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Abstract 
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In this paper we show that a non-trivial factor of a 

composite number n can be found by performing arithmetic 

steps in a number proportional to the number of bits inn, 

and thus there are extremely short straight-line factoring 

programs . However, this theoretical result does not imply 

that natural numbers can be factored in polynomial time in 

the Turing-Machine model of complexity, since the numbers 

cn 2 
operated on can be as big as 2 , thus requiring exponen-

tially many bit operations. 
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I. Introduction. 

The problems of primality checking and factoring of 

natural numbers have been given much attention in the last four 

centuries. The development of efficient algorithms for these 

problems is not only theoretically interesting, but can also 

have important practical consequences (for example , in the field 

of cryptography -- see Rivest, Shamir and Adleman [11). While 

it is relatively easy to determine that a given number n is 

composite, actually finding its factors seems to be a much 

harder problem. To date, all the algorithms developed for 

this purpose run in time which is non-polynomial in t he length of 

the binary representation of n (e.g., Pollard (21). 

In this paper, we consider the inherent difficulty of the 

factoring problem from the point of view of another natural 

measure of complexity, namely the number of arithmetic steps 

{addition, subtraction~ multiplication and integer division) 

needed in order to solve the problem. We develop an algorithm 

which finds a non-trivial factor of a composite number n in 

O(log n) arithmetic steps, and we conjecture that it is optimal. 

This result does not imply that natural numbers can be factored 

in polynomial time, since our measure of complexity ignores 

the size of the numbers involved. The algorithm presented in 

this paper is thus mainly of theoretical interest , showing that 

surprisingly short straight-line computer programs can factor 

natural numbers. 



II. The Model. 

We consider a very simple model of a computer, consisting 

of registers and a CPU. There is a fixed number of registers 

(R through R), each one of which can hold a single integer of 
0 S 

unbounded size. The CPU contains a program, which is a finite 

sequence of labelled instructions of the following types: 

(i) L: R + R. * R . , where Lis a label and * is+, m i J 

, • or 7 (a 7 bis the largest integer not exceeding 

the rational quotient a/b). 

(ii) L: if R m = 0 then go to L1 else go to L2. 

(iii) L: Print (R). m 

(iv) L: Halt. 
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The arithmetic complexity of a program is the function a(n} 

giving for each input n the number of arithmetic instructions 

of type (i) performed until the computer halts; if the computer 

loops forever, a(n) = 00 

A factoring algorithm is a program which finds and prints 

out for any composite natural number n (initially placed in R) 
0 

a non-trivial factor 1 < f < n that divides n; if n is a prime, 

the program halts without printing anything. Such a program 

can serve as the nucleus of more complicated types of factoring 

algorithms. For example, in order to find the complete prime 

factorization of a given number n, it suffices to find such a 

factor f (which is not necessarily a prime!) and then to re­

cursively find the complete prime factorizations off and of 

n 7 f. 



III. A Fast Method for Computing Factorials. 

Our factorization algorithm is based on a method for com­

puting the factorial function n! which has a low arithmetic 

complexity. In [3], Pratt uses a clever partition of then 

factors inn! in order to reduce the obvious O(n) algorithm to 

an almost 0(/n) algorithm, but this complexity is still too 

high. An O(log n) algorithm is implicit in Davis' paper [4] on 

the unsolvability of Hilbert's 10th problem, but a somewhat 

differently structured method is needed in order to obtain 

the final O(log n) factoring algorithm. The method we describe 

has the additional advantage of using smaller intermediate 

numbers, thus reducing the space requirements from n 2log n 

bits to n 2 bits (note that n log n bits are necessary just in 

order to hold the final value n! in binary representation). 

Let n be an even natural number. Then by definition 

n! 

from which we get the recursive relation 

If n is an odd natural number, we use the identity 

(2) n! = n• (n-1) ! 

in which n-1 is even and (1) is applicable. Thus for any n, 
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the calculation of n! can be quickly reduced to that of calcu­

lating (n 7 2)!. What remains to be done is to find an efficient 

method for calculating the log n terms of the form (tkJ (with 
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k = n + 2i for l~i~log n) obtained when the recursive definition 

is unfolded. 

Consider now the binomial identity: 

(3) (2 t + l) 2k = 

If this number is written in binary representation, then each 

summand (
2t] 2t•j is just the binary representation of [ 2r] shifted 

left t•j bits. By making t big enough, each [~k] can be shifted 

to a distinct block oft bits in the binary representation of 

i 2k 
(2 + 1) , and thus can be easily isolated.* 

The minimum usable value of the block size is just the 

number of bits occupied by the largest term of the form ( 2J·k] . 

