgrOund & @ B8 RS S RS S RS S E T EE RS SRR EE SRR s g
1.2 A Data Network Approach to Reliability Enhancementssesae.. 11
l 3 Plan Gf the mEsis & eSS EER SRR EER AR EE RS RS RS EEEEE R E R 1&

Chapter 2 A File System Model for Storage Reliability

221 Introdachion: ciilisaisriisan i niskan s snmsnanenesnonsnnvescenn Ll
2.2 Two Classes ' of File BYSLEME sscesiasnsnnssisssnrssssnsrnsssosanss 13
2.3 Catalogs and File Storage Organizationecsccsccssscsnoncess 21
2,4 Information Storage Representations ..cessssmssssscncsassnsssnss 24
)

EAERIE TV | o 51 5o o s o . e B BT R A W S s G T R e

Chapter 3 File System Reliability Enhancement

Fodi IDETOAUCERON e arvesieawsln/aeales we e e v alee de e o vees s pmaie ety 30
Jwd Measures of ReliabIlity siiviasasinsrnssasisaiisssssmssnsusnnses S
3.3 Approaches to Improving File Storage Reliability ..veevsceesaees 36
3.4 The Backup System Model .isscessassssrsssessstassssnsnsnnnnssene I9
3.5

SUNMHTY ‘s ssisinvssuvovsvissstasrbidaesasssaninsssssosussssesusannns

Chapter 4 Design for a File Storage Backup System

I THtroduction ,secsssensssssnirsesinbssisnssnsnsissssssassassbanss WD
2 The Discrepancy Detection Mechanism .sicssinivssnanscnsssnsrassns 30
3 The Policy Toplemenlfation ..esveu sisssesansssnnmesiseseneessans 59
«& The Backup Storage FastIily s sseivedanisassuimsddmvassascisny 09
3 File Systenm Storage BeCOVELY c.uceissssisivssisssonsssansosnonss BH
6

SUMMALY +seasecsassasssssssssssssnnasosssssscsasossssasssnstssnes 73

TABLE OF CONTENTS (Continued)

Page
Chapter 5 The Network Implementation of the Backup Facility
- Intrﬂ‘ductiﬂn SRR EE R EE NS S AR R E RN EE R sa s s EsE s RS B EEmE sammwe . ?7
= Naming of Objects in a Distributed Environment-seessse0ss 80
The Consistency Issue for Backup Copiesceen. T I . " -

Reliability in the Network Environmentceeseeessssssssssscsss B89
The Multiple Copy Problem for Backiup .sssuvasissssossnsiiasveiae 99

W LA LA WA L i W
- . - -
PPl = RV I -SRI I

.6 Protection of Remotely Stored Data ...c.eccacsccnanas sninssasnes 99
Performance ISSUBS .evesssesrocssnnnnns e R B R sasssenns 108
- Charging for Backilp Services cesceevessnssnsas P OATEI i e watas TIB

Sumary B E TR R AS SE S A RS S S EEE R RS EE RS ®EEEE S S SR RS TSRS s Es e 121

Chapter 6 Conclusion

Bal Sommary of BeSULES , cuwessesans samme s swmnnssss T PP Uy
f.2 Other Applications Using the Backup Mechanismscovcevvesee 127
6.3 The Distributed File System and Beyond ...cceeseessssssssnsances 129
BIBLIDGMPHY & e Re R R SRR R EFE SRR SRS EE R EE s LRC R N R I I B B R R A 133

LIST OF FIGURES

Figure Title Page
2.1 Hierarchical Organization of Files R R S N A A e W e
3.1 Four Components of a Backup System T AR e S e R, L
4.1 Interacting Components in the Backup System DesSign ...cvecessscssacss 47

4.3

.4

wn
o]

The Discrepancy Detection Mechanism PP W S S SR N S

The Backup Policy INplemefNTaTIOoN .esssssssnscescisanpiannrbsosannnanis 0

Request Types and Corresponding Operations ..eeesssessrsssssccssnnnss Bl

1/0 Control of Data TransSfers ..cceessssrsssse R A e snwissasen B3

Correlation Between File Stability and Extent of Sharingcceeev.. 69

File Systen StOTATe: RECOTBLY o s wisme s e s s:e wmemswiem e s o enemen T8

File Hame-Maage iiivasvisdiiishmerveisrmsiaaarisdenasnsasanssassssss Bo
Doub le~-key Encryption for Descriptor Files ...evaevsrnsssncs sawaiweiwns 108
ETeL,

Chapter Cne

Introduction

1.1 Background

Many contemporary computer systems are too complex to understand well
enough to guarantee that they are free from design errors. It is even harder
to guarantee that an implementation of the design is correct. As a system
grows in size and sophistication, it becomes more and more complex, and as the
ability to understand this complexity diminishes, so does confidence in
correct and reliable operation., Even if the correctness of the implementation
could be guaranteed, external environmental factors preclude 100% reliable
operation., For example, hardware failures, power failures, etc., are
inevitable. Faced with the fact that failures will occur, the system designer
must consider reliability enhancement and failure recovery strategies for the

important components of the system.

Cne of the most important, and complex, components of a computer
operating system is the file storage component., File system reliability
enhancement and recovery techniques are often overlooked in the haste to

design and implement an operational system as quickly as possible. Although

- Page 9 -

1.1 Background

this approach may seem to be the most economical in the short term, looking
back later often shows that an unfortunate tradeoff has been made between
system development time, and subsequent utility, performance, and reliability
of the system. Due to the importance of the file storage system, the complex
nature of the interactions among its components, and the resulting
inevitability of software and hardware failures, a file system storage backup

and recovery facility is essential.

The most common file system reliability enhancement and failure
recovery facility used today utilizes magnetic tapes for storing backup copies
of files. The complexity of such systems varies from a simple strategy for
dumping a bit-for-bit image of the entire file system storage, to a versatile
tape management facility allowing selective retrieval of individual files. 1In
all cases, the backup facility is a specially designed file storage system
which can only be used for limited file system purposes (such as storing
backup copies of files), and can not provide much flexibility, due to the
restriction in access capabilities inherent in the tape storage medium.
However, tape is not the only feasible storage medium for storing backup

copies of files.

