
LABORATORY FOR it MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

M_TT/I.CS/'IM-82

A MEI'HCD FOR OBI'AININ:; DIGITAL SIGNA'IURES

AND PUBLIC-KEY CRYPI'OSYSTEMS

Ronal d Rivest

Adi Shamir

Len Adleman

April 1977

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems*
by R. L. Rivest, A. Shamir, and L. Adleman

MIT Laboratory for Computer Science
Technical Memo LCS/TM82

Cambridge, Mass. 02139
April 4, 1977 (Revised December 12,1977)

Abstract

We present an encryption method with the novel property that publicly revealing an
encryption key does not thereby reveal the corresponding decr-,ption key. This has two important
consequences:

(1) Couriers or other secure means are not needed to transmit keys, since a message can be
enciphered using an encryption key publicly revealed by the intended recipient. Only he can
decipher the message, since only he knows the corresponding decryption key.

(2) A message can be "signed" using a privately-held decryption key. Anyone can verify this
signature using the corresponding publicly revealed encryption key. Signatures cannot be forged,
and a signer cannot later deny the validity of his signature. This has obvious applications in
"electronic mail" and "electronic funds transfer" systems.

A message is encrypted by representing it as a number M, raising M~ to a publicly-specified
power e, and then taking the remainder when the result is divided by the publicly specified
product n of two large secret prime numbers p and q. Decryption ts similar; only a different,
secret, power d is used, where e,:,d = l(mod(p-l),:{q-1)). The security of the system rests in part on the
difficulty of factoring the published divisor, n.

Key words and phrases: digital signatures, public-key cryptosystems, privacy, authentication,
security, factorization, prime number, electronic mail, message-passing, electronic funds transfer,
cryptography.

CR categories: 5.25, 3.15, 3.50, 3.81, 2.12

,:, This research was supported by National Science Foundation grant MCS76-14294, and the Off ice
of Naval Research grant number NOOOH-67-A-0204-0063.

I. Introduction

The era of "electronic mail"[l2] may soon be upon us; we must ensure that two important
properties of the current "paper mail" system are preserved. They are that (a) messages are prtvate,
and (b) messages can be signed. We demonstrate in this paper how to build these capabilities into
an electronic mail system.

At the heart of our proposal is a new encryption method. This method provides an
implementation of a "public-key cryptosystem", an elegant concept invented by Diffie and
Hellman[2l Their article motivated our research, since they presented the concept but not any
practical implementation of such a system. Readers familiar with [2] may wish to skip directly to
section V for a description of our method.

11. Public-Key Cryptosystems

In a "public-key cryptosystem" each user places in a public file an encryption procedure E.
He keeps secret the details of his corresponding decryption procedure D. These procedures have
the following four properties:

(a) Deciphering the enciphered form of a message M yields M. Formally,
D(E(M)) = M.

(b) Both E and D are easy to compute.

(c) By publicly revealing E the user does not reveal an easy way to compute D. This means that in
practice only he can decrypt messages encrypted with E, or compute D efficiently.

(d) If a message M is first deciphered and then enciphered, M is the result. Formally,
E(D(M)) = M. (2)

An encryption (or decryption) procedure typically consists of a general method and an
encryption key. The general method, under control of the key, enciphers a message M to obtain the
enciphered form of the message, called the ciphertext C. Everyone can use the same general
method; the security of a given procedure will rest on the security of the key. Revealing an
encryption algorithm then means revealing the key.

When the user reveals E he does reveal a very inefficient method of computing D(C):
testing all possible messages M until one such that E(M) "" C is found. If property (c) is satisified
the number of such messages to test will be so large that this approach is impractical.

A function E satisfying (a)-(c) is a "trap-door one-way function"; if it also satisfies (d) it is a
"trap-door one-way permutation". Diffie and Hellman[2] introduced the concept of trap-door one
way functions but did not present any examples. These functions are called "one-way" because
they are easy to compute in one direction but (apparently) very difficult to compute in the other

2

direction. They are called "trap-door" functions since the inverse functions are in fact easy to
compute once certain private "trap-door" information is known. A trap-door one-way function
which also satisfies (d) must be a permutation: every message is the ciphertext for some other
message and every ciphertext is itself a permissible message. Property (d) is only needed to
implement "signatures".

