
MIT/LCS/'IM- 97

CCMl?lYrABILITY AND CCMPLEI'ENESS

IN I.ffiICS OF PRCGRAMS

David Harel

Albert R. Meyer

Vaughan R. Pratt

February 1978

Computability and Completeness in Logics of Programs

D. Hare!, A. R. Meyer and V. R. Pratt
Massachusetts Institute of Technology

Cambridge, Mass. 02139
June 17, 1977

AbstrJct

· Dynamic logic is a generaliiation of first order logic in which
quantifiers of the form "for all X"." are replaced by phrases of the form
"af tN executing program ct-"· This logic subsumes most existing
first - order logics of programs that manipulate their environment, including
Floyd's and Hoare's logics of partial correctness and Manna and Waldinger's
logic of total correctness, yet is more closely related todassical
first-order logic than any other proposed logic of programs~ We consider
two issues: how hard is the validity problem for the formulae or dynamic
logic, and how might one axiomatize dynamic logic? We give bounds on the

validity problem for some special cases, including a nf- completeness

rw;ult for the partial correctness theories or uninterpreted flowchart

prognms and a nf-completeness result for unrestricted dynamic logic. We

also demonstrate the completeness of an axiomatization of dynamic logic
relative to arithmetic. ·

Key words: Arithmetic hierarchy

Dynamic logic

R.e . programs

Regular programs

Relative completeness

Validity problem

Computability and Completeness in Logics of Programs

D. Hare!, A. R. Meyer and V. R. Pratt
Massachusetts Institute of Technology

Cambridge, Mass. 02139

Int reduction

In this paper we continue the development of a proof theory and
semantics of a formal logical language for making assertions about
programs. This language, which was introduced in (13], will be called
"dynamic logic" in this paper. It is based on the language of first order
logic, with the quantifier "for all X ... " generalized to "after executing
the program a " Just as "for all X ... " is abbreviated to "VX ... ," so
shall we abbreviate."after executing a ... " to "[al..". Just as JX is the
dual of VX, so is <a> the dual of [a], and indeed <a>P is equivalent to
,[aJ,P. Informally, the truth of [a]P in a state (interpretation) 9
amounts to the claim that, if a is started in state 9, P will be true if
and when a halts, no matter which state a halted in (a may be
non-deterministic). Likewise, the truth of <a>P in a state 9 affirms that,
starting from state 9, some computation of a leads to a state in which Pis
t ruf>. A formal definition of [a] and <a> is outlined below in terms of the
not ion of a modality in formal logic. Using this language, VX could
equivalently be expressed as [X:=?J where X:=? is a nondeterministic
program which sets X to a random individual. This is the sense in which
[a] generalizes ordinary logical quantification. (Our notation is
motivated by the box and diamond notations of modal logic [10]; in
conversation we have found it convenient to pronounce [a] as "box a" and
<a> as "diamond a.")

Many of the basic assertions one might like to make about programs
are directly expressible as formulae involving [a] and <a>. For example,
to assert that program a never halts on any input, one can write [a]false
(or [a]X#X). Literally, this asserts that false holds in any final state
rNch<:>d by a, which of course is only possible if a never reaches such a
final state. Dually, to assert that program a halts on all inputs, one
nf>f>d only write <a>true. Hoare's partial correctness assertion P{a}Q [8]

may be expressed as t=(P=>[a]Q), which suggests the analogous t=(P=><a>Q) for a
g~nNal termination assertion. Two. programs each using a single variable
for output (respectively Y and Z) may be asserted to be equivalent with
VX((<a>Y=X)=(<tJ>Z=X)), where X does not appear in a or fl. This asserts
t Int if X is a possible output of the program a, then Xis also a possible
output value of tJ, and conversely. We may also assert that a is
d<>t<:>rminate by saying that the value it yields in some computation is the
value it yields in every computation, using VX(<a>Y=X::, [aJY=X).

2

For convenience we ref er to classical first-order logic as
first-order logic. By loo~free logic we mean first-order logic augmented
with modalities restricted to programs in the closure, under union and
composition, of tests and assignments. By regular logic we mean loop- free
logic together with transitive closure, denoted by*· By dynamic logic we
permit [a] and <a> modalities where a may be any r.e. program (defined
below).

The first part of the paper deals with the problem of how hard it
is to decide validity of formulae of dynamic logic. Validity is a
recursively enumerable predicate on formulae of first-order logic. It was
shown in [13] that validity is no harder for loop-free logic than for
first -order logic, but harder for regular logic. In this paper we further
wid('n this gap between loop-free and regular logic; in particular, we
st renr,lhen an incompleteness result obtained in (13] for the partial
corrpctness theory of a trivial one- loop program with one instruction in
its body. On the other hand, we show that at least for partial correctness
ass('rtions (formulae p:::,[a]Q for first-order P,Q), the validity problem is
no h;irder for dynamic logic than it is for regular logic; thus if one
considers enriching one's programming language with progressively more
powc>rf ul control structures, the only change in the difficulty of the
validity problem for partial correctness comes at the point where loops_are
introduced.

