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Abstract.

We consider the problem of designing arithmetically complete axiom systems for
proving general properties of programs ; i.e. axiom systems which are complete over
arithmetical universes, when all first—order [ormulae which are valid in such universes
are taken as axioms. We prove a general Theorem of Completeness which takes care of a
major part of the responsibility when designing such systems. It is then shown that what
is left to do in order to establish an arithmetical completeness result, such as those
appearing in [12] and [14] for the logics DL and DL*, can be described as a chain of
reasoning which involves some simple utilizations of arithmetical induction. An immediate
application of these observations is given in the form of an arithmetical completeness
result for a new logic similar to that of Salwicki [22]. Finally, we contrast this
discipline with Cook's [5] notion of relative completeness.

1. Introduction.

In the past ten years substantial progress has been made in the field of logics of
programs, a field which congerns itsell with the design of mathematical tools (formal and
informal) for reasoning about programs. Such logics should provide means for expressing
interesting properties of programs, and, hopefully, methods for proving them when true.

In this paper we would like to focus on proofl theory and to single out a specific trend in
its development.

The logics we consider are the formal logics DL (dynamic logic) and DL*. DL was
suggested as a powerful logic of programs by Pratt [21] and was further developed in [12]
and [9]. DL* was defined in [14]. These logics are extensions of first—order predicate
calculus, and are capable of expressing a very wide variety of properties such as partial
and total correctness, equivalence of programs, ete.

We are interested in the formulae of DL (DL-wffs) which are true in all states of
a given universe U (U-valid DL-wffs). With each universe U there is associated a domain
D, and in all states of U, lunction and predicate symbols are interpreted as functions and
predicates over D. Our approach is to consider those universes A (arithmetical universes)
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in which the domain essentiaily includes the natural munbers, and in which + "and 0
are given their standard interpretation. In this framework one can show that with each
DL—wIf P there is associated a first~order formula FP which is equivalent to P in any
state in A.

Our approach to proving the fact that a DL-wif P is A-valid is to design an axiom
system with which P can be syntactically transformed into FP‘ Then, for any arithmetical
universe A, all A-valid first—order formulae are taken as axioms, and thus, once this
transformation has been carried out, the set of axioms should contain Fp iff Pis
A—valid, and thus the proof is complete. This approach we call aritimetical
axiomatization. If the axiom system has the property that any A-valid DL-wff P can indeed
be transformed into the A-equivalent first—order Fp, we say that it is an arithmetically
complete axiom system, for then a proof of it is guaranteed to exist.

Section 2 contains rigorous definitions of the concepts of state and universe and
of the logics DL and DL*. In Section 3 we define the notion of an arithmetical universe,
present axiom systems for DL and DL*, and state the arithmetical completeness results we
‘were able to prove for them in [12] and [141.

Sections 4 and 5, the main sections of the paper, are devoted to the establishment
of a general framework in which the process of designing such axiom systems and proving
their arithmetical completeness can be derived out of simple inductive considerations. In-
Section 4 we prove a very general theorem, the Theorem of Completeness, in which the main
inductive step in the proofs of all the completeness results appearing in [123, [143, [10]
and [9] is captured in an abstract way. Thus, it can be seen that for any "DL-like"
logic, once arithmetical completeness can be established for very simple formulae which
involve only one appearance of a program this theorem can be applied to obtain the
completeness result for the full logic. In Section 5 we describe a way in which these
"basic" results for one—program formulae can be developed for DL and DL* using
straightforward reasoning. Thus, the intuition behind the inductive assertion method of
Floyd [7] and Hoare [15], which is embodied in our axiomatization of DL, can be viewed as
a special case of a rather broad observation. '

Section 6 contains an immediate application of these ideas, by describing the
rather effortless development of an arithmetically complete axiomatization of a new logic,
which borrows the Na operator of [22]. In Section T we give a precise definition, based
on the concept of a universe, of Cook's [5] notion of relative completeness, and then
discuss some of the literature regarding this concept, and comment as to the relationship
between it and arithmetical completeness.



2. T ke Definition of DL and DL*.

We define regular first—order dynamic logic (DL) as follows: We are given sets of
Jfunction symbols and predicate symbols, each symbol with a lixed nonnegative arity. We
assume the inclusion of the special binary predicate symbol "=" (equality) in the latter
set. We denote predicate symbols by p, q,.. and k—ary function symbols for k>0 by [,

g, Z.eroary function symbols are denoted by z,x,y,.. and are called variables. A term

is some k—ary function symbol followed by a k—tuple of terms, where we restrict ourselves
to terms resulting from applying this formation rule finitely many times only. For a

variable x we abbreviate x() to x, thus f(g(x),y) is a term provided [ and g are binary

and unary, respectively. An atomic formula is.a k-ary predicate symbol followed by'a
k—tuple of terms. | : : '

We deline by simultaneous induction the set RG of first—order regular programs and
the set of DL-wIfs:

(1) For any variable x and term e, x«e is in RG,
(2) For any program—free (see below) DL-wif P, P?is in RG,
(3) For any a and 8 in RG, (a;f), (auB) and a* are in RG,
(4) Any atomic formula is a DL-wIf,
(5) For any DL-wffs P and Q, & in RG and variable x,

-P, (PvQ), 3xP and <a>P are DL-wifs.

A DL-wif which contains no occurrence of a program of RG is called program free, or simply

a first order formula, Programs of the form indicated in (1) and (2) are called,

respectively, (simple) assignments and (simple) tests. We use A, 2 and = for

abbreviations in the standard way and, in addition, abbreviate ~3x-P to ¥xP, and ~<a>-P to CalP.

