
MIT/LCS/TM- 103

ARITHMETICAL COMPLETENESS IN LOGICS OF PROGRAMS

David Harel

April 1978

MIT/LCS/TM- 103

Arithmetical Completeness in Logics of Programs

David Harel

April 1978

This r eport was prepa r ed with t he s upport of t he National
Science Foundation Grant No. MCS76- 18461

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 0213 9

Key words: arithmetical axiomatization
arithmetical completeness
divergence
dynamic logic
relative completeness

1

Arithmetical Completeness in Logics or Programs

David Hare!
Laboratory ·for Computer Science

Massachusetts Institute of Technology, Cambridge, MA 02139
4 I 13. I 1t1

Abstract.

We consider the problem of designing arithmetically complete axiom systems for
provrng general properties of programs ; i.e. axiom systems which are complete over
arithmetical universes, when all first-order formulae which are va-lid in such universes
are taken as axioms. We prove a general Theorem of Completeness which takes care of a
major part of the responsibility when designing such systems. It is then shown that what
is left to do in order to establish an arithmetical completeness result, such as those
appearing in [12] and [14] for the logics DL and DL +, can be described as a chain or

reasoning which involves some simple utilizations or arithmetical induction. An immediate
application of these observations is given in the form of an arithmetical completeness
re_sult for a new logic similar to that of Salwicki [221 finally, we contrast this
discipline with Cook's [5] notion of relative completeness.

1. Introduction.

In the past ten years substantial progress has been made in the field of logt,cs of
programs, a field which cone.ems itself with the design of mathematical tools (formal and
informal) for reasoning about programs. Such logics should provide means for expressing
interesting properties of programs, and, hopefully, methods for proving them when true.
In this paper we would like to focus on proof theory and to single out a specific trend in
its development.

The logics we consider are the formal logics DL (dynamic logt,c) and DL •. DL was
suggested as a powerful logic of programs by Pratt [21] and was further dev~loped in (12)

and [91 DL + was defined in [141 These logics are extensions of first-order predicate
calculus, and are capable of expressing a very wide variety or properties such as partial
and total coHectness, equivalence of programs, elc.

We are interested in the formulae of DL (DL-wffs) which are true in all states of
a given universe U (Li - valid DL-wffs). With each universe U there is associated a domaln

D, and in all states of U, function and predicate symbols are interpreted as functions and
predicates over D. Our approach is to consider those universes A (arithmetical universes)

- - - - - - - -- - - - - - -- - - - - - - - - -- - - - - -- - - - - - - - - -- - - - - - -

2

in which the domain essentially includes the natural munbers, and in which +, • and O,
are given their standard interpretation. In this framework one can show that with each
DL - wff P there is associated a first - order formula F p which is equivalent to P in any
state in A.

Our approach to proving the fact that a DL-wff P is A-valid is t~ design an axiom
system with which P can be syntactically transformed into F p· Then, for any arithmetical

universe A, all A-valid first - order formulae are taken as axioms, and thus, once this
transformation has been carried out, the set or axioms should contain f p if/ P is

A - valid, and thus the proof is complete. This approach we call arithmetical

axiomatization. If the axiom system has the property that any A- valid DL-wff P can indeed
be transformed into the A- equivalent first - order F p, we say that it is an arithmeticall"j

complete axiom system, for then a proof of it is guaranteed to exist.

Section 2 contains rigorous definitions of the concepts or state and universe and

of the 'logics DL and DL +. In Section 3 we define the notion or an arithmetical universe,

present axiom systems for DL _and DL +, and state the arithmetical completeness results we
· were able to prove for them in (12] and [14].

Sections 4 and S, the main sections of the paper, are devoted to the establish.ment
of a general framework in which the process of designing such axiom systems and proving

their arithmetical completeness can be derived out of simple inductive considerations. In
Section 4 we prove a very general theorem, the Theorem of Completeness, in which the main
inductive step in_ the proofs of all the completeness results appearing in [12], (14), (10)

and [9) is captured in an abstract way. Thus, it can be seen that for any "DL- like"

logic, once arithmetical completeness can be established for very simple formulae which
involve only one appearance of a program this theorem can be applied to obtain the
completeness result for the full logic. In Section S we describe a way in which these
"basic" results for one-program formulae can be developed for DL and DL + using
straightforward reasoning. Thus, the intuition behind the inductive assertion method of
Floyd [7] and Hoare US], which is embodied in our axiomatization of DL, can be viewed as
a special case of a ra ther broad observation.

Section 6 contains an immediate application of these ideas, by describing the
rather effortless development of an arithmetically complete axiomatization of a new logic,
which borrows the na operator of [22]. In Section 7 we give a precise definition, based
on the concept of a universe, of Cook's [SJ notion of relative completeness, and then
discuss ~ome of the lit.erature regarding this concept, and comment as to the relationship
between it and arithmetical completeness.

3

2. The Definition of DL and DL +.

We define regular first - order dynamic logic (DL) as follows: We are given sets of

Junction symbols and predicate symbols, each symbol with a fixed nonnegative arity. We
assume the inclusion of the special binary predicate symbol "=" (equality) in the latter
set. We denote predicate symbols by p, q, ... and k-ary function symbols for k>O by f,
g, ... Zeroary function symbols are denoted by z,x,y,_ and are called variables. A term

is some k-ary function symbol fol\owed by a k- tuple of terms, where we ·restrict ourselves
to terms resulting from applying this formation rule finitely many times only. For a
variable x we abbreviate x() to x, thus f(g(x) ,Y) is a term provided f and g are binary
and unary, respectively. An· atomic formula is .a k- ary predicate s,ymbol followed by· a
k- tuple of terms.

We define by simultane9us induction the set RC of first-order regular programs and
the set of DL-wff s:

(1) For any variable x and term e, x+-e is in RC,
(2) For any program-free (see below) DL-wff P, P? is in RC,
(3) For any a and {Jin RC, (a ;fJ), (aufJ) and a* are in RG-,
(4) Any atomic formula is a DL- wff,
(5) For any DL-wffs P and Q, a in RC and variable x,

,p, (PvQ), 3xP and <«>P are DL- wff s.

A DL- wff which contains no occurrence of a program of RC is called program free, or simply
a fir st order formula. Programs of the form indicated in (1) and (2) are called,
respectively, (simple) assignments and (simple)_ tests. We use A, :> and = for
abbreviatior-is in the standard way and, in addition, abbreviate ,Jx,P to V xP, and -,(a)-,p to [a]P.

