
MIT/ICS/IM- 81

HARDWARE ESTlMATION OF A PRCCFSS 1'

PRIMARY MEM:>RY ~

David K. Gifford

January 1977

MIT/LCS/TM-81

HARD ARE ESTIMATION OF A PROCESS'

PRIMARY ME. ORY R8QU . E1ENTS

by

David Kenneth Gifford

This ffiechnica Memorandum is a minor revision of a hesis
submitted on May 7, 1976 in partial fulfillment of the
reQuiremen s for the degree of Bachelor of Science in Computer
Science and Engineering a the Massachuse ts Institute of
Tee hnolo gy .

The work reported here was performed in the Computer Systems
Research Division of the M.I.~. Laboratory of Computer Science,
an inter de par men t.al la bora . ory . The work was sup por . ed in part
by Honeywell Information Systems Ioc., and in part by he
Computer Science Departmen of Ford Motor Company Car
Engineering. Publication of he work was supported by the Air
Force Information Sys ems Technology Applications Office (ISTAO)
and by the Advanced Research Project Agency (ARPA) of the
Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No . t 19628-7~-C-01g8.

CAMBRIDGE

MASSACHUSE~Ts ~NSTITUTE a TECHNOLOGY

LABORATORY ~OR COMPUTER SCI NCE
(formerly Project MAC)

MASSACHUSETTS 02139

ACKNOWLEDGMENTS

would like to thank my hesis advisor, Professor Fernando

J. Corbato, for the many belpful suggestions he provided over the

course of this thesis.

Many thanks are due to Hoa Bierman of the Ford Motor

Company for irst provid ng me with the opportunity of pursuing

this thesis research.

I wold like to thank Bob Montee and Charlie Clingen of

Honeywe for arranging ror permission to modify the 6180,

machine time, and my transportat·on which enab ed the experiments

in this thesis ..

Th"s s for Katrina.

2

HARDWARE ESTIMATION OF A PROCESS'

PRIMARY EMORY REQUIREMEN S

by

David Kenneth Gifford

ABSTRACT

It is shown that a process' primary memory requirements can be

approximated by use of the miss rate in the Honeywe 1 6 Bots page

able word associative memory. This primary memory requirement

estimate as emp oyed by an experimental version of Mu tics to

control the eve of ultiprogramm·ng in the system , and b 1 for

memory usage. The resultant system's tuning parameters were

shown to be configuration insensitive, and it was conjectu ed

that the system would also track shifts in the referencing

character·stics o its workload and keep the system in tune. The

imitations of the assumpt'ons made about a process' refere~cing

character·stics are examined 1 and directions for future research

are outlined.

THESIS SUPERVISOR: Fernando J. Corba o

TITLE: Professor of Computer Science and Blectrical Engineering

3

ACKNOWLEDGMENTS

ABSTRACT

SECTIONS

1. Introduction

. Overview

TABLE OF CONTENTS

2. The Resource Balance

3. Pre ious ork

~. Scope of the Thesis

2. Estimation of a process• primary memory require ents

unc ional representation of a process' primary
memory requirements

Page
2

3

7

7

12

2. Dynamic determination off 5

3. Establishment of a desired mean headway between 6
page faults

4 . Es t imation of a process' primary - emory 7
requirements

5. naccurac1es inherent in the estimate 8

3. lmplemen ation

Virtualizing the raw associative memory miss rate 21

2. Maintenance o R(16)

3. Mechanics for computing a process' pmr
estimate

4. When a process' pmr is computed

5. Approximating a new ·nteraction s pmr

6. Determination of evel of multiprogramming

4

22

22

23

23

24

7. Billing for memory usage

8. Se f .uning of the system

4. Experimental Results

Design of the experiments

2. Validi -Y of the pmr es -imator

3- Performance of he pmr system

. Memory usage charging

5. Self -uning results

5. nalysis of error

5 . Conclusion

28

29

33

3

39

44

6

5 ·

1. Summary of thesis proposal and result.s 52

2 . How a net performance increase might be realized 53

3. Fu ure work 53

REFERE CES 55

5

LIST OF FIGURES

Figure Page

1 .. 2. Effect of number of e·ligible processes on paging 10
overhead and multiprogramming idle t·me

3.6. Pmr est·mation information flow 26

3.6.2 Eligib"l ty control logic

J.B. tune_system subroutine fl owchart

3.8.2 Block diagram of system self tuning

I.!. 2. , Typical values or a pmr system on two
con.figurations

'-1 . 2. 3 Sa.mp e pmr histogram 2:56K. system

4.2.3 Sample p r histogra 256K system

"4.3.1 pmr system performance on configuration

1L 3. 2 pmr system performance on configuration

different

A

B

27

3

32

36

37

38

4.2

Memory usage of PL/1 compiler and ALM assembler 115
averaged over O typ·cal commands

.5. Parameter values and configuration in_orrnation
or experiment 2

47

~.5.2 Dynamic response of the system to the pmr self tun·ng ~8
algor t.hm

.5.3 Control variable ws corf plotted against t·me of day qg

.5.~ System task switching ratio under the influence of 50
self tuning

6

Section
Introd ction

Introduct · on

· . 1 Overview

Virtual memory systems are now enjoying increasing

popularity due to the automatic management of memory they prov·de

a progra ,er. Because of their high cost and the desirability of

information sharing they are generally time shared, which

·ntrod ces a host of techno ogical problems.

n this thesis we will be examining the task of correctly

assessing a process' primary memory requirements. his

assessme ls ·mportant for two reasons. F·rstt an approximation

of each process' primary memory requirements is needed to strike

the balance nece,ssar·y to insure optimal operation of a time

shared system. Secondly, an approximation is required to

equitab y charge for usage of primary memory one o he most

expens·ve components of a virtual memory system.

1.2 Tbe Resource Balance

Before virtual emory the task of multiplexing processors

among the processes competing for them was rather

straightfor ard. Jobs had a fixed size, and pr·mary emory was

illed until it could hold no more. ~he jobs that were wholly

contai ed in pr·mary memory were eligible for processor cycles in

7

Section 1 Introduction

the multiplexing process.

However, virtual memory has complicated this scheme. As

virtual emory presents an arbitrarily large virtual space to a

process by multiplexing primary memory processes will run in any

amount of primary memory. Naturally with less real memory the

simulation overhead of a large virtual memory increases, and it

is much more efficieat to have a larger real memory.