- Page 10 -

4 =3

1.2 A Data Network Approach to Reliability Enhancement

1.2 A Data Wetwork Approach te Reliability Enhancement

In this thesis, we investigate the use of a data network for providing
file storage capabilities for backup purposes, using a random access storage
facility, in such a way that the backup facility can be regarded as an
extension to the regular file system. The backup facility maintains a
consistent backup image of file storage, and the local file system is regarded
as a cache storage facility for efficient access to files stored at remote
computer systems within the network. The major advantage in using a network
over using magnetic tapes is the availability of a large, inexpensive random
access storage medium which provides increased flexibility in storing,
accessing, and managing data. Separation of file contents from information
desceribing the file, and its struectural relationship te the rest of file
storage, allows independent management of file contents and catalog
information. Independent management of different classes of data, although
possible, would be inefficient using a tape system, because access to data
items scattered throughout tape storage requires the use of slow sequential

access technigues.

- Page 11 -

1.2 A Data Network Approach to Reliability Enhancement

The use of a data network for file backup improves reliability at a
reasonable cost for recovering from situations in which a failure does not
cause extensive damage. It is assumed that catastrophes are rare, and
therefore the discussion in the thesis is oriented toward the more frequent
but less catastrophic loss of information typically affecting less than half
of all file storage. The network facility hastens recovery by allowing the
system to be made available to users as soon as the catalogs and system
libraries are intact. Files need not be retrieved in a special predetermined
order, and no time consuming tape searching is required. Instead, a flexible
random access data management facility allows files to be retrieved "on

demand" as they are referenced by users.

The increased flexibility in data management afforded by a network
system allows better user control over backup operations. Specification of
how to produce consistent backup copies of a database is possible, and the
user can know the precise state of backup copies of files. This is
accomplished by separating the mechanisms of detecting modifications to local
copies of files from the policy of incorporating those changes into backup
copies to make them consistent. The provision for allowing a user-defined

backup policy provides the necessary flexibility.

In addition to flexibility of data access and management, the network
provides diversity of file storage facilities. The ability to widely share a

file storage service among several computer systems makes a large random

- Page 12 -

1.2 A Data Network Approach to Reliability Enhancement

access storage facility economically feasible, just as timesharing made large
centralized computer systems economically feasible. The accessibility of
multiple file storage facilities increases the total reliability of file
storage, since failure of one instance of a network file system does not imply
the failure of the whole backup facility. Using multiple storage facilities
improves reliability, but introduces problems of multiple distributed copies
of files. 1In fact, the backup facility is viewed as a special case of a
distributed file system, and the major problem is to keep backup copies
consistent with local cache copies of files. Since backup storage is mainly
accessed to update inconsistent copies, and only occasionally to retrieve
copies, a scheme is used to centralize distributed copies by a file migration
technique. Under normal circumstances, all backup copies will be located at
one storage facility, and only when that facility is unavailable will copies
become distributed, and then only until they can again be consolidated. The
central consolidation scheme is shown te he analogous to some common tape

management strategies.

Throughout the thesis, backup is viewed as a solution to problems of
reliability. However, the incorporation of specific designs within the
framework of contemporary computer systems and computer networks raises other
issues which are investigated at the same time. A prime interest is the
investigation of mechanisms for managing backup copies of files as a special
case of the harder problems inherent in distributed file systems. It is hoped

that some of the solutions to the special case problems will provide some

- Page 13 -

1.2 A Data Network Approach to Reliability Enhancement

insight into the nature of the harder problem. The organization of the thesis

leading up to this goal is described below.

1.3 Plan of the Thesis

Chapter two presents a model of a file system that will be useful for
describing various mechanisms in the operation of the backup facility. Access
to information in the address space is distinguished from access to
information in file storage. The controlled, predictable nature of the latter

type of access is the basis for detecting modifications to local files.

Various approaches to defining and improving reliability are outlined
in chapter three. Reliability is related to availability, and a goal of
maximizing availability is set for the backup facility to work towards. A
model for a backup system that improves reliability by maintaining redundant
copies of information is described, and some existing implementations are
outlined. The model identifies four interacting components: a file
modification detection mechanism, a backup policy implementation, an I/O

facility, and a file retrieval technique.

A detailed design for a general purpose backup facility is presented in
chapter four. Based on the models of chapters two and three, each component

of the system is considered in turn. The interfaces are described, and

- Page 14 -

1.3 Plan of the Thesis

related issues, such as security and protection of information, user
requirements, etc., are considered. The nature of the backup file storage

facility using a data network is also described.

Finally, in chapter five, the specific issues that are important in a
network implementation of the backup facility are described. A solution to
the problem of naming objects in a network, using globally unique identifiers,
is followed by a discussion of consistency of files. Consistency is
guaranteed by the use of temporary shadow copies, which themselves remain
consistent before and during backup operations. To make the backup system
more reliable, the use of several storage facilities in a network is
considered, but the resulting production of multiple copies of files can cause
difficulties in locating and accessing the correct copy. To counter the
effects of these difficulties, centralization of file storage is described,
followed by a discussion of protection of remotely stored information using
techniques of data encryption. Since the use of a network usually restricts
the bandwidth for data transmission, as compared with local I/0 channels to
tapes and disks, for example, the expected performance of the proposed system
is analyzed using elementary concepts from queuing theory, and is found to be
adequate for the file usage patterns expected in a typical shared computer
utility. Finally, some ideas about charging and accounting for network backup

services are considered.

- Page 15 -

1.3 Plan of the Thesis

Chapter six provides a summary of the results of the research that led
to the ideas in this thesis. These ideas are then extended slightly to
illustrate their applicability to other types of facilities that might serve
users., The chapter ends with a presentation of suggestions as to how some of
the earlier ideas might be useful in considering the problems of the
distributed file system. The extensions of the ideas as complete solutions to

distributed file system problems are left as topics for further investigation.

- Page 16 -

Chapter Two

A File System Model for Storage Reliability

2.1 Introduection

One of the most important functions provided by a computer system 1is
the management of stored information for users. A file system provides a
facilicy for managing stored data, and names and other attributes associated
with the data. This chapter presents a file system model that will be useful
for describing various mechanisms employed in the operation of a facility for

improving information storage reliability.

In most systems, the access characteristics and representation of
stored information in files (usually in secondary storage) differ from the
access characteristies and representation of the information as referenced by
program instructions executing on a hardware processor. For example, access
to secondary storage may be slow, but information is stored in "blocks," while
access to information in primary memory by the hardware processor is fast, but
only a word at a time is referenced. The contents of a file, as a collection
of information, is a2 user level concept. The individual units of information

(e.g. words, pages, records, etc.) that comprise the contents of the file are

- Page 17 =

2.1 Introduction

implementation level concepts. These information storage units are referenced
by programs during their execution, and are stored as ordered sets of bits in
primary memory or im a hierarchically structured memory system. The names
used to reference information represented in this form are used by the

hardware processor, and comprise the program namespace.