The semantics of DL is based on the concept of a state. A state 3 consists of a
non - empty domain D and a mappin~ from the sets of function and predicate symbols to the
sets of fu_nctions and predicates over D, such that to a k-ary function symbol f (resp.
predicate symbol p) there corresponds a total k-ary function (resp. predicate) over D,

denoted by f J (resp. p j). In particular, to a variable there corresponds an element of

the domain, and to a 0- ary predicate symbol (propositional letter) a truth value (true or

false). The standard equality predicate over D is that which corresponds to the equality
symbol (=). We will sometimes refer to the domain of 3 as DJ- Observe that the way

states are defined no distinction is made between what are normally called variables and
constants. These will, however, be defined below for simple universes.

We denote by r the collection of all possible states, which we call the grand

universe. Our semantics will assign to a program a a binary relation m(a) over r, and

4

to a formula P, a subset Qf ,r consisting of those states which satisfy P. In the
sequel, however, we will be interested in special subsets or r, namely, universes:

A pseudo-universe U is a set of states, all of which have a common domain D. A
function symbol f (resp. predicate symbol p) is called uninterpreted in U if for every
st,!te JfU and for every function F (resp. predicate P) over D there exists $EU such that j
a_nct 9 differ at most in the value off (resp. p), which in 3 is F (resp. P).

Notation: for any function G: A ➔ B, arbitrary element e, and aEA, .we define {e / a]G lo be
the function with domain A and range Bu{e} giving the same values at points in A-{a} as G,
and such that G(a) =e. Thus, the situation described above for uninterpreted f is simply
9=[f I nJ.

A symbol is called fixed in U if its value is the same in all states of U. Thus,
"=" is fixed in any universe. A universe is a pseudo-universe in which every predicate
symbol is fixed, and in which every function symbol is either fixed or uninterpreted. A
universe is called s_imple if the only uninterpreted symbols in it are a designated set of
variables. In a simple universe the fixed variables can be called constants following
ordinary usage.

The value of a term e = f(el, ... ,ek) in a state j is defined inductively by

We now define by simultaneous induction the binary relation over r conesponding to a
program a of RC, and those states j in r which satisfy a DL- wff P. The relation will be
denoted by m(a) and for the latter we write Jt=P. (j ,3) being an element of m(a) can be

thought of as representing the fact that there exists a computation sequence (or pat It) of
a starting in state J and terminating in j. Thus, Jt=[a]P will be seen to be making an
assertion about all terminating computations of et starting in state j ; namely the
assertion that the final states of these computations satisfy P. Similarly, Jt=<et>P
asserts the existence of a terminating computation of a starting in stale j, which ends in
a state satisfying P.

(1') F' or any variable x and term e,
m(xf--e) = {(J,9)19=Ce3/x]J}.,

(2') for any program- free DL-wff P,

m(P?) = {(J,J)I Jt=P},
(3') For any a and fJ in RC,

m(a ;fJ) = m(a) o m(fJ),

m(a ufJ) = m(a) u m(n)'

(composition of relations),
(union of relations),

5

. m(a*) = (m(a))*, (reflexive transitive closure of a relation),
(4') . For an atomic formula p(el, ... ,ek),

Jl=p(el, ... ,ek) whenever p3(el31 ... ,ekj) is true,

(5') For any DL- wffs P and Q, ex in RG and variable x,
Jl=,P iff it is not the case that Jl=P,
JI=(PvQ) iff either Jl=P or Jl=Q,
Jl=3xP iff there exists an element d in DJ such that [d / x]j I= P,

Jl=<a->P iff there exists a state 3 such that (J ,3) Em(a) and 31=P.

Note that the only kinds of formulae, whose truth in state J depends possibly upon states

other than J, are those containing subformulae of the form.]xP. and <«>P.

In this paper we will primarily be interested in investigating the truth-of
formulae in a given simple universe U. However, one can see that for some 3 EU and s9me
assignment x+-e, the unique state 9 such that (J ,9)Em(x+-e), Le. the state [e JI x]J, might

not be in U at all. We outlaw this phenomenon by adopting, from now on, the convention
that in the context of a given universe, the only programs we consider are those in which
the variables assigned to (e.g. x in x+-e) and the quantified variables (e.g. x in 3xP) are
uninterpreted. Thus, for JEU and for any DL- wff P, the truth of j in P can be seen lo
depend only on states in U.

We abbreviate (J,9)Em(a) to Ja9, and also take the liberty of writing

JF<a>P iff 39(Ja9 " 9H),
JHaJP iff V3(Ja9 => $1=P).

and thus we have also

Given a univ.erse U, we say that a DL-wff Pis U-valid (and write J:U P) if-for

every JEU we have Jl=P. We say P is valid (l=P) if it is U-valid for every universe U in
which, in line with the above convention, the assigned and quantified variables of P
are uninterpreted.

The following are examples of valid DL- wffs:

[(x=z /\ y=u)?;(x+-f(x) u y+-f(y))J(x=z v y=u),
x=y => [(x+-f (f (x))) *J< (y+-f (y)) *>x=y,
x=y => [(x+-f(x))*J(p(x) => (x=y v (y+-f(y) ;(y+-f(y))*>p(y))) .

The first asserts_ that at most one of the components of u is executed. The second stales
that the process of repeatedly applying a function composed with 'itself is a special case
of that of repeatedly applying it. The third asserts essentially that the process of
achieving a property of x by repeatedly applying f can be simulated in y.

6

Denote by N the simple universe of pure arithmetic; i.e., the domain D is the set

o.f natural numbers, and +, · and O are fixed with their standard interpretations. We

freely use standard arithmetical abbreviations such as ~, gcd, etc. The following are
N - valid DL-wff s:

<(x+-x-1) *>x=O,
y>O v <y=O?>true (We abbreviate x=i to true and .,true to false),

[(x=x' /\ y=y' /\ x·y>O)?J<(x¢y?;(x>y?;x+-x-y u x<y?;y+-y-x))*;x=y?>x=gcd(x',y').

The last example asserts that the program inside the diamond, under the assumption that
its two inputs are positive integers, terminates and computes the gcd of these inputs.
This program can be written in more popular terms as:

while x¢y do if x>y then x+-x- y else y+-y-x end.

We adopt the standard definition of a free occurrence of a variable x in ~ first
order formula Q to be an occurrence of x which is not in any subformulae of the form JxP.
Any other occurrence is called bound. Also, we define Q: for variable x and term e to

be the formula which is obtained from Q by uniformly renaming all bound variables of Q
which appear in e and replacing all free occurrences of x by e.