The reader is encouraged to read Diffie and Hellman's excellent article[2) for further
background, for elaboration of the concept of a public-key cryptosystem, and for a discussion of
other problems in the area of cryptography. The ways in which a public-key cryptosystem can
ensure privacy and enable "signatures" (described in sections III and IV below) are also due to
Diffie and Hellman.

For our scenarios we suppose that A and B (also known as Alice and Bob) are two users of a
public-key cryptosystem. We will distinguish their encryption and decryption procedures with
subscripts: EA, DA• Es, DB·

Ill. Privacy

Encryption is the standard means of rendering a communication private. The sender
enciphers each message before transmitting it to the receiver. The receiver (but no unauthorized
person) knows the appropriate deciphering function to apply to the received messsage to obtain the
original message. An eavesdropper who hears the transmitted message hears only "garbage" (the
ciphertext) which makes no sense to him since he does not know how to decrypt it.

The large volume of personal and sensitive information currently held in computerized data
banks and transmitted over telephone lines makes encryption increasingly important. In
recognition of the fact that efficient, high-quality encryption techniques are very much needed but
are in short supply, the National Bureau of Standards has recently adopted a "Data Encryption
Standard"[IS,16], developed at IBM. The new standard does not have property (c), needed to
implement a public-key cryptosystem.

All c.lassical encryption methods (including the NBS standard) suffer from the "key
distribution problem". The problem is that before a private communication can begin, a not her
private transaction is necessary to distribute corresponding encryption and decryption keys to the
sender and receiver, respectively. Typically a private courier is used to carry a key from the sender
to the receiver. Such a practice is not feasible if an electronic mail system is to be rapid and
inexpensive. A public-key cryptosystem needs no private couriers; the keys can be distributed over
the insecure communications channel.

How can Bob send a private message M to Alice in a public-key cryptosystem? First, he
retrieves EA from the public file. Then he sends her the enciphered message EA(M). Alice
deciphers the message by computing D A(EA(M))=M. By property (c) of the P,Ub1ic-key
cryptosystem only she can decipher EA(M). She can encipher a private response with EB, also
available in the public file.

3

Observe that no private transactions between Alice and Bob are needed to establish private
communication. The only "setup" required is that each user who wishes to receive private
communications must place his enciphering algorithm in the public file.

Two users can also establish private communication over an insecure communications
channel without consulting a public file. Each user sends his encryption key to the other.
Afterwards all messages are enciphered with the encryption key of the recipient, as in the public
key system. An intruder listening in on the channel cannot decipher any messages, since it is not
possible to derive the <;lecryption keys from the encryption keys. (We assume that the intruder
cannot modify or insert messages into the channel.) Ralph Merkle has developed another solution
[7] to this problem.

A public-key cryptosystem can be used to "bootstrap" into a standard encryption scheme such
as the NBS method. Once secure communications have been established, the first message
transmitted can be a key to use in the NBS scheme to encode all following messages. This may be
desirable if encryption with our method is slower than with the standard scheme. (The NBS
scheme is probably somewhat faster if special-purpose hardware encryption devices are used; our
scheme may be faster on a general-purpose computer since multi-precision arithmetic operations are
simpler to implement than complicated bit-manipulations.)

IV. Signatures

If electronic mail systems are to replace the existing paper mail system for business
transactions, "signing" an electronic message must be possible. The recipient of a signed message
has proof that the message originated from the sender. This quality is stronger than mere
authentication (where the recipient can verify that the message came from the sender); the recipient
can convince a "judge" that the signer sent the message. To do so, he must convince the judge that
he did not forge the signed message himself! In an authentication problem the recipient does not
worry about this possibility, since he only wants to satisfy himself that the message came from the
sender.

