
MIT tu:S1™-92 

RERJRT {Ji THE 

l'ORl<SHOP Oi DATA filM CQVPUTER Pl'ID PRJ3~ O~IZATICN 

DAVID p MISUNAS 

NoVEMBER 1977 

-4 - TECH OLOGY SQUAR • C IBRIOGE, M SA H . ETT o-_ 139' 



MIT/LCS/TM·92 

REPOR'T ON THE WORKSHOP 

ON D.ATA FLOW COMPUTER 

AND PROGRAM ORGANIZATION 

Dav.id P. M'sunas 

November 977 



MIT /LCS/TM- 92 

REPORT ON THE 

WORKSHOP ON DATA F~o,w COMPUTER A PROGRAM ORGANtZA TION 

CAMBRiDGE 

David P~ Misunas 

MASSACHUSITTS INSTITUTE OF TECHNOLOGY 
LABORATORY FOR ·COMPUTER SCIENCE 

(formerly Project MAC) 

MASSACHUsms 02139 



R·,eport on the 
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Oav'd P. Misunas 
MIT Laborat.ory for C,0,mp ~ ter Science 

The faUow·ng report co.mpr's·es .an edi ed tra scriptlan at presentarons 
made at the1 Workshop, an Da,ta Flow 1Comp, -ter a d Program Orgar1izaticn, he d at 
M.I.T. on July 10-14, 1977 and co-sponsored by the Lawrence Livermore 
Laboratory (L L) and the Oepar menl o,f Energy, Mathematica1 Scie ces Branch. 
These inform I transcrrpUons · re only intended to ,provide a general picture o·f 
ongoing work in the area and, ta that. end, ha,v been heavily edited and 
ummariz ,d. For further deta·,1s, th lnterea't d r ader thou d consult the 

bi,bliosrep,hy at th _ end of: the r port. 

'Th -, efforts of a numbe·r o•f people :greatly a,ided the, generation of this 
report n particu a·, the original version of the bibliogiraphy was compil ,ecl by D'ean 
Brock and drafts of the report were read and c,riticit d by Bill Ackerman, Dean 
Brock, Randy Bryant, Jack Oe,nnl$, and Ken Weng. 

Any op· ions expressed in the trancscriplion ar those of the speakers and 
not necesserHy t o e of their institutions or of th ponsorin,g instituti,ons. Th 
spe.akers have not had a chance to r ,evi e·w the report a,nd to correct any 
m atranseriptiione w ch may have occurred. 
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Sessio 0 .. Welcome 
Jae~ B. Dennis, MIT 

In the last de~ade, there has been much interesting work having to do with 
the idea of data-driven program structure ,and computer architect. re, but there · 
has never bean an,y pra.fessiona technical c,onference at which peopl,e, engaged in 
such research would na,turally tend to gather. Th , crigi.na\ gca1 cf this .workshop 
was to gather lhi · woup of peop e together, to let e&Lh ot e·r know the nature· of 
their work,, what the r progress had been,, what t ey consider to be the current 
issues. and what ,problems e,ed to be salv,edl to, br'ng ,eonc:epts ,af data~driven 
computati0n1 into practi:l:al application. Reee tly. the M.I.T. aborato y f,or Computer 
Science h s entered int,o negoti Uons with Lawrence Livermore Laboratory 
concer lng possible support from LL and ERDA for exploiting he ideas o:f data
driven computer architeeture with relaUc:m ta LLL's computational i:,roblems. Thus, 
there is a second abj clive for the workshcp: t:o ,a quaint th LLL people with the 
status of research in th s area, and to se,e if these, ~deas are applicable to 
problems ,of interest lo thei,r projects and U the p1erformance polent.iail is 
sufficiently aUracUve to, make a gain over the comput.a ional facilities which they 
pr,esently have. So the origina "dea of the workshop has changed slightly, with 
increased emphasis on ses ions devoted to appU,c · tions ,nd studies of the 
potential performance of d ta-..d iven computer archil,ectures. 
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Sessi,an l. Re&earch Status and Objectives 
Chairperson; Jack 8. Dennis 

Ii Jack B. Oennist M .. T. 

The data Haw research group at MliT has been devoting most of ·ts research 
on computer architedure to on type of da a flaw computer. The architectural 
principles we have been studying are manifested in four d:ifferenl levels of data 
How computer. The level 1 machine implements the programm·ng constructs a,f 
scaiar variables, conditional ccmstructs and iteration. lt h s a very primitive 
capabi I' ty in terms of what we know af modern pr01rammi·n languages. This 
machine i appropria e for computation which have a smal amo t of program 
information end a small amo 1 nt. of data. A particular area of applicat'cn which is 
aUracUve for a level machine is signal proces,s:i .t where the aim is often to get 
a very high throughput. but the amaunt. of data that ha$ ta be handled by the 
machine at any instant is relatively sma I, a d th proe;ram is relatively small. The 
size of th I pre ram in s ch a machine is limit d b.Y th f ct that he en ire program 
mus,t be st.ored in i1nstrucUon cells comprislng the acHve m.emory of the machine. 

A levei 2 machi a ha . dies da a struct res through inccrporaticn o,f a memory 
sectio1n which wiU hold a large amount ,of dat in structure form. A ain in this 
machine, the size of th program is limited by the number of instructicn ce, s in the 
machine1s active memory, ut the amount of data on which one can operate is 
depende,nt cnly on the size of the memory section, which may be arbitrarily large. 
A pr,obl em that we are t _ dying de,eply now is the structure af this memory 
section and the way in wh';ch da a str cture opera' ions should be imp1emented in 
terms of the section. 

A third evel of machine, in which we are interested is one designed st..rch 
that the instr ctions of the program da n,0t have o r side permanently in the 
instruction cells af the mac ,·ne. Rather, ther,e can 'ba an instruc ia:n memory which 
holds comp ete pro.grams, and those1 instructions which are most active are 
represented in the instr ction c,ells ,of the machine as they ar r q ired by the 
aeti vi y of a program. AgainJ this is a machine which would support seal ar 
v,ariables1 condlU0nals1 it.eratiol\ and operations on data s ructures. Any higher 
level opera ,ions expressed in he· appUc·ations program would have to be 
transl aled ,o _ t y the comp· ier and progr-ammi ng system. 

evel 4 is, he u.tlmate machine in which we would lik to exploit the h.111 
expressive pawer of da a t' ow languagesJ incl ding idea·s about procedures. 
rec rsive procedures, and the processing of stre·ams a ·mpartant kinds of data 
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vatues. Also, the level 4 m chine should handle ap,plications that require 
nondeterminat p,ro rams. Our ideas are fuzzy concerni g .he e,x ,act 
Implementation of this level mac ne. Several studies of procedure im.plementati on 
mechanism far such a prccess,cr have been made, but much wcrk remains ta be 
done. 

Dur'ing the last yeart we hav,a come to ealize that the architecturai 
concepts with which we have been warkin.g provide an interestin basis for 
reati:zing a type of d,stributed furu:Uon computer syst m. t ·s possible to divide 
the instruction memcry and associated interconnection netwcrks of the machine 
into subs-ections whic,h don't communicate wit'h each other. Each section ,af the 
inslruc:lion memory can then be associated with several precessing units, anq in 
lh"s manner the whcle machine can be partiUcn.ed into s,ections which can ,operate 
independently, w·th the exceptlcn that an interconnection ne-twcrk must be utmzed 
lo convey results generated by one section of the machine whic become operands 
of another section of the machine Simi arty, th.e structure capability of such a 
system can be realized by a 1rcup of structure processors, one asscicia ed with 
each section af the mach ne. 

The issues currently concerning the MIT research group cover a broad 
spectrum ranging from programming I anguage seman.tics to I cgic design and 
architecture- descri,pUon languages In 1.anguag;·e issues, we have b,een very 
interested in • treams as an extetision of our 'deas of data flow progra.mming 
languages. We've studied how tc deal with ncndeterm acy in programs and are 
examining mathematical foundations apprepriale to the semantics of a programming 
language, which allows the expr,ession of n0ndetermtnale ccmputat10n. 

We are currently investigating ail four levels of data flow processor. 
However, our emphasis at this lime ls on the I v I 2 prccessar since this level is 
most appropriate for application lo LLL's problems, and this is the most Uk,e]y 
machine to be the, basis of a large scale development project We are also further 
investigatin,g the level l proce$sor since there are some friend-s of the group who 
are very interested in signal processing ,application~ and a [eve.I 1 machine would 
be an appropriate small scale prototyp1e, Such a prototype would be both usefu\ 
and woutd give us a testbed fer checking aut 01.1_r ideas abcut proiramming1 t,esting, 
and verifying hardware. 

We have studied some applications -R the fast Fourier transform as an 
example of a signal processing computation, the glcbal circu!aUori modei for 
weather pred,ctlon1 the atrcraf t collision avoidance pr0blem1, and. a simplified 
vers,ion af th hydrodynarnics· prcble.m of interest t.a LlL. Along with these 
ap,ptic,atlon s udies, we have done scme work ,on performance anatysis, examining 
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the, struct re of a data H,ow program ,and predlcting wha't performance wil: be 
achleved when that pro.gram is r .• n on a cert.an typ of dat.a fJow machin . Much 
rema·ns to be don in the ,area of study,in1 ll\s· structure cif the machine and the 
structure of the pro ram1 to arrive at conclu ions reaard n, pot nti.a performance. 

W,e have put much effort into developing an archi t.ecture description 
language specializ,ed to p c et communkation architectures such as the data flow 
processor. Systems with such architecture are s rudured of modules whlch can 
,commLJnicate throug:h the t,ransmissicnt of discrete 'nformation packets. We are 
1lnterested in the architect.ural descripti,on langu e;e far a number of reas,cn . We 
would Uke to use the description o·f a data flow ,machin · .s input to a simulation 
f'aciUty, so that onc,e the machine is des~ bed, it ca 1d be elmulated to v · rify the 
ap,propriiateness of the machin design and to measure it · potential performance. 
For verification, w · 7d like to have a formal anguage for describing un·ts of the 
machine1 so ,one could ,prove correctness of the machine in the same manner that 
one at empts to prove correctness of a program. Another reason wa'r interested 
in the architecture d acrlptio I I nguag,e i bee u11 we'd Hk. to study m ans 0f 
building fault-tolerance 1inlo paeket c,0mmunicaticn1 architecture, and th language 
provides a ,ood idea of the 1n.atu a of the u, its lha an is tryin t.o make falilt 
tolerant Finally1 the language provid . s the naeessary description for construction 
of a packet communication system. 