. The results of the second part of the paper strike a more positive
note by generalizing a relative completeness theorem of Cook [4]. We show
that an economical set of Hoare- like axioms (first described in [13]),

t;}kf.n together with those formulae of logic that are valid in the "natural
number universe," form a complete set of axioms for the formulae of regular
logic valid in this universe.

D_vn<1mic logic

To keep this paper self-contained, we now give a brief account of
dynamic logic as developed in [13]. The central concept here is the
symbol. We envisage four kinds of symbols: function symbols,
pr<'dicJte symbols, symbols called logical connectives, and symbols called
mod~lities, all of various arities i O except that modalities are required
to be> unary. Modalities fall into two classes, "boxes" and "diamonds;" the
distinction, disc·ussed informally above, is explained formally in the
paragraph below on expressions. We refer to a set of such symbols as a
lanr,uage; logicians may pref er the term "similarity type." Although we do
not have any particular set of symbols in mind here, the reader will not go
far astray if he assumes that the symbol set is fixed and consists of a
countable supply of function and predicate symbols of each arity (including
such standard symbols as+, x, >,and=), all standard unary and binary

3

bool~an logical connectives, and whatever modalities we permit explicitly
in th<' sequel.

The four concepts dependent on the concept of symbol are state,
univNse, expression, and evaluation.

A state (interpretation, world, environment) of a language specifies a
non-·<'mpty domain D (carrier, underlying set) and assigns a value to every
symbol in the language except the modalities; it assigns as values k-ary
functions on D to k-ary function symbols, k-ary predicates on D to k-ary
pr<'dicate symbols, and k-ary boolean functions to k-ary logical
conn<'ctives. All logical connectives rec;eive their standard values, as
doE>s <'quality.

A universe (Kripke structure [10]) specifies a set U of states
h;iving a common domain D, subject to the foregoing constraint that= and
all logical connectives have their standard values. A universe assigns to
<'Vny modality in the language a value which is a binary relation on U.
(NotE> that modalities differ from the other symbols in that their values
~r<' assigned per universe rather than per state.) A binary relation a on a
univNse U determines the net behavior of a (nondeterministic) program,
i.e. a multi-valued function from start states to final states. For our
purposE>s it is appropriate to regard programs as being such binary
re>lations [1]. We consider only modalities whose value is "standard", in
the SC'nse that for each modality considered explicitly or implicitly in
this papE>r and for each universe we have in mind a specific value for that
modality in that universe. We shall write [a] (resp.<«>) to denote a box
(rE>sp. dia!11ond) modality whose value in the universe is determined by a,
whE>rE> a is a syntactic object such as the deterministic assignment
"X:= X + l ", the non-deterministic assignment "X:=?", or the test "X>O?".
Inf o_rmally, the test P? in the universe U is the restriction or the
idE>ntity relation on U to those states of U that satisfy P, while the
assir,nment X:=T in universe U is the. function (i.e. deterministic relation)
that maps stat.e 9 of U to a state differing from 9 only in the value it
assigns to the zeroary function symbol X; this value is that of the term T
in 9. The equation (T) (resp. (A)) of [13] gives the precise rule for
dC'tE>rmining the binary relation from the test (resp. assignment) and the
univNse. While we do not explicitly consider array assignment in this
papN, the results of (13] indicate that none of the results or this paper

. depend on whether array assignments are permitted.

An expression over a language L consists of an ordered pair whose
first component (its operator) is a k-ary symbol of Land whose second
componE>nt (its operand) is a k-tuple consisting of certain expressions
(ollrd the arguments of the expression). (This is equivalent to the
d('fini I ion givE>n in [13] in terms of trees.) The simplest expressions have
:, fl ary operator and the (unique) 0- tuple for an operand. Expressions are

4

cb1ssified according to their operators as either terms (if the operator is
a function symbol) or formulae (the rest). Formulae with predicate-symbol
opNators are called atomic while formulae with modal operators are called
modal. The arguments of function and predicate symbols must be terms;
HgumC'nts of modal symbols and logical connectives must be formul~e. These
rf'marks suffice to characterize the expressions of dynamic logic.

Like symbols, expressions are assigned values by states; the values
of tC'rms are individuals in D and the values of formulae are truth values.
ExprPssions other than modal formulae are assigned values, or evaluated, by .
th<> ~tandard Tarskian method [15]: the value in state 9 of an expression is
the result of applying the value in 9 of the operator to the values in 9 of
the arguments. Given a univ·erse U (which assigns a value to a) and a state
9 in· U, the value in 9 of the modal formula [a]P is true when Pis true in
f'VNY 8 of u satisfying 9aa, and false otherwise. The value of <a>P in 9
is true when P is true in some g of U satisfying 9ag, and false otherwise.