The semantics of DL is based on the concept of a state. A state J consists of a
non—empty domain D and a mapping from the sets of function and predicate symbols to the
sets of functions and predicates over D, such that to a k—ary function symbol [ (resp.
predicatelsymbol p) there corresponds a total k—ary function (resp. predicate) over D,
denoted by I'j (resp. pj). In particular, to a variable there corresponds an element of
the domain, and to a O—ary predicate symbol (propositional letter) a truth value (true or
false). The standard equality predicate over D is that which corresponds to the equality
symbol (=). We will sometimes refer to the domain of J as Dj. Observe that the way
states are defined no distinction is made between what are normally called variables and
constants. These will, however, be defined below for simple universes. =

We denote by I' the collection of all possible states, which we call the grand
universe. QOur semantics will assign to a program a a binary relation m(a&) over I', and
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to a formula P, a subset of I' consisting of those states which satisfy P. In the
sequel, however, we will be interested in special subsets of I', namely, universes:

A pseudo-universe U is a set of states, all of which have a common domain D. A
function symbol [ (resp. predicate symbol p) is called uninterpreted in U if for every
state J€U and for every function F (resp. predicate P) over D there exists J€U such that J
and J differ at most in the value of f (resp. p), which in § is F (resp. P).

Notation: for any function G: A - B, arbitrary element e, and a€A, .we defline [e /alC to be
- the function with domain A and range Bu{e} giving the same values at points in A—{a} as G,
and such that G(a)=e. Thus, the situation described above for uninterpreted f is simply

J=CF / 114.

A symbol is called fixed in U if its value is the same in all states of U. Thus,
is fixed in any universe. A universe is a pseudo—universe in which every predicate
symbol is fixed, and in which every function symbol is either fixed or uninterpreted. A
universe is called simple if the only uninterpreted symbols in it are a designated set of
variables. In a simple universe the fixed variables can be called constants following
ordinary usage.

The value of a term e = f(el,..,ek) in a state J is defined inductively by
eq = _fj(elj,...,ekj).

We now define by simultaneous induction the binary relation over I' corresponding to a
program & of RG, and those states J in I' which satisfy a DL—wff P. The relation will be
denoted by m(«a) and for the latter we write JFP. (J,d) being an element of m(a) can be
thought of as representing the fact that there exists a computation sequence (or path) of

@ starting in state J and terminating in §. Thus, JELaJP will be seen to be making an
assertion about all terminating computations of & starting in state J ; namely the

assertion that the final states of these computations satisfy P. Similarly, JE<a>P

asserts the existence of a terminating computation of & starting in state J, which ends in

a state satisfying P.

(1') For any variable x and term e,
m{x<e) = {(J,J)] g=[e_7/x].1}_,
(2') for any program—free DL-wff P,
m(P?) = {(J,0)] JEP},
(3') For any a and 8 in RC,
m(a;B) = m(a) o m(B8), (composition of relations),
m(auB) = m(a) u m(B), (union of relations),
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- m(a¥) = (m(a))X*, (reflexive transitive closure of a relation),

(4'). For an atomic formula p(el,...,ek),

JEp(el,..,ek) whenever pj(elj,...,ekj) is true,
(5') For any DL—wIfs P and Q, a in RG and variable x,

JE-P ifl it is not the case that JFP,

JE(PvQ) iff either JFP or JFQ,

JEAXP iff there exists an element d in D4 such that [d /x1JEP,

JECa>P iff there exists a state § such that (J,9)¢ém(a) and JEP.

Note that the only kinds of formulae, whose truth in state J depends possibly upon states
other than J, are those containing subformulae of the form IxP and <a>P.

In this paper we will primarily be interested in investigating the truth. of
formulae in a given simple universe U. However, one can see that for some J€U and some
assignment x<e, the unique state § such that (J,d)ém(x<e), ie. the state [eg / x1J, might
not be in U at all. We outlaw this phenomenon by adopting, from now on, the convention
that in the context of a given universe, the only programs we consider are those in which
the variables assigned to (e.g. x in x<e) and the quantified variables (e.g. x in IxP) are

uninterpreted. Thus, for J€U and for any DL-w(f P, the truth of_J in P can be seen to
depend only on states in U.

We abbreviate (J,J)ém(a) to Jad, and also take the liberty of writing

JECedP il 34(Jad A JFP), and thus we have also
JELaP iff VI(Jag > JEP). -

Civen a universe U, we say that a DL-wil P is U-valid (and write ‘:U P) lf for
every J€U we have JEP. We say P is walid (FP) if it is U-valid for every universe U in

which, in line with the above convention, the assigned and quantified variables of P
are uninterpreted.

The following are examples of valid DL-wffs:

C(x=z A y=u)?;(xf(x) U yef(y))I(x=z v y=u),
xzy 2 [(xef(f(x)))*K(y<I(y)) *>x=y,
X2y 2 C(xef(x))*I(p(x) 2 (x=y v <yel(y) ; (y(—f(y))*)p(y)))

The first asserts that at most one of the components of U is executed. The second states
that the process of repeatedly applying a function composed with itself is a special case
of that of repeatedly applying it. The third asserts essentially that the process of
achieving a property of x by repeatedly applying [ can be simulated in y.
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Denote by N the simple universe of pure arithmetic ; i.e., the domain D is the set
of natural numbers, and +, * and 0 are fixed with their standard interpretations. We

freely use standard arithmetical abbreviations such as 2, ged, ete. The [ollowing are
N —valid DL-wifs:

<(xex—1)*>x=0,
y>0 v <y=0">true (We abbreviate x=x to frue and -~true to false),
C(x=x" A y=y' A xy>0)7KK(x#£y?; (x>y? ;xex—y U x<y?;yey—x) ) ¥ ;x=yDx=ged(x',y').

The last example asserts that the program inside the diamond, under the assumption that
its two inputs are positive integers, terminates and computes the ged of these inputs,
This program can be written in more popular terms as:

wizile'x#y do if x>y then x<x-y else ycy—x end.