An electronic signature must be message-dependent, as well as signer-dependent. Otherwise
the recipient could modify the message before showing the message-signature pair to a judge.
Even worse, he could attach the signature to any message whatsoever, since it is impossible to
detect electronic "cutting and pasting".

To implement signatures the public-key cryptosystem must be implemented with trap-door
one-way permutations (i.e. have property (d)), since the decryption algorithm will be applied to
unenciphered messages.

How can user Bob send Alice a "signed" message M in a public-key cryptosystem? He first
computes his "signature" S for the message M using DB:

4

(Deciphering an unenciphered message "makes sense" by property (d) of a public key cryptosystem:
each message is the ciphertext for some other message.) He then encrypts S using EA (for privacy),
and sends the result EA(S) to Alice. He need not send Mas well; it can be computed from S.

Alice first decrypts the ciphertext with DA to obtain S. We presume that she knows that
this information came from Bob. She then extracts the message with En (available on the public
file):

She now possesses a message-signature pair (M,S) with properties similar to those of a signed
paper document.

Bob cannot later deny having sent Alice this message, since no one else could have created S
= Ds(M). Alice can convince a "judge" that Es(S) "" M, so she has proof that Bob signed the
document.

Clearly Alice cannot modify M to a different version M', since then she would have to
create the corresponding signature S' ., Ds(M') as well.

Therefore Alice has received a message "signed" by Bob, which she can "prove" that he sent,
but which she cannot modify. (Nor can she forge his signature for any other message).

An electronic checking system could be based on a signature system such as the above. It is
easy to imagine an encryption device in your home terminal allowing you to sign checks that get
sent by electronic mail to the payee. It would only be necessary to include a unique check number
in each check so that even if the payee copies the check the bank will only honor the first version
it sees.

Another possibility arises if encryption devices can be made fast enough: it will be possible
to have a telephone conversation in which every word spoken is signed by the encryption device
before transmission.

When encryption is used for signatures as above, it is important that the encryption device
not be "wired in" between the terminal (or computer) and the communications channel, since a
message may have to be successively enciphered with several keys. It is perhaps more natural to
view the encryption device as a "hardware subroutine" that can be executed as needed.

We have assumed above that each user can always access the public file reliably. In a
"computer network" this might be difficult; an "intruder" might forg.e messages purporting to be
from the public file. This danger disappears if the public file "signs" each message it sends to a
user. The user can check the signature with the public file's encryption algorithm Epf- The
problem of "looking up" Epf itself in the public file is avoided by giving each user a description
of Epf when he first shows up (in person) to join the public-key cryptosystem and to deposit his

5

public encryption procedure. He then stores this description rather than ever looking it up again.
The need for a courier between every pair of users has thus been replaced by the requirement for
a single secure meeting between each user and the public-file manager when the user joins the
system. (Similar network protocols for non-public-key cryptosystems are studied by Branstad[l] and
Kent[4).) Another solution is to give each user, when he signs up, a book (like a telephone
directory) containing a11'the encryption keys of users in the system.

V. Our Encryption and Decryption Methods

To encrypt a message M with our method, using a public encryption key (e,n), proceed as
follows. (Here e and n are a pair of positive integers.)

First, represent the message as an integer between 0 and n-1. (Break a long message into a
series of blocks, and represent each block as such an integer.) Use any standard representation.
The purpose here is not to encrypt the message but only to get it into the numeric form necessary
for encryption.

Then, encrypt the message by raising it to the e-th power modulo n. That is, the result
(the ciphertext C) is the remainder when Me is divided by n.

To decrypt the ciphertext, raise it to another power d, again modulo n . The encryption
and decryption algorithms E and Dare thus:

C = E(M) = Me (mod n), for a message M.

D(C) = cd (mod n), for a ciphertext C.

Note that encryption does not increase the size of a message; both the message and the
ciphertext are integers in the range 0 to n-1.