We now describe our extension of DL, namely DL+, for dealing \l.'ith infinite
computations. The definitions of DL + given in (14] and [9] amount to exactly the same,
but are presented differently; in C14] we use a "divergence state", and in [9] computation
trees. · However, once the present definition or any one of the others has been given, the

concepts are well defined and the rest of the treatment is identical.

for any program aERG and state JEr, a Boolean const~nt loop et is added to the

vocabulary of DL, giving DL +. The semantics of loop et are given by induction on the

structure of a as follows:

loopx+-e = false,
loopP? = false,

loopcxu{J - (loop ex v loop{J),

loop ex ; fj - (loop Ot v <a>loop fj).

for a* we define :Jt=toopa* iff either Jt=<a*>loop"', or there exist states

J0, J1, J2, Er such that, J0=:J and (Vi~O)(Jia3i+1).

(We remark that our original notation in [14] had dv(a) standing for -,[oofra· We now

pref er the notation loop a which is what is used in [19] and (91)

7
Now abbreviate ~he DL + -wff (<cx>P v loop ex) to (a)+p, and -.(a)+-.p to [a]+p, Thus we have

<cx>+Jalse = loopa,

[a]+ true = ,loop ex·
and

The intuition is that <a>+Jalse (i.e. loop a) is true in a state .1 iH a "can enter an

infinite looP'.' ; i.e. "ex has a divergence". [a]+true is true in .1 ifr a is "divergence-free".

We ref er the reader to [21J, [12] and [9] for many more details and results concerning DL
and DL +.

J. Arithmetical Axiomatization of DL and DL +.

We would like to supply a syntactic characterization of the U-valid DL-wffs and
DL + -wff s for specific un.iverses U; namely those which "contain" the simple universe of

arithmetic, N. This characterization will be in the form of sound axiom systems for DL
and DL + which make explicit use of variables that range over the natural numbers. For an_y

such "arithmetical" universe A, we take all A-valid first order formulae as further
axioms, and show that then the axiom systems are A-complete, i.e. that a proof in them
does indeed exist for any A-valid DL-wff. This property we will term arithmetical completeness.

An arithmetical universe A is a universe in which the domain includes the set of

natural numbers, the binary function symbols+ and · are fixed and given their standard

meanings (addition and multiplication respectively) when applied to the natural numbers in
the domain, and O is a fixed z.eroary-order function symbol interprete~ as the natural
number "zero". Furthermore there is a fixed unary predicate symbol nat with the

interpretation "nat J< d) is true iff d is a natural number", that is, for every state .1,
{MD3I nat_J(d}) is the set of natural numbers. Thus, we are able to distinguis.h· the

natural numbers in the domain from the other elements, and we do not care, say, what the
value of x+y is in state .1 when it is not the case that nat J< x j) holds. Note that one ·

particular arithmetical universe is the simple universe H of "pure arithmetic" in which
nat is identically true.

Throughout the rest of the paper, A stands for any arithmetical universe, and L
for the set of first-order formulae. When talking about arithmetical universes we will

often want to use n, m, .. : to stand for variables ranging only over the natural numbers.
We do this by _adopting the following convention: Any L-wff we will use, in which we have
explicitly mentioned, say, the variable n as a free variable, is assumed to be preceeded
by nat(n) => . Thus, for example, .11=(P(n)=>Q) stands for .11=(nat(n)=>(P(n)=>Q)), asserting

8

that in state J, (P(n)=>Q) is true if OJ happens to be a natural number. Furthermore, by
convention, VnP(n) stands for Vn(nat(n)=>P(n)), and hence 3nP(n) alibreviates 3n(nat(n)AP(n)).

For any aERG, we let var(a) stand for the set of variables appearing in a.

Consider the following axiom system P for DL:
Axioms:

(A) A II tautologies of propositional calculus.
(B) All A-valid L-wffs.

(C) [x~eJP=P:, foranL-wffP.
(D) [Q?JP=(Q=>P).
(E) [a ; IJJP = EaJ[~JP.
(f) [au/JJP - ([a]P /\ (~JP).

Inference rules:

(G) Modus Ponens p P=>Q

(H)

(I) Invariance

Q

P=>Q

[a]P :, f a]Q

P=>[aJP

P=>[a*JP

(J) Convergence P(n+l) :, <a>P(n)

P(n) :, <a*>P(0)

for an L-wrr P with free n·,

s.t. nl var(«).

A DL-wff P is sajd to be provable in P, written I-p P, if there exists a finite s_equence

S of DL-wffs, the last one being P, and such that each formula in S i.s an axiom (or
instance of ah axiom scheme), or is obtained from previous formulae of S by one of the rules
of inference.

We now state four theorems which essentially appear in [12], and in more detail in [9].

T lzeorem ! (A-expressiveness for DL): For any DL-wff P th~re exists an L-wff F p

such that ~ A (P=F pl,

9

Theorem 2 (A-soundness for DL): For any DL-wff P, if ~p P then t=A-P.

Theorem J (Box-complet~ness): For every aERG and L-wffs Rand Q,

if t= A (R=>[a]Q) then ~p (R=>[a)Q).

Theorem 4 (Diamond-completeness): For every aERG and L- wffs Rand Q,

if t=A(R=><a>Q) then ~p (R=><«>Q).

Theorem.5 (A - completenessforDL): ForanyDL- wffP, if t=AP then ~pP.

Thus, for any arithmetical universe A, P characterizes the set of A-valid DL-wffs.

Turning to DL +, we remark that one way of supplying an axiomatization of DL + can
be derived from a recent theorem of Winklmann (24), who shows (con.trary to our conjecture
in (14)) that DL and DL + are equal in expressive power. His proof provides an algorithm
for obtaining, for any«, a DL-wff Qa such that t=(Qa = <«>+false) . Thus, one could add

a versi_on of this algorithm to P as a rule for transforming <«>+false into Q«, and then
the additional axiom,

would render this an arithmetically complete axiomatization of DL +. However, Q« is a

rather complicated formula and was designed in order to prove a "power of expression"
result. The goals of axiomatization, and arithmetical axiomatization in particular, are
different. Here we are interested in concise, elegant and weir structured axiom systems
for the purpose of proof. Consequently, we will concentrate on our original
axiomatization , given in [14].

Augment P with the following, to obtain p+:

Axioms:

(K) [x+-EJ+true,

(L) [Q?]+true,

(M) [a;t3J+true = [aJ•tt3J+true,

(N) [autn+true = ([a]+true/\[~]+true),

(0) [a]+p - ([(!JP !' [a]+ true) ,

Inference rules:

(P) Finiteness P(n+l)=>[aJ+P(n), -,p(o)

for an L-wff P with free n,

s.t. nf var(a),

10
(Q) Divergence

Here too we have:

T h.eorem 6 (A- expressiveness for DL +): For any DL + - wff P there exists an L- wH F p

such· that J:: A (P=F p).