In the area of implementation, we've• deveiopad l'ogic designi for the active 
,memory of a level 2 maol\ine, invesfgated 'nterconnection network structure, and 
studied the specification for a microcomputer that could be used as a unit in 
bu'lding ome of our d. ta flaw machines. 

II. Arvind, University af Ca ifor1nia - Irvine 

The oal of the· data flow proje:ct at the Unrversi1t.Y ,af California ,at rv·ne is 
to develap an architecture capable of utilizing lar·ge numbers ,of processors:. By 
'large numbers we mean h ndreds or 'thousa ds. the exact number depends upon 
performance and hardwe.re. We believe that the probl me i:nvolv d ·n utUi2ing LSI 
techno1cgy are NOT re'lated ta, simply providing an int,ercannectlon mechanism or ta 
designing specia ized machines. Rather,, the probl ms really ari.se with respect to 
the prog:rammabi ity of s-uc:h mac ines -~ hc,w wou'lld you ever program if you had 
so many processors wh.ich have to work in seml-aul0nomous fashicn? 

We vl,ew d.ata fiow a.s a ·solution to he probiems of von N,eumann type 
computersJ spedfica ly the problems of Jow level machine languages which are far 
r,ema,ved from user Ian ag s, he r,es:trlc::tions on the xploi,tation af paraUeUsm 
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due ta the required sequential and centralized control af computaticnal precesses, 
and lhe II near or1anizatlon of storage cells which · ,s I ma st •contrary to the storage 
ar _ anizati0n1 n ded by most of th , advanc,ed programming hinguage 

Our wark w s ins;fred by the data flow base la, guage deve\oped by Dennis. 
By ext ndin his I an1uage through the addition, ,of lags to each tok,en1 we 
dev lop d a new way of int rp e _inc th,e I anguage. This new interpreter, the 
Unravemn Interpreter (LI-interpreter), then spurred lha development of deas on 
haw a mach' ne should be built. The, U-interpr,eler is very wen sui ted k1r a 
machine which is composed of large numbers af -idei,tica1 process erst and the 
power of these camponent prcce,ssa s is re1ativel,Y independent of the interpreter, 

The interpreter can be imagined as a large system composed af a number of 
processors which are a ways Jocking far ·tokens1 wher,a a tck,en in this ·system 
contains a data it,ern and a tag speei ying some initiation of some stateme _ t n a 
certain procedure. One Jnpul token of each operation is arbitrarily designated an 
allocation token, and upon production, searches for a free pr0cess,0r. Upon finding 
one,, the taken oc·cupies the processcrj causing it to assume the personality of the 
specified instruction and lock for any other required operands. When all operands 
have been found, the, instru:ction ]s executed, a result is produced, and the 
processor is freed to wait for the arr val of ano her allocaticn l0ke111. 

Each process,or in eur system has a Unk to a memory system and to a 
communication system. Our system differs f om the M.I.T. machi e in that 
instructions of that machine, wait In a special memory runtil they are enabled, at 
which time they flaw ,out to the pr·ccessors. In our ystem., instructions wait at the 
processors, and execute upon becom,ing enabled. Also1 in cu.1r syslemJ memory 
references are made from the processor, rather than by the ransmission of 
distinct instructions. 

Our group· has concentrated on the deve cpme , t of a hich level language, the 
Jrvine Data R,aw anguage (10). The enguage has asynchronous contrc1 structure~ 
clean semantics, and ia block struclurad. t has facilities far programrrii g with 
streams, and models · ncndetermlnate camputatlcn with the help cf monttcrs and the 
nande ermi nate merge, where mani tors are us,ed in the sense of r ,esource 
managers. The I anguage incorporates abs.trac data types and f uncti ana1 
pragrem·m.ing facil Ue,s fer mantpulatini procedure definitions. Curre tlyi we are 
incorporating a bask: security and pr0tection1 modat 

We have designed a n w base languare that · s us,ad for expressing the 
semantics of th high I ve la guas&- The basa Ian 1.1age elso serv s as a basic 
model for the ropo ed comput,er .. rchi,tecture. The angua e has aasUy 
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identifiabl - ,procedure domainat loop domains, nd ther 
trans aUon r es from I□ ta tke base langue,ee. 

xist w _II defined 

We are lso performing wo k on the semantics ,of 10 and of the base 
hangua,ge. This work has been greatly inf uenced by the wark of Backus, especially 
by the no J,on that there are no types, tha:t functions: and v 1ues lock ,exact y alike. 
Als,a, a ong with his work, we are exam·ning: models of ondeterminacy and their 
influence on the languages. 

We current y have two operatin,g compilers on a PDP-10. One tr nstates 
programs from m to the base angua,ge) the ot er, tr nslat,es from ID to llSP. 
These compil ,er do not incar,Porate the stream f _ atures of C, hc,w ve ,, work is 
underway to develop, a c,ompiler with thal capability. 

The architecture ilse ,f has been extensively situdied thr,ough s·mul tion, 
primarily to determfne hew programs beha,ve, what kinds of demands they make on 
bus and precessing resourc,es,. Our pr·mary ,c,oncern hae been to find efficient 
i8'P ementa icm schem s. 

Ill. Steve . andry, Univer.sily of Southwestern Lcuaiana 

R'ese _ rch i,n data fl w languages and ar,chitectiur, , at the Univer i ty of 
Southwestern Loueiana has been .led primari'ly by C . Bl'l c& Shriver. Th , n cleus 
of people working on the data flow project arose frorn a pr,oJect which had as its 
goals the 1t dy af virtual machines and ll\e specifcation and realization O'f secure 
multi evel v·rt al macln'nes. 

iCurrent'y, data How concepts are being eonsider,_ in five ma or research 
efforts: 

1. Th develcpmant of ,a general data f ow &imulator;· 

2. The specif catia, and modeling of a lar&e cale aystem ue·"i a data flow 
language; 

3. The ge,neration of highly i,mproved microcad _ for par Uel/horizontal 
systems; 

4. T e use of data f ow to desc,ribe hw,ghly para ~e:I user specifiable 
arithmetic units; and 
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5. The use of data fl .ow I anguage and archi lecture as an i,mp emen at' on 
alt.ernative in th realiza ion of a nonproced ra\ la' gua,ge which is based on 
the semantic prlnciples of elations. 

Very early ln our studies, it became cl, ar th t a tool which co 'Id be us,ed to 
r a iz,e or simul t ceneral data flow 0per tions was very d sirable. After 
studying the various alternatives, we made the decisio to develop such a 
simulation facili y on our Multics system. The design group felt stro gly tha the 
package should not be bou d to a single da a low langLJag·e or arc ite,ctLJre since 
the s~mulator wou'l.d be u.sed in the ,ava'luation of language feature alternatives. A 
user of the, systern is given bul.lding blocks with which to cons ruct his own 
·simu:latcr, allow·ng evalua ion •of various :sets of pri1miUve nodes. 

The second research activity involves he spe,~Uic tio of a large scale 
system using a data flow language. The original s imulus for this work was Paul 
Kosinski~s paper .. A Data Flow Lang age for Operating Systems · rogram · ing. This 
paper seemed an open challenge to operating sys em designers, and implementerst 
showing how use of a data flow programming language attacks a large number of 
he prob ems. faced in the development of an op,erating system. It is the objective 

of this research t.o use the design speclficatio , an:d implem,en atio of an operating 
system as an example for evalua,Ung he suitability of a data flow programming 
San · uage for accom,plishin such a task. 

e application of data flow pri, ciples to the genera ion of highly improved 
microcode for systems which utilize horizon al con rel s .ores (i.e. sys ems ln which 
muttip,le mi;cro-aperaticns are specified In a slng e mtcrc-instruc ion) has resulted 
in the deve opmen of a high level microprogramming language for several 
m·cre<:.cded processors. An algorithm specified in our internal language · s ren~ered 
loop free, then a data depe.•.dency raph is deve oped from e I oop-free 
r ,epresentation Next, the graph is constrained to reflect actual sys em resour-ce$. 
This ·constra~ ned· graph i then tilized to generate the microcode. 

Data flow echniq es are also being considered as a tool for describing the 
operation of user specified arithmetic units. The primary emphasis ot his project 
is the realization of an ar·thmetic nit tor which the user cart completely spedfy 
the ,characte·ristica of operatton. This would a ,ow user control over such 
charac erisUcs as rounding strategies er unit responses ta various ancmaiies. 

We ar also utilizing da a flow primitiv s ·n a research prajec . directed 
toward the de ign and implementation of a non-pr eed ral lang age. The language 
a d impleme a ion will embody he s mantic principles of relations realized by 
using dynamic data flow path direc ives. Program i g in such a lang age describes 
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in terms of relaUons r set of relations of how thin s interr late withau regard 
to expUcit seq encing. 

IV. A I Davis, Burroughs Corp. 

The group at Burroughs h s had the goal of developing a set f workable 
systems ideas for dis rib ed 00 trol paralle proc,es.sing. The ideas which we are 
attempt'ng to exploit can be characterize nder three subtopics: properties of 
the s.ys •&l'I\ prop r ies of t, e r presenta ion, a · prop rtie of the hardware. 

The basic system goal i hat it should be cost effecti v . Data f aw and 
data-driven approaches ta ccm,putatian c.an be cast effective. especlally in the 
Ught of t e sort of hardware which one en s to use to build things these days. 
Another goat of major importa ce to us, is that the aetua perfcrmance s cu dn~l be 
a surprise. Performance she· Id be a funcfcn of he process r p.resentation, which 
may or may not aU0w certain amount of parall _ llsm, and of the amaun of physical 
resources whteh c e has avaHable, which may vary wit:h time. A y other fac or 
sho Id have a neglig•bte effec on pe farmance, an cine af au oal ha been to 
minimize the effe t ,af a. er factors. 

f"urthermoreJ the system she Id admit to very hi ~ performance. Thus, the 
system eupport·s not only concurrency of orlzont I n tur which xploi ts 
independent operations or functions, but also, executes In a pipelined sense. 
Streams of activity pass over resources of the machi e, giving rise to co currency 
of temporal independence. Resource allacatlon is performed as a dynamic function 
during ex,ecu, ion of a proce$-,, in contrast to h ar,c,hitectur s proposed y Irvin 
and M.I.T. 

The program representation used is, ai form, of data-driven nets simi ar to 
those deve opstl at M .. T. T ta representation i d sia"ad le cl y xpress a 
proble·m, utilizing a programmin methodolo y whicn is quit different frcm 
eanventio al methodologies a d yields a pro ram structure wh'ich is a f uncticn of 
the prcblem, rather han the anguage. T,h:e da a- riven fc·rrn of the rep esentation 
facUitates farmal analys· · and a so appears to be useful s . modeling and 
descriptiv too . 

