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Abstract 

We derive a lower bound on the interprocessor information transfer required for 

computing a function in a distributed network. The bound is expressed in terms of the 

function's derivatives, and we use it to exhibit functions whose computation requires a great 
I 
I . 

deal of interprocess communication. As a sample application, we give lower bounds on 

information transfer in the distributed computation of some typical matrix operations. 
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Lower Bounds on Information Transfer in Distributed Computations 

Harold Abelson 

It is evident that traditional notions of computational complexity, such as the number of 

primitive operations or memory cells required to compute functions, do not form an adequate 

fram_ework for assessing the complexity of computations carried out in distributed networks. 

Even in the relatively straightforward· situation of memoryless processors arranged in highly 

structured configurations, Gentleman [3] has shown that data movement, rather than arithmetic 

operations, is often the significant factor in the performance of parallel computations. And for 

more general kinds of distributed processing, involving arbitrary network configurations and 

distributed data bases, the situation is correspondingly more complex. 

This paper addresses the problem of measuring computational complexity in terms of the 

interprocess communication required when a computation is distributed among a number of 

processors. More precisely, we model the distributed computation of functions which depend 

upon large amounts of data by assuming that the data is partitioned into disjoint subsets, and 

that a processor is assigned to each subset. Each processor (which we can think of as a node in 

a computational network) computes some values based on its own data, and transmits these 

values to other processors, which are able to use them in subsequent local computations. This 

"compute locally and share information" procedure is repeated over and over until finally some 

(predetermined) processor outputs the value of the desired function. _ In measuring the 

"complexity" of such computations we will be concerned, not with the complexity of the 

individµal local computations, but rather with the total information transfer, i.e., the total 

number of values which must be transmitted between processors. 

We derive a lower bound on the total information transfer required for computing a 

function in a distributed network. The bound is expressed in terms of the function's 

derivatives, and we use it to exhibit functions whose computation requires a great deal of 
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interprocess communication. As a sample application, we give lower bounds on information 

transfer in the distributed computation of some typical matrix operations. 

l. Information transfer with one-way communication 

We begin by reviewing a result of [I] which gives bounds on information transfer in 

networks which allow only one-way ~ommunication. Suppose X • (x 
1
, x2' •• • , x 

4
) and 

Y -<,l'y
2
, •• • ,y) are collections of real variables, and that +:Xx Y ➔ R is a continuously 

differentiable real-valued function. (Throughout this section we assume that all functions are 

real-valued and continuously differentiable, i.e., with continuous first derivatives. Such 

functions are standardly referred to as •c• functions.; From the distributed computation 

perspective outlined above, 'we can regard X as the data accessed by some subset of the 

processors in a network, and Y as the rest of the data, including that accessed by the 

predetermined processor which is to output the value of +. Then if we allow communication 

only from X to Y and not from Y to X, computing + with total information transfer N, i.e., 

transmitting N values from X to Y is equivalent to representing+ in the form 

where the /t<X) are functions of X alone. We can give a necessary and sufficient condition for 

the existence of such a representation. For any particular values XO for the variables X let 

:: Ix denote the real-v~lued function of Y defined by 
·J O . 

Then we have: 
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Theorem 1 A C 1 function +.:Xx Y ➔ R can be represented in the form 

t(X, Y) • g (f 1(X),fiX), .. . ,/ N(X), Y) 

where ft: X ➔ R and g: RN+b ➔ R are CI functions, if and only if, given any value XO for X. at 

most N of the functions ~• Ix are linearly independent 
. 0~ 0 

(For the proof, see [l], [2].) · . 

We can use Theorem 1 to demonstrate that allowing two-way communication between the 

processors in a network can drastically reduce the information transfer required to compute 

certain functions. For e·xample, let X • (x
1
, • • • ,xn) and Y • <,

1
, •• .,,

11
) and let+ be 

Then 

and 

give n linearly independent functions of Y when we substitute any particular values for X. 

Hence any network which permits only one-way communication from X to Y cannot compute+ 

with total information transfer less than n. Similarly, allowing only one-way communication 

from Y to X will also require information transfer n. 

With two-way communication, however, we can compute+ with information transfer S as 

follows: X sends to Y the value of x1 and Y sends X the value of,.- Once X knows , 1, it can 

compute the second term in the expression for+, and transmit this to Y. Then Y, knowing both 

x I and the second term, can compute +. Thus, by letting n grow large, we can exhibit functions 
I 

whose computations require arbitrarily large information transfer when only one-way 
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communication (either from X to Y or from Y to X) is permitted, but which can be computed 

with information transfer g using two-way communication. 

2. Two-way communication 

We consider a general model of distributed computation with two-way communication. 