Our previous remarks about first-order q.uantifiers can now be
f orm.:ilized as follows. Define a k-ary function (resp. predicate) symbol S
to bf> uninterpreted in U if for every k-ary function (resp. predicate) Von
D and for every state 9 of U, there is a state 9' in U such that 9' is
identical to 9 except that 9' assigns the value V to S. Let X be a zeroary
function symbol uninterpreted in U and let X:=? denote that binary relation
on LI that relates pairs of states differing at most in their value of X.
(This is an equivalence relation. As we noted, this program may be
rf>gardf>d as the non-deterministic assignment statement that assigns an
arbitrary element of the domain D to X; the? can be taken in the spirit of
A PL's symbol for a random number.) Then it should be evident that w_e may
take V X to be the modality [X:=?J and 3X to be <X:=?>.

l"n [13] attention was focused on loop-free and regular programs.
In the first part of this paper, on computability, we shall consider an
even larger class of programs called r.e. programs. An execution sequence
is a string over an alphabet whose elements denote tests and assignments of
the kind considered in [13]. An execution sequence denotes the composition
of the binary relations on states denoted by successive elements of the
seque>nce. A set of execution sequences-denotes the union of the
denotations of the elements of the set. Then the above class of regular
programs is just the class of programs denoted by regular sets (in the
sense of automata theory) of execution sequences. The r.e. programs are
precisely those denoted by recursively enumerable execution sequence sets.
(Note that execution sequence sets are precisely the level (ii) programs of
section 3.1 of [131)

The only modalities we shall consider in this paper are first-order
quantifiers and program modalities (defined by execution sequence sets,
excluding the instruction X:=?).

5

We classify formulae of dynamic logic into four successively larger
categories according to the kinds of program modalities which appear:

first-order
loop-free
regular
dynamic

no program modalities
loop-free program modalities permitted

regular program modalities permitted
r.e. program modalities permitted

We independently classify formulae according to the kinds of
non-zeroary predicate and function symbols which appear:

arithmetic only +,x,=
logic any except +,x
augmE>nted arithmetic no restriction

A formula Pis valid in a universe U, or U- valid, (notation: l=u P)

,vhc>n it is true in every state of U. Pis va/id(notation: I= P) when it is
valid in every non-empty universe in which function and predicate symbols
(except=) are uninterpreted and modalities and logical connectives are
interpreted as described in the above paragraph on universes. (For
first-order formulae this usage coincides with the standard definition of
validity.) The natural number universe N has as domain the natural
numbers, and in every state assigns the standard values to+ and x (and any
other symbols the reader recognizes as standard symbols of arithmetic). All
function and predicate symbols other than the standard ones are
uninterpreted in N. Pis N- va/id(notation: l=N P) when it is valid in the
natural number universe.

We use the word theory to ref er to valid formulae. Thus the valid
· . f orrnulae of dynamic logic co.nstitute dynamic theory. The N-valid formulae

of first-order arithmetic will be called first-order number theory, the
N- valid formulae of dynamic augmented arithmetic will be called dynamic
augmented number theory, etc. Deciding N-validity of first-order augmented
arithmetic is known to be much harder than for first-order arithmetic
because predicates not in the arithmetic hierarchy are implicitly definable
in first-order augmented arithmetic. Similar remarks apply to dynamic
augm('nted number theory versus dynamic number theory.

Two observations of [13] are relevant to this paper.

(1) The partial correctness theory of X:=FX* (i.e. the set of valid
formulae P=>[X:=FX*JQ where P,Q are formulae of first-order logic) is not
r.e. (This is Theorem 16 of [13], and was proved in essence by showing

that any set in the class rrf is reducible to this partial correctness
theory.

6

(2) The axiom system of section 3.2 [13] for loop-free theory is sound,
compl€'te and effective.

In this paper we improve the nf reduction in (1) to nf, still for

the p-H t ial correctness theory of the same simple program. This implies
the incompleteness of any axiom system in which theoremhood is not at least

as hard to decide as membership .in nf-complete sets. However, we also

s how t hat the partial correctness theory of all r.e. programs (the set of

valid formulae P=>[o:JQ where a: may be any r.e. program} is in nf, so no

r.e. program has a more intractable partial correctness theory than X:=FX*.

It follows from (1) that a sound, complete, effective axiom system
for the valid formulae of dynamic (or even regular) logic is impossible.
However, as we show in this paper, by taking all of first-order number
theor y as axioms, the extension of the axiom system to handle loops (also
given in [13]) is sound and complete for regular number theory. The result
also holds for reg4lar augmented number theory when we take first-order
augmented number theory as axioms. Along with [6], this is the first time
a comple teness result has been obtained for systems that treat termination,
l<' t alone for one with tlie generality of dynamic logic.

Computability

We can abbreviate the four theorems of this section as follows.
Thf' notation should be self-explanatory when read in conjunction with the
follo wing expanded statements of the theorems.