Somehow the operating system must determine which processes

to make eligible in the time division multiplexing of the central

processors. Inherent in this selection ~roaess is a trade off

Multiplexing too many processes simultaneously creates an

excessive demand for the finite primary memory available, and

each process can not obtain enough pages. This results in each

process spending a. high percentage of its time in paging

overhead instead of doing useful work.

If too few processes are made eligible then the time he

all processes are waiting for page I/0 to complete and are

incapable of receiving processor time rises. This

nmul tiprogr-amrn.ing idle time" re pre sen ts unrealized proces:sing

capability ..

Thus when too many processes are made eligible paging

over head increases and the fraction of the processor ava:i labl e

for users' useful computation drops off. Likewise when too few

processes are made eligible multiprogramming idle time increases,

and users useful computation drops off. Figure ,.2.1 shows the

typical relationship between the number of eligible processes,

8

Section I troduct·on

paging overhead, and mult programming ·dle.

Sekino [S2] has shown that the fraction of the processing

capability o a system available for users' useful computation s

linearly related to system throughput. After Sekino we shall

call the fraction ava'lable •percentile throughput" an it is

this quantity that we wold objectively ike to max·mize.

Tbe needed infor ation then 1s an approximat·on of how much

primary memory a process requires. ith this information we

could rationally select a subset of the ready processes to make

eligible, ith the knowledge they would not cause a performane

collapse of the computing system by collectively demand! g more

primary memory than is conr·gured.

9

~&
·...-i •
+10
(;.;
o,

g
0

8

paging overhead/real .. ime

multiprogramming id e/real tl?De

--------~---.....-.~------- - ----------1;..oo ,6.oo 6 .oo o.oo 2.00 0.00 2 .. 00
eversge number of eligible users

F gw,e 1 .2.1

Bf.feet of numbe1r of eligible
-proce-sses on paging overhead and Ill! tiprogTemming

idle time

Section 1 In roduation

~3 Previous Work

Various algorithms have been devised t.o appro,ximate how much

real memory a process needs to run in a virtual memory

environment Peter Denning [D D2] has suggested that each

process has a "working setu of information. This set o f

information ·s represented by W(t ,d), the collection of

information referenced from t-d tot. Denning's model has been

popu ar·zed as the set of pages that a process needs in primary

memory ~o run optimally, and the a ount o primary memory that

needs to be set aside for a process ·s oftea ca led its worki g

set size. To avoid confusion in this thesis we de ne the term

primary me ory requirement to represent the number of pages of

pri ary memory a process requires

Most operat·ng systems that support virtual emory a e. pt

to approx·roate through software each process' primary memory

requirements. VM/370 [V] - CP/67 [S3t R] The Michigan erminal

System [A1] MANIAC II [M2], and Multics [01] all maintain

primary memory requirement (pmr) esti ates which are used in the

process of deciding what processes to make eligible in the time

ivision multiplexing of the central processor

The estimation schemes used by these systems suffer from a

n -ber of common ailme·nts. The b eha v io.r of a process. · s colored

by the behavior of the processes it is being multiplexed with 1 as

global page rep aaement algorithm.s, ar,e ,employed. The ob serva.bl e

behavior of a process ·s no·sy and generally does not accurately

depict the true character·stics of the process. In addit on, the

Section · trod uctio,n

information available to the estimation scheme is limited as the

hardware supporting virtu l memory systems is generally mini ally

augmented trad"tional equipment.

To co·pensate for the limited noisy environment they operate

n, pr·mary memory requirement estimation algorithms have grown

in complexity. Some provide reasonable estimates but they

require careful tuning and are sensitive to system change.

Reed [R3] explored the problems of using a model similar to

the one proposed by this thesis without hardware assistance for

pr esti ation. He demonstrated the potantial usefulness of the

m el, and provided a very rough measure of a Drocess primary

me ory requirements.

1.4 Scope o the Thes·s

This thesis proposes a si ,ple model of process behavior that

can be utilized to esti ate a process• pri ary memory

requirements. It is shown in Section 2 that this mode can be

fitted to a process with information provided by a si ple

ha ~dware extension to the associative memory of he oney ell

6 80 processor. The estimates generated with this scheme are

load and configuration independent.

A prototype implementa ion for Multics is proposed in

Sect·on 3, with the results o numerous experiments on his

implement tion reviewed in Sect · on ~- Mult·cs was chosen for the

prototype ·mplernentation de to the ava"lability of equipment,

12

Section 1
n trod uction

however the thesis could have been im_plemen ted on a number of

different systems. Section 5 summarizes the utility o the

thesis in light of the results of Section 4.

13

Section 2 Bstimation of a process' pmr

2. Esti ation of a process' primary memory requirements

2.1 Functional representation of a process primary memory

requirements

As outlined in Section 1.2 the amount of primary memory a

process is allowed to utilize 's related to the amount of paging

overhead it will experience. We define the mean headway between

page faults (hbpf) to be the mean time a process runs before it

causes a page fault a.nd is forced to incur a page fault handling

time (pfht) in addition to the time it takes to retrieve the

needed page from secondary store, the page fetch time (pft).

We now can formalize the concept o a process• primary

memo,ry r ,equi:r·ements. Imagine a. function f re ating the mhbpf for

a process to the number of pages it requires to obtain this

mhbpf. That is:

M:: f(mhbpf)

-1
m.hbpf = f (M)

atural y f will not be a static function. The next section

deals with the problem of dynamically determing f for a process.

Inherent in this discussion is that the scope off is limited to

the time frame in which process behavior was observed to

determine it.

Section 2 Estimation o a process• prnr

2 2 Dyna ,ic determina ion off

~he prob .em of determing a processT primary memory

requirements is now reduced to the problem of eterming what f

looks like or the given process. With f we can ana yze what

type of performance return to expect fro an additiona

com itment of primary memory to a process.

To determ'ne f for a period of tie in a process' 1·re we

can observe the process for this period and then use he

·nrormation collected to esti~ate f. Te naive approach is taken

by this thesis, that is that f for the next period is egu valent

to f for the period just easured.

If we imagine a per process least recently used (LRU) stack

model of pr ary memory [M J he rate of references past _ev-el x

shall be represented as R(x) Thus if we have M pages that can

be utilized by a processt (H) is the page fault rate. It is

assumed that primary memory is managed und ,er an LRU replacement

algorithm as it essentially is in Multics [C] .