Suppose as before that there are two sets of real variables X and Y. (As above, we can think of 

X as the data accessed by some collection of the processors in a network and Y as the rest of the 

data.) We formulate the following description of a multi-stage distributed computation of a 

function +(X,Y): At the first stage, the X processors compute some number, say a
1
, real-valued 

functions J; of the variables x1 and transmit these values to Y. (We will henceforth omit the 

subscripts on the f's and refer to the vector of functions f 1(X).) Simultaneously, the Y processors 

transmit to X the values of b
1 

functions g 1(Y). At the second stage, X transmits to Y the values 

o! a2 functions J2(X,g1), Which depend on both X and the values g1 received from Y at the 

previous stage. Likewise, Y transmits to X the values of b
2 

functions g'-(Y,f 1). In general, at the 

kth stage, X sends to Y the values of a1 functions f 1 (X,g1,g'-, ... ,g1-1) which depend on X and 

the values received from Y in previous stages; and Y transmits to X the values of b1 similar 

functions ~ - . 

We wish to characterize those functions which can be computed by Y, say, at the rth 

stage. Notice first of all that an r-stage function g; depends in general on all previous / 1 

(k = 1, ... , r - 1) _and on g1 (k • I, . .. , r-2), but not on t -• (since the value of g"-1 is not used in· 

computingf"-1
) . So in this terminology, a I-stage function is simply a function of Y alone, and a 

2 -stage function is a function computed with I-way communication from X to Y. We also see 

that the tot~l information transfer used in computing an r -stage function g" is 

We will assume from here on that all functions computed· at each stage have continuous 
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1st and 2nd derivatives. (Such functions are commonly called •c2 functions.; Under this 

assumption, · we obtain the following lower bound on the information transfer required in a 

multi-stage distributed computation. 

' I 
Theorem 2 Let t: X x Y ➔ R be a C2 function and let R be the rank of the matrix of second 

order partial derivatives 

Then any multi-stage distributed computation oft must have total information transfer at least 

R between X and Y (assuming that the functions computed at each stage are all C2). 

The proof of Theorem 2 is given below in Section 4. 

The •inner product" provides a simple example of a function whose distributed 

computation requires maximal information transfer. That is, let X •(x
1
, •• .,xn) and Y •<:,,, .. .,,) 

and take 

The corresponding matrix A of 2nd derivatives is then xn identity matrix, which has rank n. 

Hence, by Theorem 2, any multi-stage distributed computation for t must have information 

transfer at least n between X and Y. Notice that this is maximal, in the sense that any function 

can be computed with information transfer equal to the number of variables in X. 

Another example of a function which requires maximal information transfer is the 

determinant of an n x n matrix, when the different columns are accessed by different local 

processors. More precisely, if M • [m
1
Jl let X be the variables in, say, the 1st column of M, i.e., 

xl .. m,t• let -Y be the rest of the variables and take t(X,Y)•det(M). We leave it to the reader to 

verify that the corresponding n x(n2-n) matrix A does indeed have rank n. (Here is an outline 

of a proof: Use the fact that the derivative of the determinant function with respect to any 

5 
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elem~nt mtJ is equal to (-1)1+J times the cofactor of m,r Then, by choosing matrices M for which 

the cofactors of elements in the 1st and 2nd columns have appropriate values, one can 

demonstrate that, for n even, there are choices of M for which the n x n submatrix consisting of 

the first n columns of A already has rank n. Similarly, for n odd, one can construct matrices for 

which the first 2n columns of A form an n x2n matrix of rank n.) 

Finally, consider the solution of systems of linear equations when the columns of the 

coefficient matrix are accessed at different processors. Let X be the variables in the kth column 

of an n x n matrix M and let Y be ~he rest of the elements of M. For any non-zero vector b Jet 

+ 1(b) be the function (of X and Y) which is equal to the kth component of the solution to the 

system of equations M z • b. Then we have: 

. . ?l+ 11.(b) 
Lem ma 2.1 For any non-zero vector b, the matrix 

O O 
has rank n - 1. 

x, Y1 

Therefore, computing the kth component of the solution to a system of linear equations requires 

infc;,rm ation . transfer at least n - I between the kth column and the rest of the matrix. (The 

proof of Lemma 2.1 is given in Section 5 below.) 

3. Computations in Networks 

In applying Theorem 2 to the analysis of specific network computations, it is im.portant to 

realize that the bounds on data transfer are valid for any partition of the network into two 

pieces. To illustrate this point we derive lower bounds on total data transfer in distributed 

implementations of three .typical matrix computations. 

