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ABSTRACT 

It is shown that a process' primary memory requirements can be 

approximated by use of the miss rate in the Honeywe 1 6 Bots page 

able word associative memory. This primary memory requirement 

estimate as emp oyed by an experimental version of Mu tics to 

control the eve of ultiprogramm·ng in the system , and b 1 for 

memory usage. The resultant system's tuning parameters were 

shown to be configuration insensitive, and it was conjectu ed 

that the system would also track shifts in the referencing 

character·stics o its workload and keep the system in tune. The 

imitations of the assumpt'ons made about a process' refere~cing 

character·stics are examined 1 and directions for future research 

are outlined. 
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Section 
Introd ction 

Introduct · on 

· . 1 Overview 

Virtual memory systems are now enjoying increasing 

popularity due to the automatic management of memory they prov·de 

a progra ,er. Because of their high cost and the desirability of 

information sharing they are generally time shared, which 

·ntrod ces a host of techno ogical problems. 

n this thesis we will be examining the task of correctly 

assessing a process' primary memory requirements. his 

assessme ls ·mportant for two reasons. F·rstt an approximation 

of each process' primary memory requirements is needed to strike 

the balance nece,ssar·y to insure optimal operation of a time 

shared system. Secondly, an approximation is required to 

equitab y charge for usage of primary memory one o he most 

expens·ve components of a virtual memory system. 

1.2 Tbe Resource Balance 

Before virtual emory the task of multiplexing processors 

among the processes competing for them was rather 

straightfor ard. Jobs had a fixed size, and pr·mary emory was 

illed until it could hold no more. ~he jobs that were wholly 

contai ed in pr·mary memory were eligible for processor cycles in 
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Section 1 Introduction 

the multiplexing process. 

However, virtual memory has complicated this scheme. As 

virtual emory presents an arbitrarily large virtual space to a 

process by multiplexing primary memory processes will run in any 

amount of primary memory. Naturally with less real memory the 

simulation overhead of a large virtual memory increases, and it 

is much more efficieat to have a larger real memory. 

Somehow the operating system must determine which processes 

to make eligible in the time division multiplexing of the central 

processors. Inherent in this selection ~roaess is a trade off 

Multiplexing too many processes simultaneously creates an 

excessive demand for the finite primary memory available, and 

each process can not obtain enough pages. This results in each 

process spending a. high percentage of its time in paging 

overhead instead of doing useful work. 

If too few processes are made eligible then the time he 

all processes are waiting for page I/0 to complete and are 

incapable of receiving processor time rises. This 

nmul tiprogr-amrn.ing idle time" re pre sen ts unrealized proces:sing 

capability .. 

Thus when too many processes are made eligible paging 

over head increases and the fraction of the processor ava:i labl e 

for users' useful computation drops off. Likewise when too few 

processes are made eligible multiprogramming idle time increases, 

and users useful computation drops off. Figure ,.2.1 shows the 

typical relationship between the number of eligible processes, 

8 



Section I troduct·on 

paging overhead, and mult programming ·dle. 

Sekino [S2] has shown that the fraction of the processing 

capability o a system available for users' useful computation s 

linearly related to system throughput. After Sekino we shall 

call the fraction ava'lable •percentile throughput" an it is 

this quantity that we wold objectively ike to max·mize. 

Tbe needed infor ation then 1s an approximat·on of how much 

primary memory a process requires. ith this information we 

could rationally select a subset of the ready processes to make 

eligible, ith the knowledge they would not cause a performane 

collapse of the computing system by collectively demand! g more 

primary memory than is conr·gured. 
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Section 1 In roduation 