The primary hardware goal is ta have a system with distr"b ted control 
which is arbitrarily ex endible. In addi tc.n, the search for dece t storag mcdel 
has 0cc p ed a significant portion cf the work ov r the past four years. The 
archi ecture w ,ch has evolved on the basis of some of these goal is an 
,asynchronous recurslve arc: i ect re which allows. a distributed ,opera ing system 
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and has some very nice eccnomic properties in vie,w the sort of LSi technoicgi,es 
wh'ch are availab e today. 

The deve1opment plan is based en the waffle prindple of d.0ing anything; 
that is, the first waffle Is, always badj so ycu throw it away. The first waffle was 
a waffle in which we intended to do everything in exactly the way we wa led to 
do it1 n.ot being Influenced by the sorts of c,omponents and the sorts of programs 
other people are writing. The machine· was buHt fer its own ri,ghl in an attempt to 
achie·ve the foals we have. 

The hrst waffle has been ccmpleted 1n that machine we tock a lcw 1,eve1 
approach and investigated some a,f the basic pri mi ti vss of such systems and the 
baste ways that the-se syttams behave. We intend la use this knowledge in ·the 
construction o,f a ·second waff a, that we intend ,other people to use and find tau1t 
with. 

V Jean Claude Syre, C.E.R.T. - Toulouse, France 

In Toulouse, we are currently constructing a single assionment comp,uter 
ca,lled the LAU system. LAU stands for Langage a as·signation uniq1Je On French), .in 
En,glish .• SAL or single assignment language. This prcject devei,oped in mid 1973, 
and i,ts inception wa.s heavily inspired by the paper by Tesler. 

B'etween 1973 and 1974. we ca-rrie.d cut formal studies of single assignment 
languages and examined the implicaUorni of such languages on the principles of 
machiF'e design.. The single assignment rul•e states that a variabl,e will be assigned 
a value at most once during ,program execution. This implies a natural expression 
of the inherent para11e1isrn in a progr,am and ,a data-driven program sequencing. 
The language irnpUes a standard s,equencing control, Le that. a statement ls ready 
as soon as Rs, opeirands are evaluated and can be executed at any later time. 

During the next two years, we studied the feasibiUty of a :sing,le assignment 
·system. The1 ,rnain goal was, to develop a complete hardware/so tware system 
based on si gle assignmentt with single assignment as the base for both language 
and architecture design. The languag,e and arch1lec ure were designed to be 
general-purpose and to urn ·ze existing hardware and software tools. 

We s:peciHed a firs version of the high level languag,e al that time., Tha 
oa s of the l,anguage design ,effort were, that it be readabJe and, debuggable. The 

language has the drawbacks of no dynamic features, no recursive features, and no 
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high level operators en vec ors or matrices. W _ currently have a c m Uer which 
accep s he langua,ge as pecUied at that lime, while we are completing th 
definillc of the remaJnd r of its featur,es, uoh as synchronization exp.ressions, 
type definitions, and so forth. 

Our next step was to define a machine language and a general arch[tec::ture. 
We then dev,eloped in paral e a compiler a· d simu atar for the envisianed machine. 
The sim lator is fu ly paramet rized, and we have used it to measure such 
characteri t,·c as the parallelism realizable w· hin an execution cf program, both 
in the ar·thmeUc units an_ globally. 

We are currently constr cUng a sing.le assicnment el,ementa · y processor 
cons;stin of a memory s bsyst mJ 32 le·mentary , xec tlon, urita, . nd contr.oi 
uniL Thi conatirucr n prcje t should be compl ted In lat , 1978. 

VI. Roy Zingg, Iowa Sta e University 

At Iowa State University, we are have r·ecently iniUated a proj,ect on data
directed computation. We have developed a imulaf on facU ty whlch simuia es a 
feedback interpreter, work'ng at a logical simulation l,evel and no . tied ta any 
specific arch·tec ure. We. are i'nlerested in tran-slation support r,equ:irements and 
have under de.velopment a translator that accepts ,a high 1,avel language wh·ch we 
have speei fiecl. We are al·so interested in the effect of certain optimizing 
transformations when app ie to a serial language. 

Our future pfans extend "to the, study of memory syst,ems, the data 
s.tructures such memory sys ems ·should su,pport, and th necessary operations 
upon ·those data structures. An architecture we might prcpos wculd include the 
ability to unravel leaps a, a would support streams a d reentr,ancy of code. We're 
curren ly lockin at a furt.her version of the siimu atcr that would include same of 
these .architectural features, a d ara interested in eventuaUy seeing sarn of our 
ideas in hardware. 
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I. Geor e Mich It lawren,ce ivermore Laboratory 

Lawrence ivermore Laboratory is int re,sted ·n data flaw for reasons of 
speed. An example of o e of the large prcblem · that we rout' nely face i,s that of 
,ca~culating partial diffe,rentia, equations. in di f ferenc:e form in meshes that ar,e 
gene:raUy logically square, using princip,ally Lagrangian pre·sc:riptions tc describe the 
now of gasses and fluids ·n a large network. A lyp'cal large problem may be, 
20,000 zanes in si,ze. Thats naturally net the limit of what people want ta do, its 
the, Hmit of ·wha,l they can reasonably think of accampUshing in finite ti me at 
present. 

According to actual measureme,nts on the CDC 7600, there are 6900 
instructions in the inner lcop of an example computation, of whtch approximately 
2,000, are floating point instructions. The 7600 will calculate this prcblem at about 
2.5 x 106 floating point operat'cns p,e ,second (F OPS). With the p.rablem tailored 
to the CDC STAR, it is possible ta achieve abet.it 5 x 106 FLOPS. However, the 
exec1,1Uon an the STAR ls a highly t ,ail ,ored thing. It is difficult to find lots of 
interesting nd chsHenging phyeics problems that ca make usa ,of a STAR. That~s 
one of the reasons we'r,e lock'ng al data flow. A large prcb!e·m may require 1011 

floating point operation&. At current execution ratest this would take abcut 100 
hours. Nobody's doing l 00 hour problems, 30 would be more representative. 
That's part of the reason we need speed. 

The other reason we're here is that from what, we know of t e ful1.n•,e1 or at 
least the next l 5 to 20 yearst there are on\y a few p omieing architec ures en the 
horizon which might be app tcabte to LLL problems. If ycu misuse a STAR, it can go 
as sl0w a,s a 6600. If you u e it very weU, you can get up to 2.5 tmes the 7600. 
A numb r of other machines promise to, ,extend this capabu·ty by a factcr O'f three 
to five. Hawev,er, what we really need is, a machine which wU yi Id a performance 
of a factor of 25 er so aver the 71600 araund 1980. 

I view data flaw as a way lo map the computer onto a problem. 
Commerciany, we always end up with a, ,computer. and then we somehow have to 
warp our physics tc, n an wha ev,er this ~:UY decided was the proper way to build 
a computer,. This was acceptable when we could aetfev larg faclcrs cf speedup. 
Nobody was complaining that he had to rewrite his programs or that it tcok very 
special intimate, knowl,ed e c,f the tr'cks n the arithmetic urilt or something like 
that. N0,w'1 the payoffs are not nearly as great from generation to ge, eraticn, and 
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so data flow has a few very in ,eresting praperties which ara va'I able t.c L L. One 
of them is that the architecture. new has the charaderistic of fitting he problem. 
Second is that you ca,n find o t, because of the theoretical underpi ning1 that 
you've done the right t ing before you have a 2-1/2 ar 4 or 6 or . mil ion dollar 
bunch of solder and. wires sittin in front of ycu1

1 mockine you, sayin , ''Yotlve made 
another m take!' You don't have to build it 'f its not righL So·, n that sense it 
ha the same virt a as a p ogram. The third thing is that i s .heoret' cal 
underp,inn·ng allows optimization ,of the hardware/software mix. n soma ense, 
thars what data flo~ ha$ to be to make it pay off the right way. 

II. Chris Hendricksan, Lawrence ivermore Labo atory 

As a physicis worki, g on a cede at LLL, I put in the physics for the 
designers to use. Wh:at I'm going to do is give, ycu an idea of what l"m up against 
and, hopefully, set up some kind of feedback so, that perhaps you can sa In the 
design of your maci\mes what you might do to make rny jab· easier. 

Lawrence Uv,ermore Laboratory has always be,en in the forefront in the 
purchase ,of c:·ompulers, we often buy seria11 n mber cne. The eode ltm1 responsible 
for, Coronet, has, been on the 7094, STRETCH, the 6600, the 7600, and finaUy the 
ST AR. It was running at about one MegaFLOP ,on the 616100, 5 on the 7600, and 
with tremendous work, we got appro,ximatety a factor of three speedup by moving 
to the STAR. T,o make the work necessary to move from rnach'n to machine 
worthwhile. the speed increase has to be ,on the order of three to five. 

Ten to fifteen ,of ,our C·Odes are :i,n use cna-th',rd of the 1me. The users of 
these codes may be willing to rep o ,ram/restruc re, for maxim ' m efficiency and a 
large i creas.e in speed. n the ease, of lran farmin1 Coronet lo run en t , e ST AR, 
the effort was twelve, man-ye,ars. Other users are ,not interested in putting in 
such an effort. Hawevert any new machine must be able to run their smaHe'r 
problems w'th modest speed pins. 

The code Coronet is the simples.t ,of the two d'mensiona codes we hav~ at 
the I.ab oratory. It curre •. 'y runs en the 7600 a d the ST AR. On the 7600, it ·can 
run l St000 zones at a speed cf 4.5 MFLOPS, or 15.7 MrPS, takiing approximate1y 
300 microsecol'lds per zone. ,Each zone has 2000 Hoating paint cperati,ons and 
1700 stor .ge r,eferenc,es, recrJiring the memory o run al bout. 340 MHz. 

Due to the ST AR 100 experjence, we ere very wary of new computers., 
especia ly these that ,are conc,eptually new. The :STAR 100 0rigina y looke really 
great Looking at the, liter-at re back in 1968; everybody was real y exci .ed about 
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il However, it , as a couple of 1probtems, and, 1.Jnfortunately, 0ne of the problems 
was in an area wher,e we spend 20-X O·f our time. t tock us many years to break 
this to some xtent. Pm wary about the existe ce of such a problem on a data 
flow mach'ne. I$ there sc;,m.e kind of a flaw in the deeign of the machi,ne where it 
win do fast Fourier t.ransfcrms very niceiyt where it will da lagrange in erpolation 
very ni,cely, but it won•t run Co • ,onet. for example? 