Theorem 7 (A - soundness · for DL +): For any DL + -wff P, if I-p+ P then t= AP.

T heorcm 8 (Box+ -completeness): For every ct~RG and L-wff s R and Q,
if t=A(R=>[a]+Q) then 1-p+ (R=>[a]+Q).

Theorem 9 (Diamond+- completeness): FQr every cx~RG and L-wffs Rand Q,
if t= A (R=><cx>+Q) then 1-p+ (R=><cx>+Q).

T h.eorem JO (A- completeness for DL +): For any DL + - wff P, if t= AP then 1-p+ P.

We now· set ourselves out to find the thread connecting the previous results.

4. The T h.eorem of Completeness.

In this section we prove a general theorem which can be_ seen to provide the
inductive step used in the proofs of all the specific completeness results of [12), (14°]
and (9], and in particular, of the present Theorems 5 and 10. Also, the proofs of
arithmetical completeness results for any DL-like logics which fall under the general
criterions or this theorem can be considerably shortened by appealing to it. EHort can
then be devoted entirely to establishing the "base" of this induction, as illustrated in
the next section.

As above, we denote the set of first-order formulae by L. Assume we are given a
universe U, a set K, and a functional

The M-extension .oJL, L(M), is dd ined to be the following language which is L augmented
with one formation-rule:

{1) Any atomic formula is in L(M),

11
(2) for any kEK, variable x and L(M) - wff s P and Q,

,P, (PvQ), 3xP and (Mk)P are L(M)-wrfs.

The se.mantics of L(M) are defined with JI=(Mk) P holding whenever jEM(k,{91 $1=P}), and

with the other clauses receiving their standard meanings.

Some intuition might be gained at this point by noticing that if K is taken to be
the class RC of regular programs over assignments and tests, and (M

0
) P is. i_nterpreted as

<a>P, then L(M) is in fact precisely DL.

We now define s.ome important concepts to be used in the sequel:

We say that Lis U-expressivefor L(M} if for every L(M) - wff P ihere exists an L- wff Q
such that l=u(P=Q).

An axiom system P(M) for L(M) is any set of axioms (or axiom schemas) and inference rules
over L(M). Provability of an L(M) - wff P in P(M) is defined in the standard way and is
denoted by 1-p(M) P. P(M) is said to be Li-sound ir all the axioms are U-valid and all the rules

of inference preserve Li - validity. Note then, that whenever 1-p(M) R, we have · l=u R~

P (M) is said to be propositionally complete if all instances of tautologies of propositional

calculus are theorems of P(M) and modus ponens is in the set of inference rules.
It is said to be U.- complete if for every L(M) - wff R, whenever t= 0 R, we have I-p(M) R.

Theorem 11 (Theorem of Completeness): For any.universe U, M- extension L(M) of L, a
U-sound axiom system .P(M) for L(M) is Li-complete whenever the following hold:

(1) P(M) is propositionally complete,
(2) L is Li - expressive for L(M),

(3) . For any kEK and L(M) - wffs Rand Q,

if 1--P(M)(R=>Q) then 1-P(M) ((Mk)R => (Mk)Q),
(4-) for any kEK and L-wffs Rand Q,

a) if l=u R then t-p(M) R,

b) if l=u(R=>(Mk)Q) then 1-p(M) (R=>(Mk)Q), and

c) if l=u(R=>,(Mk).Q) then t-P(M)(R=>,(Mk)Q).

Proof: We have to prove that if P is an L(M)-wff such that t=0 P, then J-p(M) P.

By the propositional completeness of P(M) we can assume that P is given in conjunctive
normal form, and we proceed by induction on the sum of the number of appearances .of M and
the number of quantifiers in r. Assume the theorem holds for any for.mula with n-1 or less
appearances of M and qu~ntifiers. If P is of the form Pl/\P2, then we have l=u Pl and l=u

12

P2, so that we can restrict our attention to a single disjunction. Without loss of
generality we can, therefore, assume that P is of one of the forms:

Plv(Mk)P2, Plv-.(Mk)P2, Plv3xP2 or Plv-.3xP2,

where HK and Pl and P2 each have n- 1 or less appearances of M and quantifiers. Let us

use p to denote (Mk), -,(Mk), Jx or -.Jx according to which is the case.

L is expressive for L(M), and so for any L(M) - \'/ff Q there is some L-wff F Q which

is equivalent to Q. We have then l=u(-,f Pl::> pFp2). Now, using assumption (4)

(since F Pl and F p2 are L-wff s), we also have

Now surely, by the definition of F Pl and F p2, we have l=u (-.Pl => -.F Pl) and t=u
(F p2 => P2). Both these last formulae have less than n appearances of M and

quantifiers, and hence by the inductive hypothesis

t-P(M) (,Pl=>-.Fp1) and

1-p(M) (Fp2 =>P2).

By assumption (3) or (4a) (depending on whether pis an appearance of Mor a quantifi~r)

together with the propositional completeness, we obtain from the latter

(+++) 1-p(M) (pF P2 => pP2).

From (+), (++) and (++.+) we get, using propositional reasoning, J-p(M) (-.Pl=>pP2),

or t-P(M)(PlvpP2). ·1

NQw, ta ke A to be any arithmetical universe and K to be the set RC of regular

programs over assignments and tests. Take M to be the "diamond" operator, or more

precisely define JI=(Ma) P iff Jl=<a>P. Certainly then, L(M) is simply DL. Furthermore,

note that in t his framework taking P(M) to be the system P, we see that Theorem 2

establishes the Li-soundness required in Theorem 11, axiom scheme .(A) and rule (G) satisfy

requirement (1) of the theorem, Theorem 1 satisfies requirement (2), rule (H) (or, more

precisely , an easily derived version of it) satisfies requirement (3), and Theorems 3 and

4, together with axiom scheme (B) , satisfy requirement (4). Consequently, Theorem 5 can

be seen to be a corollary of Theorem 11, using Theorems 1-4.

T urnin~ to DL +, it is quite easy to see that. Theorem 11 can be extended to deal

13

with "double extensions" or L; i.e. for the case where there are two functionals M and M'.
We omit the precise rephrasing or the theorem for this case, but note that taking (M

0
) P

. to be <a>P as above and (M\
1

) P to be (ex)+p, the (M,M+)-extension, L(M,M+), is simply DL •.