~3 Previous Work 

Various algorithms have been devised t.o appro,ximate how much 

real memory a process needs to run in a virtual memory 

environment Peter Denning [ D D2] has suggested that each 

process has a "working setu of information. This set o f 

information ·s represented by W(t ,d), the collection of 

information referenced from t-d tot. Denning's model has been 

popu ar·zed as the set of pages that a process needs in primary 

memory ~o run optimally, and the a ount o primary memory that 

needs to be set aside for a process ·s oftea ca led its worki g 

set size. To avoid confusion in this thesis we de ne the term 

primary me ory requirement to represent the number of pages of 

pri ary memory a process requires 

Most operat·ng systems that support virtual emory a e. pt 

to approx·roate through software each process' primary memory 

requirements. VM/370 [V ] - CP/67 [S3t R] The Michigan erminal 

System [A1] MANIAC II [M2], and Multics [01] all maintain 

primary memory requirement (pmr) esti ates which are used in the 

process of deciding what processes to make eligible in the time 

ivision multiplexing of the central processor 

The estimation schemes used by these systems suffer from a 

n -ber of common ailme·nts. The b eha v io.r of a process. · s colored 

by the behavior of the processes it is being multiplexed with 1 as 

global page rep aaement algorithm.s, ar,e ,employed. The ob serva.bl e 

behavior of a process ·s no·sy and generally does not accurately 

depict the true character·stics of the process. In addit on, the 



Section · trod uctio,n 

information available to the estimation scheme is limited as the 

hardware supporting virtu l memory systems is generally mini ally 

augmented trad"tional equipment. 

To co·pensate for the limited noisy environment they operate 

n, pr·mary memory requirement estimation algorithms have grown 

in complexity. Some provide reasonable estimates but they 

require careful tuning and are sensitive to system change. 

Reed [R3] explored the problems of using a model similar to 

the one proposed by this thesis without hardware assistance for 

pr esti ation. He demonstrated the potantial usefulness of the 

m el, and provided a very rough measure of a Drocess primary 

me ory requirements. 

1.4 Scope o the Thes·s 

This thesis proposes a si ,ple model of process behavior that 

can be utilized to esti ate a process• pri ary memory 

requirements. It is shown in Section 2 that this mode can be 

fitted to a process with information provided by a si ple 

ha ~dware extension to the associative memory of he oney ell 

6 80 processor. The estimates generated with this scheme are 

load and configuration independent. 

A prototype implementa ion for Multics is proposed in 

Sect·on 3, with the results o numerous experiments on his 

implement tion reviewed in Sect · on ~- Mult·cs was chosen for the 

prototype ·mplernentation de to the ava"lability of equipment, 
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Section 1 
n trod uction 

however the thesis could have been im_plemen ted on a number of 

different systems. Section 5 summarizes the utility o the 

thesis in light of the results of Section 4. 
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Section 2 Bstimation of a process' pmr 

2. Esti ation of a process' primary memory requirements 

2.1 Functional representation of a process primary memory 

requirements 

As outlined in Section 1.2 the amount of primary memory a 

process is allowed to utilize 's related to the amount of paging 

overhead it will experience. We define the mean headway between 

page faults ( hbpf) to be the mean time a process runs before it 

causes a page fault a.nd is forced to incur a page fault handling 

time (pfht) in addition to the time it takes to retrieve the 

needed page from secondary store, the page fetch time (pft). 

We now can formalize the concept o a process• primary 

memo,ry r ,equi:r·ements. Imagine a. function f re ating the mhbpf for 

a process to the number of pages it requires to obtain this 

mhbpf. That is: 

M:: f(mhbpf) 

-1 
m.hbpf = f (M) 

atural y f will not be a static function. The next section 

deals with the problem of dynamically determing f for a process. 

Inherent in this discussion is that the scope off is limited to 

the time frame in which process behavior was observed to 

determine it. 



Section 2 Estimation o a process• prnr 

2 2 Dyna ,ic determina ion off 

~he prob .em of determing a processT primary memory 

requirements is now reduced to the problem of eterming what f 

looks like or the given process. With f we can ana yze what 

type of performance return to expect fro an additiona 

com itment of primary memory to a process. 

To determ'ne f for a period of tie in a process' 1·re we 

can observe the process for this period and then use he 

·nrormation collected to esti~ate f. Te naive approach is taken 

by this thesis, that is that f for the next period is egu valent 

to f for the period just easured. 

If we imagine a per process least recently used (LRU) stack 

model of pr ary memory [M J he rate of references past _ev-el x 

shall be represented as R(x) Thus if we have M pages that can 

be utilized by a processt (H) is the page fault rate. It is 

assumed that primary memory is managed und ,er an LRU replacement 

algorithm as it essentially is in Multics [ C ] . 

The hardware extension this thesis proposes to the 6 80 is 

the maintenance o R( 6) in a program accessible register R( 6) 

is easily determined due to the LRU management of the sixteen 

word page table associative memory in the 6 80 

Knowing R(16) we can approximate R(K) Saltzer [S1] has 

shown through measurements that R(K) is roughly linear in memory 

size at the system level for- Multics I ma.king ·the following a 

_entative approximation for R(K) at the process level: 
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Section 2 

R(K) -
K 

ow· 

mbbpf -

6 
* R(16) 

, 
R(M) 

Al terna.ti vel y. 