The encryption key is thus the pair of positive integers (e,n). Similarly, the decryption key is
the pair of positive integers (d,n). Each user makes his encryption key public, and keeps the
corresponding decryption key private. (These integers should properly be subscripted as in n A•
e A• and d A• since each user has his own set. However, we will only consider a typical set, and will
omit the subscripts.)

How should you choose your encryption and decryption keys, if you want to use our method?

You first compute n as the product of two primes p and q:

These primes are very Jarge, "random" primes. Although you will make n public, the factors p
and q will be effectively hidden from everyone else due to the enormous difficulty of factoring n.
This also hides the way d can be derived from e.

6

You then pick the integer d to be a large, random integer which is relatively prime to
(p-lh(q-1). That is, check that d satisfies:

gcd(d, (p-l),:.(q-1)) "' I ("gcd" means "greatest common divisor").

The integer e is finally computed from p, q , and d to be the "multiplicative inverse" of d,
modulo (p-lh(q-1). Thus we have

e ,:, d = I (mod (p-l),:,(q-1)).

We prove in the next section that this guarantees that (l) and (2) hold, i.e. that E and D are
inverse permutations. Section VII shows how each of the above operations can be done efficiently.

The above method should not be confused with the "exponentiation" technique presented by
Diffie and Hellman[2] to solve the key distribution problem. Their technique permits two users to
determine a key in common to be used in a normal cryptographic system. It is not based on a
trap-door one-way permutation. Pohlig and Hellman[IO] study a scheme related to ours, where
exponentiation is done modulo a prime number.

VI. The Underlying Mathematics

We demonstrate the correctness of the deciphering algorithm using an identity due to Euler
and Fermat[9]: for any integer (message) M which is relatively prime to n,

Mip(n) = I (mod n). (3)

Here ip(n) is the Euler totient function giving the number of positive integers less than n which
are relatively prime to n . For prime numbers p ,

ip(p) = p - 1

In our case, we have by elementary properties of the totient function (9):

ip(n) = ip(p)-;.,ip(q),

"' (p-1),:,(q-l)

= n - (p + q) + I .

(4)

Since d is relatively prime to ip(n) , it has a multiplicative inverse e in the ring of
integers modulo ip(n):

e f.• d = 1 (mod ip(n)). (5)

7

We now prove that equations (1) and (2) hold (that is, that deciphering works correctly if t

and d are chosen as above). Now

D(E(M)) = (E(M))d = (Me)d = Me,:,d (mod n)

E(D(M)) = (D(M)l = (Mdt = Me>:<d (mod n)

and

(for some integer k).

From (3) we see that for all M such that p does not divide M

MP-I = I (mod p)

and since (p-1) divides (f?(n)

M k>:<(t?(n)+l = M (mod p).

This is trivially true when M=O(mod p), so that this equality actually holds for all M. Arguing
similarly for q yields

M k~'(f?(n)+l = M (mod q).

Together these last two equations imply that for all M,

This implies (I) and (2) for all M, Os_M<n. Therefore E and Dare inverse permutations.

(We thank Rich Schroeppel for suggesting the above Improved version of the authors' previous
proof.)

VII. Algorithms

To show that our method is practical, we describe an efficient algorithm for each required
operation.

Vll(A). How to Encrypt and Decrypt Efficiently

Computing Me (mod n) requires at most 2*1og2(e) multiplications and 2f.•log2(e) divisions
using the following procedure (decryption can be performed similarly using d instead of t}:

Step I. Let ekek-J···e1eo be the binary representation of e.

Step 2. Set the variable C to I.

Step 3. Repeat steps 3a and 3b for i"'k., k.-1, ... , 0:

Step 3a. Set C to the remainder of c2 when divided by n.

Step 3b. If ei=I, then set C to the remainder of C*M when divided by n:

Step 4. Halt. Now C is the encrypted form of M.

8

This procedure is called "exponentiation by repeated squaring and multiplication". Other
efficient procedures exist; Knuth [5] studies this problem in detail.

