
't
MASSACHUSETTS

LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

(formerly Project MAC)

MIT /LCS/TM-91

FACTOR!~ NUMBERS IN O (LOG N) ARITif\ETIC STEPS

ADI SHAMIR

NOVEMBER 1977

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Cambridge

MIT/LCS/TM- 91

FACTORING NUMBERS IN O(log n) ARITHMETIC STEPS

Adi Shamir

November 1977

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science

(formerly Projec t MAC)

Massachusetts 02139

FACTORING NUMBERS IN O(log n) ARITHMETIC STEPS

Abstract

Adi Shamir

Department of Mathematies

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

In this paper we show that a non-trivial factor of a

composite number n can be found by performing arithmetic

steps in a number proportional to the number of bits inn,

and thus there are extremely short straight-line factoring

programs . However, this theoretical result does not imply

that natural numbers can be factored in polynomial time in

the Turing-Machine model of complexity, since the numbers

cn 2
operated on can be as big as 2 , thus requiring exponen-

tially many bit operations.

This report was prepared with the support of the Office of Naval Research Grant
No. N000-14-76-C-0366 and National Science Foundation Grant No. 77-19754MCS.

KEY WORDS: Arithmetic Complexity - Factoring Algorithms - Prime Numbers

2

I. Introduction.

The problems of primality checking and factoring of

natural numbers have been given much attention in the last four

centuries. The development of efficient algorithms for these

problems is not only theoretically interesting, but can also

have important practical consequences (for example , in the field

of cryptography -- see Rivest, Shamir and Adleman [11). While

it is relatively easy to determine that a given number n is

composite, actually finding its factors seems to be a much

harder problem. To date, all the algorithms developed for

this purpose run in time which is non-polynomial in t he length of

the binary representation of n (e.g., Pollard (21).

In this paper, we consider the inherent difficulty of the

factoring problem from the point of view of another natural

measure of complexity, namely the number of arithmetic steps

{addition, subtraction~ multiplication and integer division)

needed in order to solve the problem. We develop an algorithm

which finds a non-trivial factor of a composite number n in

O(log n) arithmetic steps, and we conjecture that it is optimal.

This result does not imply that natural numbers can be factored

in polynomial time, since our measure of complexity ignores

the size of the numbers involved. The algorithm presented in

this paper is thus mainly of theoretical interest , showing that

surprisingly short straight-line computer programs can factor

natural numbers.

II. The Model.

We consider a very simple model of a computer, consisting

of registers and a CPU. There is a fixed number of registers

(R through R), each one of which can hold a single integer of
0 S

unbounded size. The CPU contains a program, which is a finite

sequence of labelled instructions of the following types:

(i) L: R + R. * R . , where Lis a label and * is+, m i J

, • or 7 (a 7 bis the largest integer not exceeding

the rational quotient a/b).

(ii) L: if R m = 0 then go to L1 else go to L2.

(iii) L: Print (R). m

(iv) L: Halt.

3

The arithmetic complexity of a program is the function a(n}

giving for each input n the number of arithmetic instructions

of type (i) performed until the computer halts; if the computer

loops forever, a(n) = 00

A factoring algorithm is a program which finds and prints

out for any composite natural number n (initially placed in R)
0

a non-trivial factor 1 < f < n that divides n; if n is a prime,

the program halts without printing anything. Such a program

can serve as the nucleus of more complicated types of factoring

algorithms. For example, in order to find the complete prime

factorization of a given number n, it suffices to find such a

factor f (which is not necessarily a prime!) and then to re­

cursively find the complete prime factorizations off and of

n 7 f.