The hardware extension this thesis proposes to the 6 80 is

the maintenance o R(6) in a program accessible register R(6)

is easily determined due to the LRU management of the sixteen

word page table associative memory in the 6 80

Knowing R(16) we can approximate R(K) Saltzer [S1] has

shown through measurements that R(K) is roughly linear in memory

size at the system level for- Multics I ma.king ·the following a

_entative approximation for R(K) at the process level:

15

Section 2

R(K) -
K

ow·

mbbpf -

6
* R(16)

,
R(M)

Al terna.ti vel y.

M
mhbpf: ------ - = f (M)

6 * R(6)

Estimation of a nroc ess I pmr

Al owing us to deduce for this first order model:

M = f(mhbpf) ~ mhbpf * 6 * R(6)

2.3 Establishment of a desired mean headway between p ge faults

Having been able to determine f we must specify the

performance level we desire a process to operate at in terms of

its mhbpf to estimate its primary memory require ents. Direct

specification of the desired mhbpf of a process as a tuning

parameter d'd not seem to provide an eloquent solution. It was

fe t that specification in terms of the maximum fraction of time

that cou- d be devoted o paging overhead would be a much eas·er

to conceptual ize uning variable than an absolute value of ; hbpf

in m ic rose ond.s.

l\s each page fault incurs a page fault handling ti e (pfht)

and this p ht has a low variance we can characterize one aspect

of process efficiency the fraction of time the process ·snot

16

Section 2 Estimation of a process' pmr

spending in paging overhead as:

mhbpf
e.ff =

mhbpf + pfht

For historical reasons in the implementation of this hes s the

term "efficiency11 was retained for his application. Th s the

reader must not confuse it ith a representatioo of total syste

efficiency .. ote that

paging overhead in syste
1 - e f = ------- -------- --- -----

busy time

Ls an approximation that could be ade on the gross expenditure

af time at the total sytem leve

To obtain a specified 11 efficiencyn for a process the above

expression allows us to calculate its mhbpf as:

efficiency_wanted • pfht
mhbpf_wan ted = ------- - -- --·---

(- efficiency_wanted)

Thus with a system administrator specified value of

efficiency_wanted it is straightforward for Multics to compute

the value of mhb pf _wanted, as the page fa.ul t handling time is

current y metered by the system.

2.4 Esti ation of a process' primary me ory requiremen s

From Sect·on 2.2 we have the approxima ion:

M ~ mbbpf * 6 * R{ 6)

17

Section 2 Estimation of

and from Section 2.3 we have:

efficiency_wanted * pfht
mhbpf wanted= ------------------------

(1 - efficiency_wanted)

process I pm r

Tbus M wanted, a processt primary requi ement estimate can be

ex pressed as:

efficiency_want.ed * pfht * 6 * H(16)
M wanted= -------- - --------------------------(1 - eff iciency_wanted)

o allow or error in the approximation process as mp .e linear

multiplier is provided, s _ cofft allowing us to rep ace M_ wa.nted

by M. The nae ws_coff is also historical in origin. The fina

per estirna e is then:

s_coff * efficiency wanted• pfht * 16 * R(6)
M = ----------------- ---------------(- efficiency_wa.nted)

2.5 Inaccuracies · nherent in the estimate

In Section 2.2 we made the assumption that R(K) as roughly

inear in memory size. If we let p(x) be the stationa y

probability d"str"b tion of referencing leve x in the LRU stack

on any reference, and generalize p to be continuous we know

that.

/in.­
I
l p(x) dx = 1
l
I

18

Section 2 Estimation of a process• pmr

In addition the probability of referencing past level yon any

reference is:

Now

Or·

/inf
I
I

F(y) - I p(x) dx

for R(K)

F(y} -

/in
I
I
I p(x) I
I
I

/y

I
I

/y

to

2 •

dx =

be inear in

F(2 * y)

/inf
I
I , * • p(x) I

I
/2 * y

memory size:

dx

With the constraints presented for p(x) we find:

p(x) =
2

X

Thus, for the assumption that R(K) is inear in memory size the

static pro ability of referencing level x in the LRU stack must

be as shown above.

The accuracy of the estimate then depends on how a process

referencing characteristics differ . rom the ideal characteristics

assumed by this first order model. A serious departure from p(x)

by a process will degrade the estimate provided. The more

serious the departure, the worse the estimate will become.

Greenberg [G1] discusses possible representa ions of p(x) in

view of his experiment l observations of Multics. More

9

Section 2 Estimation of a process• pmr

information about the typical form of p(x) would allow R(6) to

be used in higher order approximations of R(K), and provide

·mproved accuracy.

20

Section 3 mp e en tat· o

3. Implementation

3.1 Virtualizing the raw associative e ory miss rate

The associative memory for the page table words in the 6 80

holds s·xteen page table words, and is anaged under an LRU

replacement algorithm. Thus the nu ber of non- atches, or

misses in the assoc·ative memory is the sa e as the number of

page faults that would be incured in a sixteen page real emory

being managed under LRU replacement.

The number of raw misses in the associative memory is

relatively easy to obtain through hardware. However Multics

frequent y clears the associative memory to reflect changes in

the in core page tables, causing super luous misses. n addition

page fau t and interrupt handling cause a substantial nu ber of

misses that are counted by the hardware.

The problem of tak ng a per processor raw m·ss cont and

rnaintaing a per process virtual miss count is very similar to

billing processes for virtual cpu tie although more complex.

As indicated above the virtualized miss count represents the

number of page faults the process would have: incured running in a

sixteen page LRU managed primary memory.

A separate board {645HK) containing the additional logic for

aintaining the raw page table word associat·ve memory (PTW AM)

miss count in program access·ble form was added to the 6180 in a

spare boards ot. Software compensa ion ·s provided or

21

Section 3 Implementation

associa ive memory clearing and page Rault and 1nterrupt

handling . The number of page table words m·ssed on while

refill"ng the associative memory is calculated ai page fault or

interrup time by a compare of the current PTW A with a

prev iously saved copy from the last page faul. or interrupt. A

subrou.ine called adjust_vpfs, was added to the system to

perform this compensa -ion.