What I would like to see as a goal is the prcd ction of a machine which i$ 
25 fmes more powerful than a 7600 as far .as :speed gce·s. Lcokin at the kinds of 
storage referenc•e·s we11r,e ta;lk,ng about ·this implies a memory bandwidth on the 
,order ,of 9 ·GHz, whl.ch is abo t fiv,a times faster than the 76100 a d stmilar to the 
ST AR The· speed ,of the machine must be about l 00 MFLOPS~ not counting any of 
the c,ontrols or other ·simila fu ct',ons. Such a macNne must have a readable user 
ianguage. Ahio, there musl b _ a Fortran ta data fow translation, pr,oc ss fo those 
who aren't willing to rec,ode. 

UL Bob Meyer., Clarks0,n1 Col ege of Technology 

The three general appUcation areas of Interest ta me are image processing, 
seism"c proce sing, and multii-d mensicnal s:y·s:terns of partial differential ,equati,ons. 
A 'Simple example 10f such is a firs order two, dimensi,onal ecursive digita filter. 
In such a computation, an i · put. array of points Is p,rocessed thrc·ugh simp\e Unear 
combination of a ne!ghborhcod of points en the· :i1nput array w·tb a neighborhood of 
po·,nts on the output array to prad ce the next poi,nt on the ,output array. 

Charact risti cs of such a computation which make it of interest to data ft ow 
are~ 

' 
l.. Reaso· ably large amounts of data 'being precessed, in which there is a 
rmited degree of coup 'ng on the data pcinte:. h'is allow a high degree, of 
para lelis111 with cn1y limited interaction. 

2. Very few functional types are neces.sary. requiring on y a few types, of 
functional units. 

3. The prob em has "pure" d ta-dr·ven cant1rol How w·th .no branching, 
lloopin1, or deciei1o·n mak· I· This makes· it simple to ~ecute. 

These probl _ ms operate in a p',pe1ine f.ashicn. 0 ce the ccmput.aron ·s star·ted~ the 
f,unctiona1 units shoutd all be kept busy. Hence, daL flow appears to be qu·ta 
,useful for s ch appUcati.cn.s. 
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IV. Jack Dennist MIT 

On one ha d, we consider our data flow machines to b , general purpose 
machines because, they are la ua,ge-ba,sed and the ref ore can execute any 
program in the language for which the machin . is set UJ). On the other hand, they 
are sp,ecial purpose because the varii0us levels of machine are re-stricted in the 
languages, they will support Also, to un a large applicatio that's going to tax the 
machine to :ts ,limit, the machine ,has to be t ,·,1ored to match the problem. 
However, his .is true for any machine. 

Tc eva, uat,e a da a flow m,achine versus ,a machine of conventiona 
architec ure, we have to, keep in mind tha da flow machines are so radicaUy 
different. that there's no way of comparing· them on the basis of s ch measures as 
throughput rate at a memory interface, because a data flow machine may no _ have 
.a memc,ry ·nterface in t.he conventional sense. S01 the anl.y way we have c.f 
evaluating such a proces.sor is to run an en,tire appticat' on and compare its 
performance on the two machine.s. 

The largest problem we have st died is the ,execuron of he global 
circu ation medeJ an a Level 2 machine. This prob'lem Is dat tensive1 but the 
siz,e1 of the program is reasonable. The problem ex.p!o'ts two kinds a,f conourr,ency: 
spatial. or between instructions of a pro,gr.am. a d pipelined, which i·s brought about - . 

by the simul,taneous aclivi ,y within the machine. 10n, takes advantage of both 
kinds of concurrency in desieni'ng a data flow program. 

The global ci.rculation miodel is repres.en ed on a large three dim,ensional 
rectan ular grid. The computation we want lo perform over this cri,d involv s a 
numb,er of ,state variable,s whi,c:h are u11,ed to represent the state of the 
atmosphere. The computation r _le i to hnd, say, t - temperature at a p _ int in the 
grid by ta.king the temperatur a. the pr,eviOU$ ime step for the grid and adding 
so.me incremental values which are obtained by differenc-e approx matians based on 
the tempera ure and other values, at he c-urrent lime step. This comput lion is 
independent for each gri point, a'llowing enormous po ential for coneurr ncy. 

The 1number of instructions in a data flow p ogram to execu e this 
computaticn would be correspa dingly large. So, we're f ced with. he prob'lem of 
a,rr,a1n ing the structur af the prog.ram and th corresponding true ure c,f the 
machine so we can ain eno gh paralleUsm to make tne computation go on at the 
rate we wo Id Hke to see and so the parts of the, machine ar effectively _ tilized. 
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'T is com.putat'on is cu rent y implemented on an I M 360/95 equipped w'th 
four mega~yles of addressable ca·re memory. It requir,es 12.5 econds per time 
step for its computation en this machine, or 4 mil\"seconds per ceU of the grid. We 
have des" ned dat flaw maclf1n,e whl.ch ,can execute the computaticn 100 times 
faster or · t t e rate of 40 micraseconds per cell. 

Analysis of the comple e data flew program. reveai,s that the machine levet 
program wi I consist 10f abcut 13,000 instructions. If the data flow version i·s ta 
have a hundred fold performance lncrease over the 360/95 implementation, the 
,processor/memory interconn,ecticn networks must be able to perfcrm packet 
switch ng at I 75 MHz. and ,the instruction 1execu .ion delay should be no m0r1e than 
20 m·croseconds. These spe - s are quite readily achievable for e processor 
structures under discussion. implemented using conven iona! medium speed lcgic 
techno'logy. 

S v ral robl _ ms r,elat -d to he structure of t is machine a d the language 
it supports hev b n reveal by this study. he pipetina 0rgan1zaU0n af the 
program 1necess1tates speciat lnstructions in the da a flow pro,gram tor efficient 
execution of data strue ure operaUons. In additi0n1 a higher lev,e\ language which 
can be efficiently translated in o the machine level representation is necessary for 
the expressian and understanding of t e co.mputa ion. Swch a, anguage may be 
based on an extension of th lang,uage studie by Ke Weng. 

V. Tim R dy, awrence ivermore Labor.atory 

Pm oin 0 ta\k about a L-L a.pplication hat. presents some uniq e problems 
for a data flow machine, although I thirnk they're solvable. l'm somewhat optimisltc: 
about the ala flow machine because I'm co cer ed that there is 't m ch left in 
the way we~r going. After ccmpie ion of the Cray II and the ST AR 1 00C1 thats 
the end of th rope, and ha ,, only another facto.r of three. We still like t.o talk 
factors of five. 

I'm cone rned with a code, Grok,, that is 0,re oo plicat.ed t an Coronetj and 
has same strange mesh cpttmization procedures that allow it to ru pr bl ems that 
Coronet ca 't Eac p0in1t in the grid has a uniq e identifier and the neighborhood 
of each point changes from time step ta time step. Computing the zone mass and 
point. energy necess1 ates mappi g from point t.o zo e and zone tc poi t, which 
pres nts som F)Btial problems far he :atriucture a d1er cf a data fl -w computer. 
The tempera ure _pda es for this code do not t'lize data from a p evious time 
s ep as with the weslher prob\em; but rather. simuttanecus eomp0nenb. T , is 
should place unusual requiremen s an a, data flow ,machine since the machine may 
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need to do .many mem.ory opera Ions for only a few floating point cperations. 

Q,ne of the tragedi,es which has: cecurred in benchmarking macnines in the 
past has been to run the s}mplest mcdet as a benchmark and apply it without scme: 
of the bad conditions that arise in a code suctl as Grok, fer example, able lookup .. 
On the STAR. this cede w0uld do quite wel on rnost of the computation part. 
However, for operations a ch as these which are very scalar and very tocarzed1 

rm very ,canc,erned that they wan'l work. That' the same conc,ern I share for the 
data flow machine, that i has to not only do those operatior1s that are-weU suited 
fo.r the arch"tedure very well, but it can't be degraded too much fer inhere Uy 
scalar operations. I understa , d you can' run Fortran through a data flow machine 
and make ·t work, but there's a tr.adecff. 

I view the data flow machine as a way of a.chie¥ing speed thr01Jgh 
parallersm with slower components •. The Cra.y ma;hin.a is built with 50 na osecond 
.ECL mem ry, but we dent necessar'ly want to build a three million wcrd machine 
with this technology. We want to gel parallelism with slower, less power-hungry 
components, and that's, hopef lly, what the data f.low machine will offer s. 
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This, sum·m,er, we have been examining some cf the camputalicnal problems 
of LLL and how they might 'be represe,nted in da a flow fcrm anci executed on a 
data flow machine. As a fir$l step, we have looked at some of L\.:L"s programs and 
attempted lo translaie them Into data flaw like l,anguages. reaching a numb r of 
realizations tin the process. - -

Efficient trensiafon fram Fortran o data flaw would be very difficult. For 
example, a Fortre array could transiale into 0 e of thr,ee different thin1s in data 
flow. The t ree p()a&ibilliiUe·s are•: 

l. A sin le entity, such a when 1paulng a cl -ta flow dru,ctur _, as an 
argument; 

2. A set of ·dentleal elements upon which ide'ntical operations are performed 
in data flow as a set of parallel operations; and 

3. A sequence of values, corresponding to a stream in ,data fl,ow. 

Depend·ng on the a1go ithm and 1ntenUan, on might wanl any one cf th,ese three 
dif'feren,t thil)gs for a g1iv1en Fortran array represented in a data flow graph. 
Utilization of a high level da a flow language would allow the user ta more c1early 
specify h·s i.ntenUons, but ,a transtator probably could no do an effic~ent job. 

lin examining Ll!L''s programs, I found it necessary to translate them first f,rcm 
Fortran o A go and t en directly from Algal to a data. tl,ow representation. I found 
this rans atiion to dat~ flow very difficult, primarily due to the prob'lems of setting 
up ini,tia1 conditions, setting up the loops in he syst1em, and e .suring that a 
program would return ta its, i nir al s.ta·te upo completion. ln a medium-sized 
program, the data flow version h d approx·mat,ely _wice as many control operations 
as arUh_metic operations. In execut·cn, of s.uch a pro ram on a level1 2 machine, 
most of the i1ns ruction ce s of the actlve memory would be cccupied with rather 
unin.teres ing t ings. 