III. A Fast Method for Computing Factorials.

Our factorization algorithm is based on a method for com­

puting the factorial function n! which has a low arithmetic

complexity. In [3], Pratt uses a clever partition of then

factors inn! in order to reduce the obvious O(n) algorithm to

an almost 0(/n) algorithm, but this complexity is still too

high. An O(log n) algorithm is implicit in Davis' paper [4] on

the unsolvability of Hilbert's 10th problem, but a somewhat

differently structured method is needed in order to obtain

the final O(log n) factoring algorithm. The method we describe

has the additional advantage of using smaller intermediate

numbers, thus reducing the space requirements from n 2log n

bits to n 2 bits (note that n log n bits are necessary just in

order to hold the final value n! in binary representation).

Let n be an even natural number. Then by definition

n!

from which we get the recursive relation

If n is an odd natural number, we use the identity

(2) n! = n• (n-1) !

in which n-1 is even and (1) is applicable. Thus for any n,

4

the calculation of n! can be quickly reduced to that of calcu­

lating (n 7 2)!. What remains to be done is to find an efficient

method for calculating the log n terms of the form (tkJ (with

5

k = n + 2i for l~i~log n) obtained when the recursive definition

is unfolded.

Consider now the binomial identity:

(3) (2 t + l) 2k =

If this number is written in binary representation, then each

summand (
2t] 2t•j is just the binary representation of [2r] shifted

left t•j bits. By making t big enough, each [~k] can be shifted

to a distinct block oft bits in the binary representation of

i 2k
(2 + 1) , and thus can be easily isolated.*

The minimum usable value of the block size is just the

number of bits occupied by the largest term of the form (2J·k] .

Since

=

any block size oft> 2k bits can be used. In particular, the

value of (~k] can be found by isolating the middle block of 2k

bits in

(4) (22k + l)2k

In order to find the arithmetic complexity of this process,

we note that the 2kth power of a number can be calculated in

O(log k) arithmetic steps by the well known method of successive

* To isolate the lower m bits in a register R, calculate

R' + R - (R + 2m)•2m; to isolate bits m
1

+ 1 t h rough m
2

in R,

subtract the lower m1 bits in
ml

and divide the result b y 2 .

R from the lower m2 bits in R,

6

squarings.* Using this method twice in succession, (4) can also

be calculated in O(log k) arithmetic steps . The calculation of

the powers of 2 used in isolating the middle block in (4)

requires a similar number of steps, and thus any term of the

form ftk) can be calculated in O(log k) steps.

In order to calculate n! in our method, we have to find the

values of (
2
;] for all k of the form k = n + 2i, l~i~logn. The

discussion above shows how to do it in O(log2n) arithmetic steps,

but a simple trick can reduce it to O(log n).

Since all the values of k satisfy 2k ~ n, we can replace

the variable block size t = 2k by the uniform block size t = n,

and thus [~k) can also be isolated as the middle block of n

bits in

(5)

However, since each k is n + 2i for some i, all the log n numbers

of the form (5) can be obtained free as the intermediate stages

in the calculation of the single number

(6)

by the successive squarings method! A similar trick can be used

in the computation of the powers of 2 used in order to isolate

the middle blocks, and thus the arithmetic complexity of our

* Using the recursive relation

X

1
(ax/2)2 if X is even

a =
x-1 if is odd a·a X

7

algorithm for computing n! is just O(log n).

A final remark about space requirements. Due to the special

form of the main recursive definition (equations (1) and (2)),

it is easy to translate it into a simple iterative loop in which

the register which eventually contains n! is either squared or

multiplied by an auxiliary register. This eliminates the need

for a recursion stack. Furthermore, no temporary storage is

needed for the log n numbers [tk), since they are used in the

same natural order in which they are produced when (6) is

evaluated. The entire algorithm can thus be implemented with a

(small) fixed number of registers, without using any data­

compacting techniques. The biggest number stored in these

registers is (2n + l)n itself, which needs O(n2) bits in its

binary representation.