The fact that the enciphering and deciphering are identical leads to a simple implementation
(the whole operation can be implemented on a few special-purpose integrated circuit chips).

A high-speed computer can encrypt a 200-digit message M in a few seconds; special-purpose
hardware would be much faster. The encryption time per block increases no faster than the cube
of the number of digits in n.

VJl(B). How to Find Large Prime Numbers

Each user must (privately) choose two large random prime numbers p and q to create his
own encryption and decryption keys. These number must be large so that it is not computationally
feasible for anyone to factor n = p,:,q. (Remember that n, but not p or q, will be in the public file.)
We recommend using 100-digit (decimal) prime numbers p and q, so that n has 200 digits.

To find a JOO-digit "random" prime number, generate (odd) JOO-digit random numbers until
a prime number is found. By the prime number theorem[9], about (In 10100)/2 .. 115 numbers will
be tested before a prime is found.

To test a large number b for primality we recommend the elegant "probabilistic" algorithm
due to Solovay and Strassen[J4]. It picks a random number a from a uniform distribution on
{l, ... ,b-1}, and tests whether

gcd(a,b) = I and J(a,b) = a(b-l)/2(mod b), (6)

where J(a,b) is the Jacobi symbo1[9]. If b is prime (6) is always true. If b is composite (6) will be
false with probability at least 1/2. If (6) holds for 100 randomly chosen values of a then b is almost
certainly prime; there is a (negligible) chance of one in 2100 that bis composite. Even if a c.omposite
were accidentally used in our system, the receiver would probably detect this by noticing that
decryption didn't work correctly. When b is odd, a~b, and gcd(a,b) .. J, the Jacobi symbol J(a,b) has a
value in {-1,1} which can be efficiently computed by the program:

J(a,b) = if a = I then I else

if a is even then J(a/2,b) ,:, (-l)(b2-l)/8

else J(b(mod a),a) ,:, (-l)(a-lMb-1)/4

9 -

(The computations of J(a,b) and gcd(a,b) can be nicely combined, too.) Note that this algorithm does
not test a number for primality by trying to factor it. Other efficient procedures for testing a large
number for primality are given in [8,ll,13].

To gain additional protection against sophisticated factoring algorithms, p and q should
differ in length by a few digits, both (p-1) and (q-1) should contain large prime factors, and
gcd(p-1,q-l) should be small. The latter condition is easily checked.

To find a prime number p such that (p-1) has a large prime factor, generate a large
random prime number u, then let p be the first ptime in the sequence fou + l, for i-2,4,6,... . (This
shouldn't take too long.) It is important to ensure similarly that (u-1) also has a large prime factor.

A high-speed computer can determine in several seconds whether a JOO-digit number is
prime, and can find the first prime after a given point in a minute or two.

Another approach to finding large prime numbers is to take a number of known
factorization, add one to it, and test the result for primality . . If a prime p is found it is possible to
prove that it really is prime by using the factorization of p-1. We omit a discussion of this
technique since the probabilistic method is adequate.

Vll(C). How to choose d

It is very easy to choose a number d which is relatively prime to cp(n}. For example, any
prime number greater than max(p,q) will do. It is important that d should be chosen from a
large enough set so that a cryptanalyst cannot find it by direct search.

Vll(D). How to. compute e from d and cp(n)

To compute e, use the following variation of Euclid's algorithm for computing the greatest
common divisor of cp(n) and d. (See exercise 4.5.2.15 in [5].) Calculate gcd(cp(n),d) by
computing a series x0 , x1, x2, ... , where x0 = cp(n), x1 = d, and xi+J = xi_1(mod xi), until an xk

equal to O is found. Then gcd(x0, x1) = xk-J· Compute for each Xt numbers ai and bi such that
xi = ar:,x0 + bc:,x1. (Set a0 = b1 = l, a1 = bo = 0, and for i > l if xi= xt_2+xt-J• then a, "" a,_2-t-at-J

and bi = bt-i-t·bt-J-> If xk-l = l then bk-l is the multiplicative inverse of x1 (mod x0). Since Jr. will
be less than 2,:,log2(n), this computation is very rapid.