Since 

= 

any block size oft> 2k bits can be used. In particular, the 

value of (~k] can be found by isolating the middle block of 2k 

bits in 

( 4 ) (22k + l)2k 

In order to find the arithmetic complexity of this process, 

we note that the 2kth power of a number can be calculated in 

O(log k ) arithmetic steps by the well known method of successive 

* To isolate the lower m bits in a register R, calculate 

R' + R - (R + 2m)•2m; to isolate bits m
1 

+ 1 t h rough m
2 

in R, 

subtract the lower m1 bits in 
ml 

and divide the result b y 2 . 

R from the lower m2 bits in R, 
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squarings.* Using this method twice in succession, (4) can also 

be calculated in O(log k) arithmetic steps . The calculation of 

the powers of 2 used in isolating the middle block in (4) 

requires a similar number of steps, and thus any term of the 

form ftk) can be calculated in O(log k) steps. 

In order to calculate n! in our method, we have to find the 

values of (
2
;] for all k of the form k = n + 2i, l~i~logn. The 

discussion above shows how to do it in O(log2n) arithmetic steps, 

but a simple trick can reduce it to O(log n). 

Since all the values of k satisfy 2k ~ n, we can replace 

the variable block size t = 2k by the uniform block size t = n, 

and thus [~k) can also be isolated as the middle block of n 

bits in 

(5) 

However, since each k is n + 2i for some i, all the log n numbers 

of the form (5) can be obtained free as the intermediate stages 

in the calculation of the single number 

(6) 

by the successive squarings method! A similar trick can be used 

in the computation of the powers of 2 used in order to isolate 

the middle blocks, and thus the arithmetic complexity of our 

* Using the recursive relation 

X 

1 
(ax/2)2 if X is even 

a = 
x-1 if is odd a·a X 
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algorithm for computing n! is just O(log n). 

A final remark about space requirements. Due to the special 

form of the main recursive definition (equations (1) and (2)), 

it is easy to translate it into a simple iterative loop in which 

the register which eventually contains n! is either squared or 

multiplied by an auxiliary register. This eliminates the need 

for a recursion stack. Furthermore, no temporary storage is 

needed for the log n numbers [tk), since they are used in the 

same natural order in which they are produced when (6) is 

evaluated. The entire algorithm can thus be implemented with a 

(small) fixed number of registers, without using any data­

compacting techniques. The biggest number stored in these 

registers is (2n + l)n itself, which needs O(n2 ) bits in its 

binary representation. 

IV. Factoring Natural Numbers. 

Once we have an O(log n) algorithm for computing factorials, 

an O(log2n) factoring algorithm is trivial to construct. If 

i < n are two natural numbers, then the greatest common divisor 

(gcd) of n and i! is greater than 1 iff n has a factor j satisfying 

l<j~i. Consequently, in order to find the smallest prime 

factor of n, we can perform a binary search on the values of i, 
? 

using the predicate gcd(n,i!) = 1 as the criterion for increasing 

i. 

For any given value of i, i! can be computed in O(log n) 

arithmetic steps. Even though i! can be an enormous number, 



the calculation of gcd(n,i!) requires only min(log n,log i!) 

~ log n arithmetic steps (a thorough discussion of gcd algo­

rithms appears in Knuth [5]). The number of gcd calculations 

in the binary search is again bounded by log n, and thus the 

smallest (prime) factor of n can be found in O(log2n) arithme­

tic steps. 
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In order to construct an improved O(log n) factoring 

algorithm, we have to replace the relatively expensive gcd(n,i!) 

operation by the much cheaper operation of reduction modulo n 

(i! (mod n) can be calculated by just three arithmetic operations 

as i! - (i! 7 n)•n). 

Let i be the least natural number in the range l <i<n 
0 

which satisfies the predicate i! - O(mod n) (since n divides n!, 

there is at least one such i), and let f be gcd(n,i). By a 
0 

variant of Wilson's theorem (see [6]), a natural number n > 4 

is composite iff (n - l)! = 0(mod n), and thus f<i <n whenever -o 

n > 4 is composite. On the other hand, f cannot be 1, since 

by assumption n does not divide (i
0 

- l)! but does divide 

i ! = i • (i - l)!. Consequently, l<f<n is a non-trivial 
0 0 0 

factor of n whenever n > 4 is composite, and f = n whenever 

n > 4 is a prime. Note that f is not necessarily the smallest 

factor (or even a prime factor) of n, as demonstrated in the 

case n = 18, i
0 

= 6, f = 6. 

The factorization problem has thus been reduced to the 

problem of finding i
0

, since f can be calculated from n and i
0 

in at most log n additional steps. The predicate i! ? 0(mod n) 



has the useful property that i
1

! _ 0(mod n) and i
2 

> i
1 

imply 

that i 2 ! = 0(mod n), which makes a fast binary search possible. 