3-2 Maintenance of R(6)

A v~rtual cpu timer is maintained for each process allowing

H(16) to be calcula ed as:

virbual P · AM misses
R(76) ::

elapsed virtual time

3.3 Hechanics for compu ing a process~ pmr es .imate

To facilitate varying experimental approaches -he

comp ta -ion of a process' primary memory requiremen was made a

sub~o tine o pxss [SJ he scheduler of Mul ics. To compu -e a

process pmr one calJs cor.ipu e_ working_set (once again called

th's for historical reasons) 7 and a pmr is estimated using

i nforma ion coll ect-ed since -he last. compu e_working_set, call

accordiog to the equation derived in Section ?.4.

22

Section 3 I ,p e entation

3.4 rihen a process' pmr is computed

For the experiments descired in Section 4 a process pmr as

computed at three times: timer runout, process bock, and at

preemption for a higher priority process Before a process' pmr

·s computed a check is made to insure it has amassed min_vcpu

microseconds of irtual time sine e ts last compute_wo.rking_ set

call. If it hasntt compute_ working set returns without

calculating a new estimate.

T~e min_vcpu parameter was a safeg ard after early

experiments showed erratic estima ion due to the systems tendency

to look through very small windows at a p ocess' behavior. Fifty

milliseconds was the standard setting of min_vcpu .

3.5 Approxima ·ng a new ·nteraction 1 s pmr
- -

When using a process pmr for control purposes, i.e.

deciding whether to l et a process become eligib e or not 1 there

·s an underlying assumption that the previous behav ·or of

process is 1ndica.tive of what its future behavior will be. What

then can be said of a process 1 behavior after it has interacted

with a human? Different types of req ests generate greatly

differing resource requirements.

Th,e assumption made by this thesis is ~den ti cal to the

traditional scheme used in estimat·og a running process future

23

Section 3 Implementation

requirements: resource requirements for a new interaction can be

estimated from resource requirements o previous n terac tions.

In the case of primary memory ~equirements a moving average

is mainta·ned on each call to compute_working_set:

pmir _ average + pmr
pmr _average - --- - ·--- - - .. --

2

The average is used as the process' pmr on each new interaction.

On process creat·on each process assumes a preset pmr ntil it

goes blocked, is preemptedt or incurs a timer runout.

3. 6 Determination of level of mul tiprogra , · ing

Figures J.6. and 3.6 . 2 outline the flow of information and

decision process used or the implementation of eligib.lity

control in this thesis. They are si plified representations of

t e actual ·mplementation but they characterize the decision

process well as a

removed.

o tbe ogic from the standard system was

In bo h the st ndard system and the one proposed in ~his

thesis a preemptive priority discip ine is used for processor

scheduling w· hin the elig"ble processes. This discipli e

mitigates the effect of lower priority processes with large pmr•s

displacing pages of higher priority processes. Thus the decision

in the contro logic forte pmr system to make processes with

extremely large pmr•s eligible concurrently with other processes

Section 3 Implementation

seemed reasonable in view of the fact they would always be of

lower processor priority.

25

raw PTW AM mi s: count

I

ad juat_ vpf· 1---•memory billing

virtUializ.ed mlse count

process
data
segment

done at fault/interrupt time
--------------------------~--- -----~-~--done .at timer run.out, preempt I block

ccumulated---. r tuning parameters
virtual cp\l
ti.me .,,_..__...,_.....,;;;;,..-....

compute
working
set

pmr

active
process
table
entry

selection
of ne
eligible
process(es)

level of
multiprogramming

e.pt.e

Figure J. 6. 1

apte

done whenever .a process
loses eligibility due ~o
quantum exhaustion or block

pmr estimation information flow

page 1/0 interrupt running proeese blocks,

1
is preempted, or incurrs
a timer runout

!
post I/0 completion if pr,ocess has los,t eligiblli ty,

l
deduct i.ts pmr from pmr_sum.

_..., ------:::yes,:----
,eliglbl , proce sa available ~ · • dispatch
to di patch to'? ro
f .ind next proee ss wa.l ting
to be made eligible

l

none . :idle

pmr larger than total----19- 8
.;...· over lzed proceas .- -_,,,,,,·· es

real memory available? eligi'ble already?

j= M

summation of' eligible---..
processes pmrs (pmr_sum)
plus this process 1 pmr
leas than t ,otal real
memory available? l"es
add proce ' pmr- into,
pmr_sum

l
mark pro:ce as ellgi. ble
and dispatch

multipro&ram idle until
a page ,co es in for an ,eligible
process

Figure .l• 6. 2

El:lgib:ll:lty control logic

Section 3 Imple ,entation

3. 7 B · 11 ing· for memory usage

Memory usage is billed for as a time product:

U(M) : a• pmr * virtual_cpu time

here a is a constant multiplier. Each time a new m.r is

computed the virtual time span it applies to must be used to

integrate U. That is

I I ,----T
\

U ~ > a • (pmr computed) * (vcpu ti ,, e computed over)
I
I I ,----T

all pmr
computations

If we let a be the constant:

(1 - effic .iency_wanted)

a - -- -------- --------------------------------wscoff * efficiency __ wanted * pfht * 16 * 000

Then using the equation in Section 2.4 for a process• pmr we

find:

R(16) • virtual_ppu_time

u = ---------------------1000

Know·ng:

virtual l?TW AM mi.sses

R(6) = ---------------------virtual cp,u time

We find:

virtua PTW AM misses

u - ---------------------000

Thus with the estimation algorithms emp oyed in this thesis a

time product memory charge is simply the absolute number of

28

Sect.ion 3 plementation

references past level 6 in the LRU stack. The actor of 000

was added to reduce the magnitude of the charge or use

consumption. The subroutine adjust_vpfs maintains the virtual

PTW AM miss count for memory bil ing in the implementation of

this thesis.

3.8 Self tuning of the system

As indicated in Section 2.5 the f rst order model proposed

in Section 2.2 was not expected to be very accurate. To help

determine the correct value of w~_coff several exper·rnents were

run with the self tuning algorithms in Figure 3.8. enabled.

As dep cted in the flow chart the algorithm a te--pt .s to

adjust ws_coff such that the system administrator specified

efficiency_wanted is maintained by the system. The parame ers

delta to_ws_coff, tune_in.terval t and min_busy contra. the dyna ic

response of the feedback mechanism.