If e turns out to be less than log2(n), start over by choosing another value of d. This
guarantees that every message (except M-=O or M-1) will undergo some "wrap-around" (reduction
modulo n) when encrypted.

10

VIII. A Small Example

Consider the case P=47, q=59, n = p,:cq -= 47f.<59 ., 2773, and dal57. Then ,p(2T13) • 46~ •
2668, and e can be computed as follows:

xo "'2668, ao = 1, bo .. 0,

XJ = 157, a1 = 0, bl = 1,

x 2 = 156, a2 = I, b2 .. -16 (since 2668 = 157f.<16 + 156),

X J. = 1, a J = -1, b J ., 17 (since 157 .. lf.•156 + 1).

Therefore e = 17, the multiplicative inverse (mod 2668) of d ., 157.

With n = 2773 we can encode two letters per block, substituting a two-digit number for
each letter : blank=00, A=0l, B=02, ... , 2=26. Thus the message

IT/SALL GREEK TO ME

(Julius Caesar, 1,ii,288, paraphrased) is encoded:

0920 1900 0112 1200 0718 0505 1100 2015 0013 0500 .

S ince e=l0001 in binary, the first block (M = 920) is enciphered:

The whole message is enciphered as:

0948 2342 1084 1444 2663 2390 0778 0774 0219 1655 .

The reader can check that deciphering works: 948157 = 920(mod 2713), etc.

IX. Security of the Method: Cryptanalytic Approaches

Since no techniques exist to prove that an encryption scheme is secure, the ultimate test is to
see whether anyone can think of a way to break it. The NBS standard was "certified" this way;
seventeen man-years at lBM were spent fruitlessly trying to break that scheme. Once a method has
successfully resisted such a concerted attack it may for practical purposes be considered secure.
(Actually there is some controversy concerning the security of the NBS method[3].)

We show in the next sections that all the obvious approaches for breaking our system are at

least as difficult as factoring n. While factoring large numbers is not provably difficult, it is a
well-known problem that has been worked on for the last three hundred years by many famous
mathematicians. Fermat (1601?-1665) and Legendre (1752-1833) developed factoring algorithms; some
of today's more efficient algorithms are based on the work of Legendre. As we shall see in the
next section, however, no one has yet found an algorithm which can factor a 200-digit number in a
reasonable amount of time. We conclude that our system has already been partially •certified .. by
these previous efforts to find efficient factoring algorithms.

In the following sections we consider ways a cryptanalyst might try to determine the secret
decryption key from the publicly-revealed encryption k~y. We do not consider ways of protecting
the decryption key from theft; the usual physical security methods should suffice. (For example, the
encryption device could be a separate device which could also be used to generate the encryption
and decryption keys, such that the decryption key is never printed out (even for its owner) but only
used to decrypt messages. The device could erase the decryption key if it was tampered with.)

I X(A). Factoring n

Factoring n would enable an enemy cryptanalyst to "break• our method. The factors of n
enable him to compute cp(n) and thus d. Fortunately, factoring a number seems to be much more
difficult than determining whether it is prime or composite.

A large number of factoring algorithms exist. Knuth[5, section 4.5.4) gives an excellent
presentation of many of them. Pollard[ll] presents an algorithm which factors a number n in time

proportional to nl/4_

The fastest factoring algorithm known to the authors is due to Richard Schroeppel
(unpublished); it can factor n in approximately

ex p(sqrt(ln (n)::.ln(ln(n))))

steps (here In denotes the natural logarithm function). The following table gives the number of
operations needed to factor n with Schroeppel's method, and the time required if each operation
uses one microsecond, for various lengths of the number n (in decimal digits):

Digits Number of operations Time
50 1.4 x 1010 3.9 hours
75 9.0 x 1012 104 days

100 2.3 x 1015 74 years
200 1.2 x 1023 3.8 x 109 years
300 1.5 x 1029 4.9 x 1015 years

500 1.3 x 1039 4.2 x 1025 years

We recommend that n be about 200 digits long. Longer or shorter lengths can be used
depending on the relative importance of encryption speed and security in the application at hand.
An 80-digit n provides moderate security against an attack using current technology; using 200

12

digits provides a margin of safety against future developments. This flexibility to choose a
key-length (and thus a level of security) to suit a particular application is a feature not found in
many of the previous encryption schemes (such as the NBS scheme).