(1) {t=<o:>P} = 1;f ({a:}~ r.e.)

(2) {Ho:JU} = nf (regular, {a}, r.e.)

(3) {Ho:JP} = IT~ (regular~ {a:}, r.e.}

(4) {t=3Z[o:JP} = nf (regular, {a}~ r.e.}

{t=D.} = rrf (regular, {a:}, r.e.)

{t=<,S>[o:JP} = rrf (regular, {a:},{~}, r.e.}

{t=3z1z2to:JF} = Il{ (regular' {a:}~ r.e.)

{t= <,S>[o:JF} = nf (regular' {a:},{~}' r.e.)

Th<>orem 1. The valrd formulae of dynamic logic of the form <a>P, where a is
any r.<'. program and Pis a formula of first-order logic, form a complete
r.€'. set.

7

Proof. Note that just the valid formulae of first-order logic already form

a complete r.e. set, that is, {t=P} = t{ So to prove the tf-completeness

of th<> set of valid formulae c;,f the more general form <a>P, we need only
provE> that this set of valid formulae is r.e.

The validity of <a>P amounts to the validity of an infinite
disjunction of formulae <fJ>P where the fJ's are the denotations of the
individual execution sequences of a. Each of these formulae may be
<>xpanded by Theorems 3 and 4 of [13] as formulae of first-order logic.
Th<> n the infinite disjunction is valid if and only if some finite subset of
th<> di sjunction is valid, by compactness of first-order logic. Since the
di sjunction is of an r.e. set of formulae, validity can be decided by
E>nUmf'.rating elements of the disjunction until sufficiently many elements
ar<> prE>sent that their disjunction is valid. I

Th('orem 2. The valid formulae of dynamic logic of the form [a]U, where a is
any r.E>. program (alternatively a may be .restricted to be any regular
program) and U is any universally quantified formula of first-order logic,
form a complete co-r.e. set.

F'root: The validity of [a]U amounts to the validity of an infinite
conjunction of formulae [fJJU, which as in Theorem l may be expanded as
univE>rsally quantified formulae of first-order logic. Then to check their
validity it suffices to check the validity of each of the conjuncts, a
dE>cidable question since the conjuncts are universally quantified. The set

of conjuncts being r.e., this problem is in nf and so the valid formulae
form a co-r.e. set. ·

To see that the set is complete in nf, it suffices to choose U to

bE> false, and allow a to range merely over regular programs. [a]fafse is
valid iff the uninterpreted flowchart scheme corresponding to a never

halt s. This problem for flowchart schemes is known to be nf-complete

[11], and so {t=[a)U} is complete in n 1° even when U is the fixed formula
f-1/se. I

Theorem 3. The valid formulae of dynamic logic of the form [a]P, where a is
any r.€'. program and P is a formula of first-order logic, form a

TI f - complete set. This nsult holds even if the class of programs

pNmitted is taken to be as small as regular programs; in fact, just the
s inglE> rE>gular program X:=Y;X:=FX* will suffice to obtain the result.

!'roof. (Sketch). The upper bound is proved exactly as for Theorem 2, with
the r€'mark that the. validity of each conjunct is now only partially
dE>cirlable since each conjunct is an arbitrary formula of first-order logic

including existential quantifiers. This boosts the problem from nf to nt

8

For the lower bound, our strategy will be to reduce the totality
probkm for Turing machines whose inputs are given in unary notation to the
validity problem for sentences [a](C=>H) where a is the fixed program
X:=Y;X:=FX*. States satisfying C will be forced to represent a computation
of l he Turing machine, while H will assert that the computation halts.

Clearly [a] amounts to a universal quantifier "for all X in the set
S = { Y ,FY ,F(FY), ... }," which if thought of as natural numbers has Y for 0
and F for successor. Let W be the formula VZ(G(FZ)=Z /\ rz,iY); it should
be evident that in every model of W, the set Sis infinite.

Now consider the following more or less standard approach to

showing that the validity problem for first-order logic is complete in 1=f.
Let R be a binary predicate symbol. Confine attention to the values of R
on SxS, which we may think of as the positive quadrant of the two
dimf'nsional integer lattice. Take the rows of the lattice to be Turing
machine i.d.'s (instantaneous descriptions) coded in binary in some way.
(For definiteness, take R(i,j) to assert that cell (i,j) contains a 1.) It
is tedious but straightforward to give a formula of first-order logic which
forces adjacent rows of the lattice to describe i.d.'s the second of which
is the result of running a given Turing machine for one step on the first.
We can also say that a halting state appears on some row. Similarly we can
give a formula that says that the beginning of the first row codes the
$lHt s tate of the Turing machine (indicating that at the start of a
computation the Turing machine's head is at the beginning of the tape).
And we can say that everywhere outside the head, consecutive pairs of bits
in the first row have only the configurations 11, 00 and 10, and furthermore
that 10 occurs exactly once, namely at position X. If Xis in S, this
means that the first row represents the initial i.d. on input X given in
unary. Let H denote the statement that a halting state occurs on some row,
and let C denote the conjunction of all the other statements we discussed,
which will be a function of which Turing machine we had in mind. Then we
claim that [a](C=>H) is valid if and only if that Turing machine we had in
mind halts on all inputs. If it is valid then it is valid in the universe
in which S exhausts the domain; hence, H is true in a those states of the
universe in which R represents computations starting at any X in S; this
implies that the machine always halts. Now suppose that the machine always
halts. Then there always exists a halting state when C is true and Xis
in S, whence [a)(C=>H) is al..,;ays true, i.e. it is valid. I