The user is concerned with ordered sets of bits called files. MNames
for files are typically human interpretable arbitrary length strings of

characters, and these names make up the user namespace. The investigation of

two classes of file systems, the read-write and the direct access file svstem,
and a subsequent look at information storage representations in more detail
will help clarify the relationship between the user namespace and the file

system, and the program namespace and the address space manager.

The next section describes the two classes of contemporary file systems
in terms of the data access operations and name mapping functions which they
implement. This description is followed by a brief discussion of the use of
catalogs in the file system implementation. The major content of the chapter
follows with the identification of two states for information accessibility.
File contents that are currently in use by programs, and therefore have a
representation that is susceptible to modifications if referenced in a program
namespace, are distinguished from a file storage representation that
implements a more permanent storage. The explicit nature of updating the

permanent storage from the volatile address space representation of the

= Page 18 -

2.1 Introduction

information will later provide a mechanism for detecting modifications to

files.

2.2 Two Classes of File Systems

The function of a file system is to maintain a binding between a user
oriented filename and a unique identifier (UID) which is used to name the file
in the context of its implementation. This binding allows filenames to be
mapped into program namespace implementation oriented names for use by
programs executing hardware instructions. Whereas the implementation of the
program namespace and address space are necessary components in the
architecture of a computer system, the implementation of the user namespace
and the file system are not. They are provided for the convenience of the
user so that operations on stored data can be managed in a higher level naming

context than the hardware instruction level.

In addition to providing a mapping between filenames and UID’s, the
file system may also store descriptive information about each file, such as
its length, its creation time, its access attributes, etc. This descriptive
information is stored in catalogs, or directories. Catalogs also implement
the filename-UID binding, and will be discussed in more detail in the next

section.

- Page 19 -

2.2 Two Classes of File Systems

The method by which the file system enables program namespace
references to information stored in a file, given the filename, leads to two
kinds of file systems, 1In the read-write file system, information referenced
by the filename is identified from the filename-UID binding maintained by the
catalog, and copied into (or out of) a program namespace context (i.e. the
address space), and this copy is accessed in the usual address space way

directly by the hardware. In a direct access file system, the filename is

translated via the catalog into a program namespace name, and this name will
subsequently allow the program to access the information directly in its usual
address space way. Thus, the read-write file system, given a filename and a
program namespace name, will move information between the two implementations
of the namespaces. The direct access file system provides only a name
translation function. Access to the information is accomplished in the
program namespace by using the name provided by the translation., Given a
direct access file system, a read-write file system can be modelled by simply
performing the additional functions of moving the information between the file
(as identified by the name translation) and a copy of the file named in the
program namespace. Therefore, we will just consider a direct access file

system.

- Page 20 -

2.3 Catalogs and File Storage Organization

2.3 Catalogs and File Storage Organization

The file system catalog or directory is used to record associations
between names (and possibly other descriptive information) and the stored
representation of files. A file, defined as an uninterpreted ordered
collection of bits, is a very general object. A file may in turn be used to
represent objects in a higher level context, e.g. ascii bytes representing
stored text, or machine instructions representing a program which can be run
on a processor., We will not be concerned with any higher level semantic
context associated with a file. All files will simply be ordered sets of
bits. However, there is one significant implementation strategy that will be
considered, which defines a structure on a particular type of file that is

used by the file system itself.

Consider the implementation of catalogs in the file system. If the
catalog object is implemented using the file, an interesting property results,
In general, the catalog stores information about files. If some of these
files are actually catalog objects, then catalogs can contain information
about other catalogs. This leads to a structured hierarchy of files, with
non-terminal nodes being catalogs, and terminal nodes being either catalogs or
non-catalog files. A catalog is therefore a special type of file that is

implemented, interpreted, and manipulated only by the file system.

- Page 21 -

2.3 Catalogs and File Storage Organization

Given a tree structured organization of catalogs and files, one may
hierarchically order information according to one”s needs. For example, the
administrative hierarchy often leads to a convention of assigning each user a
unique identifier recognized by the system at login time. In additiom, each
user is associated with a preject for administrative and accounting purposes.
Adopting this convention in a tree structured file system organization usually
result;ﬁin a set of catalegs for the projects, with a sub-catalog for each
person in the project. This strategy can be extended horizontally by the
system administrator for system related purposes (e.g. projects, libraries,
resource control and accounting strategies, etc., may be system relevant
categories realized by catalogs across the highest level in the tree), or
vertically by the user for persomal requirements (e.g. organization of
information according to subprojects, realized by catalogs within catalogs),
as pictured in figure 2.1. The important point is that any structure imposed
on the organization of user files is implemented by the catalogs, and no
inherent assumptions about such organization is required in the stored

representation of non-catalog files themselves.

- Page 22 -

2.4 Information Storage Representations

) : System
Accounting Projects Libraries

Project 1

Figure 2.1 Hierarchical Organization of Files

- Page 23 -

2.4 Information Storage Representations

2.4 Informarion Storage Representations

The direct access file system provides a name mapping function between
the filename and the program namespace context. The program namespace
consists of names used by the hardware while executing instructions to access
information. This information and the set of names used to access it make up
what is commonly known as the address space. In studying reliability of
information storage in the file system, the representation of stored data in
both the files and in the address space is considered, as well as operations

that transform data between these two representations,

Within the general purpose computer system we are considering, useful
work is done by referencing and performing transformations on stored
information. These actions are performed by the process. Informally, a
process is a collection of information with a dynamic history of references to
and transformations on the information. The process is the only active agent
in the system responsible for creation, modification, and destruction of
information. Each process is associated with one address space (previously
defined as an ordered set of bits) named by hardware interpretable names.

Furthermore, it is assumed that the address space is implemented in a

= Page 24 -

2.4 Information Storage Representations

segmented hierarchically structured virtual memory [BCD 72]}. Many other
systems can be modelled as restricted sub-classes of this type of system, so

it will be adopted in this model.