We adopt the standard definition of a free occurrence of a variable x in a [irst
order formula Q to be an occurrence of x which is not in any subformulae of the form IxP.
Any other occurrence is called bound. Also, we define Q: for variable x and term e to
be the formula which is obtained from Q by uniformly renaming all bound variables of Q
which appear in e and replacing all free occurrences of x by e.

We now describe our extension of DL, namely DL*, for dealing with infinite
computations. The definitions of DL* given in [14] and [9] amount to exactly the same,
but are presented differently ; in [14] we use a "divergence state", and in [9] computation
trees. However, once the present definition or any one of the others has been given, the
concepts are well defined and the rest of the treatment is identical.

For any program a¢RG and state J¢I', a Boolean constant _loopa is added to the
vocabulary of DL, giving DL*. The semantics of loop,, are given by induction on the
structure of a as follows: :

loop, o = false,

loopps = false,

loop,g = (loop, Vv loopg),
loope . g = (loop,, v (a)!oopﬂ).

For o we define JFloop,x iff either JE<a*>loop , or there exist states
.70, 31, Jg, T such that .10=.7 and (ViZO)(JiaJiq).

(We remark that our original 'notation in [14j had dv(a) standing for ~loop . We now
prefer the notation loop, which is what is used in [19] and [91.)
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Now abbreviate the DL*—wif (<adP v l_oopa) to <a>*P, and <ad>*-P to [al*P. Thus we have

<a>*false = loop,, and
Cal*true = -loop,.

The intuition is that <ad>*false (i.e. loop,) is true in a state J iff & "can enter an
infinite loop"; i.e. "a has a divergence". [al*true is true in J ifl & is "divergence—free".

We refer the reader to [211, [12] and [9] for many more details and results concerning DL
and DL*.

3. Arithmetical Axiomatization of DL and DL*.

We would like to supply a syntactic characterization of the U-valid DL—wffs and
DL*—wffs for specific universes U; namely those which "contain” the simple universe of
arithmetic, N. This characterization will be in the form of sound axiom systems for DL
and DL* which make explicit use of variables that range over the natural numbers. For any
such "arithmetical" universe A, we take all A-valid first order formulae as further
axioms, and show that then the axiom systems are A—complete, i.e. that a proof in them
does indeed exist for any A-valid DL-wfl. This property we will term arithmetical completeness.

An arithmetical universe A is a universe in which the domain includes the set of
natural numbers, the binary function symbols + and * are fixed and given their standard
meahings (addition and multiplication respectively) when applied to the natural numbers in
the domain, and 0 is a fixed zeroary—order function symbol interpreted as the natural
number "zero". Furthermore there is a fixed unary predicate symbol nat with the
interpretation "natj(d), is true iff d is a natural number", that is, for every state J,
{d(-Djl natj(d)} is the set of natural numbers. Thus, we are able to distinguish  the
natural numbers in the domain from the other elements, and we do not care, say, what the
value of x+y is in state J when it is not the case that natj(xj) holds. Note that one

particular arithmetical universe is the simple universe N of “pure arithmetic" in which
-nat is identically true.

Throughout the rest of the paper, A stands for any arithmetical universe, and L
for the set of flirst—order formulae. When talking about arithmetical universes we will
often want to use n, m,.. to stand for variables ranging only over the natural numbers.
We do this by adopting the followihg convention: Any L—wll we will use, in which we have
explicitly mentioned, say, the variable n as a [ree variable, is assumed to be preceeded
by nat(n) o . Thus, for example, JE(P(n)>Q) stands for JE(nat(n) 2(P(n)>Q)), asserting
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that in state J, (P(n)2Q) is true if ng happens to be a natural number. Furthermore, by
convention, YnP(n) stands for ¥n{nat(n)>P(n)), and hence I3nP(n) abbreviates In(nat(n) AP(n)).

For any a¢RC, we let var(a) stand for the set of variables appearing in a.

Consider the following axiom system P for DL:
Axioms:
(A) All tautologies of propositional calculus.
(B) All A-valid L-wifs.
(C) [xeelP= P:, for an L—wif P.
(D) [Q7?IP=(Q=P).
(E) Ce;B81P = LallBIP.
(F) LauBlP = (LadP A [BIP).

Inference rules: .
(C) Modus Ponens P, P2Q

Q
(H) PoQ
[adP o TalQ
(1) l Iﬁvariance PolalP
Pola*1P

(J) Convergence P(n+l) 2 <a>P(n)
for an L-wff P with free n,

P(n) o <a*?P(d) s.t. nf var(ea).

A DL—wIff P is sajd to be provable in P, written I'P P, il there exists a [inite sequence
S of DL-wffs, the last one being P, and such that each formula in S is an axiom (or
instance of an axiom scheme), or is obtained from previous [ormulae of S by one of the rules
of inference.

We now state four theorems which essentially appear in [12], and in more detail in [9].

T heorem | ( A—expressiveness for DL): For any DL—wif P there exists an L-wif Fp
such thal kA(PEFP).
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T heorem 2 ( A—soundness for DL): For any DL-wif P, if |"P P then FA_P.

Theorem 3 (Box—completeness): For every a¢RC and L-wffs R and Q,
' if F,(RolalQ) then I-P (RolalQ).

T heorem 4 (Diamond —completeness): For every a€RC and L—-wffs R and Q,
il FA(R=<a>Q) then I-P (R=2¢a>Q).

Theorem 5 (A—completeness for DL): For any DL-wif P, if I=AP then "‘—F’ P
Thus, for any arithmetical universe A, P characterizes the set of A-valid DL—wffs.