Here too, Theorem 10 can be seen to be a corollary or Theorem 11, using Theorems 6-9.

Theorem 11 captures the inductive step used in proving all the completeness
results of (12], [14] and [91 These include results similar to Theorems S and 10 for the

extensions of DL and DL + for dealing with recursive programs, CFDL and CFDL +. In these
cases the set K is taken to be the set Cf of context- free programs ove"r assignments, and tests.

Note now that requirements (1), (3) and (4a) of Theorem 11 were satisfied in P and
p+ by simply including, in a straightforward manner, axiom schemes (A), and (B) and rules
(C) and (H). In the next section, however, we try to see how P and p+ were made to
satisfy requirements (4b) and (4c).

5. One-program Completeness Results. ·

In this section we describe how P and p+ were designed so· that the basic
completeness results, i.e., Theorems 3,4,8 and 9, could be established in [12] and [14] •

. Let us first consider DL. Theorem 3 ~an be seen to be essentially Cook's [SJ
theorem concerning Hoare's [15] axiom system for proving the partial correctness of
regular deterministic programs (see also [11], and Section 3.3 of [9]). Hoare's approach
was to construct th~ system in such a w·ay that the program ex in the formula-R =>[a]Q (which
he wrote as R{ex}Q) is "decomposed" one step at a time, based on the stru~ture of a. The
idea was to supply one rule of inference for every formation _rule of the programmin~
language, enabling one to conclude a property or a program by establishing similar
·properties of its immediate components. Completeness is. then pro_ved by induction on the
structure of ex, showing that at each step the appropriate rule could indeed be applied.

This appealing approach is imitated in our systems P and p+. One can show that
axioms (C) -(F), with the addition of (K)-(0) for DL + together with the ability (made_
possible by· propositional completeness) to reason about <ex> and <ex>+ using [a] and [a]+,
serve to enable the carrying out of this decomposition for all the program constructs in
RC but one: ex*. ·

Finding the appropriate axioms or rules for proving the properties of a* is what
we might now call the heart of the problem. Let us assume that we can find a sound rule
of inference having (a) R=>[ex*JQ as its conclusion, (b) programs of complexity "at most"
a in its premises, and (c) the property that whenever R=>[ex*JQ is A-valid, then one can

14

establish the A- validity of its premises. Then the task of proving the A- validity of

R ::>[a*JQ can always be reduced to that of proving the "simpler" premises. This fact would
then se.rve as the a* part of the proof of Theorem 3 "in the spirit" of Hoare (15].
Similarly, such a rule for R=><a*>Q would establish Theorem 4, and .these two would, as
shown above , complete the proof of the general completeness result, Theorem S. In the
same way, having axiom (0) at hand, rules for R=>fo*]+true and R:::><a*>+Jalse can be seen
to be sufficient for establishing Theorem 10.

We will show that these four tasks, resulting in rules (I), (J), (P) and (Q), are
quite easy and are dual to one another in a rather interesting way.

We will work on [a*J and <a*> simultaneously, and later exhibit the analogous
process for [a*J+ and <a*>+.

Let us take a look at the concept involved:

ra*JQ

We have the "arithmetical equivalent" of our concept:
Vn[an]Q

Note that for a given n and state J(:A,-we can prove

<a*>Q.

3n<an>Q.

Jt=[an]Q Jt=<an>Q,

by finding some formula P with a free variable n, nl var(a), such that the following hold:
JFP(n) Jt=P(n)

l=A Vm(P(m+l)::>[aJP(m)) t=AVm(P(m+l)::><a>P(m))

I= A (P (0) ::>Q) I= A (P(0) =>Q).

The reaso.n is that the above establishes, by induction on n, that
JF[aJ[aJ. ... [aJQ · Jl=<a><a>-<a>Q,

with n occurencies of a, which, by
I=([a][t}JQ s [a; t}JQ)

gives

Thus, if we can prove
JF(R::>VnP(n))

instead of JFP(n), we will have established
JF(R::>Vn[an]Q)

And so, being able to prove
t= A (R=>VnP(n))

t=(<a><fJ>Q = <a ; fJ>Q) ,

JF<an>Q.

Jt=(R::>JnP(n))

JF(R=>Jn<an>Q).

t= A (P(m+l) =>[a)P(m))

t=A(P(O)=>Q)

will result in the establishment of
t= A (R =>[a*JQ)

15

This gives rise to the A-sound rule of inference

R=>VnP , P'=>[aJP , PO=>Q

(*) --------­
R=>[a*JQ

where P' abbreviates P(n+l), and PO abbreviates P(O).

t= A (P(m+l) =><a>P(m))

t=A(P(O)=>Q)

t= A(R=><a*>Q).

R=><a*>Q

Now, in order for our required completeness property to hold, we must show that whenever
· R =>[a*JQ R =><a*>Q

is A - valid, there exists a P(n) satisfying the premises of the rule. This, however, is
true: take P(n) . to be simply some first-order formula which for any n is A- equivalent to

[an]Q <an>Q ·

itself. Such a formula exists as shown in (9). In other words we have

i=AVn(P(n) =[an]Q) t=AVn(P(n) ·=<an>Q) .

Thus in fact, we have found sound and complete rules for a* in DL, and we could have
stopped here. However, we would like to go a step further. Using the observation that

for the [a*J case we have the duality principle ((R ::, [HJQ) E (<H- >R ::, Q)), where a- is

the inverse of a, defined such that m(a-) = {(.1,9)13«.1} (see [21)), we note that we can

then write down an "ascending" induction rule, which is constructed symmetrically to the
"descending rule" above:

R=>PO , <a->P => P' , 3nP => Q

which by the duality principle is really

R=>PO , P=>[aJP' , 3nP => Q
(**)

R=>[a*JQ

and can be seen to be complete by taking P(n) to be <(a-)n>R. (The A- expressiveness of .·, .

L is retained in the presence of the inverse operator - .) Now, because of the universal

16

c_haracter of [a*J and the fact that Vn[an]p :> [a]Vn[an]P, or [a*JP ::::> [a]ta*JP, we are

able to collapse the descending and ascending rules (*) and (**) into one sound and ·
complete rule by eliminating the n-indexing:

R=>P , P=>[aJP , . P=>Q

R=>[a*JQ

The premises of this rule are made A-valid when the conclusion is, by both Vn[an]Q and

3n<(a-)n>R, or essentially, by both [a*JQ and <(a-)*>R. (Nole that* replaces n in

thes_e satisfying formulae for (*) and (**) .) Hence, we have arrived al the weakest
box-antecedent and strongest box-consequent (see [12)), both of which can be used as the
loop invariant P, stemming from the descending and ascending induction rules respectively.