However~ so far the algorithm's arithmetic complexity is still 

O(log2n), since log n factorials (each one of which requires 

O(log n) steps) must be evaluated. We shall now make use of 
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our factorial algorithm's special structure in order to combine 

many of the subcomputations involved. Throughout the discussion, 

n is assumed to be greater than 4. 

Rather than find i
0 

directly, we first find the interval 

between two successive powers of 2 in which it is contained. 

If 2j 1 is the smallest power of 2 which exceeds n, then calcu­

lating 2j 1 ! (in O(log n) arithmetic steps) in our method gives 

us the factorials of all the smaller powers of 2 for free. 

By reducing each one of these factorials mod n (using 3 arith-

metic steps), we can find in just O(log n) arithmetic steps 

the (uniquely defined) power 
j 

j such that 2 °! t 0(mod n) 
0 

jo+l 
and 2 ! = 0(mod n). 

. . +l 
B th definition of i , 2J 0 <i <2Jo Y e o o-

If we try to locate i by binarily searching in the 
0 

jo jo+l 
interval (2 ,2 ] , we run into a problem: the successive 

factorials we have to calculate are no longer related in an 

obvious way, and calculating each one separately leaves us 

with an O(log2n) algorithm. We bypass this difficulty by 

spending log n steps at this stage on the evaluation of 

jo 
f = gcd(n,2 !) and then distinguishing between two cases: 

(i) If f ~ 1, then f is a non-trivial factor of n (f = n 

contradicts the assumption that 2j 0 ! t 0(mod n )) , and we 
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do not have to proceed. 

(ii) If f = 1, then the evaluation of the predicate il ~ 0(mod n) 

for i in the range of interest can be simplifed considerably, 

as described below. 
. . +l 

Let i be an even integer, 2J 0 <i<2Jo . By (1), 

• I 1. • 

i 
2
jo. jo 

and 2 < By assumption, gcd(n,2 !) = 1, and thus also 

i ' 2 
gcd(n,2 !) = 1 and gcd(n,(~!) ) = 1. Consequently, n divides i! 

if and only if n divides [il ; and thus the predicate 

? 
i! 0(mod n) can be replaced by the easier predicate 

0(mod n) for any even i in the interval (2 °,2 ° ] . Odd 
[~

1.2'· ] ? j j + 1 

integers in this interval are treated similarly, by using the 

identity i! = i• (i - l)! first. 
j . +l 

When the interval (2 °,2Jo ] is binarily searched for 

the value of i
0

, at most log n numbers of the form[½] have to 

be calculated, and then reduced modulo n. What remains to be 

done is to show that all these numbers can be calculated in 

O(log n) arithmetic steps. 

As described in Section III, each 

lated as the middle block of n bits in 

number [il can be iso­

(2n+l)i . We can pre-

calculate (in log n steps) these ith powers for all the values 

of i which are powers of 2, and store them in successive blocks 

of bits in one of the registers (with the biggest power 

occupying the lowest order bits). 
n i 

The value of (2 +l) for any 



other i can now be calculated as a partial product of these 

precalculated numbers, using the binary representation of i 

as a guide (for example, (2n+l)lO = (2n+l) 8 • (2n+1 ) 2) . 

The binary search for the value of i in the interval 
0 . . +l 

(2Jo,2Jo ] can be easily arranged in such a way that a new 

trial value ik+l 
j -k 

differs from the previous trial value ik by 

exactly 2 ° (k = 1,2, .•. ,j ) , 
. 0 

n 1 k+l . (2 +1) can be obtained from 

jo+l 
with i

1 
= 2 . In this case, 

(2n+l)ik by multiplying or 
jo-k 

dividing the latter by the precomputed value (2n+l) 2 , which 

is a single operation. Since we use the precomputed powers in 

a simple high-to-low order, we can right shift the storage 

register after each use in such a way that the next power to 

be used is readily available in the low order bits of the 

register. 
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An improved method, which does not use a storage register, 

is to replace the "binary search" by a "Fibonacci search"; note 

that numbers of the form (2n+l)Fi can be quickly calculated in 

either an ascending or a descending order by multiplying or 

dividing a pair of successive elements in this sequence. While 

it is possible to squeeze the log n precomputed numbers in the 

simple method into an O(n2 ) bit storage register (by using 

variable-size blocks and a tricky retrieval scheme), the improved 

method gives a straightforward O(n2 ) bound on the memory re­

quirements of our factoring algorithm. 

This complete the proof that a non-trivial factor of a 

number n (if it exists) can be found by performing at most 



O(log n) arithmetic operations. An interesting open problem 

is to determine whether O(log n) is also a lower bound on the 

arithmetic complexity of factoring algorithms. We conjecture 

that it is. 
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