A major reason for building a hierarchical virtual memory system is to
multiplex a scarce primary memory resource. The result provides a uniform way
to address information as if it were in primary memory, even though special
mechanisms may actually be required to support this illusion. This usually
implies a subsystem (the "paging" subsystem) for managing the multiplexing of
primary memory by moving copies of information between the allocated faster
memory and the more abundant but slower secondary levels of storage. The
policy governing the allocation of primary memory is based on performance
considerations, so that, for example, the information referenced most recently
in the address space of a process executing instructions will remain in
primary memory, since it is likely to be referenced again immediately (the
locality of reference principle). Otherwise access may require the movement
of information among the levels of the memory hierarchy. This implies that
infrequently named information will not be in primary memory most of the time.
In fact, information will only be moved into primary memory when it is named,

and it can only be named by a process in the context of its address space.

The operation of expanding the size of an address space (in this model,
the process of adding a segment to an address space) is called initiation. 1In

the direct access file system model, initiation involves adding information

- Page 25 -

2.4 Information Storage Representations

(identified by the filename and the file system mapping function) to the
address space by creating a new segment, and returning the program namespace
name for this segment. Subsequent execution of hardware instructions that
name this segment invoke the virtual memory machinery to create the appearance
that the contents of the segment are actually stored in primary memory. The
inverse operation, called termination, removes a segment and its name from an

address space.

There must be some mechanism for long term storage of information when
it is not initiated, i.e. for storing the informational content of segments
when they are not part of any address space. Such storage is not the
responsibility of the hierarchical virtual memory manager, but of the file
system. Since such uninitiated information can not be named by any process,
it will not be stored in primary memory, but in secondary memory (probably at
the least expensive, slowest access level). Furthermore, since it cannot be
named by any process, and only the process can modify stored information, such
information will be static. The static long term representation of stored
information managed by the file system will be called an immune file, since it
is not subject to modifications by the actions of any processes., When this
information is a writable part of an address space under the auspices of the
virtual memory manager, it will be called a susceptible file, since it will be
susceptible to changes by processes which can name it., Thus an immune file is
the long term storage representation for segments stored in the file system,

and the susceptible file is the storage representation for segments in the

- Page 26 =

2.4 1Information Storage Representations

virtual memory initiated from immune files. In this thesis, we will be
concerned with the reliability of information managed by the file system and
stored in immune files. The discussion of reliability enhancement mechanisms
in later chapters requires an understanding of the distinction between immune
files and susceptible files, and how the file system and the virtual memory

manager should cooperate in using these objects.

When an immune file is named by a process (using the filename), the
file system will communicate with the virtual memory manager (using the
storage implementation oriented UID bound to the filename) to request creation
of a new segment, initiating the immune file into a segmented address space,
and returning the new name of the segment in that address space. The file

remains susceptible until it is terminated from all address spaces.

For reliability and efficiency purposes within the virtual memory
implementation itself, it is often the case that a copy of an immune file is
made, and this copy is initiated and made susceptible to modifications by
processes. In this strategy, there is a special action performed by the
virtual memory manager, called an update, which periodically reflects changes
made to the susceptible copy, back into the immune file. This special update
operation occurs outside the context of a process or an address space, and
actually changes the immune file. The important point is that such changes
should occur only by the update operation according to a well defined

strategy. We will adopt this latter model for three reasons. First, a model

- Page 27 -

2.4 Information Storage Representations

in which a copy is not first made can be described by requiring an update
operation to occur after each change to a susceptible copy of the file.
Second, since changes to an immune file occur outside the context of a process
or an address space, update# can occur at well defined times governed not by
the unpredictable dynamics of a particular process or set of processes, but by
a precise strategy defined by the virtual memory implementation. Finally, the
controlled operation of updating an immune file will be an important mechanism
in the strategy to be developed later for improving reliability of stored

immune files by making copies of them when they change.

In summary, susceptible files are managed by the virtual memory
subsystem, and are subject to numerous, frequent, and unpredictable
modifications by processes. On the other hand, the virtual memory manager
reflects these modifications back to immune files by the update operation in a
well defined way. Immune files are managed by the file system, and are not
subject to numerous, frequent, and arbitrary modifications by processes.
Reliability of stored immune files is studied because the update operation
provides a precise way of determining their state of modification (based on
strategies and policies implemented in the virtual memory manager), and
because this type of storage is more abundant and more permanent than storage
used in implementing the address space. The next chapter introduces the area
of reliability and presents a model for describing the virtual memory manager
and its interface with the file system in terms of improving reliability of

immune file storage.

- Page 28 -

2.5 Summary

2.5 Summary

This chapter has presented a model for a file system that will be used
for describing various mechanisms in the operation of a backup facility. The
read-write and the direct access file systems were described, and a
hierarchical file structure was illustrated. Finally, the implementations of
information storage in the address space and in the file system were defined.
In the address space implementation, information in the virtual memory is
susceptible to modifications by processes, while information in file storage
is modified only in a well-defined precise way, by an update operation. The

update operation will be the basis for detecting modifications to files.

= Page 29 -

Chapter Three

File System Reliability Enhancement

3.1 Introduction

Reliability can be a subjective impression based on how "useful" a
facility is, or it may be an objective measure of a system’s performance based
on operating statistics., BSubjectively, a data storage mechanism is "reliable"
if its users are confident that data can be stored and later accessed
correctly and when desired. Making a system more reliable boosts confidence
in both availability and correct functional operation. Measures of
availability can be used to provide an objective measure of reliability, but
characteristics such as user confidence and correctness of operation are
harder to quantify. Therefore, this thesis considers a measured improvement

in availability to indicate an improvement in reliability.

During the course of a system’s operation, failures are possible.
Generally} a system will function until a failure occurs, and then it will
become unavailable. Unavailability may be a direct result of the inability to
proceed after a serious failure, or the intentional result of an action by an

error detection mechanism in response to a failure, in order to prevent

- Page 30 -

3.1 Introduction

subsequent widespread damage. Techniques for error detection for information
storage systems will not be discussed here., Instead it is assumed that
incorrect functional operation of the system is detected by an error detection
mechanism that responds by making the faulty system unavailable until the
cause and effects of the failure are corrected. Thus, a system is available
only when it is functioning correctly, and availability (and reliability)
depends on how quickly recovery from failures can be completed. The thesis
investigates mechanisms for redundant storage of data to facilitate rapid
recovery from failures, increase availability, and thereby improve

reliability.