M 
mhbpf: ------ - = f (M) 

6 * R( 6) 

Estimation of a nroc ess I pmr 

Al owing us to deduce for this first order model: 

M = f(mhbpf) ~ mhbpf * 6 * R( 6) 

2.3 Establishment of a desired mean headway between p ge faults 

Having been able to determine f we must specify the 

performance level we desire a process to operate at in terms of 

its mhbpf to estimate its primary memory require ents. Direct 

specification of the desired mhbpf of a process as a tuning 

parameter d'd not seem to provide an eloquent solution. It was 

fe t that specification in terms of the maximum fraction of time 

that cou- d be devoted o paging overhead would be a much eas·er 

to conceptual ize uning variable than an absolute value of ; hbpf 

in m ic rose ond.s. 

l\s each page fault incurs a page fault handling ti e ( pfht) 

and this p ht has a low variance we can characterize one aspect 

of process efficiency the fraction of time the process ·snot 

16 



Section 2 Estimation of a process' pmr 

spending in paging overhead as: 

mhbpf 
e.ff = 

mhbpf + pfht 

For historical reasons in the implementation of this hes s the 

term "efficiency11 was retained for his application. Th s the 

reader must not confuse it ith a representatioo of total syste 

efficiency .. ote that 

paging overhead in syste 
1 - e f = ------- -------- --- -----

busy time 

Ls an approximation that could be ade on the gross expenditure 

af time at the total sytem leve 

To obtain a specified 11 efficiencyn for a process the above 

expression allows us to calculate its mhbpf as: 

efficiency_wanted • pfht 
mhbpf_wan ted = ------- - -- --·---

( - efficiency_wanted) 

Thus with a system administrator specified value of 

efficiency_wanted it is straightforward for Multics to compute 

the value of mhb pf _wanted, as the page fa.ul t handling time is 

current y metered by the system. 

2.4 Esti ation of a process' primary me ory requiremen s 

From Sect·on 2.2 we have the approxima ion: 

M ~ mbbpf * 6 * R{ 6) 

17 



Section 2 Estimation of 

and from Section 2.3 we have: 

efficiency_wanted * pfht 
mhbpf wanted= ------------------------

(1 - efficiency_wanted) 

process I pm r 

Tbus M wanted, a processt primary requi ement estimate can be 

ex pressed as: 

efficiency_want.ed * pfht * 6 * H(16) 
M wanted= -------- - --------------------------(1 - eff iciency_wanted) 

o allow or error in the approximation process as mp .e linear 

multiplier is provided, s _ cofft allowing us to rep ace M_ wa.nted 

by M. The nae ws_coff is also historical in origin. The fina 

per estirna e is then: 

s_coff * efficiency wanted• pfht * 16 * R( 6) 
M = ----------------- ---------------( - efficiency_wa.nted) 

2.5 Inaccuracies · nherent in the estimate 

In Section 2.2 we made the assumption that R(K) as roughly 

inear in memory size. If we let p(x) be the stationa y 

probability d"str"b tion of referencing leve x in the LRU stack 

on any reference, and generalize p to be continuous we know 

that. 

/in.­
I 
l p(x) dx = 1 
l 
I 

18 



Section 2 Estimation of a process• pmr 

In addition the probability of referencing past level yon any 

reference is: 

Now 

Or· 

/inf 
I 
I 

F(y ) - I p(x) dx 

for R(K) 

F(y} -

/in 
I 
I 
I p(x) I 
I 
I 

/y 

I 
I 

/y 

to 

2 • 

dx = 

be inear in 

F(2 * y) 

/inf 
I 
I , * • p(x) I 

I 
/2 * y 

memory size: 

dx 

With the constraints presented for p(x) we find: 

p(x ) = 
2 

X 

Thus, for the assumption that R(K) is inear in memory size the 

static pro ability of referencing level x in the LRU stack must 

be as shown above. 

The accuracy of the estimate then depends on how a process 

referencing characteristics differ . rom the ideal characteristics 

assumed by this first order model. A serious departure from p(x) 

by a process will degrade the estimate provided. The more 

serious the departure, the worse the estimate will become. 

Greenberg [G1] discusses possible representa ions of p(x) in 

view of his experiment l observations of Multics. More 
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Section 2 Estimation of a process• pmr 

information about the typical form of p(x) would allow R( 6) to 

be used in higher order approximations of R(K), and provide 

·mproved accuracy. 
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Section 3 mp e en tat· o 

3. Implementation 

3.1 Virtualizing the raw associative e ory miss rate 

The associative memory for the page table words in the 6 80 

holds s·xteen page table words, and is anaged under an LRU 

replacement algorithm. Thus the nu ber of non- atches, or 

misses in the assoc·ative memory is the sa e as the number of 

page faults that would be incured in a sixteen page real emory 

being managed under LRU replacement. 