Turning to DL*, we remark that one way of supplying an axiomatization of DL* can
be derived from a recent theorem of Winkimann [241, who shows (contrary to our conjecture
in [141) that DL and DL* are equal in expressive power. His proof provides an algorithm
for obtaining, for any &, a DL-wif Q,, such that l-'-(Qa = <ad>*false). Thus, one could add
a version of this algorithm to P as a rule for transforming <a>*false into Qa" and then
the additional axiom,

<a>*P = (<KedP v <ad*false)

would render this an arithmetically complete axiomatization of DL*. However, Qa is a
rather complicated formula and was designed in order to prove a "power of expression”
result. The goals of axiomatization, and arithmetical axiomatization in particular, are
different. Here we are interested in concise, elegant and well structured axiom systems
for the purpose of proof. Consequently, we will concentrate on our original

axiomatization , given in [14].
Augment P with the following, to obtain P*:

Axioms:
(K) [xeET*true,
(L) CQ?I*true,
(M) Ca;B83*true = [ad*[BIT*true,
(N) CauBd*true = (Lal*true n [81*true),
(0) [al*P = ([alP A [al*true),

Inference rules:
(P) Finiteness P(n+l)o[ad*P(n) , “P(0)

for an L-wff P with free n,

P(n) sLa*1*true s.t. nf var(a),
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(Q) Divergence  PaKad>*P

Po<a*>*false
Here too we have:

T heorem 6 (A—expressweness for DL*): For any DL*~wif P there exists an L—wﬂ' Fp
' such that F, (P=Fp).

T heorem 7 ( A—soundness for DL*): For any DL*-wff P, if l"P+ P then F,P.

T heorem 8§ (Box*—completeness): For every a¢RC and L-wifs R and Q,
if FA(RD[a]”Q) then !-P+ (RoLal*Q).

T heorem 9 (Dnamond*-—completeness) Far every a¢RG and L-wifs R and Q,
if Fj(R2¢a>*Q) then Fp+ (Ra¢a>*Q).

T heorem 10 ( A—completeness for DL*): For any DL*-wif P, if ':AP then FP+ P

We now set ourselves out to find the thread connecting the previous results.

4. The T heorem of Completeness.

In this section we prove a general theorem which can be seen to provide the
inductive step used in the proofs of all the specific completeness results of [12], [14]
and [9], and in particular, of the present Theorems 5 and 10. Also, the proofs of
arithmetical completeness results for any DL-like logics which fall under the general
criterions of this theorem can be considerably shortened by appealing to it. Effort can
then be devoted entirely to establishing the "base” of this induction, as illustrated in
the next section.

As above, we denote the set of [irst—order formulae by L. Assume we are given a
universe U, a set K, and a functional

M: KxaU - oU,

The M—extension of L, L(M), is defined to be the following language which is L augmented
with one formation—rule:

(1) Any atomic formula is in L(M),
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(2) For any k€K, variable x and L{M)-wifs P and Q,

P, (PvQ), 3xP and (M )P are L(M)-wifs.

The semantics of L(M) are defined with ]F(Mk)l’ holding whenever JeéM(k,{J| JFP}), and
with the other clauses receiving their standard meanings.

Some intuition might be gained at this point by noticing that if K is taken to be
the class RG of regular programs over assignments and tests, and (Ma)P is. interpreted as
<a>P, then L(M) is in fact precisely DL.

We now deline some important concepts to be used in the sequel:

. We say that L is U-expressive for L(M). if for every L(M) -wff P there exists an L-wil Q
such that FU(PEQ).

An axiom system P(M) for L(M) is any set of axioms (or axiom schemas) and inference rules
over L(M). Provability of an L(M) —wfl P in P(M) is defined in the standard way and is

denoted by FP(M} P. P(M) is said to be U-sound if all the axioms are U-valid and all the rules
of inference preserve U-validity. Note then, that whenever FP(M) R, we have |=U R.

P(M) is said to be propositionally complete if all instances of tautologies of propositional
calculus are theorems of P(M) and modus ponens is in the set of inference rules.
It is said to be U~complete if for every L(M)-wff R, whenever FU R, we have FP(M) R.

T heorem 11 (Theorem of Completeness): For any universe U, M—extension L(M) of L, a
U-sound axiom system.P(M) for L{(M) is U-complete whenever the following hold:

(1) P(M) is propositionally complete,
(2) L is U—expressive for L(M),
(3). For any k¢K and L(M)-wffs R and Q,
if I-P(M)(R:Q) then 'FP(M) ((Mk)R o (Mk)Q)’
(4) For any k€K and L—wffs R and Q,
a) if FU R then l"P(M) R,
b) il FU(RD(Mk)Q) then FP(M)(RD{Mk)Q), and
c) if t:U(R:h(Mk)'Q) then "P(M)(R:"'(Mk)Q)-

Proof: We have to prove that if P is an L(M)-wif such that F; P, then l-P(M) P
By the propositional completeness of P{M) we can assume that P is given in conjunctive
normal form, and we proceed by induction on the sum of the number of appearances of M and
the number of quantifiers in P. Assume the theorem holds for any formula with n—1 or less
appearances of M and quantifiers. If P is of the form P1AP2, then we have |=U Pl and Fu
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P2, so that we can restrict our attention to a single disjunction. Without loss of
generality we can, therefore, assume that P is of one of the forms:

Plv(M,)P2, Plv-(Mk)P2, PlvixP2 or Plv-3xP2,

where k€K and Pl and P2 each have n—1 or less appearances of M and quantifiers. Let us
use p to denote (Mk), -(-M-k), dx or ~3x according to which is the case.

L is expressive for L(M), and so for any L(M)—wi{ Q there is some L—wif FQ which
is equivalent to Q. We have then Fy;(-Fp;  pFpy). Now, using assumption (4)
(since Fp; and Fpy are L—wils), we also have

) Fpomy (~Fpy = #Fpg).