I X(B). Computing .p(n) without factoring n

If a cryptanalyst could compute ~(n) then he could break the system by computing d as the
multiplicative inverse of e modulo ~(n) (using the procedure of section VII(D)).

We argue that this approach is no easier than factoring n since it enables the cryptanalyst to
easily factor n using .p(n). This approach to factoring n has not turned out to be practical.

How can n be factored using ~(n)? First, (p+q) is obtained from n and .p(n) .. n - (p+q) +I.
Then (p-q) is the square root of (p+q)2 - 4n. Finally, q is half the difference of (p+q) and (p-q).

Therefore breaking our system by computing ~(n) is no easier then breaking our system by
factoring n. (This is why n must be composite; ~(n) is trivial to compute if n is prime.)

I X(C). Determining d without factoring n or computing .p(n).

Of course d should be chosen from a large enough set so that a direct search for it is
infeasible.

We argue that computing d is no easier for a cryptanalyst than factoring n, since once d is
known n could be factored easily. This approach to factoring has also not turned out to be
fruitful.

A knowledge of d enables n to be factored as follows. Once a cryptanalyst knows d he can
calculate e,:,d-1, which is a multiple of ~(n). Gary Miller [8] has shown that n can be factored
using any multiple of ~(n). Therefore if n is large a cryptanalyst should not be able to determine
d any easier than he can factor n.

A cryptanalyst may hope to find a d' which is equivalent to the d secretly held by a
user of the public-key cryptosystem. If such values d' were common then a brute-force search
could break the system. However, all such d' differ by the least common multiple of (p-1) and
(q-1), and finding one enables n to be factored. (In (3) and (5), .p(n) can be replaced by
lcm(p-1,q-l).) Finding any such d' is therefore as difficult as factoring n.

IX(D). Computing D in some other way

Although this problem of "computing e-th roots modulo n without factoring n· is not a
well-known difficult problem like factoring, we feel reasonably confident that it is computationally
intractable.

13

It may be possible to prove that any general method of breaking our scheme yields an
efficien~ factoring algorithm. This would establish that any way of breaking our scheme must be
as difficult as factoring. We have not been able to prove this conjecture, however.

Our method should be certified by having the above conjecture of intractability withstand a
concerted attempt to disprove it. The reader is challenged to find a way to "break" our method.

X. A voiding "reblocking" when encrypting a signed message.

A signed message may have to be "reblocked" for encryption since the signature n may be
larger than the encryption n (every user has his own n). This can be avoided as follows. A
threshold value h is chosen (say h = 10199) for the public-key cryptosystem. Every user maintains
two public (e,n) pairs, one for enciphering and one for signature-verification, where every
signature n is less than h, and every enciphering n is greater than Ii. Reblocking to encipher a
signed message is then unnecessary; the message is blocked according to the transmitter's signature
n.

Another solution uses a technique given in [6]. Each user has a single (e,n) pair where n is
between h and 2h, where h is a threshold as above. A message is encoded as a number less
than h and enciphered as before, except that if the ciphertext is greater than h, it is repeatedly
re-enciphered until it is less than h. Similarly for decryption the ciphertext is repeatedly
deciphered to obtain a value less than h . If n is near h re-enciphering will be infrequent.
(Infinite looping is not possible, since at worst a message is enciphered as itself.)