Measures of reliability based on measured availability and failure
recovery time are discussed in the next section. Recovery time is not the
only important factor, however. The extent of recovery possible, in terms of
the amount of wnrecoverably lost informatiom, is also considered. A goal of
the reliability enhancement system is to minimize both recovery time and the

amount of unrecoverable loss of information, at a reasonable cost.

Traditional approaches to improving reliability are summarized and an
approach which provides for recovering backup copies of information is
selected. Some desirable characteristics of this type of system are stated,

and shown to be properties of existing implementations using magnetic tapes.

= Page 31 -

3.1 Introduction

The last section presents a model for a backup system that will be
referred to extensively throughout the rest of the thesis. 1In this model,
Eour components are identified. A file modification detection mechanism is
used to invoke a backup policy implementation. Based on the particular policy
in use, requests for movement of data are made to an I/0 component. The I/0
é;;panent is also used by the file retrieval mechanism.

Finally, it is suggested that a network implementation is advantageous
because it retains the desirable properties of a tape system, while offering

improvements that offset the penalties of new constraints. This suggestion is

the subject of detailed consideration for the remainder of the thesis.

3.2 Measures of Reliability

Reliability and availability are related. When the inevitable system
failure occurs, information may be lost. How quickly and how completely
recovery can be done determine reliability, also. In some cases, rapid
recovery and high availability are important, while in other cases it is more
important that recovery be complete and no information be permanently lost.
Many systems attempt to reach a compromise between the two costly ideals of

rapid and complete recovery.

= Page 32 -

3.2 Measures of Reliability

In applications such as air traffic control, stock inventory data
bases, and computerized bank accounts, it is important to prevent
unrecoverable loss of information. 1In commercial timesharing applications, it
may be tolerable to accept some permanent loss of data if recovery can be made
more rapidly, thereby improving availability. The effort invested into
improving reliability, and the tradeoff between speed and extensiveness of
recovery, depend upon the cost of a failure, in terms of resulting danger to
human life, financial loss, etc., for a given system application. This thesis
will investigate reliability considerations for a general purpose computer
system providing file storage facilities for user applications. Such a system
might be a large shared computer utility (e.g. Multics [Cor 65, Org 72, MIT
74]), or a small dedicated private system. The issues and solutions will
apply to both classes of systems, but the difference in scale may dictate
differing implementations. The larger system will be the primary object of
interest in this thesis, and the reader may imagine how the ideas apply to a

small system.,

Availability is the first factor in measuring reliabiliry. It can be
measured as the mean time between failures (MTBF). The type of system being

considered here is assumed to exhibit a MTBF on the order of several days.

The second factor useful for measuring reliability also relates to
availability. This factor is the mean time to recover (MITR). The MITR

measures how fast recovery can be accomplished, and thus indicates how soon

- Page 33 -

3.2 Measures of Reliability

the system can be made available again. The MITR depends on the severity of
the failures encountered, the amount of lost information, and the method of
recovery used, and is assumed to be no longer than an hour. The MTBF and the
MTTR together lead to a measure of availability expressible as a percentage of

total time that the system is available.

The last factor that relates to reliability is the system”s
susceptibility to unrecoverable, permanent loss of information. This measure
depends on the other two factors, and on the particular recovery strategy
employed. The basic idea described below is that information which is newly
created is subject to permanent loss until some measures are taken to assure
its reliable storage. The amount of such information provides a measure of

sugsceptibility to unrecoverable loss of stored data.

According to the file system model described in chapter two,
information is created only when a susceptible file is modified. This
modification will result in an update to the immune copy of the file, thereby
storing new information in file storage that will require the invocation of
the reliability enhancement facility to protect against loss and permit
recovery if needed. The invocation of the reliability enhancement facility

results in a backup eperation.

For the system, there is an average update rate and an average backup
rate, The backup rate will always be smaller than the update rate. The
difference between the two rates defines the resolution of the backup
facility, i.e. how quickly backup operations can respond to updates.

- Page 34 -

3.2 Measures of Reliability

Unrecoverable loss of data occurs if the system should fail after
immune files have been updated, but before backup operations have completed

"outstanding" updates provides

for those updates. The average number of these
a measure of susceptibility to unrecoverable loss of information, and is a

function of the resolution.

Improving the resolution reduces susceptibility, but may be expensive.
A tradeoff is required between the amount of work relegated to the system for
improving the resolution, and the amount of information loss acceptable to
users. The extent of such a loss that is acceptable depends on how hard it is

to regenerate the information.

Changing the resolution of backup operations need not affect the MTTR,
because improvements to resolution can be made in the backup facility, while
the MTTR depends on the recovery techniques. The separation of backup and
recovery strategies allows the resolution and the MTTR to be optimized
independently by strategies specially adapted for their needs. A goal of a
network approach is to do just that: to develop backup and recovery
strategies that exhibit both high resolution, and low MTTR. The network makes
this separation feasible, while traditional tape systems prohibit this
separation, resulting in a situation in which attempts to improve the MITR
cause resolution to be degraded, and vice versa. Some reliazbility enhancement
techniques are outlined in the next section, and the tape backup facility is

discussed,

~ Page 35 -

3.3 Approaches to Improving File Storage Reliability

3.3 Approaches to Improving File Storage Reliability

The strategy for improving reliability is to increase availability by
better error recovery techniques. Error recovery techniques include
backtracking, majority consensus [We 72], and redundant storage of data [Fr
69, Pe 71, St 74]. Other techniques in structuring operating systems help to
limit the effects of errors. These techniques include the use of structured
programming [Par 72), protected domains [Shr 72], dynamic reconfiguration [Fab
73, Shl 71], and distributed processing [Orn 75, Row 73]. Careful
construction of system components may facilitate the use of special =z
posteriori repair utilities for rebuilding databases, regenerating files, etc.
Since repair utilities require explicit knowledge of the structure of the

damaged objects, they will not be discussed here.

One structuring technique for the file system catalog and file storage
implementation fits particularly well with the objectives of recovery in
helping minimize recovery time. By allocating storage for catalogs and the
files they describe in physically local storage units, damage is likely to be
confined to a minimal number of subtrees in the hierarchical file
organization. By confining damage to the fewest number of catalogs, the

number of users that are affected and the chances of damaging critical shared

- Page 36 -

3.3 Approaches to Improving File Storage Reliability

file system contents that need to be available for system operation (e.g.
system programs and data, system libraries, administrative databases, etc.)
can be minimized. If the system can be made available as long as this
critical data remains undamaged, then a technigue that confines damage
improves the chances for survival over a situation in which scattered damage
can occur, Only those users whose catalogs sustain damage will be affected,
while the system could be made available to others. The recovery strategy
used is to quickly restore critical data that was damaged, making the system
available sooner and lowering the MTTR, rather than requiring that all data be

restored before any user can use the system.