Our use of nondeterminism in this proof was not essential. Let fJ
be the deterministic program X:=Y;(X:/Z?;X:=FX)*;X=Z. Then for any formula

· P having no free occurrences of W, [a]P is equivalent to VW[/J]P, whence
[a:]P is valid if and only if [fj]P is valid.

We regard Theorem 3 as significant because it indicates the extent of
the difficulty of supplying complete axiomatizations for the true partial
correctness assertions of the form P{a}Q even when Pis just true. We

9

remark that.the nf upper bound of Theorem 3 can obviously be applied to

p-artial correctness asertions of the general form p::,[a]Q.

Theorem 4. The set of valid formulae of dynamic logic of the form JZ[a]P,
where a may simply be the fixed program X:=Y;X:=FX* and Pis any formula of

first-order logic, is.complete in Il[- Further the set of valid

formulae of dynamic logic is in Il[-

The sudden jump in the complexity of validity is attributable to
being able to state that the model is "standard", by allowing us to state
as an hypothesis that for every element there exists a "standard" element
equal to it. We may write this hypothesis as "VZ<X:=Y;X:=FX*>X=Z".
Alternatively, to avoid non-deterministic programs we may write it as
"VZ<X:=Y;(X:;IZ?;X:=FX)*;X=Z>true", which says that every element can be

found by searching fr~m O deterministical_ly. The upper bound of nf is
du£> in £>ssence to the validity problem for "constructive" Lc.>

1
c.> being in Il{♦

(Lw1 w is first-order logic with infinite conjunctions and disjunctions

permitted. By "constructive" Lc.>1 c.> we mean in this case that each set of

infinite conjunctions or disjunctions is either a set of formulae of first

order logic that is in nf or a set of representations of formulae of

constructive Lc.>1 c., that is in Il{ .)

Some variations of this theorem are possible. For example, "]Z"
can be replaced by "<fJ>" for an appropriate choice of nondeterministic fJ.
AltE>rnatively, P (a general first-order formula) can be replaced by a
quantifier-free formula provided two existentially quantified variables z

1
and Zr, are used. These variations can be applied s-imultaneously. We do

<.,

not know whether "]Z" can be replaced by "<fJ>" where fJ is deterministic.
W€' l<'ave the detailed proof of Theorem 4 and its variations to a later
paper.

Completeness

In this section we prove that an axiomatization of regular number
theory (that is, an axiom system whose theorems are among the N-valid
formulae of dynamic logic with no non-zeroary function or predicate symbols
savC> +, x, and=, and restricted to modalities with regular programs) that
was given in [13] can be made complete simply by taking the formulae of
numh<>r theory as further axioms. The same proof shows that the same axiom
syst <'m completely axiomatizes regular augmented number theory (permitting
othN function and predicate symbols besides+, x and=) provided the
formulae of augmented number theory are taken as axioms.

10

Cook (4) has used the notion of expressiveness to prove the
complC'leness of what is essentially Hoare's axiom system, and not
surprisingly our proof does so too. We say that a language Lis as
IJ- expressive as a language M when for every formula P of M there exists a
formula Q of L such tha_t l=u (P=Q). We argue briefly here that (augmented)

numbN theory is as N-expressive as regular (augmented) number theory. (We
could of course replace "regular" by "r.e.", or even more, but since we
only E>xhibit axioms for regular programs there is little point in our so

doinr,.) for the purposes of this section, we take aN to be the program
that maps state 9 to the states that aoao"'oa would map 9 to, where the
number of a's is given by the value of Nin 9. (N must be a zeroary
function symbol which is not changed by a, nor does a depend on N.) The
main point is that from Cook's expressiveness observation we can inf er that
if P is N- expressible in (augmented) arithmetic and a is a regular program

thc>n [cxN]p is N-expressible in (augmented) arithmetic, say as Q. Hence
VNQ N-expresses (a*JP provided N does not occur free in P. Further, if Q'

N-€>xpresses <aN>P then 3NQ' N-expresses <a*>P.

We reproduce here the axiom system that appears in section 3.2 of
[13) and ref er to it henceforth as P. It is of interest inasmuch as it is
th<> app ropriate generalization of conventional axiom systems for pure
first -order logic.