A high tevel language based on streams seems the most efficiei t manner to 
impleme t the type af numerical f nc:Uons of in erest here. A preliminary v,ersion 
of such la gu - h : turn d a t. to be very ·useful fc,r this and has a 
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II.. Airvind, University af Cailfornla - lrvin,e 

The language I □. under development at Irvine. is an expressicn-ori nted, block
etrucl ~ red language. A variabJe n IC always rep,re,sents a Hne in a data flow 
graph. never a memory eel. Every token in the language can represe-nt either a 
single value er a struct re. ,A stream is formed of a sequa ca of tokens, tc lowed 
by an end of-stream taken. 

Assignment in 10 compr ses naming the output link of an expression, nat 
ssignment of a value ta, a c . A b eek in1 th lang~age cons1st of a number af 

statements followed by a r ~urn instructio ,. No nam s wlthin the lack are 
accessible outside the block. Ordering of the statem nts in a lock is imma eriat1 

due to single assignment , ordering of operation is by names., he language al1>0 
incorpore es faci lties for loops, ,procedure dennition, abstract data types, and 
monitors. 

The power cf stream operations is exploit d in th , langua, e thrcu'gh use of 
three constructs~ each, !!!, a d ~- Th.e eaen construct allows the application of 
a proce ur to each element of a stream. Tne all o,perat,or a lows capabirties s ch 
as r,eturning a I the va ues from a loap to form a stream. The next operator 
permits the s I clicn in s q enee of the elements of a ,tr am. 

One of the goal of he anguage design effort was to make its structure as 
c,onventional as pos,sible. Anyone able l,0 write a progr_ m in Algol shou1d have na 
problem , s·ng ID. 

m. David Wise, Indiana n·versity 

Our project etarted c _ t with a concept of styUzed r c:ursion, b 1ieving in a 
style of programming best char c erized as pu e Lisp. We attemp ed tad velop a 
useful 5Ubset of pure Lisp into somethln _ that wcutd work an an 'terative machine. 
A key d' scovery of this effort was th fact that, c e can construct a data structure 
without completely specify' Us antenh. Exploit tion of this discovery 
tremendo sly alters the ord r of evaluation of programs, withou affecting meaning. 
Aiso. this opens up numera,us opportunities for paraUelism and translation to a 
data,-driven base (anguage. 

We characterize application pragrams as having environments that ar safe 
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and sid effect free. Single assignment is an example of a ianguage with this . 
characleri stic. We get ·· t thrc ugh function invocation and p aram,ete r binding. so the 
whoi,e .,ssue becomes one of binding. 

A suspension is a promis,e to deliver something at a at,er date. A sequentia, 
me or a, stream can be represented as a twc-c0mp0nent record consist'ng of a 
suspension of the current element and the remainder of the stream. Far examp1e, 
in our system a program to generate a list of aH the integers will run and return a 
box with two suspensions in it. Until that rtruc:ture is transmitted to :a devke 
whlch attemipts t.a print, that is a suffic:, enl answer to the program. It is the job ,c,f 
.a de•vice driver to pull output from the program and put t on the device. 
Traver:stng the data structure to print it causes the sus,pen.sicn to ba deUvered 
upon. and the valAJes appe.ar. 1f he structure i9 not used, it will remain suspended., 
At a system ievel, if nothing is: printed, notMng runs. 

We are current y ex.amming target machines for our ideas1 and da a flaw 
may very we I be the appropriate machine. Tne deve,opment cf a camp ii er is 
waiUn on choice of a target rnachlne. What we have developed is a language 
wh·ch has x,pr ssiveness that a\ ows us ta r,epresent algorithms in a recursive, 
refer,enlia.Hy transparent manner, free ot any hardware design. 

IV. Jack IJ nni:st MtT 

W hav been xamin!ng the inccrpcraUon of no determinacy thrcugh use 0f 
the nondelermi,nale merge cp,eral0r. This is required in such p,aces as the input 
modu e of rm airline reservarcn system. mer~ng the inputs into a singl,e s.tream 
and a lowing the main program to be determinate. Use of the merge operator has 
thereby allowed us to express an airUne reservation sy· tern for an arbi trary 
number of fllghts and an arbitrary numb er of as;ents 

The system interface con.si,sls of an input stream of request.s from aU the 
age n ts1 merged into a single streamJ, and ,an a t.put stre·am co sis i ng of a 
r:esponses which are distributed la the agents. The airline reserv;aticn system has 
as data specification of the set of a .. gents with which it commu,nlca.tes and al1s0 
the set of f 1ghts for which it ·s handling reservatlcns. There may be a arbitrary 
number of agents and an arbitrary .number of fUghts. This atrline reservation 
system is nondeterminate because transaction$ requesting data in auxiliary storage 
may require an arbitrary time to retur-n, ,and in order to make the system operate 
effectively, these transactions must be process d in a ncndet.erminate manner. 

Jnput requests are distributed to agent modules. These agent modu1es 
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distribute the requests tc, flight me ules accordin1 ta th flight specifics ion 1n 
each req , est. The merge cperato,r i9 U9&d for two purp,os s: · to merg the 
requests incident on a flig-:ht med _ e Into a sing1e stream of requests for tha f igh 
module and to merge the outputs of all. the fl"ght modules into a single str am 
which serves as the output of the system. The data base for the system amounts 
to the c:oUeetion of flight mod !es to which the re~ests are distributed. 

V. ,Paul Kosinski, IBM 

Programming in data f ow really doesn't ne d to be all that different from 
the programmln,g style one is used o,. I ha,ve deve oped a programmin anguage 
which is readily translated to data flow and the structure of which greatty 
resembles ,he str cture of conventional programming anguag&s. The syntax a d 
seman le base of my language i different from that of Arvind, b1.1t. other tr.an that, 
the two are v ry similar. 

Expresei,ons in , he language are very simHar to ordinary ma hematical 
expressions. The d"fference is that variab' es are more lik variables in 
mat:hemaUcs than in conYen ional programming -- they don"t correspond to cells. 
An ex.ampJe of h's diffierence is the idea of pdating an array. To maintain 
freedom from side effectst ,an update on an ar,ray generates a copy of he array 
with h designated el,emenl chang~d. However, h's doesn't n cessarily mean tha,t 
an implernentaUon need generate a copy. 

Definitions ·n the tanguage are very much as they are ·n mathematics. The 
order of efiniUons any aftec s und rslanding af the pr,o r, 'fflJ n t i s xecution. 
Condi,tionals are similar to ordinary condiUonals wrth th exceplicn that a variable 
appear'ng on cne branch must appear on all. 

he language departs sfghtly frorn conventlona\ languages in the design of 
its loop con st uct. A loop may hav,e multiple exits, containing a number cf return 
statements which break ft into sectlons. The stat ments in ach section are 
evaluated in their impb,ed order, at which time a decisicni whether ar not to retur 
is made. This replace· the while construe . and has been ahown to ·be e i,gbt y more 
g'eneral. 

Streams in the , ang age· ,are, only allowed in loops. Streams ar referenced 
via get and put operations on input and output streams, respec ively. Get stream 
yields a value from the inp tJ and g.1Jt Jtrearn pl,aces a va u on t e outp1Jt. Only 
one transactlo on each stream is al. owed in each iteration. witi\ the exc ption of 
condl i,onal expressions. One branch of a c0ndilional may or may not exec e a get 
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or put operaf on on th s.tr,ea·m refe:renced in the other b anch. 
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I. Klau& Berklingt GMO• St. Au ustinJ Germany 

One of the main s bjec s of computer architecture is the prcblem of getting 
opera, ors and opera·nds o,gether. There are fo r e sentia ly different methods of 
doing this: 

1. The convenlion,a'. method in which an operator has associated w· h it an 
address which designates the operand, and from which th - op rand · s 
fetched for exec:u ion; 

2. The data flow method in which an operand has lhe address cf the 
operator associated with it; 

3. The ring distribuUon method, as utilized by lambda calculus and isp; and 

4. The tree dlstribut on method, such as curry combinators and reduction 
languages. 

The best me·thcd rema ns to be determined. Al GMO, we are b.uUd·ng ·a 
reduction language machine which utffzes a ccmb nation o·f the third and fourth 
methods. 

II. BiU Ackerman. MIT 

The structure, handing facility under dev,elopment is d si ned to support 
arrays and records of the type that occur in c,onventional programming languages. 
Stiructures are mpl,emented as binary t,rees; that ls, as acyclic directed graphs in 
whi.ch each node is •eith r a leaf (etemen, ary value) or has two immediate 
subordinates. In the laUer case, the arcs ta he subordi1nates are labelled ·n a 
manner which- a aws the di rec ed path from any node to any dese _ ndant ta be 
specified by a campcund selector. 

The structur,e tiandling fae lity i.mplements two, data struc:ture operaUons .. 
select and append. Th se},ect operaUon takes as a gumant a ructure (binary 
tree) and a bit string and returns the substrue'tu e reached by following a path 
through the t re,e ir:idicated by the bit. string. The ret.urned value may be an 
elementary v,alue or a stru.cture. The append operation takes a structure, a bit • 
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string sel ctor, and ,a value. ·t returns a structure equiva\e -t to he ·npu 
etr ctur exc pt that the input valia is t,ccated at the posTon designated by the 
sele.ctor, replaci.n wh tever was previous y located ther·e. The append d va1ue 
may be a - eleme tary va ue or a structure·. 

A structure controner has been designed which efficiently implements 
creation, tr.ansformath:m,, relrievai, an,d deletion 0,per.a,Uons en data stru u s, using 

, packet memory system far the s orage of the structures. The packet. memory 
system wh·ch contains the da a structures has the property that it can be 
expanded both laterally and vertkally. That is, it can be realized as separate 
smaller u it5:1 each handling a subset of the t.0tai a dress space. Fur hermore, 
these units can b r alized a a hierarchy of units, wi,lh the higher lev,ei units 
containing only the mast active data. hese I t rel and ver icat expansions are the 
data fEo-w equivalent to the common technlques of interleavin and use of a cache. 
respectively. 

HI. Al Davis, BurrougA-& 

I'm int r sted in cl ss of mac hi in es which l calt re,cursi v,ely structured 
machi,nes. Some of the co ce•pts of such machines are x,posed very well in 
G uskov's l 974 IFIP paper. That is, there shauld be a particular level of machine 
language" there may be HmiHess lev,els of me.chine language, depe din."' on how 
much one wishes to pay. Th stor~ge system of s ch a machine is also recurs'ively 
structur and o•r ,anirzed. , ·e retursiv s,tructur permits en arbitrary n mber of 
mach·ne elements. 