Other structuring techniques can be useful for improving reliability,
for example, by building a system with internal redundancy so that damaged
components can be repaired or reconstructed. The approach taken in this
thesis is to build a system that provides external redundancy of information
in stored files, so that intact current copies of damaged information can be
recovered from a storage facility different from the file system. By using an
independent storage facility for backup copies, it is less likely that damage
to the file system will also affect the backup system. In fact, it is
desirable that the backup system be remote from the file system, in a literal
sense, so that physical damage to the file system (e.g. fire, explosion, etc.)
will not affect the backup system. There are many strategies in use now for
implementing such a backup system. Most use magnetic tape as a storage medium

since it provides an inexpensive way to store large volumes of information,

- Page 37 -

3.3 Approaches to Improving File Storage Reliability

and tapes can be removed from the site of the computer and stored remotely.
Whatever storage medium is used in a particular implementation, there are

several ways to produce backup copies of information,

One technique for maintaining redundant file storage information is to
produce a dump of the entire storage implementation. To produce a consistent
backup copy requires that the system be unavailable during the backup
operation, so this approach is not acceptable. Although a raw dump of the
file system may speed recovery from a complete loss of all stored information,
it is assumed that such failures are rare, so we will look for a technique

better suited to more frequent but less extensive loss of information.

For efficiency purposes, it may be desirable to make backup copies of
the smallest unit of information storage that is managed by both the file
system (for long-term storage) and the address space manager (for access in
the virtual memory implementation). However, such implementation dependent
information units (e.g. pages, disk records, etc.) are not usually visible to
users, who view information in terms of files. Since backup operations are
concerned with immune files, and not necessarily with their implementation for
use by the address space manager, the file is selected as the basic object for
wnich backup copies will be maintained. (1) A model of a backup system that

maintains redundant copies of files is discussed in the next section.

(1) The selection of the file as the fundamental object managed by the backup
facility does not preclude the implementation of a strategy for maintaining
backup copies for smaller storage units that comprise the file implementation,

- Page 38 -

3.4 The Backup System Model

3.4 The Backup System Model

In this section, a four component model of a general purpose backup
system is presented. After describing the function of each component, the
application of the model to a tape backup system is outlined. Finally, it is
suggested that a data network backup approach offers advantages of simplicity,
diversity, and reliability over the tape approach, and the remainder of the

thesis presents a more detailed consideration of the issues.

The four component model of a backup system is illustrated in figure
3.1. First, there is a mechanism for detecting when a backup copy should be
made, based on the state of the file system. Second, a policy implementation
governs if, when, and how a copy will be made. To actually maintain a backup
copy of a File, an I/0 faeility is invoked. Finally, there is a mechanism for

retrieving backup copies of information that has been lost or damaged.

for efficiency and performance purposes. However, this level of detail would
usually regquire an explicit knowledge of the file storage implementation, with
a complicated facility for mapping between pileces of a file and backup copies
of those pieces, and for determining the logical location in the file system
of backup coples. If files are large and are modified in small, localized
areas (such as in database management applications), this approach might be
worthwhile. However, as discussed later in chapter five, most files in the
type of system being considered here are small, so the added complication of
this approach is not justified.

- Page 39 -

Data

3.4 The Backup System Model

o

File System Storage Facility

Retrievals |

Hequests

Figure 3.1

> Input

Output

v

State
Change

Detection

v

Policy

Lala

Module -i:

Four Components of a Backup System

- Page 40 -

Backup
Storage
Faeility

3.4 The Backup System Model

The purpose of the backup facility is to maintain redundant,
up-to-date, consistent copies of files. (2) The local file storage facility
provides a cache for efficient access to files which are saved in backup
storage. Changes to the state of the local cache storage are detected by the
backup system, and reflected into backup storage by periodically copying those
files which have been created, deleting copies of those files which have been
deleted, and re-copying those files which have been modified since the last

time they were copied into backup storage.

Some state change detection mechanisms require the inspection of file
storage to passively notice that an immune file has been modified, making it
inconsistent with respect to the backup copy. A more responsive detection
mechanism that can provide better resolution relies on a strategy to actively
notify the backup policy implementation when an inconsistency has been
introduced (by an update operation) in an immune file in the local cache.
While the policy is usually incorporated within a state change mechanism that
operates by inspecting file storage, the model described here separates the
detection mechanism from the backup policy implementation. This separation
provides greater flexibility in defining a poliecy (which is an administrative
issue), and simplifies the design by isolating the essential mechanisms (which

are technical issues).

(2) In fact, backup copies may not always be up—to-date, or even consistent.
These and other problems are discussed in detail later in the thesis.

- Page 41 -

3.4 The Backup System Model

The policy implementation determines if, when, and which backup
operations are to be requested when it is notified of an inconsistency. It
invokes the I/0 facility to perform operations for maintaining backup copies.
The I/0 facility contains knowledge about the implementation of backup copies,

and manages the backup storage facility.

Finally, a retrieval mechanism restores copies of files after they are
lost or damaged by a failure. Essential files, such as the system libraries,
are restored before the system is made available. This can usually be done
quickly, and the system can be made available shortly after the failure. In
addition, all catalogs are assumed to be present. As users reference files
not already in the cache (using the catalogs), copies are retrieved from
backup storage. This strategy also uses the I/0 facility to reference backup
copies, and allows the system to be made available to users, even though files
may still be missing from the local cache. Total availability and perceived
reliability benefit from this recovery technique that does not require all
files to be restored before users (many of whom may not have been affected by

the failure) can perform useful work.

The actual maintenance of backup copies is the responsibility of the
1/0 facility. Most contemporary systems use magnetic tape storage facilities,
as mentioned earlier. In a tape oriented system, backup storage is
incrementally updated by sequentially writing new copies of files on

successive tapes. A major disadvantage lies in the inability to re-organize

- Page 42 -

3.4 The Backup System Model

previously written information in the backup storage. Because it is
unreasonable to replace an inconsistent copy on a tape with an up-to-date
consistent one, due to the sequential access nature of the medium (the
inconsistent copy may be on another tape, or it may be of a different size,
ete.), an elaborate tape management scheme is necessary to balance the volume
of backup tape storage and the cost of locating and accessing information,
against the level of reliability enhancement desired. The inability to access
backup storage in a flexible, efficient manner also makes it difficult te
determine its state, and hence it is difficult for users to determine just
what state backup copies of their files are in. WNevertheless, such tape
systems have been successful in providing reliability enhancement for file

storage [Fr 69, St 74].