Since there is no strongest diamond-consequent (see (12]), it turns out that there

is, for the <a*> case, only the uninteresting ascending rule

the consequent of which is not A-equivalent to R=><a*>Q.

We are left, then, wi th

R=>P , P=>[cxJP , P=>Q

R=>[a*JQ R=><a*>Q

The final step is simply pruning the arms and legs of these rules in order to make them

more concise, noting, e.g., that from having proved R=>JnP, PO=>Q and Vn(P=><a*>Po), we

can deduce R=><a*>Q using validities of first order logic (included as axioms in (A)). We
arrive, the ref ore, at our rules of invariance (I) and convergence (J)

P=>[aJP P'=><cx>P

P=>[a* JP

and have in effect "developed" the invariant assertion method for partial correctness
which is captured by rule (I) in parallel to the analogous method for its dual.

17
We would now like to present an idtntical chain of thought for DL +, resulting in a

suprisingly similar pair of rules. There we also see two concepts, one of universal and

the other of existensial character, with the universal (<a*>•Jalse) giving rise to an

index-free rule with strongest and weakest satisfying predicates. We will do this by

summarii.ing the above discussion and giving the main points for [a*J and <a*> again,

tog_ether with the ·analogues for [a*J+ and <a-*>+. First, we restate here the results from [14):

Theorem 12.

(1) [a*]•true = 3n[an]Jalse A [a*][a]•true = 3n[a0J•Jalse,

(2) <a*>•jalst = Vn<a0 >true v <a*><a>•Jalse = Vn<an>+true.

The intuitive m_eaning of, say, (2) being that a divergence in a* is due either to being

able to run a for ever, or to being able to run a some number of times and then have a
itself diverge.

The concept involved is

[a*JQ <a*>Q

The arithmetical equivalent is

Jn[anl"Jalse

The descending rule is

R=>VriP , P'=>[aJP , pO::,Q R=>3nP , P'=><a>P , pO::,Q

R=>Vn[an]Q R=>Jn<a">Q

R=>3nP , P'=>[aJ•p , PO=>false R=>VnP , P'=><a>•P , PO=>trut

R =>] n[an]+Jalse R=>Vn<a">•trut

18

The premises are satisfied (when the consequent is A-valid) by taking P to be A-equivalent to

(We could have stopped here too; the above rules are sound and complete, and will enable
the DL +-completeness theorem to go through. We continue however, as we did above.)
The ascending rule is

R=>PO
'

P=>[a]P'
' JnP => Q '

no rule
R=>[a*JQ

R=>PO
'

P=><a>+p•
'

3nP => true
no rule

R =><a*> +false

The premises of this rule are satisfied by

no rule

no rule

The unified ·rule -is .

R=>P
'

P=>(a]P
' P=>Q

.
no rule

R=>[a*JQ

R=>P , P=><a>+P , P=>true
no rule

R=><«*>+Jalse

The premises of this rule are satisfied by both

[a*JQ and <(a-)*>R no rule ,

no rule <a*>+Jalse and <(a-)*>R /\ <a*>+falst.

19

The final "pruned" rule is

P=>[a]P P'=><a>P

P=>[a*JP P=><a*>PO

P'=>[a]+p , .,po P=><a>+P

P ::>[a*]+ true P=><a*>+Jalse

The name given to the construct used in a proof (i.e. the P involved) is

invariant convergent

?? divergent (we suggest).

We would appreciate suggestions on names for the "??''.

We would like the. reader to consider the virtues of conducting this reasoning for

the language of regular expressions over assignments and tests. Consider how much more

obscure the observations of this section would have been if we were to reason about, say,

the while statement, ins_tead of about a*. In our opinion a* captures the raw essence of
iterating. in programming languages, just as aufJ captures the essence of branching and a ; /J
the. esser:i~ ~ sequ~ncing. For the programming language designer who is interested in a

deterministic language or in a more "disciplined" nondeterministic one, we can recommend

means of restricting the generality of these constructs (e.g. if·then-else. and while, or

Dijkstra's [6] IF and DO, etc.). Note how the invariant assertion method of Floyd ['1], ·as

described by Hoare's while rule [15] (see also Section 3.3 of [9]), has been shown to fall

_out of th_is general pattern of arithmetically complete rules as a special case.

A word about recursion. In [9] and [10], we have developed an arithmetically

complete system for an augmented programming language which has µX'C(X) as an additional
pro~ram cons_truct (see, say, [2]). The basic idea there is to develop an analogy between

µX't(X) and ·-cn(Jalse?) on one hand, and a* and an on the other. That is, a* being

U~=O an, ·enabled us to "count" how many times we iterated .a, and to use this counting

in the construction of our rules. Similarly, we are using the fact that (for continuous

'C's) µXt:(X) is U~=O 'tn(Jalse?) to "count" how many times we recured with 't, ~nd we

have obtained similar results. Thus, it seems that working with a* is showing its

advantages in applying these ideas to a more complicated construct.

- - - -- - -- - - - - - -- - -- - - --- - - - -- - - --- - - - - - - -
- - - - -

20

6. An Application.

We would now like to illustrate the usefulness or the step-by-step development or
the a* rules for DL and DL + in Section S by considering another extension or DL, namely
AOL.

We add inductively, for any program a and AOL-wff P, the formula (na)P, defining

Jt=(na)P iff for all n, Jt=<an>P. Thus> we might write FA((na)P = Vn<an>P). · (ncr)P is

a construct used in the (deterministic) algorithmic logi.c or Salwicki-[221 Theorem 12
supplies an easy translation or OL + into AOL. In fact, Winklmann's [24] theorem shows
that AOL, DL + and OL are all equivalent in expressive power. However, as was the case

· for DL +, we are interested in an arithmetically complete axiom system for AOL, and
therefore simply follow the lines or the previous section. first we must have

Theorem I 3 (A-expressiveness for AOL): For any AOL-wH P, there exists an L-wrr F p,
such that FA (P=F p). .

Proof. Easy inductive proof using the definition (na)Q = Vn<an>Q. I

Lemma 14. For any program.a and L- wffs Rand Q,
if FA(R=>Q) then t=A((na)R => (na)Q).