Now surely, by the definition of Fp; and Fpq, we have Fy; (-P1 > -Fpl) and I=U
(FP2 > P2). Both these last formulae have less than n appearances of M and
quantifiers, and hence by the inductive hypothesis

& Fpw (PL=Fpy) and

By assumption (3) or (4a) (depending on whether p is an appearance of M or a quantiﬁér)
together with the propositional completeness, we obtain [rom the latter

()

Fp(m) (#Fpy = #P2).

From (*), (**) and (***) we get, using propositional reasening, FP(M)‘(wPIDpPﬂ,
or k() (PLveP2). R

Now, take A to be any arithmetical universe and K to be the set RG of regular
programs over assighments and tests. Take M to be the "diamond" operator, or more
precisely define JF(M_)P iff JECe>P. Certainly then, L(M) is simply DL. Furthermore,
note that in this framework taking P(M) to be the system P, we see that Theorem 2
establishes the U—soundness required in Theorem 11, axiom scheme (A) and rule (G) satisfy
requirement (1) of the theorem, Theorem 1 satisfies requirement (2), rule (H) (or, more
precisely, an easily derived version of it) satisflies requirement (3), and Theorems 3 and
4, together with axiom scheme (B), satisly requirement (4). Consequently, Theorem 5 can
be seen to be a corollary of Theorem 11, using Theorems 1-4,

~ Turning to DL*, it is quite easy to see that Theorem 11 can be extended to deal
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with "double extensions" of L ; i.e. [or the case where there are two functionals M and M'.

We omit the precise rephrasing of the theorem for this case, but note that taking (Ma)P ' !
to be <a>P as above and (M* )P to be <a>*P, the (M,M*) —extension, L(M,M*), is simply DL*.
Here too, Theorem 10 can be seen to be a corollary of Theorem 11, using Theorems 6-9.

Theorem 11 captures the inductive step used in proving all the completeness
results of [12], [14] and [9]. These include results similar to Theorems 5 and 10 for the
extensions of DL and DL* for dealing with recursive programs, CFDL and CFDL*. In these
cases the set K is taken to be the set CF of context—free programs over assignments and tests.

Note now that requirements (1), (3) and (4a) of Theorem 11 were satisfied in P and
P* by simply including, in a straightforward manner, axiom schemes (A), and (B) and rules
(C) and (H). In the next section, however, we try to see how P and P* were made to
satisfy requirements (4b) and (4c).

5. One-program Completeness Results.-

In this section we describe how P and P* were designed so that the basic
completeness results, i.e., Theorems 3,4,8 and 9, could be established in [12] and [14].

-Let us first consider DL. Theorem 3 can be seen to be essentially Cook's [5]
theorem concerning Hoare's [15] axiom system for proving the partial correctness of
regular deterministic programs (see also [11], and Section 3.3 of [9]). Hoare's approach
was Lo construct the system in such a way that the program a in the formula RoLalQ (which
he wrote as R{a}Q ) is "decomposed" one step at a time, based on the structure of & The
idea was to supply one rule of inference for every formation rule of the programming
language, enabling one to conclude a property of a program by establishing similar
properties of its immediate components. Completeness is then proved by induction on the
structure of a, showing that at each step the appropriate rule could indeed be applied.

This appealing approach is imitated in our systems P and P*. One can show that !
axioms (C) —(F), with the addition of (K)—(Q) for DL* together with the ability (made
possible by propositional completeness) to reason about <a> and <a>* using [al and [al?,

serve to enable the carrying out of this decomposition for all the program constructs in
RC but one: a*. '

Finding the appropriate axioms or rules for proving the properties of a* is what
we might now call the heart of the problem. Let us assume that we can find a sound rule
of inference having (a) RoLa*1Q as its conclusion, (b) programs of complexity "at most"
« in its premises, and (c) the property that whenever R2[a*1Q is A—valid, then one can
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establish the A-validity of its premises. Then the task of proving the A-validity of
RoLa*1Q can always be reduced to that of proving the "simpler" premises. This fact would
then serve as the a* part of the proof of Theorem 3 "in the spirit” of Hoare [15].
Similarly, such a rule for R2<a*>Q would establish Theorem 4, and these two would, as
shown above, complete the proof of the general completeness result, Theorem 5. In the

same way, having axiom (O) at hand, rules for RoLa*1*true and Ra<a*>*false can be seen
to be sulficient [or establishing Theorem 10,

We will show that these four tasks, resulting in rules (1), (J), (P) and (Q), are
quite easy and are dual to one another in a rather interesting way.

We will work on [a*] and <a*> simultaneously, and later exhibit the analogous
process for [a*1* and <a*>*.

Let us take a look at the concept involved:

[a*1Q | <a%>Q.

We have the "arithmetical equivalent” of our concept:
Vnla"Q In<a™Q.

Note that for a given n and state J€¢A, we can prove

JELa"IQ JE<a™Q, ’
by finding some formula P with a free variable n, nf var(a), such that the following hold:
JEP(n) JEP(n)
E, Ym(P(m+1) 5LalP(m)) F,¥Ym(P(ms+1) 2<a>P(m))
£, (P(0)Q) 4 (P(0)Q).
The reason is that the above establishes, by induction on n, that
Jeladlal. LalQ JECaX<ad..<a>Q,
with n occurencies of &, which, by :
F([al(B1Q = [a;8I1Q) F(<aX<f>Q = <a ;8>Q),
gives \
JELa"IQ JECa™Q.
Thus, if we can prove
JE(R>YnP(n)) JE(R23nP(n))
instead of JFP(n), we will have established
JE(R2Ynla™IQ) JE(R2Ina™Q).