Logic-1/ Axioms
A II la utologies of Propositional Calculus.
r cxJ(P :-:iQ) => ([a]P => [aJQ).

Lor.icJ/ Inference Rules
P, P=>Q J- Q.
P J- [cx]P (subsumes P .. VxP).

Non-logical Axioms
V X P => P xT any term T V Performance Axiom.

P => V XP (P has no free occ. of X) V Invariance Axiom.

[PJQ = P=>Q Test Axiom.
[F(~):=TJP = P' (See [13] for details) Assignm·ent Axiom.
[cxll,SJP = (a]P A [IJJP Union Axiom.
[cxo,S]P = [a][IJ]P Composition Axiom.

Ruff's for*
P:-:i[cxJP J- P=>[a*JP

PNN+l=><a>P I- P=><a*>PJ

Rule of Invariance.

Rule of Convergence.

11

A detailed discussion of these axioms appears in [131 Here it
suffic<'s to observe that the first six axioms and rules, down to P :::> VXP,
constitute a complete axiom system for classical pure predicate calculus.
Tor,<>ther with lhe next four equivalences, they constitute a complete
axiomatization of loop-free theory. Our objective now is to show that the
whole system above, together with all the N-valid formulae of arithmetic as
axioms, is a complete axiom system for regular number theory. The same
proof will serve to show that when the N-valid formulae of augmented
arithmetic are taken as axioms, the axiom system is complete for regular
augmented number theory. We will not further consider the augmented case;
however we note here that the augmented case falls much higher in the
hierarchy of degrees of unsolvability and so it is interesting that the
same proof applies.

The main result of this section is proved by a variant of the Star
Interpolation Theorem (Theorem 24 of [13)). That theorem stated in essence
that (a*JP and <a*->P (where for a program fJ, fJ- is the conver.se relation:
9 P8 iff a13-9) were both invariants of a, which is obvious when one writes
[a*JP=>[a][a*JP, and (not quite so obviously)

<a*->P => [aJ<a-><a*->P
=> [aJ<a*->P

WE' prove another Star Interpolation Theorem in this paper which
intE>rpolatE>s, not invariants, but rather what we call convergents, which
arE' to termination (and in the case of deterministic programs, to total
correctness) what invariants are to partial correctness.

In the following we redefine some concepts from [13) in such a way
as to make clear the relationship between Cook's completeness result for
partial correctness alone and our completeness result for regular number
thE>ory, of which partial correctness and termination assertions are very
spE>cial cases.

Note that t=(P=>[a)Q) expresses the same thing as Hoare's P{a}Q.
WhC'nC'ver P{a}Q holds, we may call Pa box antecedent of Q via a, and Q
,1 box consequent of P via a. Since t=([a]Q :::> [a]Q), it follows that
[a]Q must be the weakest box antecedent of Q via a (since for any
antE>cE>dent P , P=>[a]Q is valid).

Analogous to the· partial correctness assertion P=>[a)Q is the
formula P=><a>Q,. which asserts that if P holds a can terminate and satisfy
Q (if a is deterministic, i.e. is a function, this asserts the total
corr<'ctness of a). We can call <a>Q a weakest diamond antecedent of Q via
a.

12

We define an invariant of ex to be any formula P such that p:,f a JP is
N -valid.

Wf'akest Invariant lemma. [a*JP (the weakest box antecedent of P via a*) is
the wf'akest invariant of a that implies P.

Proof. Since aoa*~a*, [a*JP=>[a][cx*JP is valid, . [a*JP is an
invHiant of a. Further, since l<:_a*, [a*JP=>P (I is the identity
rf'lation) so it implies P. Finally, suppose Q=>[cx]Q and Q=>P. Then
Q=>[a*JQ=>[a*JP, so [a*JP is the weakest such. I

We say that an invariant Q of a is an invariant interpolate of two
formulae P and R via ex, when P=>Q=>R is valid.

lnvari,mt Interpolation lemma. If P=>[cx*JR then [ex*JR is an invariant
interpolate of P and R via ex.

Proof. It is an invariant of er by the above lemma. Further, P=>[er*JR
(hypothesis), and [a*JR=>R 0<:..~*). I

Just as the diamond antecedent was the analogue of the box
ant<'c<'dent, so do we have an analogue of the notion of invariant. We call
Q a convergent of er when Q'=><er>Q is valid, (where Q' is

Q N+l h' h N , w IC

substitutes N+l for all free occurrences of Nin Q) and say that the
convNgent Q of a is a convergent interpolate of P and R when P=>]N(Q) and

QON =>R. The interest in convergents is that they allow us to prove that a

loop can eventually terminate with the right answer, just as invariants
allow us to prove that a terminating loop always yields the right answer.
In th<> case of deterministic programs, convergents subsume invariants,
since for deterministic er, <«>P=>[er]P. Note that converg~nts and convergent
interpolates are defined differently from invariants and invariant
interpolates to permit the following lemmas, though when Q has no free
occurrences of N these differences vanish except for the use of<> for[].