Perhaps the most elegant solution has been suggested by Loren Kohnfelder. He suggests
that A may send a signed, encrypted message M to B as either EB(D A(M)), as originally suggested
by Diffie and Hellman, or as D A(EB(M)), depending on whether nA < nB or ns < nA,
respectively. Should a dispute arise later with the second approach, B can show a judge M and
D A(Es(M)); the judge can then verify that A has signed the message by checking that Eg(M) •
EA(DA(Es(M)) using only functions available on the public file.

XI. Conclusions

We have proposed a method for implementing a public-key cryptosystem whose security rests
in part on the difficulty of factoring large numbers. If the security of our method proves to be
adequate, it permits secure communications to be established without the use of couriers to carry
keys, and it also permits one to "sign" digitized documents.

The security of this system needs to be examined in more detail. In particular the difficulty
of factoring large numbers should be exam.ined very closely. The reader is urged to find a way to
"break" the system. Once the method has withstood all attacks for a sufficient length of time it
may be used with a reasonable amount of confidence.

Our encryption function is the only candidate for a "trap-door one-way permutation" known

14

to the authors. It might be desirable to find others examples, to provide alternative
implementations should the security of our system turn out someday to be inadequate. There are
surely also many new applications to be discovered for these functions.

XII. Acknowledgements

We thank Martin Hellman, Richard Schroeppel, Abraham Lempel, Roger Needham and
Loren Kohnfelder for helpful discussions, and Wendy Glasser for her assistance in preparing the
initial manuscript. Xerox PARC provided support and some marvelous text-editing facilities for
preparing the final manuscript.

XIII. References

[I] Branstad, D., "Security Aspects of Computer Networks", AIAA Computer Network Systems
Conference (April 1973), paper 73-427.

[2] Diffie, W. and M. Hellman, "New Directions in Cryptography", IEEE Transactions on
Information Theory (Nov. 1976), 644-654.

[3] Diffie, W. and M. Hellman, "Exhaustive Cryptanalysis of the NBS Data Encryption Standard",
Computer J0(June 1977), 74-84.

[4] Kent, Stephen T., "Encryption-Based Protection Protocols for Interactive User-Computer
Communication" MIT Laboratory for Computer Science Technical Report TR-162 (May 1976).

[5] Knuth, Donald E., "Seminumerical Algorithms" (Volume 2 of The Art of Computer
Programming. Addison Wesley. Reading, Masssachusetts. 1969.)

[6] Levine, J., and J. V. Brawley, "Some Cryptographic Applications of Permutation Polynomials",
Cryptologia !(January 1977), 76-92.

[7) Merk le, R. "Secure communications over an insecure channel", submitted to CACM.

[8) Miller, G. L. "Riemann's Hypothesis and Tests for Primality". Proceedings of the Seventh
Annual ACM Symposium on the Theory of Computing. (Albuquerque, New Mexico, May 1975),
234-239. (An extended version of this paper is available as Research Report CS-7&-27 from the
Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada (Oct.,1975).)

[9] Niven, I., and H. S. Zuckerman. An Introduction to the Theory of Numbers. (John Wiley &
Sons, New York 1972).

(10) Pohlig, S. C., and M. E. Hellman, "An Improved Algorithm for Computing Logarithms over
GF(p) and its Cryptographic Significance". To appear in IEEE Transactions on Information
Theory (Jan. 1978)

15

[II] Pollard, J.M. "Theorems on factorization and primality testing," Proc. Camb. Phil. Soc.(197i).
521-528.

[12] Potter, R. J., "Electronic Mail", Science 195 ,4283(18 March 1977), 1160-1164.

[13) Rabin, M. 0., "Probabilistic Algorithms", in Algorithms and Complexity, edited by J. F. Traub
(Academic Press, New York, 1976), 21-40.

[14] Solovay, R. and V. Strassen. "A Fast Monte-Carlo Test for Primality", SIAM Journal on
Computing (March 1977), 84-85.

[15] Federal Register, March 17, 1975, Vol. 40., No. 52.

[16] Federal Register, August I, 1975, Vol. 40., No. 1-49.

.,