As a first example, suppose that we have a computational network consisting of n 

processors X 
1
, ••• , X 

11 
and one additional processor Y, and that each processor is directly 

connected to every other processor. We wish to use this network to compute the determinant of 

an n x n matrix by letting each x, access a single column of the matrix and having the 
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determinant output at Y. Observe that n2 is an ~ bound for the information transfer in 

such a computation, since we can always first transmit all the data to Y and do all the 

computation there. For a lower bound on information transfer, we get: 

Coronary 1 For any determinant computation using the above network configuration, the total 
n2 

information transfer over the network must be greater than 2 . (Assuming that the local 

computations performed by each processor are C2 functions.) 

Proof: Let N 11 be the direct information transfer between X1 an_d XJ' I.e., the number of values 

sent directly from X
1 

to x
1 

plus the number of values sent directly from x1 to x, during the 

course of the computation .. (Set Nu• O for convenience.) Let Ntr be the information transfer 

between X 
1 

and Y. Then the total information transfer over the network ls given by 

Let Nett be ·the given network, only viewed as partitioned into two pieces: X
1 

and the rest of the 

network. Then for each i , Net
1 

performs the determinant computation discussed in Section 2 

above, where it was explained that the total information transfer must be at least n. Hence we 

have 

" Information transfer for Net1 • N11 + "[,N,1 .!: n ,., 
So summing this inequality over all t gives 

" "[,N11 + 2 L, N11 .!: n
2 

t ~ I t<J 

and combining this with Equation ( I) gives the. desired result 

As a second illustration, consider the multiplication of n xn matrices in the following 

distributed configuration: There are n processors x,, all interconnected. At the outset of the 

7 

(I) 
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computation, each processor has access to one row of a matrix M and one column of a matrix 

N. At the conclusion of the computation, X, is to output the tth row of the product M N. 

Corollary 2 Computing a matrix product in the above configuration requires total information 
2 

transfer at least ; . (Assuming that the local computations are C2.) 

Proof: Let N,
1 

and Net, be as in the proof of Corollary l. Each x, must_ compute elements of 

the matr.ix product which are inner products of data local to x, and data accessed by the rest of 

the network. Hence, as shown in Section 2, the information transfer between X, and the rest of 

the network, i.e., the information transfer for the network Net,, must be at least n: 

" 
Information transfer for Net,• LN,

1 
~ n 

J•I 

The proof is completed by summiog this inequality over all £ and using the fact that the total 

inform at ion transfer for the entire network is 

Fin ally, consider the distributed solution to a system of linear equations M z • b in the 

same configuration as above. Each processor x, is given access to the ith column of M and is 

to output the ith entry of z. (We assume that every processor has access to all entries of b.) 

Corollary 3: For any non-zero vector b, solving the system of linear equations M z • b in the 

above distributed configuration requires total information transfer at least n <;-1). 

The proof is essentially identical to that of Corollary 2, with the bound on the information 

transfer for Net, given by Lemma 2.1. 
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4. Proof of Theorem 2 

The proof of Theorem 2 is based on the following result: 

Lemma 4.1 If+ is computed by an r-stage computation, then for all t and J 

where each 'A f q is a function of X and Y which depends only on J, f> and q, and each B~' is a 

function of X and Y which depends only on t, s and t. 

Proof that Lemma 4.1 implies Theorem 2: 

Let N be the total information transfer in the computation for +. As remarked in Section 2 we 

have 

which is equal to the number of terms in the large sum given in the conclusion of the Lemma. 

Consolidating these terms according to their dependence on t and j yields 

where r,m is some expression which depends on i and m, and A,.
1 

depends on j and m. In other 

words, if there are IXI variables x1 and l>'I variables ,
1

, then the IXI x l>'I matrix M
11 

is the 

product of the IXI x N matrix r and the N x IYI matrix A. Hence the rank of A can be at most 

N. 

9 
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Proof of Lemma 4.1: The proof proceeds by induction. We first check the case of 2-stage 

functions, r-2. (The case of I-stage functions is trivial since there is no information transfer.) A 

2-stage function t has the form t (X, Y) • (f 1(X), Y) where f 1 • (f :, .. .,f 1 ) is a vector of a, 
functions of X. Differentiating with respect to x

1 
yields 

Since the 

to obtain 

o+ 41 o+ of' 
ox • Lo"' it t q• I 'J q t 

of' -i;- are all functions of X alone, we can differentiate this equation with respect to,, 
t 

which establishes the lemma for r-2. (The fact that all functions involved are C2 allows us to 

interchange the order of the xt and ,
1 

differentiations.) 