ConvPrgent lemma. <erN>P is a convergent of a.

Coni'f'rgent Interpolation lemma. If P=><a*>R then <«N>R is a convergent
interpolate of P and R.

We now prove that the axiom system P for regular number theory
given at the beginning of this section is sound and complete when number
thf'ory is taken as additional axioms. We leave to the reader the task of

13

showing that Pis sound. The proofs of the following three theorems deal
with the completeness of P. They depend on our notion of expressiveness
discussed at the beginning of this section.

Write P .without the Rule of Invariance as P<>, and without the Rule
of Convergence as P[l

Fox Completeness Theorem. For any first-order formulae P and R, and for any
a, I== N P=>[c:tjR iff 1-p[] P=>[aJR.

Proof. The result follows by induction on the number of *'s in a together
with the fact that for et= fJ*, [fJ*JR is an invariant interpolate of P and R
via f3 (by the Invariant Interpolation Lemma). By expressiveness, [fJ*]R is
equivalent to some formula F of arithmetic, and hence l==N F=>[fj]f. By the

inductive hypothesis 1-p[J F=>[fJJF, and so by the Rule of Invariance

1-p[J F=>[c:tJF, and using logical axioms, modus ponens and P=>F and F=>R

(valid by the definition of F, and hence axioms of arithmetic), we can
obtain P=>[a]R. I

Diamond Completeness Theorem. for any first-order formulae P and R, and for
any er, l==N P=><a>R iff 1-P<> P=><c:t>R. · ·

froot: Again induction may be used on the number of *'sin a together with

th<' fact that for a= fJ*, <fJN>R is a convergent interpolate of P and R via
f3 (by the Convergent Interpolation Lemma), which implies that the Rule of

Conv<>rgence can be applied. Similarly, in this case <fJN>R is equivalent
to a formula of arithmetic. We can now continue as in the previous proof

using P=>3N<fJN>Rand <fJO>R::>R. I

Main Completeness Theorem. For any formula P of regular arithmetic, I== N P

iff 1-pP.

F'rooJ: Again we appeal to the expressiveness of arithmetic, this time with
respect to formulae of dynamic logic by a trivial argument on the depth of
nesting of modalities. This implies that for any formula P there exists a

· f ormul,3 L(P) of arithmetic such that I== N P = L(P). We say that_ P is in

conjunctive normal form when the argument of each, is an atomic formula
<1nd I he arguments of each v are not conjuncts. Appealing to the evident
compkteness of our system for Propositional Calculus, we may assume that P
is giv£>n in conjunctive normal form with n modalities, such that l==N P. We

proCC'£>d by induction on the number n of modalities in P. The case n = 1
can E'asily be seen to follow from the previous two theorems. Now assume the
theorem holds. for any formula with n-1 or less modalities. Observing that
if I== N P 1 /\ P 2 then I== N Pl and I== N P 2, we can restrict our discussion to

14

~ ~inr,le disjunction. Without loss of generality we can assume P to be of
th(> form P1vm(a)P2 where m(a) is [a] oi:-.<a>. We have t=N P1vm(a)P2 and

th(>rdore t=N ,L(P1)=>m(a)L(P2). Applying the appropriate of the two

pr<'vious theorems we
obtain rp ,L(P1)=>m(a)L(P2). Obviously by the definition of L(P) we have t=N

.~1 =>,L(P1) and t=N LCP2)=>P2. Both these last formula have less than n

mod:'llities, hence by the
inr:luctive hypothesis rp ,P1~,L(Pl) and rp L(P2)=>P2.

Applving the rule PHaJP we obtain l-p [a](L(P2)=>P2). We now apply

modus ponens and either the axiom [aJ(P=>Q) ::> ([a]P=>[a]Q), if m(a) is [a],
or the theorem [a](P=>Q):, (<a>P=><a>Q), if
m(a) is <a>, to obtain
r p m(a)L(P 2)=>m(a)P 2. Easy applications of modus ponens now

give rp ,P1=>m(a)P2 or equivalently l-p P1vm(a)P2. I

Th<' Diamond Completeness Theorem can be regarded as establishing the
complPteness of a system for proving total correctness of programs, if a is
rf• stricted to be deterministic. This provides a completeness proof for the
Bur<,t ~11-Manna-Waldinger technique [3,12], which essentially is an informal
rksc ription of the method of proving P=><a>R, which is incorporated in P.
Basu and Yeh [2] have the same notion for convergents; however they do not
envisage the application for it that we have presented here. In a future
paper, we hope to clarify in more detail the relationships between these
and other techniques for proving total correctness of programs.

We conclude this section with the following observations which
serve to formalize the dual notions of "weakest antecedents" and
"strongest consequents" for box-formulae, which appear in the
lite>rature.

Ou,3/icy Lemma. PA<a>Q and <a->PAQ are equally satisfiable.