In addition to the self tuning of the pmr estimator self

tuning of scheduler quanta was implemented. The syste

administrator is allowed to specify what percentage of

interactions should complete without exhausting their time

quanta. The system will automatical y tune the scheduler quanta

to reach the •task switch·ng ratio 11 specified by the system

administrator.

rote that the stab"lity prob ems encountered in any feedback

system ar"e present here.. Figure 3~ 8. 2 is a block diagram of the

29

Section 3 Implementation

feedback loop. In Section 4 the stability of this feedback

system is examined.

30

J
ha·s tune interval------------'I> exit
elapsed yet? no

~
has. system been--------• exit
min_busy? no

' compare paging over'head
1~ last period with

/1 - effic=ency-_wanted~ It,

ws coft = ws coff +
- del t -a_ to_ws_coff

ws coff - ws coff -
- delta_to_ws_coff

~ f/ co pare percentage o ..
pr,oc sses going blocked
in first. quantum last
period w·i th task sw l t ,c hing

/ratio wan~ed ~ lt.

tef:irst = tefirst +
delta to tefirst

t .elast ; t-laet +
d.e 1 ta to t ,ef irst

tefirst - tefirst -
delta to tefir.st

tela _t-= telast -
del a__.to_tefiret

~
/ - -

start new
p,er· od

l
exit

observation

F'igure J. 8. t
tune_system subroutine

flowchart

performan
goals

ce

' ,

' .

p erforma: ce feedback

system.

tune_system. contr ol , non Linear
- j

delayed
:responses

Figure 3.8.2

Block diagram. of. system
self t:uning

32

Section Experimental Resu ts

q_ Experimental Resu ts

4. Design of the experiments

A tota of 67 controlled experiments were run varying both

software design and system configuration~ Tbe experiments were

conducted at three different sites: the Ford Motor Company

Research and Engineering Center in Dearborn, Michigan· oneywe l

Information Systems Inc. in Phoenix Arizona; and Honey el

nformat·on Systems nc ·n Cambridge Massach setts.

Each experiment consisted of applying a synthet·c script

driven load to a dedicated system and measuring the systems

esultant behavior. The scripts were designed by M.I.T.'s

Information Processing Center, and were used in a packaged

environment they designed to in"tiate terminate, and collect

statistics on performance experiments [R2]. The so cal ed

11 M. I. T. performance test 11 allows the spec ificatian of an

arbitrary number of users to be simulated with random based thin

t-mes. Ten simu ated sers were used or each thesis experiment.

Multics is typically operated with a sma l capac·ty paging

device of bulk core (usually a few million words) . As the page

fetch time from the 1 bulk store• is negligible no

multiprogram ing occurs on page faults that can be statisfied

from the bu.l · store. h.e experiments for th·_s thesis were run

without bulk store to magnify the effects of the pmr estimator.

33

Section 11 Experimental Results

During each experiment the software monitor Aware [M3]

developed by the Ford Motor Company was run to record system

performance statistics. The graphs reproduced in this secti n

representing individual experiments were produced by Aware.

Both the standard version of Multics and the one modified to

incorporate the ideas in this thesis were doctored to make the

simulated users appear more like a real user load. This was

accomplished by pro~iding interaction credit on timer wakeups.

~-2 Validity of t~e prnr estimator

Two experiments were run on different configurations with

the system's self tuning turned off .. The experimental 1 oad was

identical, thus affording an opportunity to examine how the pmr

estimator behaved on vastly different configurations.

Table 4.2. outlines the results of the experiments, along

with the configurations employed. Figures ~.2.2 and 4.2.3 show

the histograms of pmr sizes calculated or the 512K and 256K

experiments, respectfully.

The first observation that can be made is that the pmr

estimator does indeed discriminate between the varying memory

requirement5 of processes. The histograms show that the miss

rate in the PT associative memory is far from constant, and

probably contains significant information about a process'

primary memory requirements.

The second observation that can be made is that the ~mr

Section Experimental Resul ts

estimates are fairly configuration independent. The averages are

resonab y c .ose across configurations, and the distribution of

pmr•s as depicted by he histograms are very simi ar.

The amount cf virtua cpu time that elapses on he verage

before a process' pror is computed is s·gn1ficantly less in the

512K experiment . This can be attribu ed to a hi her nu -ber o

preempt interrupts, caused by a h"gher degree of

multiprogramming.

The parameter ws_coff was estimated to be . 57 by an

experiment where the system was allowed to self tune ws_coff.

The experiment found that . 57 was va ue that most accurately

targeted he specified efficiency_ wanted into system performance.

he reason ws_coff is so low is possib y due to he high

percen ta.ge· of t · me the system spends in so ca.11 ed 11 wired co re' .

This memory is paged, and rtgures in the PTW associative memory

miss rate. However it is never considered. for remova and ·ts

contribution to a pro~ess' pmr can essentially be considered as

overhead.

35

Ef f~c ive
(-page)

us r ti'=

· ory size

--- ----- resul ting
't: 1sy . i 1e

p r _ cof-f

pag~ faul handling ime
(Se)

ave a ,e
betwe
(mse)

ir ual cpu ti·e
p!'Tlr computati ons

aver~-e vi · ualized misses
betw~en p .r computatio s

Rvr-r.-:3.Fe H(16
(-,is- "'/m ec)

ute_pmr)

~- al .rimnrJ ~F~O y
(words

bul ~: r· ora ::-e d C'•' i ? for
tnr;in[, (~GS)

e x >r. i, n nurr.her

Configuration

A

440

50

.62

• 57

3.3~

OJ . '