If more flexible, efficient access to backup copies of information is
convenient, many of the management problems become simplified or disappear. A
random access data storage facility available in a network offers these
advantages. This is not to say that new problems and constraints do not arise
with a network approach; indeed they do. However, under the operating
assumptions made about the expected frequency and severity of failures,
limitations caused by such new constraints (principally caused by limitations
in realizable bandwidth for data communication) will be outweighed by the
simplification and improved availability obtainable with a random access

information storage facility.

- Page 43 -

3.4 The Backup System Model

A network implementation should retain the advantages of contemporary
tape systems (e.g. remote storage of data, economical storage of large volumes
of data, ete.), while providing improved reliability and greater flexibility
so that users may take better advantage of backup services that are provided.
A design for a file storage backup system that uses a data network, based on

the four component model, is described in the next chapter.

3.5 Summary

This chapter has presented a model for reliability enhancement for
stored information. Availabilitry of the system and rapidity and extensiveness
of recovery from a failure were the major factors determining reliability.

Use of techniques such as structured programming, protected domains, dynamic
reconfiguration, and distributed processing provide useful approaches to
constructing reliable systems, but the technique selected for recovering from
failures in which data is lost is one which provides redundant storage of

data.

A model of a backup system which maintains redundant copies of
information was described. In this model, four interacting components are
responsible for performing backup operations. A state change detection
component determines when a backup copy should be made. A policy component

decides if and how a backup operation is to be carried out. An I/0 component

- Page 44 -

3.5 Summary

is responsible for the actual transfers of data, and a recovery component

provides a facility for retrieving backup copies of files after a failure has

caused loss of or damage to information.

- Page 45 -

Chapter Four

Design for a File Storage Backup System

4.1 Introduction

The previous two chapters have presented models for a file system and
for the reliability of such a system. This chapter will elaborate on the
design of each of the four interacting components shown in figure 4.1. This
design derives from an implementation of a facility providing backup file
storage for the Multics computer system [Cor 65, MIT 74, Org 72], utilizing
the ARPAnet [ARPA 74, Cro 72] and the large capacity data storage facility
known as the Datacomputer [CCA 75, CCA 73, Mar 75], which is accessible via
this network. The purpose of the backup facility is to improve file storage
reliability by providing an interface between local file storage and remote

backup storage.

It is recognized that each component must solve particular application
problems for backup, and at the same time satisfy global requirements of the
system design. The state change detection mechanism and policy implementation
are designed with system security issues in mind. Only information that is

needed for these components is made available, and only in a controlled way.

-~ Page 46 -

4,1 Introduction

r'-
L Backup
System
Storage Storage
& A
Kernel < SRy
Discrepancy Kernel I/0
Detection Data Transfer
and Facility
Retrievals
L!g I i
-_—
Non-
Kernel Poliey I/0
Implementation Control
.
. & s B ol
Poliecy Mechanism
Figure 4.1 Interacting Components in the Backup System Design

- Page 4T =

4.1 Introduction

The access to information is clearly defined so that unauthorized release of
and/or moedification to informatiom will not occur. 1Isolation of a policy
implementation from a kernel mechanism facilitates the required control over
information access, by defining a specific inter-component interface. This
architecture also separates information release issues from denial of service

issues.

A mechanism is described for ecreating and maintaining backup coples on
the Datacomputer. The use of the network and the Datacomputer makes large
volume random access storage feasible, and also simplifies data management.
This simplification is realized by dividing backup storage into two
independent classes of information: the file itself, and a description of the
attributes of the file. Random access permits asynchronous control over a
file and its descriptor, corresponding te asynchronous operations to leoeal
files and catalogs. Since the volume of file information can be much larger
than the volume of the corresponding descriptor information, and network
bandwidths may impose data transfer rate limitations, separate access and
control over descriptor information in backup storage allows data management
functions to occur in parallel with data transfer operations. Other uses for
the backup storage system can be implemented through a particular descriptor

management strategy.

- Page 48 -

4.1 Introduction

The last component is concerned with system recovery after a failure,
and specifically with file retrievals. The local file storage is accessed by
users in an unpredictable way, while the backup storage is accessed only by
the process responsible for managing it over the network. 1If the file system
is considered to be the backup storage and the management programs for
implementing this storage on the Datacomputer, then the local file storage can
be viewed as a cache memory for the backup image of file storage. This image
is accessed through a single, well defined, controlled interface, and should
be less susceptible to damage. When local damage occurs, the file can be
removed from the cache. Subsequent reference to the file will cause it to be
retrieved automatically from backup storage, if the catalog indicates it
should be in the file system image. Therefore, only the catalogs are required
to be present after a failure, for the system to be made available to users,
An empty cache will then be loaded on demand as users reference files. This
permits file retrieval to proceed with a limited bandwidth network by first
restoring files that users need immediately, and then restoring others. GSince
only catalogs need be available before the system becomes useful, system

recovery time is lowered, and limited network bandwidth is used to best

advantage.

Each component described involves an internal set of mechanisms, and a
set of external interfaces. These will each be described in the following

sections.

- Page 49 -

4.2 The Discrepancy Detection Mechanism

4,2 The Discrepancy Detection Mechanism

The set of files in backup storage represents the contents of the file
system, and local storage provides a cache memory structure for accessing it.
The backup facility manages this cache by keeping backup copies consistent
with respect to cache copies. The basic driving force for maintaining this

consistency comes from the discrepancy detection mechanism.

The backup file collection is maintained as an image of user’s
information, while the catalogs define the structural relationships between
the files. Two classes of changes can cause the cache state to become
inconsistent with respect to the backup file collection. Changes to catalogs
cause alterations to the structure of the file collection (e.g., create or
delete operations). Catalogs are managed by the file system, so such
operations as create and delete which cause discrepancies between cache state

and backup storage state will be detected by the file system.