The number of raw misses in the associative memory is 

relatively easy to obtain through hardware. However Multics 

frequent y clears the associative memory to reflect changes in 

the in core page tables, causing super luous misses. n addition 

page fau t and interrupt handling cause a substantial nu ber of 

misses that are counted by the hardware. 

The problem of tak ng a per processor raw m·ss cont and 

rnaintaing a per process virtual miss count is very similar to 

billing processes for virtual cpu tie although more complex. 

As indicated above the virtualized miss count represents the 

number of page faults the process would have: incured running in a 

sixteen page LRU managed primary memory. 

A separate board {645HK) containing the additional logic for 

aintaining the raw page table word associat·ve memory (PTW AM) 

miss count in program access·ble form was added to the 6180 in a 

spare boards ot. Software compensa ion ·s provided or 

21 



Section 3 Implementation 

associa ive memory clearing and page Rault and 1nterrupt 

handling . The number of page table words m·ssed on while 

refill"ng the associative memory is calculated ai page fault or 

interrup time by a compare of the current PTW A with a 

prev iously saved copy from the last page faul. or interrupt. A 

subrou.ine called adjust_vpfs, was added to the system to 

perform this compensa -ion. 

3-2 Maintenance of R( 6) 

A v~rtual cpu timer is maintained for each process allowing 

H(16) to be calcula ed as: 

virbual P · AM misses 
R(76) :: 

elapsed virtual time 

3.3 Hechanics for compu ing a process~ pmr es .imate 

To facilitate varying experimental approaches -he 

comp ta -ion of a process' primary memory requiremen was made a 

sub~o tine o pxss [SJ he scheduler of Mul ics. To compu -e a 

process pmr one calJs cor.ipu e_ working_set (once again called 

th's for historical reasons) 7 and a pmr is estimated using 

i nforma ion coll ect-ed since -he last. compu e_working_set, call 

accordiog to the equation derived in Section ?.4. 
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Section 3 I ,p e entation 

3.4 rihen a process' pmr is computed 

For the experiments descired in Section 4 a process pmr as 

computed at three times: timer runout, process bock, and at 

preemption for a higher priority process Before a process' pmr 

·s computed a check is made to insure it has amassed min_vcpu 

microseconds of irtual time sine e ts last compute_wo.rking_ set 

call. If it hasntt compute_ working set returns without 

calculating a new estimate. 

T~e min_vcpu parameter was a safeg ard after early 

experiments showed erratic estima ion due to the systems tendency 

to look through very small windows at a p ocess' behavior. Fifty 

milliseconds was the standard setting of min_vcpu . 

3.5 Approxima ·ng a new ·nteraction 1 s pmr 
- -

When using a process pmr for control purposes, i.e. 

deciding whether to l et a process become eligib e or not 1 there 

·s an underlying assumption that the previous behav ·or of 

process is 1ndica.tive of what its future behavior will be. What 

then can be said of a process 1 behavior after it has interacted 

with a human? Different types of req ests generate greatly 

differing resource requirements. 

Th,e assumption made by this thesis is ~den ti cal to the 

traditional scheme used in estimat·og a running process future 

23 



Section 3 Implementation 

requirements: resource requirements for a new interaction can be 

estimated from resource requirements o previous n terac tions. 

In the case of primary memory ~equirements a moving average 

is mainta·ned on each call to compute_working_set: 

pmir _ average + pmr 
pmr _average - --- - ·--- - - .. --

2 

The average is used as the process' pmr on each new interaction. 

On process creat·on each process assumes a preset pmr ntil it 

goes blocked, is preemptedt or incurs a timer runout. 