And so, being able to prove
F 4 (R=¥nP(n)) E, (R=23nP(n))
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|=A(P(m+1) SLalP(m)) #A(P(ml) o<¢a>P(m))
FA(P(O)DQ) : ?A(P(O)Z’Q)

will result in the establishment of
#A(RDEa*]Q) . |=A‘(R3<a*>Q).

This gives rise to the A-sound rule of inference

RoVnP , P'slalP , PY5Q | RdnP , P'><adP , PUoQ
(*) — :

Rola*1Q Ra¢a*>Q
where P' abbreviates P(n+l), and PO abbreviates P(0).

Now, in order for our required completeness property to hold, we must show that whenever
Rola*1Q R2¢a*>Q

is A-valid, there exists a P(n) satislying the premises of the rule. This, however, is

true: take P(n) to be simply some first—order formula which for any n is A—equivalent to

[a"1Q <a™Q
itsell. Such a formula exists as shown in [9]. In other words we have
EAVn(P(n) = [a"1Q) i E,Vn(P(n) = <a™Q).

Thus in fact, we have found sound and complete rules for aX in DL, and we could have
stopped here. However, we would like to go a step further. Using the observation that
for the La*®] case we have the duality principle ((R 2 [8IQ) = (<F™>R > Q)), where a” is

the inverse of e, defined such that m(a™) = {(J,4)| JaJ} (see [217), we note that we can
then write down an "ascending” induction rule, which is constructed symmetrically to the
"descending rule" above:

RoP? | <a™>P 5P , 3nP 5 Q

In<(a”)™MR 2 Q
which by the duality principle is really

RoP’ | Po[alP' , 3nP5Q

{ Ky ,
Rola*1Q

and can be seen to be complete by taking P(n) to be <(a”)™R. (The A —expressiveness of
L is retained in the presence of the inverse operator ~.) Now, because of the universal
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character of [a*J and the fact that Ynla"IP o [alVnla™P, or [a*IP o [alla*IP, we are
able to collapse the descending and ascending rules (*) and (**) into one sound and :
complete rule by eliminating the n—indexing:

B=P , Poladl ,. P30

Ro[a*1Q

The premises of this rule are made A—-valid when the conclusion is, by both Yn[a™JQ and
An<(a”) ™R, or essentially, by both [a*1Q and <(a~)*>R. (Note that * replaces n'in
these satislying [ormulae for (¥) and (¥*).) Hence, we have arrived at the weakest
box—antecedent and strongest box—consequent (see [12]), both of which can be used as the
_loop invariant P, stemming from the descending and ascending induction rules respectively.

Since there is no strongest diamond—consequent (see [12]), it turns out that there
is, for the <a*®> case, only the uninteresting ascending rule

RoPY | [P P , VAP 5 Q

¥nl(a™)"R > Q
the consequent of which is not A—equivalent to R2<a*>Q.

We are left, then, with

RoP , PalalP , P2Q Ro3nP , P'o<CadP , PODQ

Rola*1Q ’ R2¢a*>Q

The final step is simply pruning the arms and legs of these rules in order to make them

more concise, noting, e.g., that from having proved Ro3nP, PODQ and Vn(P:Ké!*)PO), we
can deduce R2<a*>Q using validities of first order logic (included as axioms in (A)). We
arrive, therefore, at our rules of invariance (I) and convergence (J)

PoladP : P'o<CadP

PoLa*IP | Po¢a*yp?

and have in effect "developed" the invariant assertion method for partial correctness
which is captured by rule (1) in parallel to the analogous method for its dual.
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We would now like to present an identical chain of thought for DL*, resulting in a
suprisingly similar pair of rules. There we also see two concepts, one of universal and
the other of existensial character, with the universal (<a*>*false) giving rise to an
index—free rule with strongest and weakest satisfying predicates. We will do this by
summarizing the above discussion and giving the main points for [a*] and <a*> again, A
together with the analogues for [a*1* and <a*>*. First, we restate here the results from [143:

T heorem 2.
(1) Ca*T*true = Inla"Jfalse A [a*Wal'true = Anla"Tfalse,
(2) <a®>*false = Vn<a™true v <a¥X<ad>*false = Vn<a™*true.

The intuitive meaning of, say, (2) being that a divergence in a* is due either to being

able to run a for ever, or to being able to run a some number of times and then have &
itsell diverge.

The concept involved is

[a*1Q <a*>Q

Ca*T*true <a*>*false.

The arithmetical equivalent is

Vnfa"1Q | In<a™Q

AnLa"T*faise . Vn<a™*true.

The descending rule is

RoVnP , P'olalP , PY5Q RodnP , P'ocadP , PUoQ
RoVnla™1Q Ro3Inka™Q

Ro3nP , P'olal*P , POofalse RoVAP , P'a¢a>*P , POorrue
RDHn[q"].ffalse ' RoVn<a™*true
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The premises are satisfied (when the consequent is A-valid) by taking P to be A-equivalent to

[«"1Q @™Q

La"T*false ; <a™*true.

(We could have stopped here too; the above rules are sound and complete, and will enable
the DL*—completeness theorem to go through. We continue however, as we did above.)
The ascending rule is

RoPY | Polalr , 3P > Q

no rule
Rola*1Q
RDPQ , PoKad*P' |, 3nP o true
no rule
Ra<a*>*faise
The premises of this rule are satisfied by
<(aT)™R : no rule
no rule _ <(aT)™R A <a¥>*false,
The unified rule is.
RoP , PolalP , PoQ
' : no rule
RoLa¥*1Q :
RoP , Po<Xad*P , Potrue
no rule -
Ro<a*>*false
The premises of this rule are satisfied by both
[a*1Q and <(a™)*>R no rule .

n0 rule ‘ <a¥>*false and <(a”)¥IR A <a®>*false,
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The final "pruned” rule is

PoLalP P'><adP
Pola*lP P>¢a*>p?
P'slal*P , -P° Po<ad*P
PoLa*T*true Po<a*>*false

The name given to the construct used in a proof (i.e. the P involved) is

invariant convergent

” divergent (we suggest).