The second class of changes involves modifications to user’s files.
Only susceptible files in an address space are subject to intentional
modification. Such modifications made in an address space by a user’s process

will eventually be incorporated into the immune copy of the file by the update

- Page 50 -

4.2 The Discrepancy Detection Mechanism

operation. An update, in general, (3) is an operation which is invoked
occasionally to reflect a set of changes to a collection of susceptible
information, out to the immune version of that collection of information. An
update operation should be an explicit, well-defined event initiated by the
address space manager, such that it will be the only operation that will ever
intentionally modify an immune file. As such, this event will also provide a
discrepancy detection mechanism for events that modify immune files, making

them inconsistent with respect to backup copies.

In a general purpose computer utility allowing controlled sharing of
information, access to system data and state information needs to be
controlled by the kernel. The discrepancy detection mechanism is a kernel
facility with an interface that provides control over the release of file
storage and address space state information. These interfaces are shown in

figure 4.2 and are described below.

The objective of the discrepancy detection mechanism is to communicate
to the backup policy implementation information about candidates from among
all susceptible files, which become inconsistent with respect to the
corresponding backup coples, and hence become eligible to be copied inte the

backup storage system. Some current schemes utilize a mechanism which

(3) The update operation is employed to maintain consistency among multiple
copies of data. Making a new backup copy of a modified file is also an update
operation. However, in this chapter, the term "update" will refer only to the
operation of keeping the file system (immune) contents consistent with the
address space (susceptible) contents.

- Page 51 -

User
|Interface

4.2 The Discrepancy Detection Mechanism

File
File System Storage

Initigtion

Updakes

(Immu%?i‘hh—-__-sfi’#’

Address
Space

sceptible)

State Change List

CREATE

DELETE

N/

Report Manager

Policy Implementation

Figure 4.2 The Discrepancy Detection

- Page 52 -

Mechanism

4.2 The Discrepancy Detection Mechanism

combines the detection and policy implementations. We will attempt to
separate the two. Instead of using a passive strategy whereby the detection
mechanism leaves "clues" about candidates for being copied from the file
system into the backup system, which the policy implementation must discover
on its own before acting, we use a dynamic technique whereby the detection
mechanism notifies the policy implementation about candidates for backup as
soon as they are detected. This strategy allows backup copies to be made
sooner after modifications occur, improves resolution of the backup facility,
and reduces the potential for unrecoverable loss of information that could

result frem a failure,

In principle, the state of the file storage cache could be determined
by inspection. In practice, the volume of storage precludes techniques that
require inspection of the entire cache, because frequent inspection would be
too time consuming. To determine eligible files for backup would entail a
search of the cache each time state information was needed, and furthermore
would not be a dynamic operation. To facilitate rapid and frequent access to
cache state changes would be sufficient for purposes of discrepancy detection.

A state change list is maintained by the file system for this purpose. (4)

(4) The state change list provides an efficient mechanism for determining the
current state of the file system, if the previous state is known, and
therefore provides redundant information for efficient access. If this
information is lost in a failure (an event assumed to be rare, relative to the
frequency of state changes), it can be reconstructed by the more time
consuming operation of inspecting the entire cache, thus allowing recovery.

- Page 53 -

4.2 The Discrepancy Detection Mechanism

Only two operations can cause intentional cache state changes. CREATE
or DELETE requests change the structure of cache storage, and updates to
immune files change the contents of cache storage. Each type is an explicit
operation, and results in an entry being placed on the state change list.

This list element is called a discrepancy report.

The state change list, or discrepancy report list, records the history
of state changes in the cache storage system. Discrepancy reports will

eventually result in some action being taken, through a report processing

mechanism. Report processing is done by the policy implementation, through a

kernel interface to the file system.

The policy implementation exists outside of the operating system kernel
as a user-level process. Its purpose is to decide if, when, and how to
dispose of discrepancy reports, and subsequently regquest backup-related
operations. In order to respond dynamically to state changes as they are
detected, it communicates with the file system through a report manager
interface. The file system informs the policy implementation of the arrival
of each report, through an interprocess communication (IPC) operation called

notification. Conversely, the policy implementation processes reports it

receives from the file system and returns information about their disposition.
In addition, the file system provides a user interface for the usual types of
file system operations. Access to the report manager interface will usually

be restricted to the policy process, which runs as an administrative support

- Page 54 -

4.2 The Discrepancy Detection Mechanism

function in the system. This policy implementation is discussed in the next

section.

4.3 The Policy Implementation

The policy implementation provides a facility for processing
discrepancy reports. This processing can be arbitrarily complex, depending on
the particular administrative needs. However, this complexity is a purely
administrative issue, and is divorced from the mechanism issues of report
notification and subsequent backup operation, TIn the global picture, the
policy implementation provides an administrative interface between
kernel-detected state changes and the available primitives for performing

backup operations.

The major function of the policy implementation is embodied in a

decision module, shown in figure 4.3. When notified of the generation of a

new discrepancy report, the policy decision module begins processing it.

Based on inputs from the file system and/or users, the decision module informs
the report manager of the disposition for the given report, and (optionally)
places a request for backup operations in the request buffer (e.g., priority
gueues). The decision module should implement a fair and flexible policy, so
that unconcerned users receive a default level of reliability enhancement for

their files, while users with special regquirements can easily specify

- Page 55 -

4.3 The Policy Implementation

File Report
sysren Manager
i eport 1/0
Notification .
POLICY Disposition Control
IMPLEMENTATION
Report
Processing
Decision
Module
Reguest
Manager
Heguest ~
Buffers ——~ Requests
User
Interface

Figure 4.3 The Backup Policy Implementation

- Page 56 -

4.3 The Policy Implementation

non-standard decision criteria without adversely affecting backup operations

for unconcerned users.

For example, notification of the occurence of an update from the
susceptible file to the immune file in the cache can be passed on to the user.
Instead of relying on a default policy which provides for making a new copy of
the modified file, it may be desirable for the user to journal the changes
just incorporated in the immune file by the update, and later produce a new
complete copy in backup storage. Allowing the user to journal changes as they
occur to immune files can provide better resolution than waiting for the
system default strategy te produce a backup copy. The flexibility of this
type of mechanism provides more precise user control over backup operations,
so that the precise state of backup storage is always known to concerned

users.

The list driven backup scheme outlined here can model the operation of
current typical backup systems. A particular policy implementation requests
backup operations based on file storage state information. For example, the
complete, incremental, and catchup dump strategies can be modelled as decision
criteria based on dates and times of file modification and backup, stored as
file storage state information. Similarly, user-defined strategies are
implemented as user-level policy procedures which embody specific decision

criteria. An appropriately authorized process <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>