048

1 0 . 15

512K

2

no

37

Tat 1 4 .. 2 .1

.5

1

. 0

, 46

.157

J.224

4 . ~

47.5

0 ,)9

7 • O

2

no,

pages count

o- 16 122
16- 32 112
32~ 48 588
48- 64 552
64- 80 917
80M 96 1454
96all2 1099

112-128 654
128-144 293

44~160 57
160-176 8

76al92 2
192-208 0
208-224 0
224-240 0
240-256 0,

w

pent

2 .• 08
1.91

10.04
9.42

15 .65
24.82
18.76
11.16
5.00
0.97
o •. 14
0.03
0.00
0.00
o.oo
0.00

1rlr:H*
-it-trl(tt

1rll:***-k-k~'l:*"lt"k'k'/i:1c-k-k***'kk~

**"k-k*frlrl*"lr:.1rltirlri<*'ir:1rlrld,:*tt1rlri',/

,Jri,;*~tt"l:'lrlrlrlr:-k'lrli:*1rlr"k'ktt"lrlrldrktt'{drl('lr"k-k***"k'k'k*
****-lrlr-k'k'lrlrlrlrl:*.Jrlrlr*-lrlri(***tt*-ktt*~-lrll:-k'k-lrlt-**~~tt'lrlrlr-J,::'Jdt*"k-k*~*rk*
-A-lr-k:k"K'k-k-kirit:-k'k-k--a~-lrlrlt-k-k*"k-k-k-k-k~~-k-k'k-k'k'lrlr*-lrl:"Kk"k':lrl:ri

irlt*ir-.Wt!:lralr:w**-lririt-lrlr*-lrlt**¼-JI:**~*
"lr'k**-ktt***
"k-k

etficiency_wanted = .SO ws co.ff = .157

Figure 4.2.2

Sampie pmr histogram
5121{

system

Experiment: 37 ,, 10

script load

pages count

0- 16 91
16- 32 100
32- 48 469
48- 64 434
64- 80 942
80- 96 1344
96-112 535

112-128 269
128-144 69
144-160 7
16.0-176 0
176~192 0
92-208 0

208-224 0
224-240 01

I,,.>
240-256 0

(X)

pen

2.14
2.35

11.0
10,19
22.11
31.5,5
12.56
6.32
l.62
0.16
o .. oo
o.oo
0~00
o .• oo
0.00
0.00

·kirk*
'ii:irlrtt

*-k"k-lrlr 'l<-k~ irlrl**1rlrlr-k'k*~

"!rlrii:*1rldrlt-k-k'k*'itrl<*'l<-k****

1rlr:*"k-ltt-lrlrlt'kk'k"lrlttt~-k-k~***1:"lrk*W'k**tt***"h'1rir;*'lrl:-kirl:*
-lrlrlc*~~*"k-k~'k'k-k"k****'k1rlr:'k"k"k'k*'kk'lr1ririrlt:*ri**~-Jdri,:'lrlt-k-k*-»k**"k"k'k'k"lrlrlrlrlr
-1rlr*-klt-k-Jrl:'k-k 'lrlt1rlrlt'lri'l-k-k****"?rlt'lrit
* II. 'It 'lid,. ft!-Jrlt

**

efficiency_wanted = .50 wa. cof.f = .157

Figure 4.2.3

Sample pmr 'hi.stogram
256K

system

Experiment: 5 8 ~ 10

script load

Section 4 Exper·mental Results

.3 Performance of the pmr system

A series of experiments was conducted o comoare the

performance of the system with and w·thout the pmr est'mator

propose in this thesis. The configurations and loading used

were the sa e as out ined in Secions 4.1 and 4.2.

The standard system (w"thout the pmr esti ator) as tuned by

ocking the tuning variables min_ e and max e together, fixing he

level of m 1 tiprogamming, at the specified level. The p . r system

was tuned by varying efficiency_ wanted through its range from 0.0

to .o.
Figures .3.1 and 4.3.2 depict the results of the

experiments. The x- axis is the efficiency_wanted specified and

the y- axis is the resu ting performance of the system as measured

by three variables . Note the horizontal lines represent an

optimal y t ned locked eligibility standard system as it does

not have an efficiency wanted variable.

The top graph in ~-3 and ~-3 ■ 2 is the elapsed real time o

the ten scripts. The gaps between the pmr syste and the

standard system are within the easurment noise and are not

sign"fi~ant. Note that the 256K configuration has a much sharper

cull as shown in Figure . 3 2 due to its smaller primary memory

size . Rais ng min_ e and max_e to 3 or a run of the s andard

system on the 256K conr·guration dro e the elapsed time to over

70 minutes ,. .he 512K configuration was uch less sensi ti v·e to

such changes.

From the in ormation 1n Pigures 4.3. and ~.3.2 it is

39

Section 4 Experimental Results

obvious that the pmr esti ator does not increase percentile

throughput as hoped. The best the pmr system can do "s match the

performance of the locked eligibility system.

Also note the relationship between the ratio of user time to

busy time and efficiency_wanted. The relationship is linear over

the range measured in the 256K experiments due to the control

afforded by the small memory size.

For both configurations the optimum performance of the pmr

system wa.s found at the sarae value of efficiency_wanted. This

seems very significant, as ideally one would like to tune a

system once using configuration insensitive parameters. Host

user s·tes do not have the inclination or expertise necessary to

tune their system. Thus tuning a system once 11 at the fac tory'1

would allow user sites to enjoy optimum performance without

burden·ng hem with the difficult task of system tuning

The standard system could be tuned for an optimal level of

multiprogramming by taking the number of available pages,

dividing by a constant, and fixing the level of multiprogramming

at the resulting quotient. However the constant would contain

information about the referencing cltaracteristics of a specific

site's workload, and could not be expected to be applicable to

other sites ..

The pmr estimator described in this thesis would probably

track a ~orkload characteristic shift due to its actual

measurement of the needs or processes. We have already seen

evidence that it tracks over configuration changes. Thus even

ijQ

Section~ Experimental Resu ts

though no performance gain was demonstratedt it looks like it is

much easier to achieve optimum performance with the proposed pror

estimator.

41

.c­
N

.....
~

\0
N

g ~

I
,,-1
.j.J

,.;
QI
tll
Cl.

"' .-I
QI

N
N

0
N

10 scripts
elapsed time
pm.r system.

standard system, min_e, max_e = .5

user· time/busy time

pmr system.

Configuration A

user time/real time

:512 K words ,primary memory
2 disk channels
no bulk store

.. 1 .2 .3 .4 .5 .6

efficiency_~anted

Figure 4.3.l

standard system
min_e, max_e ;;;; 5

standard s,ystem
min_;e II max_ e .., 5

pmr system

.1 .8 .9

pmr system pe.rf orrnance on confi~uration A

0
·•

0
,J)

0
•Lf"I

. ~
.;.i
j,)

0 1111-1
-:t 0 .