IV. Factoring Natural Numbers.

Once we have an O(log n) algorithm for computing factorials,

an O(log2n) factoring algorithm is trivial to construct. If

i < n are two natural numbers, then the greatest common divisor

(gcd) of n and i! is greater than 1 iff n has a factor j satisfying

l<j~i. Consequently, in order to find the smallest prime

factor of n, we can perform a binary search on the values of i,
?

using the predicate gcd(n,i!) = 1 as the criterion for increasing

i.

For any given value of i, i! can be computed in O(log n)

arithmetic steps. Even though i! can be an enormous number,

the calculation of gcd(n,i!) requires only min(log n,log i!)

~ log n arithmetic steps (a thorough discussion of gcd algo­

rithms appears in Knuth [5]). The number of gcd calculations

in the binary search is again bounded by log n, and thus the

smallest (prime) factor of n can be found in O(log2n) arithme­

tic steps.

8

In order to construct an improved O(log n) factoring

algorithm, we have to replace the relatively expensive gcd(n,i!)

operation by the much cheaper operation of reduction modulo n

(i! (mod n) can be calculated by just three arithmetic operations

as i! - (i! 7 n)•n).

Let i be the least natural number in the range l <i<n
0

which satisfies the predicate i! - O(mod n) (since n divides n!,

there is at least one such i), and let f be gcd(n,i). By a
0

variant of Wilson's theorem (see [6]), a natural number n > 4

is composite iff (n - l)! = 0(mod n), and thus f<i <n whenever -o

n > 4 is composite. On the other hand, f cannot be 1, since

by assumption n does not divide (i
0

- l)! but does divide

i ! = i • (i - l)!. Consequently, l<f<n is a non-trivial
0 0 0

factor of n whenever n > 4 is composite, and f = n whenever

n > 4 is a prime. Note that f is not necessarily the smallest

factor (or even a prime factor) of n, as demonstrated in the

case n = 18, i
0

= 6, f = 6.

The factorization problem has thus been reduced to the

problem of finding i
0

, since f can be calculated from n and i
0

in at most log n additional steps. The predicate i! ? 0(mod n)

has the useful property that i
1

! _ 0(mod n) and i
2

> i
1

imply

that i 2 ! = 0(mod n), which makes a fast binary search possible.

However~ so far the algorithm's arithmetic complexity is still

O(log2n), since log n factorials (each one of which requires

O(log n) steps) must be evaluated. We shall now make use of

9

our factorial algorithm's special structure in order to combine

many of the subcomputations involved. Throughout the discussion,

n is assumed to be greater than 4.

Rather than find i
0

directly, we first find the interval

between two successive powers of 2 in which it is contained.

If 2j 1 is the smallest power of 2 which exceeds n, then calcu­

lating 2j 1 ! (in O(log n) arithmetic steps) in our method gives

us the factorials of all the smaller powers of 2 for free.

By reducing each one of these factorials mod n (using 3 arith-

metic steps), we can find in just O(log n) arithmetic steps

the (uniquely defined) power
j

j such that 2 °! t 0(mod n)
0

jo+l
and 2 ! = 0(mod n).

. . +l
B th definition of i , 2J 0 <i <2Jo Y e o o-

If we try to locate i by binarily searching in the
0

jo jo+l
interval (2 ,2] , we run into a problem: the successive

factorials we have to calculate are no longer related in an

obvious way, and calculating each one separately leaves us

with an O(log2n) algorithm. We bypass this difficulty by

spending log n steps at this stage on the evaluation of

jo
f = gcd(n,2 !) and then distinguishing between two cases:

(i) If f ~ 1, then f is a non-trivial factor of n (f = n

contradicts the assumption that 2j 0 ! t 0(mod n)) , and we

10

do not have to proceed.