3. 6 Determination of level of mul tiprogra , · ing 

Figures J.6. and 3.6 . 2 outline the flow of information and 

decision process used or the implementation of eligib.lity 

control in this thesis. They are si plified representations of 

t e actual ·mplementation but they characterize the decision 

process well as a 

removed. 

o tbe ogic from the standard system was 

In bo h the st ndard system and the one proposed in ~his 

thesis a preemptive priority discip ine is used for processor 

scheduling w· hin the elig"ble processes. This discipli e 

mitigates the effect of lower priority processes with large pmr•s 

displacing pages of higher priority processes. Thus the decision 

in the contro logic forte pmr system to make processes with 

extremely large pmr•s eligible concurrently with other processes 
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seemed reasonable in view of the fact they would always be of 

lower processor priority. 
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Section 3 Imple ,entation 

3. 7 B · 11 ing· for memory usage 

Memory usage is billed for as a time product: 

U(M) : a• pmr * virtual_cpu time 

here a is a constant multiplier. Each time a new m.r is 

computed the virtual time span it applies to must be used to 

integrate U. That is 

I I ,----T 
\ 

U ~ > a • ( pmr computed) * ( vcpu ti ,, e computed over) 
I 
I I ,----T 

all pmr 
computations 

If we let a be the constant: 

( 1 - effic .iency_wanted) 

a - -- -------- --------------------------------wscoff * efficiency __ wanted * pfht * 16 * 000 

Then using the equation in Section 2.4 for a process• pmr we 

find: 

R(16) • virtual_ppu_time 

u = ---------------------1000 

Know·ng: 

virtual l?TW AM mi.sses 

R( 6) = ---------------------virtual cp,u time 

We find: 

virtua PTW AM misses 

u - ---------------------000 

Thus with the estimation algorithms emp oyed in this thesis a 

time product memory charge is simply the absolute number of 

28 



Sect.ion 3 plementation 

references past level 6 in the LRU stack. The actor of 000 

was added to reduce the magnitude of the charge or use 

consumption. The subroutine adjust_vpfs maintains the virtual 

PTW AM miss count for memory bil ing in the implementation of 

this thesis. 

3.8 Self tuning of the system 

As indicated in Section 2.5 the f rst order model proposed 

in Section 2.2 was not expected to be very accurate. To help 

determine the correct value of w~_coff several exper·rnents were 

run with the self tuning algorithms in Figure 3.8. enabled. 

As dep cted in the flow chart the algorithm a te--pt .s to 

adjust ws_coff such that the system administrator specified 

efficiency_wanted is maintained by the system. The parame ers 

delta to_ws_coff, tune_in.terval t and min_busy contra. the dyna ic 

response of the feedback mechanism. 

In addition to the self tuning of the pmr estimator self 

tuning of scheduler quanta was implemented. The syste 

administrator is allowed to specify what percentage of 

interactions should complete without exhausting their time 

quanta. The system will automatical y tune the scheduler quanta 

to reach the •task switch·ng ratio 11 specified by the system 

administrator. 

rote that the stab"lity prob ems encountered in any feedback 

system ar"e present here.. Figure 3~ 8. 2 is a block diagram of the 
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Section 3 Implementation 

feedback loop. In Section 4 the stability of this feedback 

system is examined. 
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Section Experimental Resu ts 

q_ Experimental Resu ts 

4. Design of the experiments 

A tota of 67 controlled experiments were run varying both 

software design and system configuration~ Tbe experiments were 

conducted at three different sites: the Ford Motor Company 

Research and Engineering Center in Dearborn, Michigan· oneywe l 

Information Systems Inc. in Phoenix Arizona; and Honey el 

nformat·on Systems nc ·n Cambridge Massach setts. 

Each experiment consisted of applying a synthet·c script 

driven load to a dedicated system and measuring the systems 

esultant behavior. The scripts were designed by M.I.T.'s 

Information Processing Center, and were used in a packaged 

environment they designed to in"tiate terminate, and collect 

statistics on performance experiments [R2]. The so cal ed 

11 M. I. T. performance test 11 allows the spec ificatian of an 

arbitrary number of users to be simulated with random based thin 

t-mes. Ten simu ated sers were used or each thesis experiment. 

Multics is typically operated with a sma l capac·ty paging 

device of bulk core ( usually a few million words) . As the page 

fetch time from the 1 bulk store• is negligible no 

multiprogram ing occurs on page faults that can be statisfied 

from the bu.l · store. h.e experiments for th·_s thesis were run 

without bulk store to magnify the effects of the pmr estimator. 
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Section 11 Experimental Results 

During each experiment the software monitor Aware [M3] 

developed by the Ford Motor Company was run to record system 

performance statistics. The graphs reproduced in this secti n 

representing individual experiments were produced by Aware. 

Both the standard version of Multics and the one modified to 

incorporate the ideas in this thesis were doctored to make the 

simulated users appear more like a real user load. This was 

accomplished by pro~iding interaction credit on timer wakeups. 