~
I.I
c.J

0 C1'
C"lJ:I

00
\,Cl

\0
11 "°

-lt
<D -~

~
a - N j

..0
Q:I

! ...
0

"O "° Ill
fl)
(1,,
~
Fl f.Q
~ Ir)

~ w

.,

10 scripts
elapsed time

pmr system

standard system~ min_et max e :,e 2

user time/busy

Configuration B
256 K words prifil8.ry memory
2 disk channels
no bulk store

user time/real time

pne: system ~,-..~--
~

efficiency _wanted

Figure 4.3.2

systemt min.;...e 1 max_2 = 2

standard system,
min_e, max_e == 2

pmr Bystem performance on coafiguretion B

l!"l
•

-:t

C'1 ~ - -~
JU

lf-t
0

i::
N 0

■ •.-1
4-l

~
1-1

N 1M
~

Section ExperLmental Results

q_q Memory usage charging

In Section 3 7 it was shown that the number of v_rtual PTW

AM misses could be used directly as a time product emory charge.

Two experiments were run. using the memory charging algorithm

proposed oa configuration Bas described in Table 4.2. with the

loading outl"ned in Sect·on 4.1.

Tab e ij.4. shows the average memory charges for two

translators averaged over- ten commands . As ex pee ted ... he ALM

assembler has a considerably lower- charge due to its smaller

memory requirements. Also note the difference in R(16) between

translators, further substantiation that the pmr estimator can

discriminate between processes with varying pmr 1 s.

The memory usage measure in use here is theoretically

configuration and load independent as the data from the

associative memory is ideally noise free. However for the

reasoos out ined in Section 2.5 there may be inequ·ty ·n the

usage charge.

44

tra slator

A M

I

memo y
charge

avera{" average
V tua virtualized

cpu • 'I'W ,1

me (Sl=IC) misses {/_000)

4 . 39 '+8 . 16

4.96 23. 65

Table 4 . 4.1

lernory usage of L/1 compiler

and AL_ assembler averaged over _o

t pical commands

R(e)
(mi , . /. s , } .::,

0.96

24.9

s.ection Experimenta Res lts

4.5 Self t ning results

Figures 4.5.2, 4.5.3, and 4.5.4 dep·ct typical system

behav 10 r -wi h the self tuning algorithm in Section 3. 8 enab ed.

Exper·ment 2 was conducted on configuration C as described in

Table .5 , with the load described in Section 4.1. The

settings or the .eedbaak parameters and average observed

behavior are also given in able 4.5.1 .

Figure 4.5.2 shows the pmr self tuning algorithm trying to

keep effic"ency_got, the observed ratio of user time to busy

time, the same as efficiency_wanted by adj sting ws_coff. Figure

5.3 shows ws_coff plotted against t·me of day.

Fi ure .5.4 shows the system trying to maintain tsr_got,

the percentage of processes going blocked in ·their first ti e

Quan tum to percent_complete t t,he system adm inistra tor specified

goal.

The self tuning algorithm was developed primar y to hunt

for a va ue o ws_coff that targeted efficiency_wanted into

corresponding system behavior. It is obv·ous from Figures 4.5.2

and 4.5.4 that there was a great deal of error looking for the

proper values o system tuning paramters.

46

192K words p r·ima y memor.v
124 ~aves availab e uO use r s
2 ct.:..sk channeJ~
no bulk store d~r · cc

.., . ;· d l ck para me tt"rs

t s r wantP.d

efficiency wan ed

del 7:=i._ o .., firs

cic-_·a ... o ws co_f

.une_i n te.,...val

o:... ser Pd 'r•ehav i or-

te irs
w of_
- sr Pot
e f ' cie cy_ got

mean

.1 71
• 289
73.3
.325

Table 4. 5.

. 10

standard d ,, 1a · i or

• 0, 2
.1 6
7, 6

. 1 OP

Para e er values and

con i ru ration information for
Ex, f?rimen 12

47

-..
■

CII

ffl ..
- '■

-
-....

-~

' -,

e><pe,r!i.

~
• I

I

11

·-.,
t

ent nualier

•
'
' '

,.
I

i

~
~I

~ ' Ax

' I

12 OB;,20,75

'

•

:~
~

I'
1

, I

''
'

•
'

t

' '

20:02 -

I

'
I'

~

~

'

I

08,...ZD

'

,'·~

- ~

I

L J

2)

•:-1----------- -----------------~-----~o .aa ,20 ~'&01 21.00 Zl .101 2: .OD
•. t t. ••-of _,dey

r' igure 4. s. 2

J ,manic response of the
sy stem to the pmr self tuning

algorithim

48

23.0iQ

I
"

2
■

D

a
0 ~.+---------------11--11--------r--------------. C\o.oo 20 ~10 Zl .oo Zl ••• Z .GO 2a .liO

e •. t 1i. • _of _elev J

Figure 4.5.J

Control variable ws_coff
plotted agains tim,e of day

49

• .__

-

" .
....

-

0
a .
0
N

0
IC,

":·--1 t---------------,----..... --- --r----...------~o.ao 20 u 21 .oo u .10 2~ .. aa
., t "••-of _day

igure 4.5.!lt

ys.tem task s1"i tching
r a tio undEr the infl ence of

self tuning

50

Section 14 Exper·mental esults

4.6 Analysis of error

The . I. T. performance test is far from a per feet measure of

the per ormance 0 1 a given Multics system. For · en ical

experimenta runs variance o elapsed time of up to ten percent

was noted. Thus critical experiments were run a least twice to

provide a more stable measure

The scripts determine for the most part was is being

measured, as they provide as a whole a set of resoure

requi ements. The scripts in use for the experiments described

in this thesis were designed by the M.I.T. Information Procesing

Center, and were used unmodified.

Thus the results reported in this thesis must be viewed

w thin the 11- 1tations through with they were obtained. A

t.ypical command emplo·yed in the H. I. T. scripts used 100

milliseconds of cpu time, making it difficult to assess a

process' pmr before ·t changed. Section 5 will discuss the types

of system loads that would derive greater benefit from pr

estimation for eligibility contro .

51

Section 5 Conclusion

5~ Conclusion

5. , Sum .ary o thesis, proposal and results

We have seen how a simple hardware addition to measure the

page table word assoc·ative memory miss rate in the 6180

processor allows a process' primary memory requirements to be

estimated. Assumptions were made about a process• behavior that

enabled this estimation and they wee outlined.