Proof. We omit this slightly tedi~us but nevertheless straightforward proof. I

Having Lemma 14 at hand, we add the following rule to P:

(R) P=>Q ·

(na)P => (na}Q

We. also add the rules:

(S) R=>P(n) , P(n+l)=><a>P(n) , P(0)=>Q

R=>(na}Q

(T) P(n+l)=>[aJP(n)

·P(n) ::,-,(na)-,p(0)

for an L-wrr P with free n,

s.t. nf var(a), .

For an L-wff P

s.t. nf var(a),

(S) and (T) are obtained f ro.m the following rules, which in turn follow easily from
considerations similar to those described in Section S:

21

R=>3nP , P'=>[aJP , PO=>Q
and

We do not know of a duality .principle, or of any other way for doing away with the
indices in rule { S). Denoting the resulting axiom system by P(()), we have

Theorem 15 (A-soundness and completeness for AOL): For any ADL-wff P, t=AP iff 1-p(n)P.

Proof Apply Theorem 11, proving assumptions (4b) and (4c) of that theorem using the

above rules, by showing that their premises are satisfied respectively by <an>Q and
[an]Q. g

7. Relative Completeness.

The approach to axiomatization taken in this paper is closely related to, and in

fact is derive~ from, Cook's (5] notion of relative completeness. In this section we take
up the task of comparing the two approaches.

As we indicated in the previous section, Hoare (15] introduced an axiom system for
proving the partial correctness of deterministic programs. For the sake of this
discussion we can in fact think of the subsystem of P consisting of axioms (Al, (C).-(F)
and rules { G) and {I) as Hoa re's system, and can denote it by H (see Section 3.3 of
[9]). Cook [5] investigated the question of completeness of Hoare's system and managed to
formalize what seems to be the intuitive way in which people prove correctness (partial in
this case) of programs in line with the method suggested by Floyd [7] and Naur (20]. Cook

I

separated the reasoning about the program from the reasoning about the underlying
language, making a distinction between proving say, [xf-lJx=l, and proving (x>O => x'2:0);
The for mer still requires some program-oriented manipulation in order lo turn it into a
first....:.order formula, whereas the second does not. Thus, Cook's idea was to supply Hoare's
system with a generous oracle which had the ability lo answer questions concerning the
truth of first order formulae. In this way he was able to shift concentration to Hoare's .
rules themselves, which were to serve as a tool for performing a step-by-step
transformation of partial correctness assertions (of the form P=>[a]Q) into equivalent
first - order formulae. The truth of the latter is then checked using the oracle.

The way we formalize this approach is, as we have done, to represent the oracle
simply as the collection of the true first-order formulae that we are interested in, taken
as further axioms. Thus we arrive at the following formal definition using the
terminology we have developed: Assume we are given a language L' which includes all

22

firsl - o.rder formulae as wffs; thus Lis part of L', Assume AX is a sound axiom system for .
L', and denote by A Xu the system AX u {Pl PEL and t=0 P}. In other words, . A Xu is AX
augmented with all the Li- valid first - order formulae as further axioms. AX is said to be

complete for L' relative to L if for every universe U such that L is U- expressive for L',

A Xu is Li -complete for L' (every Li - valid L' - wff is ·provable in AXu),

Theorem 16 (Cook): Denote by LH the language {R ::>[cxJQI R and Q are L- wff s }.

Then, H is complete for LH relative to L . .

The proof is in fact identical to that of our Box- completeness theorem (Thm. 3) .

Now, if we restrict ourselves to languages L' such that for any arithmetical ·

universe A, L is A- expressive for L' (as is the case, for example, when L' is taken to be
any one of DL, DL +, CFDL, CFDL + etc.), we note that arithmetical completeness is a

special case of relative completeness; we do not require that A Xu be Li - complete for all

universes U which· make L Li-expressive for L', but only that that be the case for ·any

arithmetical universe. Consequently then, in AX itself we may use symbols in ways which

take their standard interpretation for granted. This is the flavor of the usage or n, +

and O in the rules (J) and (P), as well as in the rules for (na) in Section 6.

Let us look at some related work. Although coming earlier than [SJ and mentioning

neither expressiveness nor Hoare-like systems, Theorem 1 of (18), Theorem 2(1) or [3], and
the part of [1] which considers regular programs, include the .observations needed for

obtaining relative completeness theorems for F"loyd's inductive assertion method, and would
carry over t-o suitable versions of Hoarets system.

Extensions of Cook's result to cover full mutually recursive procedures appear in

(8) and in (13], and both utilize a method for "freezing" the input variables upon entry

to a procedure. (These systems are subsumed by the axiomatization of context- free DL in
(10] and (91)

This flurry of "positive" research led inevitably to a counter- effort or

"negative" research aimed at proving incompleteness results which indicate when Hoare - like

systems are doomed to be incomplete even in the relative sense of Cook. The first notable

result in this direction is that of Wand (23), who shows essentially that it is not the

case that L is Li - expressive for every universe U. Thus Wand shows that there exist

universes U such that AXu is not Li-complete for LH. More recently, Lipton (16) claims

to have proved the following very interesting characterization of these "good" universes:

L is Li-expressive for LH, iff U is an arithmetical universe or a universe with a finite

domain (call the latter a finite universe). Thus according to this claim the only

universes for which a Hoare - like system can be relatively complete are the arithmetical

23

ones and the finite ones. So. Cook's [5] requirement boils down to requiring that AXu be

Li- complete for these _two kinds of universes.

The finite universes, however, cause trouble: Clarke [4] has shown that
introducing (into the programming language in which the programs of LH are written)

various P.rogramming concepts such as procedures as parameters or coroutines, in the
·presence of recursion and other reasonable mechanisms, prevents the possibility of
obtaining relatively complete axiom systems. The argument in [4] is based on the fact
that the first_ order language L is Li-expressive for LH for any finite univers~ LI. The

incompleteness results are then established by showing that these complex programming
languages have an undecidable halting problem over finite domains, and hence the set of
diverging programs is not r.e., a fact which would contradict the existence of any
relatively complete Hoare-like axiom system for such a language (the existence of one
implying that, in particular, the set of valid formula of the form true=>[a]false is r.e.).
Hence, the essence of Clarke's results lies in the fact that Cook's condition of
expressiveness of L is satisfied by universes with finite domains.

The research of Lipton and Snyder [17] and Lipton [16] culminates in a

generalization and extension of Clarke's results, with a theorem (Theorem 1 in [16]) which
seems to tie up as equivalent the two properties of a programming language: (1) having a

decidable halting problem over finite universes, and (2) the set of formulae P=>[a]Q over
it being r.e. in the set of all U- valid L- wffs, for any U such that Lis LI-expressive for LH.