Assume now that the lemma holds for functions of stages less than r. Then if 

is an r-stage function, we have 

_and differentiating this with respect to ,
1 

gives 

02+ r-1 ~ 02+ of P r-1 ~ ot ~,2f P - - LL __ _:_j +LL-~ ox
1
oy

1 0, 01'P ox
1 01'P ox

1
o,

1 P•lq•I J 'J q P•lq•I 'J q 

But notice that each · function f P is itself a p-stage function computed by X (using q 

information received from Y via the (s). So by induction we may apply the Lemma to 1: (in 

which must interchange the roles of X and Y) to obtain 

(2) 



Harold Abelson - - Information T ,ansfer 

Multiplying this expression by 
01

,, , summing over p and q and consolidating the coefficients of 
ofr 

q 
ofP ogs . 
~ and ~ shows that the second term in Equation (2) can be rewritten as 
oXt oJ} 

Finally, combining these terms with the first term of Equation (2) proves the Lemma. 

5. Proof of Lemma 2.1 

11 

o2 t 1(b) . 
Let D(p,q,r,s) equal om om . We wish to compute the rank of then x(n2-n) matrix A 

pq rs 

W.hich is generated by the D(p,q,r,s) as mpq ranges over the kth column of M, and m,.s ranges 

over all elements of M not in the kth column. Each element m (s ~ k) gi·ves rise to a column of rs 

A which we will denote by D(•, k, r,s). 

Claim 1: For any r , D(•,k,r,s) is a scalar multiple of D(t,k, l,s). 

This implies, first of all, that the rank of A: can be at most n-1 (corresponding to the number of 

distinct choices for s), and secondly, that the rank of A is the same as the rank of the n x (n-1) 

matrix li, where 6. ps • D(p,k, l ,.s). The proof of 2.1 is then completed by 

Claim 2: For any non-zero vector b, the corresponding matrix 6. has rank n-1. 

To prove these claims, begin by d ifferentiating the equation Mz-b with respect to "'pq and note 

that ;M is equal to E pq' the elementary matrix with 1 in the (p.q)-th position and O elsewhere. 
mpq 

This gives 

. oz 
E z+M-~--0 

pq ompq 

or, setting N ""'M-1 to simplify the notation, 
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oz 
- • - NE z • - NE Nb 
om/H{ Pi fHl 

(The second equality comes from the fact that, for any matrix A, E. AE • 4 E,, .) Then H - TS fT s , . 

• D(p,q,r,s), which is the kth component of this expression, is equal to the inner product 

<n (NE N)<b + n (NE N)<b b> 
fT ps sp rq ' 

(We use the symbol .4<i> to denote the kth row of the matrix A.) Now using the fact that. for 

any matrix A, (AEpsA)<b•a
1
p-4<s>, and setting q•k yields 

which shows at once that 

and establishes Claim I. 

D(p,k,r,s) • n1,,<n1PN<s> + nspN<l>, b> 

nlr 
D(p,k,r,s) • - D(p,k, 1,s) 

nll 

Proceeding with Claim 2, we see from (3) that 

(3) 

Aps • D(p,k, l,s} • n11 <n
1
PN<s> + nspN<l>, b> (4) 

Since the entries of A are symbolic expressions in the m
1
J' it suffices to show that, for any 

non-zero b, we can chQOse particular values for the m11 which lead to corresponding ~•s of rank 

n-1. Let P 
1 

be the n x n identity matrix with the 1st and kth rows interchanged. Using (4), the 

reader can verify that taking N • P 1 gives a corresponding A of rank n- 1, so long as the first 

component b1 of b is non-zero. If b1 does equal zero, then some other component, say b" is 

non-zero, in which case taking N eq uat to P 1 + Eh gives a A of rank n- 1. 
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6. Remarks 

In conclusion, we mention some questions which are left open by this work. First, note 

that while Theorem 2 deals with computational networks which are much more general than 

those handled by Theorem I, it gives only a lower bound on information transfer. It would be 

useful to derive an upper bound on the information transfer required in two-way networks, 

anal~ous to the one for one-way networks. 

The network analysis in Section S is valid in the most general circumstance, vi%., where 

every node can communicate directly with every other node. By postulating more restrictive 

configurations, e.g., as in [SJ, the above results could be strengthened accordingly. 

Expressing "information transfer" in terms of number of function values transmitted, 

rather than _in terms of bits, and placing no restrictions other than differentiability on the local 

functions, broadens applicability of the above theorems beyond purely computational settings to 

include other kinds of systems in which interactions among "local• processes are a major 

consideration, for example, biological or social systems. On the other hand, it would be useful to 

investigate ramifications of the above theorems in constraining the number of bits which must 

be transmitted in a distributed computation. 

One important class of computations in which the differentiability hypothesis is !!21 

satisfied is those which mak.e important use of conditional expressions, such as maximizing an 

expression over the items in a data base. It should be possible to obtain results analogous to the 
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above theorems for dealing with these situations as well. 
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