Proof. 39a(9t=P I\ 9aa I\ 8t=Q) asserts the satisfiability of each of the two
formulae. I

Ou,3/ic y Principle. t=(Pv[a]Q) = t=([a-JPvQ) .

Proof. Take the Boolean dual of satisfiability,/\, and <a> in the duality
le·mma. I

Corollary. t=(P=>[a]Q) = t=(<a->P=>Q).

Corolidry. t=(P ::> [a]<a->P) (as remarked earlier).

Note now, that t=(<a ->P => Q), besides t=(P ::> [a]Q) expresses

Hoa re's P{a}Q, and that <a->P is the strongest box consequent of P

15

via a, which leads us to ask for a strongest diamond consequent.
Unfortunately the Duality Principle does not hold for <a> in place of
[aJ, as can be checked with P = ,Q = true, a= rp (the empty program),
for which I=(truev<'P>false) holds but I=((rp-) truev false) does not. That
is, [a -JP is not even a diamond consequent of P via a (since the above
is. a counterexample to P=><a>[a -JP), let alone a strongest diamond
consE>quent. The conclusion is that termination is not exactly the
dual of partial correctness: weakest diamond antecedents are given by
<a>Q but strongest diamond consequents are not given by [a-JP. We do
havE> however:

Strongest Invariant lemma. <a*->P (the strongest box consequent of P'via
er*) is the strongest invariant of a implied by P.

!'roof. Since a - oa*-~a*-, <a-><a*->P=><a*->P is valid, so
<a*- >P=>[aJ<a*->P by the Duality Principle, so <a*->P is an invariant
of a . Further, P=><a*->P. Finally, if Q=>[aJQ and P=>Q then Q=>[a*JQ,
so <cr*->Q=>Q, so <a*->P=><a*->Q=>Q. I

We therefore conclude also that whenever P=>[a*JR holds, <a*->P
(besides [a*JR} is an invariant interpolate or P and R via a. This

last fact implies that <a*->P could have been used in the proof of
t hE> Box-Completeness Theorem, as in fact is done by Cook (4].

A ckno w/edgments

Jerry Schwarz pointed out the absence of an induction axiom in an
NrliN version of our axiom system, prompting us to include the Rule of
ConvNgence, without which half of this paper would not have been written.
We had valuable discussions with R. Burstall, M. Fischer, R. Ladner, S.
Litvintchouk, R. Milner, G. Plotkin, and R. Rivest.

References

OJ dE> Bakker, J.W., and W.P. de Roever. A calculus for recursive
program schemes. in Automata, languages and Programming(ed. Nivat),
167-196. North Holland, 1972.

[2J Basu, S. K. and R. T. Yeh. Strong Verification or Programs. IEEE
Trans. Software Engineering, SE-1, 3, 339-345. Sept. 75.

[3J Burstall, R.M. Program Proving as Hand Simulation with a Little
Induction. lflP 1974, Stockholm.

16

[4] Cook, S.A. Soundness and Completeness of an Axiom System for
Program Verification. TR-95, Department of Computer Science, University of
Toronto, 1976, 37pp. (Note: this is a revision of "Axiomatic and
lntf'rpretive Semantics for an Algol Fragment", TR-19, 191S)

[SJ Dijkstra, E. A Discipline of Programming. Prentice- Hall,
Enr,l<'wood Cliffs, N.J. 1916.

[6] Ha rel, D., A. Pnueli and J. Stavi. A complete axiomatic system for
proving deductions about recursive programs. Proc. Ninth Ann. ACM Symp. on
ThC'ory of Computing, Boulder, Col., May 1971.

[7] Hitchcock, P. and D. Park. Induction Rules and Termination Proofs.
In Automata, languages and Programming(ed. Nivat, M.), IRIA.
North-Holland, 1913.

[8] Hoare, C.A.R. An Axiomatic Basis for Computer Programming. CACM
12, 576-580, 1969.

[9] Hughes, G.E. and M.J. Cresswell. An Introduction to Modal logic.
London: Methuen and Co Ltd. 1912.

[10] K ripke, S. Semantical considerations on Modal Logic. Acta
Philosophica Fennica, 83-94, 1963.

[11] Luckham, D., D. Park and M. Paterson. On Formaliz.ed Computer
Pror,rams. J.CSS 3, 2, 119-127. May 1910.

[l~J Manna, Z. and R. Waldinger. Is "sometime" sometimes better than
"always"? Intermittent assertions in proving program correctness. Proc.
2nd Int. Conf. on Software Engineering, Oct.1916.

T 13] Pratt, V.R. Semantical Considerations on Floyd-Hoare Logic. 11th
IEEE Symposium on F ounda lions of Computer Science, Oct. 1916.

[14] Rogers, H. Theory of Recursive Functions and Effective
Computability. McGraw-Hill, 1967.

US] Tarski, A. The semantic conception of truth and the foundations of
Sf' man tics. Philos. and Phenom. Res, 4, 341-376, 1944.