We conclude that relaxing the requirement and requiring that AX U be LI-complete

only for all arithmetical universes (i.e. playing otir arithmetical-completeness game)
seems a reasonable thing to do even for the restricted language of partial correctness, LH.

In addition, it seems that in order for axiomatizations of much richer logics
like, . say, DL and DL + to be rel~tively complete (i.e that they work for finite universes
too), the rules that involve arithmetic (i.e rules (J) and (P)) would have to be modified
to deal with the finite - domain case, and would probably result in a system which is far
less natura_l and elegant.

We are of the opinion, therefore, that the finite domains crept in because (1)

the concept treated most extensively by researchers in the area was partial correctness
([a JP· essentially), and (2) a weaker kind of expressiveness is needed to ensure the
existence of an elegant relatively complete axiomatization of this particular concept on
its own.

Thus. we feel that it is natural and benificial to allow the integers into ones
reasoning language, in order to make possible the kind of "counting" we carry out in P and p+.

24

Note that by adopting the "Hoare spirit" of structured, natural axiom systems, the
remark in (23, pp. 90) "if the lang.uage is expressive it is trivial to write down a
complete axiom system for partial correctness" becomes irrelevent. We are .. not interested

in a one - rule system (as described in (23), or as shown to us in more detail by A.R. Meyer
for the case of arithmetic) which has built into it essentially the full description of
how to Godel-encode any wff and how to construct the equivalent formula of arithmetic.
Rather, we w~nt systems for composing our formulae step by step, using various kinds of
as-sert ions on the way. Of course the proof that these systems are complete might invotv·e

relying on t he expressive power of arithmetic, and hence might call upon the use of Godel
encoding, in turn making "the formulae be less than perspicuous" [23) (as is the case
with our completeness results which at various points require finding the arithmetical
equivalent to formulae). Nevertheless, we believe that the construction of these systems
contributes considerably to the- understanding .of the concepts involved and provides the

framework in which. the natural and intuitive proofs one might have for one's programs can
be formulated.

8. Acknowledgements.

The observations made in this paper would have been impossible without the
research carried out jointly with V.R. Pratt and A.R. Meyer.

9. Refn"tnas.

(1) de.Bakker, J.W. and L.G.L.T. Meertens. On the Completeness of the Inductive
Assertion Method. J. of Computer and System Sciences, 11, 323- 351. 1915.

[2] de Bakker, J.W. and W.P. deRoever. A Calculus for Recursive Program Schemes. in
Automata, Languages and Programming (ed. Nivat), 161-196. North Holland. 1912.

(3) Banachowski, L. Modular Properties of Programs. Bull. Acad. Pol. Sci., Ser. Sci.
Mat h. Astr. Phys. Vol. 23. No. 3. 1915.

(4) Clarke , E.M. Programming Language Constructs for which it is impossible to obtain
good Hoare-like Axiom Systems. Proc. 4th ACM Symp. on _Prlnciples of Programming

Languages. 10-20. Jan. 1911.

25

(SJ Cook, S.A. Soundness and Completeness of an Axiom System ror Program
Verification, SIAM J. Comp. Vol. 7, no, 1. feb.1978. (A revision or: .Axiomatic and
lnterpretive Semantics for an Algol fragment, TR~79. Dept. or Computer_ Science, U. or
Toronto. 1975.)

(6] Dijkstra, E.W._ Guarded Commands, Nondeterminacy and Formal Derivation or
Programs. CACM Vol. 18, no. 8. 1975

(7] Floyd, R.W. Assigning Meaning to Programs. ln J.T. Schwartz (ed.) Mathematical
As puts of Computer Science. Proc. Symp. in Applied Math. 19. Providence, R:r.
American Math. Soc. 19-32. 1967.

(8] Gorelick, G.A. A Complete Axiomatic System for Proving Assertions about Recursive
and Nonrecursive Programs. TR-75. Dept. of Computer Science, U. or Toronto. 1975.

(9] Haret; D. Logics of Programs: Axiomatics and Descriptive Power. Ph.D. Thesis.
Dept. of EECS. MIT, Cambri_dge MA. June. 1978.

C10] Hare!, D. Complete Axromatiz:ation or Properties of Recursive Programs. Submitted
for publication.

(11] . Hare(, · D. On the Correctness of Regular Deterministic Programs; A Unified Surv~y.
Submitted for publication.

C12J Harel, D., A.R. Meyer and V.R. Pratt. Computability and Completeness in Logics of
Programs. Proc. 9th Ann. ACM Symp. on Theory or Computing, 261-268, Boulder, Col., May
1977.

(13] Harel, D., A . . Pnueli and J. StavL Completeness lssues for Inductive Assertions
and Hoare's Method. Technical Report, Dept or Appl. Math. Tel-Aviv U. Israel. Aug. 1976. ·

C14] Harel, D. and V.R. Pratt. -Nondeterminism in Logics of Programs. Proc. 5th ACM
Symp. on P"rinciples of Programming Languages. Tucson, Ariz. Jan. 1978.

C1SJ Hoare, C.A.R. An Axiomatic Basis for .Computer Programming. CACM 12, 576~580.
1969.

(16] Lipton, R.J. A Necessary and Sufficient Condition for the Existence of Hoare
Logics. 18th IEEE Symposium on foundations or Computer Science, Providence, R.I. Oct.
1977.

26

[17] Lipton, R.J. and L. Snyder. Completeness and Incompleteness of Hoare- like Axiom
Systems. Manuscript. Dept. of Computer Science. Yale University. 1977.

[18] Manna, Z. The Correctness of Programs. JCSS 3. 119- 127. 1969.

[19] Meyer, A.R. Equivalence of DL, DL + and AOL for Regular Programs with Array
Assignments. Manuscript. Lab. for Computer Science. MIT, Cambridge MA. August 1977.

(20] Naur, P. Proof of Algorithms by General Snapshots. BIT 6. 310- 316. 1966.

(21] Pratt, V.R. Semantical Considerations on floyd - Hoare Logic. 17th IEEE Symposium
on Foundations of Computer Science, 109- 121, Oct. 1976.

[22) Salwicki, A. Formalized Algorithmic Languages. Bull. Acad. Pol. Sci., Ser~ Sci.
Math. Astr. Phys. Vol. 18. No. S. 1970.

(23] Wand, M. A New Incompleteness Result for Hoa re's System. Proc. 8th ACM Symp. on
Theory of Computing, 87- 91. Hershey, Penn. May 1976.

(24] Winklmann, K. Equivalence of DL and DL + for regular programs. Manuscript, Lab.
for Computer Science. MIT, Cambridge, MA. March. 1978.