~-2 Validity of t~e prnr estimator 

Two experiments were run on different configurations with 

the system's self tuning turned off .. The experimental 1 oad was 

identical, thus affording an opportunity to examine how the pmr 

estimator behaved on vastly different configurations. 

Table 4.2. outlines the results of the experiments, along 

with the configurations employed. Figures ~.2.2 and 4.2.3 show 

the histograms of pmr sizes calculated or the 512K and 256K 

experiments, respectfully. 

The first observation that can be made is that the pmr 

estimator does indeed discriminate between the varying memory 

requirement5 of processes. The histograms show that the miss 

rate in the PT associative memory is far from constant, and 

probably contains significant information about a process' 

primary memory requirements. 

The second observation that can be made is that the ~mr 
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estimates are fairly configuration independent. The averages are 

resonab y c .ose across configurations, and the distribution of 

pmr•s as depicted by he histograms are very simi ar. 

The amount cf virtua cpu time that elapses on he verage 

before a process' pror is computed is s·gn1ficantly less in the 

512K experiment . This can be attribu ed to a hi her nu -ber o 

preempt interrupts, caused by a h"gher degree of 

multiprogramming. 

The parameter ws_coff was estimated to be . 57 by an 

experiment where the system was allowed to self tune ws_coff. 

The experiment found that . 57 was va ue that most accurately 

targeted he specified efficiency_ wanted into system performance. 

he reason ws_coff is so low is possib y due to he high 

percen ta.ge· of t · me the system spends in so ca.11 ed 11 wired co re' . 

This memory is paged, and rtgures in the PTW associative memory 

miss rate. However it is never considered. for remova and ·ts 

contribution to a pro~ess' pmr can essentially be considered as 

overhead. 
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Section 4 Exper·mental Results 

.3 Performance of the pmr system 

A series of experiments was conducted o comoare the 

performance of the system with and w·thout the pmr est'mator 

propose in this thesis. The configurations and loading used 

were the sa e as out ined in Secions 4.1 and 4.2. 

The standard system (w"thout the pmr esti ator) as tuned by 

ocking the tuning variables min_ e and max e together, fixing he 

level of m 1 tiprogamming, at the specified level. The p . r system 

was tuned by varying efficiency_ wanted through its range from 0.0 

to .o. 
Figures .3.1 and 4.3.2 depict the results of the 

experiments. The x- axis is the efficiency_wanted specified and 

the y- axis is the resu ting performance of the system as measured 

by three variables . Note the horizontal lines represent an 

optimal y t ned locked eligibility standard system as it does 

not have an efficiency wanted variable. 

The top graph in ~-3 and ~-3 ■ 2 is the elapsed real time o 

the ten scripts. The gaps between the pmr syste and the 

standard system are within the easurment noise and are not 

sign"fi~ant. Note that the 256K configuration has a much sharper 

cull as shown in Figure . 3 2 due to its smaller primary memory 

size . Rais ng min_ e and max_e to 3 or a run of the s andard 

system on the 256K conr·guration dro e the elapsed time to over 

70 minutes ,. .he 512K configuration was uch less sensi ti v·e to 

such changes. 

From the in ormation 1n Pigures 4.3. and ~.3.2 it is 
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Section 4 Experimental Results 

obvious that the pmr esti ator does not increase percentile 

throughput as hoped. The best the pmr system can do "s match the 

performance of the locked eligibility system. 

Also note the relationship between the ratio of user time to 

busy time and efficiency_wanted. The relationship is linear over 

the range measured in the 256K experiments due to the control 

afforded by the small memory size. 

For both configurations the optimum performance of the pmr 

system wa.s found at the sarae value of efficiency_wanted. This 

seems very significant, as ideally one would like to tune a 

system once using configuration insensitive parameters. Host 

user s·tes do not have the inclination or expertise necessary to 

tune their system. Thus tuning a system once 11 at the fac tory'1 

would allow user sites to enjoy optimum performance without 

burden·ng hem with the difficult task of system tuning 

The standard system could be tuned for an optimal level of 

multiprogramming by taking the number of available pages, 

dividing by a constant, and fixing the level of multiprogramming 

at the resulting quotient. However the constant would contain 

information about the referencing cltaracteristics of a specific 

site's workload, and could not be expected to be applicable to 

other sites .. 