If the machine· is opened at any level. the structure af the machine at that 
leve, is exactly the same as the st:r clure at any other level. It we consider the 
basic mod te of computin as a, prccessor and same store. In ,a recursive1 mac'Mne, 
lhe processor i co,mposed of a1ncther pr·ccessor/store combinatton· and so forth) 
until there~.s no more substructure. In the mul.ti-pracessor case,i a proce·ssor is 
defined as a group of processors and ,some store. 

Viewed i,n a nan-recursive fashion,. the ys em structure esembles a tree. 
The paths, b twesn the nades of the tree are queues, allowing stgnifcant pipelining 
in the system. Each module at a 0de1 of the tree ean do one ,of two things with a 
data f1l0w program that reaches it. First, it ca execute the pro1 am in place. This 
option is a way,s us,ed if the p ogram is sequential in na ure. If the program has 
some paraUelism and the mod te hae, some· pnysi,c I substructure upon which t.o 
exploit tha parallelism, the proceH is decomposed and s nt to these physkal 
resources. 
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The language of the machine is . data-driven , en uaga. One advantage of 
this is that, ,given a dat.a flow program, one can arbitrar.ily cut out pieces of the 
net, execute them elsewhere, and insert the res 1 s of th executed subnet on the 
lines where they would have been had the su.bnet not been removed. T,a exploit 
this daita-drlven language on the recursiv architecture, U is currently necessary 
to prep,rocess a data flow program, achieving a hishly modular farm which can be 
readi y decomposed by a proces or for xplaitation of it ccncurr ncy on th 
ava·lable resources. 

lV. Andy Boughl,on, MIT 

We, have be,e,n conducting exte,ns~ve studies ,on the compl xity and 
performance of inte.rconnection network designs for use in p cket commun~ca ion 
systems. This work ha5 cen ered aro · nd twc baste types of n twcrks and has 
examined the :structure of such networks a1cng wUh their associated complexity 
and delay. 

The research 0n1 n1 erconnection ne wok design has been concerned with 
the ,complex·ty required to c,ons ruct a network with a particular number of inputs 
and outputs ,and with a particular level of performance. Compl.xity ·s measured in 
terms of the number of modules required by the network. Performance rs 
composed of two eomponents, network throughp . t a d network dep h. Throughput 
is the rate at which thie network will aocept packets, whereas depth corresponds 
to the average time a pa,cket :spends in the network. 

Two basic n tworks, from which mos interco,nnection n tworks can be 
cons,tructed, nave been studled in detai. Thes are the concentration ne work, 
which has a greater n mber of inputs than autpu,ts, and connecticn n twork, which 
has the same number of inputs as out,pu s. We ave alsc studied twa specific 
varieUes of networks with application to the design ,of da a flew processors: 
arbitration networks and disfribution networks. An arbatratian network is an 
interconnection net.work with a, larger number of Inputs. than outputs, wheraas a 
distribution network is an interconneetton network w'th fewe inputs than outputs. 
We have developed constructions for arbi'tration and distribution networks wh'ch 
are simple compositions of concentraUcn and conRedion network$. Th results of 
these studi a have yieid d very promising thrau&hput and performance 
character,st.ics for these communication ,tructures. 
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V. MUo Er·eegovsc UCLA 

I wi h to dis,cuesi some 1re,ationshi,ps whi•ch ma,y affect efficiency of 
implementation of dait flow archi. ectures. Within a machine, there are thre,e main 
levels of representation: 

1. Data evel ar elements only; 

2:. Aigarithm level or operators; and 

a Program level o composition o·f operat,ors. 

We need to achl1eve a bett,ar underst nding af t I e relationships between 
lhes representaUon I vels; t at is. h0w the representation of the iowest lev,el of 
data affects the r1eprese taticn of progr,ams a d finally affects the architecture of 
systems. C earily, issues at the level of a1 gorithms and trea meri,t ,of numbers 
significantly affect such complexity hisues as speed and cost of implementa.tion. 

I have been, s·ludyin , n valuation method that transfers a given problem 
:into a system of linear equations h-at Is Uerativ1ely solv .d to any precision using a 
digit-by-digit left-to-right algorithm on functional u its which are no ,more complex 
than adders. Thi-s met od i simple and fast, ut1Uzi g a length-ind,epen.dent 
operation (add) with ,8 sing,!e digit bandwidth tc, ac:hi,eve a variable precision resu1t 
with simple control. Computation in the fixed-point domain can presenUy be do e 
for such problems a poly,nomials,, rational fu -clions, and certain arithm,eUc 
expre$sions. 

An o -nn a\gorlth.m allows the compu aticn of the j-th digit of t e result of 
the basi of (J + 3) digits of the operand The an-Ii e d,elay, ot is small, ,one for 
addition and four far dl:vision. This methcd .also has a simple single-digit bandwidth, 
utilizing primitive operators. Thie ccnfigur tio is more complex th.an the fl $l 
evaluation m elhodt but re qui res I ess ti me. 

Vt Gllen Miranker MIT 

The various s,chemes for procedure activ lion In a data flow processor 
exploit t echniques for dynamic renamrng af operafors of a program c, give distinc 
ide,ntity ta operations cccurr.ing ,n distinct procedure activati.ons. I, have been, 
invesU eti i h implem nta ion o,f lhe·se te.chni,qu,es through ·the1 addi Uon of 
rne mory rel oc ti on mechanisms to perfc rm the memory map,p in function. 
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here ar,e several1 ways of inv,0kin1 a prccedure In a data now language , hat 
are consistent with th dat,a1 {low model. The simples method is a single argument 
~ operator. The effect of aae!.:t P is Intuitive. When .a data value arrives on 
the inp1.i1.t arc of the oper.atcr. a ccpy of the da a flow graph for P is mada and the 
data value is placed on the input link of the w,aph of procedure P. As each Qt the 
output.s for this ,activation at P is producedJ it is passed from its output link to the 
corresponding output itu,k of the apply ,operator a d heric to its succ~sscr nodes. 
To be seman cally correct, P 1mus be properly term·natlng. Briefly, this means 
hat P produces, (after same t'nite ime) cne ou put value on each of ib output 

Unks and then undergoes a fin·te number of additional actor firi'ngs. 

This procedure mechanism la implemented in a data flow proceseor hrough 
addition af a relocation box. A r,eq,uest le, the rn mory for 10m node c of 
activation .r af procedure P causes retrl val of node a with all the names in .its 
destination fields changed to have suffix J. The r location box then passes the 
node back to the act've mamory. t is assumed that with the sol - exeeption c,f the 
relocaUo,n box and one special functional unit. ,no othe:r compone of the data ftow 
processor can dis i .gu',sh it a node name has a suffix appended or not. The 
,ess,ent'al idea is Iha a camp ete node name (i.e. a node name pl s an appended 
s1uffix) is treated eve·rywhere but the relocation bax and he distingu·shed 
functional unit as a s ngie entity -- a node designation. 

VU. Jeci Do nelley,, Lawre ce Li,vermore Laborat,o,ry 

The machine I envisio for the execution of data flow p:ro,grams is essentiaUy 
a huge programmable logic array. Each operator of a data Uow program is stored · 
in one cell of the array and connected to its in,p1.1t and autpu opera crs through 
links from the cell to its neighbc s. Each cell contai,ns a personality register wh·ch 
designates the funcUon to be performed by he cell. In this. fashion1 a data f ow 
pro.cram to be execu ed is simp y mapped onto the machi.ne. 

This system has the properUes that it can be built of entirely id ntical chips 
and of a logic family with the lcwest co·s.t * ,p0wer/gate. Wit 100-200 gates per 
ceH .and, 'f one ,could obtain In a 980 Ume frame, 200-4001< gates per chip, a 
machine wo Id have l K - 4K cells per chiip,1 or about 32 - 64 on an edge. A 
machine built of these chips should have a large ,configuration, i.e. lK - lOOK chips; 

or abo1ut 06 - l 08 ,c ~ lls. S ch a syst,em ah;,0 h s low e·ngineering costs and 
ei1nificant pot ntial for f ult tol rant implem 'nt tic 
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I. Susan Co ,ry ,(Susan Conry Meyer), Clarkson CcHege of Technology 

Through exarmnaUon of the characteristics of a data flow program and its 
map,pin,g onto a machin.e, which defines the implementatio:n of that particu\ar 
program, we ,can gain signifiea t information co . c,ernin,g the performance of the 
program on that machine,. The, b,ehavior of a data ·flow pr,og am can be 
characte.rized by a data depe ,dency gr,aph which expli,c:itly describes the pattern 
of data flio"W in the program and y· elds inf,ormaUon concerning the program 
behavior. 

Examini g performance, a • a program c,n the Mff machine, we note tha there 
i a fixed cQnstet at.on o,f funct onal urdts, each performing a spedalized tunclion. 
Each op r,ation ,can be done only on ,a functional unit of a ,speciific type. In addition 
to the da'ta dependencies of the program, one is a1so physicaUy constr.ain.ed by. the 
allocation of operations ta resources ln exec Ucn. By examining the maximum 
,ength path hrough a p,er· od of ,execution, summing he number of op11erattons 
jperformed and he, number of operand paths, and arming a rati.a 0f the numbe·r of 
operations in a periCJd with that sum one can bound the execution time. This form 
of ana1ysi,s also clearly demons, rates that when two ,opera,ticns· are in conflict, 
performance can be signUkanHy affected by the choices made. 

In the lrv~1ne machin~ one has a number of ge -era\-purpose uni ts, and one 
does not assi.gn functions ta any one unit. The perfc,rmance results ach' ev,ed from 
this sort of analys's of the Irvine mach'ne are not fundamentally diffe-rent from 
those developed fer he Mt ma,c ine, performance of he Irvine machine appears 
to be basically equal to the best that ,can be achieved if one has functicna\ units o·f 
lhe right number and type1 on th · MIT machine. 

II. Bob Thomas, University o·f C.a!i f,g rni a , rvi ne 

The simu,1ation facH'ty at Irvine has been r nning fer about a year, pr'.mari'ly 
since the deve opment of the U-interpreter. The simulatcir accepts as input an 
encoded form of data flow ,graph and yields the result of th,e sp,eciti ed 
campula ~on and an ans .yeis of the r source utilization in terms of processors, bus 
utmzaiion. and t' me. 

We ve examined, a n : mber of algorithm~ pr'marily mat j)( m I ipl'.caUon1 
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quicksort, and the Gaus-Seidel simultaneous linear eq atton apprcxtma ion. From 
simiLJlation cf these computations we have m,easured the numb-er of processors 
allocated and the number of pracesa:ors xec ting at any time, the1 number of 
tokens present on the b s s ruct1 re, ,and th _ xperimental time distribu ien for 
pr-ncessor a,,d token w.aiUn,g time. 