We would appreciate suggestions on names for the "77",

We would like the reader to consider the virtues of conducting this reasoning for
the laﬁguage of regular expressions over assignments and tests. Consider how much more
obscure the observations of this section would have been if we were to reason about, say,
the while staiement, instead of about a*. In our opinion a* captures the raw essence of
iterating.in programming languages, just as auf captures the essence of branchking and & ;8
the essence of sequencing. For the programming language designer who is interested in a
det’ertﬁinistic'!anguaée or in a more "disciplined" nondeterministic one, we can recommend
means of restricting the generality of these constructs (e.g. if-then-else and while, or
Dijkstra's [61 IF and DO, etc.). Note how the invariant assertion method of Floyd [7], as
described by Hoare's while rule [15] (see also Section 3.3 of [9]), has been shown to fall
out of this general pattern of arithmetically complete rules as a special case.

A word about recursion. In [9] and [10], we have developed an arithmetically
complete system for an augmented programming language which has uXT(X) as an additional
program construct (see, say, [2]1). The basic idea there is to develop an analogy between
uXT(X) and T"(false?) on one hand, and a* and a” on the other. That is, a* being
UT:O a", enabled us to "count" how many times we iterated a, and to use this counting
in the construction of our rules. Similarly, we are using the fact that (for continuous
T's) uXT(X) is UT=0 T"(false?) to "count" how many times we recured with T, and we
have obtained similar results. Thus, it seems that working with a* is showing its
advantages in applying these ideas to a more complicated construct.
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6. An Application.

We would now like to illustrate the usefulness of the step—by-step development of
the e* rules for DL and DL* in Section 5 by considering another extension of DL, namely
ADL.

We add inductively, for any program e and ADL-wiff P, the formula (Na)P, defining
JE(Na)P iff for all n, JE<a™P. Thus, we might write FA((ﬂa)P = Vn<a™P). (Na)P is
a construct used in the (deterministic) algorithmic logic of Salwicki-[22]. Theorem 12
supplies an easy translation of DL* into ADL. In fact, Winklmann's [24] theorem shows
that ADL, DL* and DL are all equivalent in expressive power. However, as was the case

-for DL*, we are interested in an arithmetically complete axiom system for ADL, and
therefore simply follow the lines of the previous section. First we must have

T heorem 13 ( A—expressiveness for ADL): For any ADL—wif P, there exists an L—wif Fp,
such that k (P=Fp). '

Proof. Easy inductive proof using the definition (Na)Q = Yn<a™Q. B
Lemma 14. For any program & and L—wffs R and Q,
if FA(RDQ) then FA((ﬂa)R > (Na)Q).
Proof. We omit this slightly tedious but nevertheless straightforward proof. B

Having Lemma 14 at hand, we add the following rule to P:

(R) PoQ-

(Na)P 2 (Na)Q
We. also a.dd the rules:

(S)  RoP(n) , P(nsl)2<adP(n) , P(0)2Q :
' - For an L—wif P with free n,

Ro(Na)Q st. nf var(a),

(T)  P(ns1)LadP(n)
For an L—wff P
P(n) 2~(Na)-P(0) s.t. nf var(a),

(3) and (T) are obtained from the following rules, which in turn follow easily from
considerations similar to those described in Section 5:
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RoVnP , P'a<adP , PUSQ " R=23nP , P'olalP , PU5Q
' and

RoVn<a™Q | Ro3nla™IQ

We do not know of a duality.principle, or of any other way for doing away with the
indices in rule (S). Denoting the resulting axiom system by P(N), we have

T heorem 15 ( A—soundness and completeness for ADL): For any ADL-wIf P, FAP iff FP(n)P'

Proof. Apply Theorem 11, proving assumptions (4b) and (4c) of that theorem using the
above rules, by showing that their premises are satisfied respectively by <a™>Q and

[«"1Q. ©

7. Relative Completeness.

The approach to axiomatization taken in this paper is closely related to, and in
fact is derived from, Cook's [5] notion of relative completeness. In this section we take
up the task of comparing the two approaches.

As we indicated in the previous section, Hoare [15] introduced an axiom system for
proving the partial correctness of deterministic programs. For the sake of this
discussion we can in fact think of the subsystem of P consisting of axioms (A), (C)-—( F)
and rules (G) and (]) as Hoare's system, and can denote it by H (see Section 3.3 of
[9]). Cook [5] investigated the question of completeness of Hoare's system and managed to
formalize what seems to be the intuitive way in which people prove correctness (partial in
this case) of programs in line with the method suggested by Floyd [7] and Naur [20]. Cook
separated the reasoning about the program from the reasoning about the underlying '
language, making a distinction between proving say, [x<11x=1, and proving (x>0 > x20).
The former still requires some program—oriented manipulation in order to turn it into a
first—order formula, whereas the second does not. Thus, Cook's idea was to supply Hoare's
system with a generous oracle which had the ability to answer questions concerning the
truth of first order formulae. In this way he was able to shift concentration to Hoare's .
rules themselves, which were to serve as a tool for performing a step—by-—step
transformation of partial correctness assertions (of the form PolalQ) into equivalent
first—order formulae. The truth of the latter is then checked using the oracle.