The pmr estimator described in this thesis would probably 

track a ~orkload characteristic shift due to its actual 

measurement of the needs or processes. We have already seen 

evidence that it tracks over configuration changes. Thus even 
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Section~ Experimental Resu ts 

though no performance gain was demonstratedt it looks like it is 

much easier to achieve optimum performance with the proposed pror 

estimator. 
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Section ExperLmental Results 

q_q Memory usage charging 

In Section 3 7 it was shown that the number of v_rtual PTW 

AM misses could be used directly as a time product emory charge. 

Two experiments were run. using the memory charging algorithm 

proposed oa configuration Bas described in Table 4.2. with the 

loading outl"ned in Sect·on 4.1. 

Tab e ij.4. shows the average memory charges for two 

translators averaged over- ten commands . As ex pee ted ... he ALM 

assembler has a considerably lower- charge due to its smaller 

memory requirements. Also note the difference in R(16) between 

translators, further substantiation that the pmr estimator can 

discriminate between processes with varying pmr 1 s. 

The memory usage measure in use here is theoretically 

configuration and load independent as the data from the 

associative memory is ideally noise free. However for the 

reasoos out ined in Section 2.5 there may be inequ·ty ·n the 

usage charge. 
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4.5 Self t ning results 

Figures 4.5.2, 4.5.3, and 4.5.4 dep·ct typical system 

behav 10 r -wi h the self tuning algorithm in Section 3. 8 enab ed. 

Exper·ment 2 was conducted on configuration C as described in 

Table .5 , with the load described in Section 4.1. The 

settings or the .eedbaak parameters and average observed 

behavior are also given in able 4.5.1 . 

Figure 4.5.2 shows the pmr self tuning algorithm trying to 

keep effic"ency_got, the observed ratio of user time to busy 

time, the same as efficiency_wanted by adj sting ws_coff. Figure 

5.3 shows ws_coff plotted against t·me of day. 

Fi ure .5.4 shows the system trying to maintain tsr_got, 

the percentage of processes going blocked in ·their first ti e 

Quan tum to percent_complete t t,he system adm inistra tor specified 

goal. 

The self tuning algorithm was developed primar y to hunt 

for a va ue o ws_coff that targeted efficiency_wanted into 

corresponding system behavior. It is obv·ous from Figures 4.5.2 

and 4.5.4 that there was a great deal of error looking for the 

proper values o system tuning paramters. 

46 



192K words p r·ima y memor.v 
124 ~aves availab e uO use r s 
2 ct.:..sk channeJ~ 
no bulk store d~r · cc 

.., . ;· d l ck para me tt"rs 

t s r wantP.d 

efficiency wan ed 

del 7:=i._ o .., firs 

cic-_·a ... o ws co_f 

.une_i n te.,...val 

o:... ser Pd 'r•ehav i or-

te irs 
w of_ 
- sr Pot 
e f ' cie cy_ got 

mean 

.1 71 
• 289 
73.3 
.325 

Table 4. 5. 

. 10 

standard d ,, 1a · i or 

• 0, 2 
.1 6 
7, 6 

. 1 OP 

Para e er values and 

con i ru ration information for 
Ex, f?rimen 12 

47 



-.. 
■ 

CII 

ffl .. 
- '■ 

-
-.... 

-~ 

' -, 

e><pe,r!i. 

~ 
• I 

I 

11 

·-., 
t 

ent nualier 

• 
' 
' ' 

,. 
I 

i 

~ 
~I 

~ ' Ax 

' I 

12 OB;,20,75 

' 

• 

:~ 
~ 

I' 
1 

, I 

'' 
' 

• 
' 

t 

' ' 

20:02 -

I 

' 
I' 

~ 

~ 

' 

I 

08,...ZD 

' 

,'·~ 

- ~ 

I 

L J 

2) 

•:-1----------- -----------------~-----~o .aa ,20 ~'&01 21.00 Zl .101 2: .OD 
•. t t. ••-of _,dey 

r' igure 4. s. 2 

J ,manic response of the 
sy stem to the pmr self tuning 

algorithim 

48 

23.0iQ 



I 
" 

2 
■ 

D 

a 
0 ~.+---------------11--11--------r--------------. C\o.oo 20 ~10 Zl .oo Zl ••• Z .GO 2a .liO 

e •. t 1i. • _of _elev J 

Figure 4.5.J 

Control variable ws_coff 
plotted agains tim,e of day 

49 



• .__ 

-

" . 
.... 