(ii) If f = 1, then the evaluation of the predicate il ~ 0(mod n)

for i in the range of interest can be simplifed considerably,

as described below.
. . +l

Let i be an even integer, 2J 0 <i<2Jo . By (1),

• I 1. •

i
2
jo. jo

and 2 < By assumption, gcd(n,2 !) = 1, and thus also

i ' 2
gcd(n,2 !) = 1 and gcd(n,(~!)) = 1. Consequently, n divides i!

if and only if n divides [il ; and thus the predicate

?
i! 0(mod n) can be replaced by the easier predicate

0(mod n) for any even i in the interval (2 °,2 °] . Odd
[~

1.2'·] ? j j + 1

integers in this interval are treated similarly, by using the

identity i! = i• (i - l)! first.
j . +l

When the interval (2 °,2Jo] is binarily searched for

the value of i
0

, at most log n numbers of the form[½] have to

be calculated, and then reduced modulo n. What remains to be

done is to show that all these numbers can be calculated in

O(log n) arithmetic steps.

As described in Section III, each

lated as the middle block of n bits in

number [il can be iso­

(2n+l)i . We can pre-

calculate (in log n steps) these ith powers for all the values

of i which are powers of 2, and store them in successive blocks

of bits in one of the registers (with the biggest power

occupying the lowest order bits).
n i

The value of (2 +l) for any

other i can now be calculated as a partial product of these

precalculated numbers, using the binary representation of i

as a guide (for example, (2n+l)lO = (2n+l) 8 • (2n+1) 2) .

The binary search for the value of i in the interval
0 . . +l

(2Jo,2Jo] can be easily arranged in such a way that a new

trial value ik+l
j -k

differs from the previous trial value ik by

exactly 2 ° (k = 1,2, .•. ,j) ,
. 0

n 1 k+l . (2 +1) can be obtained from

jo+l
with i

1
= 2 . In this case,

(2n+l)ik by multiplying or
jo-k

dividing the latter by the precomputed value (2n+l) 2 , which

is a single operation. Since we use the precomputed powers in

a simple high-to-low order, we can right shift the storage

register after each use in such a way that the next power to

be used is readily available in the low order bits of the

register.

11

An improved method, which does not use a storage register,

is to replace the "binary search" by a "Fibonacci search"; note

that numbers of the form (2n+l)Fi can be quickly calculated in

either an ascending or a descending order by multiplying or

dividing a pair of successive elements in this sequence. While

it is possible to squeeze the log n precomputed numbers in the

simple method into an O(n2) bit storage register (by using

variable-size blocks and a tricky retrieval scheme), the improved

method gives a straightforward O(n2) bound on the memory re­

quirements of our factoring algorithm.

This complete the proof that a non-trivial factor of a

number n (if it exists) can be found by performing at most

O(log n) arithmetic operations. An interesting open problem

is to determine whether O(log n) is also a lower bound on the

arithmetic complexity of factoring algorithms. We conjecture

that it is.

Acknowledgements

The author wishes to thank Vaughan Pratt for posing the

question answered in this note, Albert Meyer and Ron Rivest

for supplying valuable comments, and Len Adleman for pointing

out the implicit existence of another factorial algorithm in

Davis ' paper.

12

Bibliography

[l] A Method for Obtaining Digital Signatures and Public- Key

Cryptosystems, by Ronald Rivest, Adi Shamir and Len

Adleman, Technical report MIT/LCS/TM- 82, April 1977.

(2) Theorems on Factorization and Primality Testing,by

J.M. Pollard, Proc. Camb. Phil. Soc., 1974, pp. 521- 528.

(3) The Competence/Performance Dichotomy in Programming, by

V. R. Pratt, Proceedings of the Fourth ACM Symposium on

Principles of Programming Languages, 1977.

(4) Hilbert's Tenth Problem Is Unsolvable, by Martin Davis,

American Mathematical Monthly, March 1973.

[5] The Art of Computer Programming, Volume 2, by D.E. Knuth,

Addison Wesley, 1969.

(6) An Introduction to the Theory of Numbers, by G. H. Hardy

and E.M. Wright (fourth edition), Oxford press, 1960.

13