The res Its of the elmLJlation studles indicate that, time is linear with the 
mean communicaUcn delay a d mean exec_:t'on tim,et independent of the tim _ 
distribution. With low variance fn the mean communication delay and mean 
execution timet the cd ical path length varies Ii ·1e with relative c ang s in hese 
values. Alsot t a con ricution of the mea delay and mean exec tlon time tc th 
total resources consume are almost. additive. Final y, variance in the mean delay 
and execution time ha$ an adverse effect on time and re-so rces. However, i may 

, be possible to minimlze this effect by appropria 1e sched ling. 

Ill. Steve Landry; University af Scuthw,estern le lsiana 

Our s m latlc,n work is intended to aid · he ·st dy of ,al,gorithms at the data 
flow graph level. S ch a facinty could be ilize to v li,date. algcrit ms tha,t are 
specified in data f.low as we a ta study their behav or a far a parallelism is 
concerned. 

The ba$iC strucwre of he ,data flow ·simulat,or consists of three majcr parts. 
The translation phase performs syn ax and semantic check a d bu Ids an ~nternal 
rep•resentaticn of the dat.a flow program. The in1terpret r phase performs the 
stepwise realization ,of the data Uow machlne exec:utio as well as provides the 
basic probing and debugging interface he terminat',on phase 0ptiona y provides 
measurement res Its and d mping capabilitie based on user specified reque ts. 

Twc ser int,erfaces are s~port,ed by the s·mulator. A grap ics interface 
on a GT40 allows the 1Jser to canstr ct and alter program defnitia s- and to trac · 
the flow of tokens during simulatlan. The other Interface utilizes nonpracedural1 

high evel, an age to describe data flow pro,gra · s and a so provides in eractive 
monltoring and debugg· g capabilit·,es. 

Al of the simulator (with the exception af he GT40 support code) is 
w1ritten in P / . User supplied nods ealizaticn prcced res may be written in a 
lang age of the user's cho·ce sine they ar viewed by the simu ator simply as 
caUable rou i es. The desi~ a-d coding far a firs version of the simula or has 
been complete~ and we, are currently in the debu~ng and tes 'ng phase. 
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IV. Arthur Oldehoeft and Roy ·Zingg, Iowa State, Univer ity 

The simulator at lowa Stat,e Univ,ers1ty accepts as Input a data flow graph in 
an e.ncc-ded form. The simulator interprets the program gr.ap1',1 coltecttng s alistics 
at each step, wMch are then summarized and prin ed. We have made no attempt 
ta design hardware support ,or to define· a data now user language. 

Measurements rom the simulator were obtained white executing various 
program graphs and depend highly on system parameters which define the number 
and execution U me Cl f funcUona\ uni ts. The primary perf0rmanee measw res utilized 
in the execution o·f actual data flaw programs were he speedup1 defined as the 
ti.me to execute a program graph sequentially divided by the time to exe.c:ute the 
graph in paralle, a d the maximum and average reso1.1rce utilization. The simulaUon 
resutts for programs which had modest resource requ· remenls indicate that 
significant speedups were achieved even with unoptimized data flew programs. 

V. Randy Bryant, Mff 

I have investigated the possibmty cf' ,stmulating a dafa flow computer an a 
di stribu.ted computer system, for example a network of mlcro,processors. By 
exploiting the concurrency and modul.arlty cf a data flow computer, such a 
simulation could also be highly cone urrent and mcdul ar. 

Bes·des modeling the fum::tio al behavior of the ,· yistemt a proper stmula,tion 
must a so model its time behavl,cr. To avoid placing real-time constraints on the 
s~mulation processes, a time-independent algcrithm for simulating the time behavior 
i9 requtred. Furthermore, to avcid the need for a high-speed central controller for 
the s·mulati01\ all thes•e time simulation algorithms must be decentralized1 requiring 
special contr,ol operations to prevent the simulaUon frcm deadlocking and to ,ens1.1re 
its proper termination. 

I have developed algorithms for ccntrcllin,g ;uc:h a simulati en and have 
established the',r cor'rectness. These algorithms allow• a number of computations to 
proceed at different locations conc:urren lyt where each ccmpulation has only a 
Ii mi led amount of tnf ormati on about the state of the rest of the sys em. As i$ 
typical of many parallel ccmputa,ticne, it is diUicult to prav,e the correc ness of 
these algori lhmst ye.t proofs of corroclness are almost imperatl ve,, considering the 
many potential farms of incorrect b havior. Fortunately, sirice a simwla lcn need 
only model ne behavior of some other s,ystem1 c,ne need 0nty prove hat at no 
p.0int will the values produced by the simulation diverge from those ~,reduced by 
the s1mulatea syst.em, nor will the simulation deadlock er fail to terminate. Thus, 
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rather than f,acing the mor,e ,ceneral issue of pcravin1 the ,correctness of parallel 
computabone, wee able to develop apacial zed techniques for this p, rticul,ar 
problef'l"li. 



Session 6. lmplementatia 
Chairperscn. - ob Jurnp 

I. C~ement Leun , M T 

ss 

I'm currenUy examining· the problem of fau t to erance in th,e context of 
packet communication systems. The general fieat. re of a packe commu.nic.ati an 
system is hat it is composed of a number cf med les that comm nicate by sending 
packe ·s to each other. Eacn module of such a system can be decomposed intc a 
subsystem which again is struetur,ed as a packet communication syst,em. Specific 
packet communication :systems which have been prcposed, s ch as the data flow 
computer and the packet memory sy·st,emt exhibit a , uge degree of modularity, 
lending thems lves to the 1ntrcdu.ctl,cn ,of reconUguratton capab' i\ies and ,grac,eful 
degradation. 

Two approaches to fault tolerance fit wen .in the structure af a packet 
communica la system. The first is that of static redundancy, er fault masktn,g. 
Such techniques include coding redundancy1, the use of error correcting ccdes1 
modular redundaney, and limed redundancy. The ,ot er approach to fault tolerance 
is that of fa . It de·tection a d dia,gno~is, foll,owed by epair and/ or reconfiguration. 
Due lo the high degree of parallelism in the processor~ it seems desirable to 
iso ate a faul when it occurs and before · s effects propaga· ,e through the system. 
Howev·er, the appli,cation of these techniques t,o packet communication systems 
involves the deve opment of asynchronous voting schemes:, which are c1.1rrently 
unknown,. and t e study of such techniques i$ one c,f the primary targe:ts of this 
research. 

II. Bob Meyer, Clarkson Colle,::e of Technology 

We did not have a·s an o iginal objective the de.sign of a machir1e that was 
yet another altema ive data flow a chltecture. Rather,, we were motivated by the 
increaS:in;g availab', i y of processors tor use in system.a today and set out to study 
the ,nterco . nee ion of these pr,ccess,ors i1nto a ·syst,em. We view data fl ow as a 
natural! way of so •v1ng the contro1 problems hat e:><is, in such a multi-processor 
distributed system. 

The sys em we developed is composed ,of a collection of modules. An 
inter'face modul translateis a data flow program i to a net descrlp,tio,n which is 
executed on the remainder of the machi,ne. A schedu er module holds the c0mplete 
program. aU,owing the processors to act as a cache. Whe an ins ruction receives 
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eH its operands, it. Is, assigned to a computati.an ctivation praceesor {CAP) mo ule. 
Each CAP mo ule execu es the instruction contaiiin d in an arriving p c: end 
produces a res It which Is returned lo lh,e scheduler mcdul , where it Is 
dislribut d o he necessary es i ation instruc ions. 

The interconnection p.a hs of the m chine a d the al ocation and collect· en 
merms are sequential in nat re. H nc , the ystem i a in n d o ex loit 
parallelism at a high eve, tha ·s in terms af functional execution, rather t an t 
the lower levels af gate .. Jev I design. 

Ill. Jean-C1 a de Syr 1 CE 7 - ToulcuseJ France 

Our high level 1,anguage is very imilar o conventional p .ro,gramming 
languages. An obJect in the language has attdbutes cc aisting of a name.a defined 
operations, and a set of environmental ru ,es whic d fine how and whe· one can 
operat e on the object. The seq e.nc,tng rules of th language ensure tha a 
sta,tement is "ready• as soon as i ts operands ave b n produced d can b 
exec ted at any ater tim . An expand s atemeni r,epresente para elism i the 
same f,ashicm as a "pa allel for" statement and is an ext~nsicn of array opera ors. 
The command aUows programmer control over t e amount of parallel'sm iXplo'ted 
in the enclosed s a ements. 

W ave developed 81 campUer and hav ,a_ d compi ,ed approximate y fifty 
programs written in the · a guage. These pro.grams have been chose from various 
app icaUcn areas such a·s · me•rical ,evaluatlcn, sig al processing, business1 ·and 
radar processing. In develapin these pro,grams, we hav founc th languag - . sy 
to program in and easy _o, each a s udents. 

Our machine explo· s parallelism between jobs, tasks i,n a job instrucUcns in 
a ta,sk. and within an Instr ction (p,ipelining). The system, is a m · ltiprocessor in 
which each component processor is, capable of exploiting t' e ta-driven 
para lelism 10f a given ta$k. A task in the sys em i·s assigned by a task superv!sor 
to an idle processor. When1 task ou puts are computed, the task supervisc~tlores 
the data prcduced by the task d checks for any new tasks to be xecute · • 

Within each processor, ready instructions ru independently and free from 
hardware constraints. A processcr consists of a control subsystem which maintains 
the status of each instructio , a memory subsystem which stores the act1,,1al 
i,n·structicn and data. and ,a execuUcn, subsystem which consi ts c,f a number of 
elementary pr<M:essors for the ex,ecution of inslructicns. 
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Ac ive l,nst ucllon, are found hrcugh eKem1 allo of status tags conta,ined in 
th control subsystem. Upon being activated.. an instrucUon i fe ched from the 
memory subsystem and assig ed to an elementary pr,ocessor. T e ,elementary 
processor r quests the n c:essary ,operands f ,om the memory subsyste , and, upon 
their receipt. executes the instruction, retu ni g any result to the m,emory 
subsystem. The, processor then req-uests the c · ntral subsystem to appropria,tely 
set the lag, ,of he desUnatio,n ·n trudions and becomes free to accept a new 
instruction. 