-

0 
a . 
0 
N 

0 
IC, 

":·--1 t---------------,----..... --- --r----...------~o.ao 20 u 21 .oo u .10 2~ .. aa 
., t "••-of _day 

igure 4.5.!lt 

ys.tem task s1"i tching 
r a tio undEr the infl ence of 

self tuning 

50 



Section 14 Exper·mental esults 

4.6 Analysis of error 

The . I. T. performance test is far from a per feet measure of 

the per ormance 0 1 a given Multics system. For · en ical 

experimenta runs variance o elapsed time of up to ten percent 

was noted. Thus critical experiments were run a least twice to 

provide a more stable measure 

The scripts determine for the most part was is being 

measured, as they provide as a whole a set of resoure 

requi ements. The scripts in use for the experiments described 

in this thesis were designed by the M.I.T. Information Procesing 

Center, and were used unmodified. 

Thus the results reported in this thesis must be viewed 

w thin the 11- 1tations through with they were obtained. A 

t.ypical command emplo·yed in the H. I. T. scripts used 100 

milliseconds of cpu time, making it difficult to assess a 

process' pmr before ·t changed. Section 5 will discuss the types 

of system loads that would derive greater benefit from pr 

estimation for eligibility contro . 
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Section 5 Conclusion 

5~ Conclusion 

5. , Sum .ary o thesis, proposal and results 

We have seen how a simple hardware addition to measure the 

page table word assoc·ative memory miss rate in the 6180 

processor allows a process' primary memory requirements to be 

estimated. Assumptions were made about a process• behavior that 

enabled this estimation and they wee outlined. 

Experimental results showed that the primary me ory 

requirement estimator was indeed discriminating between processes 

with differing primary memory r equirements. However, no 

incremental performance gain could be demonstrated using the 

estimated pr:mary me -0ry requirements (pmr) to contro the level 

of ultiprogramming in the system. 

The major result of this thesis was that the pmr estimator 

pro posed .simplified the tuning of the system for an optimal 1 evel 

o multiprogramming.. Experimental results showed that the system 

stayed in tune across a large change in conf , guration. It was 

conjectured that the syste probably would also track changes in 

ne pro i e o its load and adjust accord"ngly. 

The prob em of charging for memory usage was also explored . 

It was shown that the number of isses in the page table word 

associative memory could be used directly as a tie product 

memory cha~ge. 
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Section 5 Conclusion 

5.2 How a net perfor ance increase might be realized 

At the outset of this thesis research it was hoped that 

provi ing better esti ates of a process pmr than were currently 

available would increase the percent le throughput o the system. 

As explained in Sections 2 and 1-3 the problem of estimating a 

process' pmr has traditiona ly been associated with performance 

g,ains. 

Host of the theoretical work in th"s area has dealt with a 

process running under steady state conditions, and does not 

consi er t~ansient behavior. However the load used for the 

experiments ia this thesis was extremely transient ·n nature. 

The load as designed to reflect what a general purpose time 

sharing system saw under a production load at M.I.T .. 

It is dlfficult to utilize a good estimate of a process 1 pmr 

·r it is changing very dynamically. Thus a contrib ting factor 

to the failure to demonstrate a per-forman.c e gain sing the pmr 

estima or proposed was the nature of the load used for assessing 

the estimators effect. If workload characteristics were such 

that processes began to reach steady sta e in the i r referencing 

behavior then estimates of me ory requirements would be of 

greater utility. 

5.3 Future work 

Natura ly this thesis has left great amounts of territory 
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explored .. 

As descr· .bed in Section 2.5 the accuracy of the f"rst order 

estimation is predicated on the form of D(X) A simulator for 

the the 6180 could be implemented, al owing p(x) to be calculated 

for various commands and programs . With typical forms of p(x) 

the limitations of the estimation would be better nderstood, and 

the accuracy could be quantitatively described. 

Software was _sed to compensate for superfluous - isses in 

the PTW associative memory 

page fault and interrupt. 

inducing additional overhead on each 

Most of the compensation could be 

performe in hardware, making the overhead cost of calculating a 

processt pmr completely negligible. 

The conjecture that the pmr system described in th·s thesis 

will track changes in the referencing characteristics of the 

system 1 s workload and optimally set the degree of 

mult .iprogramming should be verified. 

The utility of pmr information in a dynamic process 

environment should be investigated. If a process• past behavior 

can not be used effectively to predict the process' future 

behavior then ·nvestment in a pmr estimator only lets one control 

he average level cf multiprogramm .ng. No opt"mization would be 

poss·b e that required d st·nguishing between processes with 

varying requ·rements. 

F"na y, the stability of a self tuned system should be 

examined. ypical feedback system problems have to be dealt w·tb 

to reduce erratic syste behavior. 
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