Experimental results showed that the primary me ory

requirement estimator was indeed discriminating between processes

with differing primary memory r equirements. However, no

incremental performance gain could be demonstrated using the

estimated pr:mary me -0ry requirements (pmr) to contro the level

of ultiprogramming in the system.

The major result of this thesis was that the pmr estimator

pro posed .simplified the tuning of the system for an optimal 1 evel

o multiprogramming.. Experimental results showed that the system

stayed in tune across a large change in conf , guration. It was

conjectured that the syste probably would also track changes in

ne pro i e o its load and adjust accord"ngly.

The prob em of charging for memory usage was also explored .

It was shown that the number of isses in the page table word

associative memory could be used directly as a tie product

memory cha~ge.

52

Section 5 Conclusion

5.2 How a net perfor ance increase might be realized

At the outset of this thesis research it was hoped that

provi ing better esti ates of a process pmr than were currently

available would increase the percent le throughput o the system.

As explained in Sections 2 and 1-3 the problem of estimating a

process' pmr has traditiona ly been associated with performance

g,ains.

Host of the theoretical work in th"s area has dealt with a

process running under steady state conditions, and does not

consi er t~ansient behavior. However the load used for the

experiments ia this thesis was extremely transient ·n nature.

The load as designed to reflect what a general purpose time

sharing system saw under a production load at M.I.T ..

It is dlfficult to utilize a good estimate of a process 1 pmr

·r it is changing very dynamically. Thus a contrib ting factor

to the failure to demonstrate a per-forman.c e gain sing the pmr

estima or proposed was the nature of the load used for assessing

the estimators effect. If workload characteristics were such

that processes began to reach steady sta e in the i r referencing

behavior then estimates of me ory requirements would be of

greater utility.

5.3 Future work

Natura ly this thesis has left great amounts of territory

53

Section 5 Conclusion

explored ..

As descr· .bed in Section 2.5 the accuracy of the f"rst order

estimation is predicated on the form of D(X) A simulator for

the the 6180 could be implemented, al owing p(x) to be calculated

for various commands and programs . With typical forms of p(x)

the limitations of the estimation would be better nderstood, and

the accuracy could be quantitatively described.

Software was _sed to compensate for superfluous - isses in

the PTW associative memory

page fault and interrupt.

inducing additional overhead on each

Most of the compensation could be

performe in hardware, making the overhead cost of calculating a

processt pmr completely negligible.

The conjecture that the pmr system described in th·s thesis

will track changes in the referencing characteristics of the

system 1 s workload and optimally set the degree of

mult .iprogramming should be verified.

The utility of pmr information in a dynamic process

environment should be investigated. If a process• past behavior

can not be used effectively to predict the process' future

behavior then ·nvestment in a pmr estimator only lets one control

he average level cf multiprogramm .ng. No opt"mization would be

poss·b e that required d st·nguishing between processes with

varying requ·rements.

F"na y, the stability of a self tuned system should be

examined. ypical feedback system problems have to be dealt w·tb

to reduce erratic syste behavior.

54

REFERENCES

[A1] Alexander, Mike, Private Communication (1975).

[C1] Corbato, F. J. "A Paging Experiment with the Mult'cs
System• .in In Honor .Qf P. M. Morse, M. I . T. Pr-ess, Ca br dge,
Massachusetts, (1969), pp. 2 7-228.

[Dl] Denning, Peter, uaesource Allocat·on in Multiprocess
Computer Systems 11 Ph.D. Thesis, M.I . T Department of Electr·ca
Engineering May, 1968.

[02] Denning, Peter, 1Tne Working Set Model for Program
Behavior 11

, Communications of _t,he ACM_ 5 {May 1968) pp.
323- 333.

[G1] Greenberg, Bernard, hAn Exper·mental Analysis of Program
Reference Patterns in the M !tics Virtual Memory' S.M. Thesis,
M.I.T. Department o .. Electrical Engineering, January, 974.

[Ml] Mattson R. L. et. al. MEvaluation Techniques for Sto~age
Hierarch · es 11 , IBM Systems. Journal .2. 2 (1970) ., pp. 78- 7.

[M2] Morr· s 1, James B., 11 Demand Paging Through Ut · iza tion of
~orking Se son the MANIAC IIH Cgmmunic~_t·ons of the ACM 15, 0
(ctober 972), pp. 867-872.

[M3] Morenc, Rodger S. "Aw · re• , MJDM- 5. 0 Computer Sciences
Department, Ford Motor Company Dearborn, Michigan.

[O 1 J Organic, E. I., The, M 1 tics §.xs tem: An examini!,t' on of .lli
structure, M ... Press, Cambridget Massachusetts, 1972

[R1] Rodr·guez Rosell, Jan and Dupy, Jean - Pierre, "The Design,
I plementa tion, and Evaluati•on of a orking Set Dispateher 11 ,

Communicat ·ons of tb ,e ACM ll~ 4 (April, 973), pp. 247 - 253~

[R2) fioach ,, Rodger A., "Revision or Multi cs Performance Tests1 ,

Internal Honeywell Memo MTB-126 Cambridge Information Systems
Laboratory, Honeywell In orma ion Systems Inc., Cambridge.
Massachusetts.

[R3] Reed, David, 1 Estimation of Primary Memory Requirements or ·
Processes in Multics••, S.B. Thesis H.I.T. Department of
Electrical Engineering, June, 1973-

(S] Sa. . tzer, .J .• H., 11 A si ple linear model of demand paging
performance'' Communications of the ACM 11, 4 (April , 971,1) , pp.

81 - 85.

[S2] Seki no Ak · ra, •1 Per ormance Eva ua tion of Multi programmed
Time- Shared Computer SystemsR Ph.D. Thesis M.I .. Department of

55

Electrical Engineering, September, 972.

[S3] Schatzoff, M .. and Wheeler, L. H., "CP-67 Paging Pr·ority
Dispatcher", Report No. G320-2088, International Business
Machines Corporation, Cambridge Scientific Center, Cambridge,
Massachusetts (March, 1973) ..

[84] Saltzer, J. H., "raffle Control in a Multiplexed Computing
System 11

, Sc~D. Thesis, M.I.T Department of Electrical
Engineering July, 966.

[V J IBM Virt al Machine Facility/ 370, Introduction . For - No.
GC20- Boo. IBM Data Processing Division, hite Plains ew York
(197 2).

56