The way we lormalize this approach is, as we have done, to represent the oracle
simply as the collection of the true first—order formulae that we are interested in, taken
as further axioms. Thus we arrive at the following formal definition using the
terminology we have developed: Assume we are given a language L' which includes all




22
first—order formulae as wils; thus L is part of L', Assume AX is a sound axiom system for
L', and denote by AX| the system AX U {P| P€L and ':U P}. In other words, AX|; is AX
augmented with all the U-valid first—order formulae as further axioms. AX is said to be
complete for L' relative to L il for every universe U such that L is U—expressive for L',
AXy is U-complete for L' (every U-valid L'-wif is provable in AXU).

T heorem 16 {Cook): Denote by Ly the language {R=[aJQ| R and Q are L-wifs}.
Then, H is complete for Ly relative to L.

The proof is in fact identical to that of our Bok—completeness theorem ( Thm. 3).

Now, if we restrict ourselves to languages L' such that for any arithmetical
universe A, L is A—expressive for L' (as is the case, for example, when L' is taken to be
any one of DL, DL*, CFDL, CFDL* etc.), we note that arithmetical completeness is a
special case of relative completeness; we do not require that AXU be U—complete for all
universes U which make L U—expressive for L', but only that that be the case for any
arithmetical universe. Consequently then, in AX itsell we may use symbols in ways which
take their standard interpretation for granted. This is the flavor of the usage of n, +
and 0 in the rules (J) and (P), as well as in the rules for (Na) in Section 6.

Let us look at some related work. Although coming earlier than [5] and mentioning
neither expressiveness nor Hoare-like systems, Theorem 1 of [18], Theorem 2(1) of [3], and
the part of [1] which considers regular programs, include the .observations needed for
obtaining relative completeness theorems for Floyd's inductive assertion method, and would
carry over to suitable versions of Hoare's system. -

Extensions of Cook's result to cover full mutually recursive procedures appear in
£81 and in [13], and both utilize 2 method for "lreezing” the input variables upon entry

to a procedure. (These systems are subsumed by the axiomatization of context—{ree DL in
£107 and [93.)

This flurry of "positive” research led inevitably to a counter—effort of
"negative” research aimed at proving incompleteness results which indicate when Hoare—like
systems are doomed to be incomplete even in the relative sense of Cook. The first notable
result in this direction is that of Wand [23], who shows essentially that it is not the
case that L is U—expressive for every universe U. Thus Wand shows that there exist
universes U such that AX|; is not U-complete for Ly More recently, Lipton [16] claims
to have proved the following very interesting characterization of these "good" universes:
L is U—expressive for Ly, iff U is an arithmetical universe or a universe with a finite
domain (call the latter a finite universe). Thus according to this claim the only
universes for which a Hoare-like system can be relatively complete are the arithmetical
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ones and the finite ones. So Cook's [5] requirement boils down to requiring that AXU be
U-complete for these two kinds of universes.

The finite universes, however, cause trouble: Clarke [4] has shown that
introducing (into the programming language in which the programs of LH are written)
various programming concepts such as procedures as parameters or coroutines, in the
presence of recursion and other reasonable mechanisms, prevents the possibility of
obtaining relatively complete axiom systems. The argument in [4] is based on the fact
that the first order language L is U-expressive for LH for any finite universe U. The
incompleteness results are then established by showing that these complex programming
languages have an undecidable halting problem over finite domains, and hence the set of
diverging programs is not r.e., a fact which would contradict the existence of any
relatively complete Hoare—like axiom system for such a language (the existence of one
implying that, in particular, the set of valid formula of the form truedlalfalse is r.e.).
Hence, the essence of Clarke's results lies in the fact that Cook’s condition of
expressiveness of L is satisfied by universes with finite domains.

The research of Lipton and Snyder [17] and Lipton [16] culminates in a
generalization and extension of Clarke's results, with a theorem (Theorem 1 in [161) which
seems (o tie up as equivalent the two properties of a programming language: (1) having a
decidable halting problem over finite universes, and (2) the set of formulae PoLalQ over
it being r.e. in the set of all U-valid L-wifs, for any U such that L is U-expressive for LH'

We conclude that relaxing the requirement and requiring that AXU be U-complete
only for all arithmetical universes (i.e. playing our arithmetical-completeness game)
seems a reasonable thing to do even for the restricted language of partial correctness, Ly

In addition, it seems that in order for axiomatizations of much richer logics
like, say, DL and DL* to be relatively complete (i.e that they work for finite universes
too), the rules that involve arithmetic (i.e rules (J) and (P)) would have to be modified

to deal with the finite—domain case, and would probably result in a system which is far
less natural and elegant.

 We are of the opinion, therefore, that the finite domains crept in because (1)
the concept treated most extensively by researchers in the area was partial correctness
(CalP essentially), and (2) a weaker kind of expressiveness is needed to ensure the

existence of an elegant relatively complete axiomatization of this particular concept on
its own.

Thus we feel that it is natural and benificial to allow the integers into ones
reasoning language, in order to make possible the kind of "counting" we carry out in P and P*.
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Note that by adopting the "Hoare spirit" of structured, natural axiom systems, the
remark in [23, pp. 901 "if the language is expressive it is trivial to write down a
complete axiom system for partial correctness" becomes irrelevent. We are not interested
in a one—rule system (as described in [23], or as shown to us in more detail by A.R. Meyer
for the case of arithmetic) which has built into it essentially the full description of
how to Godel—encode any wil and how to construct the equivalent formula of arithmetic.
Rather, we want systems for composing our formulae step by step, using various kinds of
asserlions on the way. Of course the proofl that these systems are complete might involve
relying on the expressive power of arithmetic, and hence might call upon the use of Codel
encoding, in turn making "the formulae ... be less than perspicuous™ [23] (as is the case
with our completeness results which at various points require finding the arithmetical
equivalent to formulae). Nevertheless, we believe that the construction of these systems
contributes considerably to the understanding.of the concepts involved and provides the
framework in which the natural and intuitive proofs one might have for one's programs can
be formulated.
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