We have deve 'oped a fully pa,rameterized simu\ator and have used it ta 
si 1mulale the· execuron of nu erous ,programs and applicatia s an a processor with 
our structure. Our initial simulation work evaluated the expand sta ement. We 
discoV"ered tha,t there is an optimal degree of expansion in the machine, equal to 
approximately the qu re root of the nJ.Jmber of data processors. This is caused 
by a trade-off between the ov,erhead involved i processing the latement versus 
the paraUelism achieved. We have obta'ne . very :promisin, result for executi,on 
tim and ,paraUeHsm chievab e in numerous ap,p1icatians. 

IV. Kalsu Amikura, Mff 

I have investi ·at d the lmp,le ·enta io of p0rti0n a,f the M.I .. da a ·f ow 
computer. · o exa"T?ine the me hcds and technologies of such an implemen.t.at.ion,, 
the study has concentrated on the most complex part of the processor, the 
instruction cell bock. The cell block under sb.tdy is the basic building 'blcck of the 
memory of th computer a · d Is ccmpos. d of 16 di ti net 'in,struttion cellsi each of 
which ho1ds ,one instru,ctia , of a data now progra · in execu ion on the processcr. 

An instruction ceU performs a n mber, af ccmplex operations, i eluding the 
reception of p ck ts, he loading ,of a;perands, varia s managerial operaticns to 
update t e status of .he ce ], the examination of en;abling condi ions, and the 
transmission of it contents tc a processing n· . n additiof!, each cell must contain, 

mechan sm far initial loading of the program. a facility to d1i.1m,p its the contenh1 
and an error m chanism for handling rece-ived pack,ets th t do not have the 
required format. 

The b avicr of a cell block was first fgrmally described in an architecture 
descr'ptia i n a -e. This description was t en ut Uzed ta gene: ate data flow 
interccnnection graphs and a Pa re et control raph of the system. rom these, 
graphs1 the design was gen rated from a top down dec0mpos1tion o,f the 
specificatigns, u 'Uzing conv · nt1onat componen s a d asynchroncus communica .ion 
di6ciplines for both extar at and int,ernal commwnication. 



V. Sunas Patil, niversity of Utah 

I have also bee.n s _dying the realiza icn of the instruction cell block of the 
M.I.T. macninef but by an en .irely different method. The abject of my examination 
h;. to make use of a kind of pr,ogrammable ogic array to do the implemeii af on. 

The, I cgic array implements control, struct res which allow sequen,ci ng of 
operations1 condlt' l anal branching, subrouUne calls1 spl'Uing of a precess into 
parallel precesses, merging of p.arallel processes, and :synchra.nizatlon of precesses. 
The program for an array is specified ln erms of a Petri net. Programming the 
array involves se'lecting ,appro~riata configura ions f.or the ce ls in the body c1 the 
array and at the ed'ge of the array to reflect the Petri net specification for the 
desired function. 

From the studies, I am quite hopeful thal the ent.ir instruction cell block can 
be realized on wa ch'ps wi· h this technique. The programmable logic array chip 
wm pedcrm the necessary pr,ocessing functions, an a, memcry ciitp will main a!.n 
the necessary dafa and state "nformation. The exact lmplemen ation of the cell 
block wiU, of course, depend, on the resolution of the spac,e-speed lradeoffs. 
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Session 7. S'p cif'cation and Veriticatio,n 
Cha'rperson, Susan Canry (Susan Cerny ,Meyer) 

I. Clernenl Leun& MIT 

The archit c:lur description language· (ADJ undi r· devetopment is ,nt,ended 
to se-rve as a formal la guage for the ·speci fication of packe communicaition 
$ystems,. This 1languaga :should p ovide a medt m fer syst m docu entation and 
h man communicatian a fcrmslism for design verificatio , and a langua e tnter'face 
to a desgn automaton and simulation facility. A ,complements xisting computer 
hardware descrip ion languages in that is. is des.ig ad for· architecture description 
at the a.lg-orithm·c behavio /system strudure leve I no,t fer st.r.aighUorward 
translation i , to exieting componen technology. The novel features of AO include 
a type facUity for defining sys em structure·, the adoption of data flew as a basis 
for its operatlona semantics, sfa e variab!,es for l,mphtmenting functiions en data 
streams1, and monitors for sharin d ta objects. 

The basic extua e1eme t of the AOL is a m_du e, which is t e description 
of an ar,chitectural unit. An A L madu e has one cf two forms: t is either· a 
structural description or a behavi,oral des-eriptlon of an architectur· I unit. A 
tructural descript' on of a u it is approp iate if the unit is conceiv,ed as an 

interconnection of impler units as in the case cf a data lcw processor conceived 
as a whole. Be avioral descriptions are required fer modules which by themselves 
constitute comp_ete descriptions of the corr,espo ding architec ural units. 

The behavior of a modul is synthesized by c-o pcsin xpressio s. The 
emant~cs of exp essian evaluation is based on the pr· ciple oi data flow. Each 

eva uaro of a expre sion is in ated as sea , as a I ew set of operands is 
ava·lable and he results of the previous ev.alua.tion are no 'lo ger needed Many 
expressions can thus be viewed as .uncticnal modules wit well-defined in ut and 
oulp t interfaces. The func ·anal capability af these elementary expressions is 
expanded in two step . The concept of a mod e state which ca be updated is 
incorporated to s!l,ow definition of functions on data streams. N xt a simplified 
version of Hoare's mcnitors is added) introducing non--determ!nism vla s ared state 
var'ab1es. ne _xpans'on is carefully structured so tha,t ex.pr ssion evaluati -o,n ca 
s ii be governed by the flow of cat~. although x,p!ic:it sign am ng is required to 
evah;iate expr ssic s me ely for their side-effects. 
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H. ,David Ellis, MIT 

In a packet communication system,, there exists nc cer1tra!i:z:ed facility tor 
coordinaH g he action of different moclul Si as a resutt. data precessing and 
communica icn: within the elements c0mprisin1g such a system. are async:hironcus and 
concurre t. All the modules 'n a packet system share the same basic princip.le •Of 
opera ti on: a module receives packet$ on i s inpu . channels, processes them 
internally. and generates packets to be ptaced on its output channels. There may 
be an arbitrary finite, delay betw,een the time a module receives a packet and the 
time the module enerat,es ,and se ds out its response to that packaL Th fact 
that packet modules and systems must be able to tolerat,e such delays is an 
e5sent'al consequence of their asynchronous operation. The above pr·ncip1es · of 
operatio,n apply· to an entire packet system, j s as they apply to the individual 
modules t at form that. system. Packet system are ,data-driven in the sense that 
the progress of a computation ln a packet system is delerm·ned by th passage af 
packets thro g,h the system. 

A crucial ;p.ra,perty of hes,e sys,tems is that they act nondeterm'nately; that 
ie, a module in such a sy!{item is free to choose among any of a set of equally valid 
alternative responses to its given i.nput. The admissibiuty of nand terminate 
behavior supports the design of pack.et systems wMch take advan age a their 
asynchironous operation 'n achievi,n more arncien use af their computationa 
resources, than conventional sys ems. 

The notion of correc ness for packet systems bears a close, relationship to 
the manner in which the iss es of sys,tem structurln,g and composition are treated 
within the framework af packet commu icetian :architecture. A, a veri intuitiv 
Jevel, a, system ! carrecl if it. satistiies certain ccndUio . s laid o t for it in advance. 
For packet sys e:m~ these ccnditions tak,e the form of behavicrai specifications. 
More, p,recf,se1y, the behavior is a relationship between inputs rece·ved a · outputs 
genera e in response to these inputs. A packet system, the efore, is correct if 
this rela ion sati$.fies a giiven s,et of specifications. 

An approach t,o prov·ng ,correc ness of the:s · systems hes been developed 
and comple e prcots have been1 worked out for several example sys ems. This 
methcdolcgy for describing he behavior of packet s,ystem not only makes f0rmal 
verification possible, b ,t also has proven a1 sitnificant aid to nderstanding the 
operation of such asyiichrcmo s, nondetermina, e sys.tem.s. 
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II . [lean Brock, MIT 

I'm eurrentty studying the equtvalence of lwa semantic medals cf data flew 
computaU0n. The first sem ntic m,ode\ ,provides t:he operational sema,ntic:s of a 
d:ata naw graph. This model corresponds tntuitively t.o execution of the graph on a 
data flow machine. The other model provides the denotational semantics ,of a data 
How program. These semantics are very simnar ta those· given tor conventional 
,pro1ramm· ng language·s. 

The· two objectives of this research are to: 

1. Provide ha data f ow ~rogrammer with a conventicnal semantic basis with 
wh·ch to reason about daita flew programs; and 

2. To, prove U\al thls, semanUc basis faithfully reflects data flow progr.am 
execution. 

WhUe this research hais to date been concerned with a deter min.ate .anguage, 
further research wl I inve tlgate the impHcaUons. of n,o -determ'nale language 
features. 

Cata flow programming languages are especia\ly amenab\e to matnematization 
of their semantics in the slyl of Scott and Strachey. That i J a data flow operator 
can readily be viewed as a function from input data s.equences tc output data 
sequences. However~ co,ping with nondetermina e prcgrams is a more chaUenging 
problem, as the functicn,s must be from sets cf seq1Jences to sets of sequences, 
and finding a part' a1 order In which tne functions are ,continuous is difficult. 

It i :pcssibl lo obtain a strai.~hlforward pa tial c•rder by ccnsiderlng sets of 
tagg d sequences of data. Each data sequence in the set has associated with it 
zero or m0re ags, each 0 w 1th identifies the sequence of arbitrary decisions 
made by a ndeterminate eperator which c0ntrib1.f ,ed to the exist ru::e of that 
data seque ce. wo eets are compared by matching up the tap on each element 
of · he Ur t set wltn the correspanding tags on the elements cf the second set. 
Only then ere he data sequences compared by the prefix crderin.g. This relation 
may be shown to be a tr e, partial ordering of sets of tagged sequences. 

□ala flaw programming Ieng a1es have c1ean r mathemalica\ semantics than 
cirdinary pro;rammina lanaua1ea. Bec.eute they are baslcaUy applicative in nature 
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and local In effect, the f , nct',ons act solely on the data w ha t states, 
cont.im.1atio s, or ether complications. The tags associated wnn the data sequences 
do ccmpl'cale matters of co rse, but this complexity is for th purpose of dea ing 
with nonde erm,inacy, which is· not addre sed by tat,e·s, conti _ ticns, tc. 
Furtherm0re, • he tags. serve, double, duty. First, they allow the constr ction of a 
straightforward partial order. s,eeond, they are ecessary to the speciflc:atio,n of 
how operators tunctionaUy transform ~nput set·s of sequences to 0utp se s of 
seq ences. H nee. , hey are less, onerous than they might e m at first 
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