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Abstract 

A property of a model of parallel computation is analyzed. We show 

that the use of queues may speed-up the execution of well formed data flow 

schemas by an arbitrarily large factor. A general model of data flow 

computation is presented to provide a framework for the comparison of data flow 

models. In particular a formal definition of a data flow version of the 

Computation Graphs of Karp and Miller and the Data Flow Schemas of Dennis are 

provided within the context of this model. 
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1. Introduction 

This paper studies a property of' the data flow models of computation 

(1,3,4,5,6,7,10,11,12] which are models of parallel asynchronous execution. 

The property that we analyze is the effect of queues or buffers on the data 

flow implementation of "if-then-while" programs. These programs may be 

easily translated into what are called well formed data flow schemas (5,6]. 

Two properties of well formed data flow schemas are that termination does not 

depend on the size of the queues used and that at termination the output of any 

computation is invariant under changes in the queue size. It is shown (in 

Section 6) that for any integer i, .there is some "if-then-while" 

program, whose parallel evaluation using well formed data flow schemas is 

sped-up by a factor of i when queues are used. Thus, while queues do not 

change the final outcomes of computations as they do in other models (10) they 

can improve efficiency of computation. We will presently describe an example 

of a well formed data flow schema but leave precise definition for Sections 3 

and 4 . 

The notion of a data dependenc1 program is also defined. These 

programs are a very general model (similar to that of [1]) that are presented 

to give a common framework for the comparison of different data flow models. 

In Section 3 it is shown that some of the models that ,have been studied 

(certain versions of computation graphs, data flow schemas) are special cases 

of our data dependency programs. 

The following is an example of these well formed data flow schemas, and 

a discussion of the intuitive meaning of their computation. They are proposed 

as a natural asynchronous implementation of "if-then-while" programs, 
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and we illustrate this relationship with the example. Consider the following 

"while" program: 

i:= 1 

n:=100 

while i~n do i:=i•i+sqrt(n) 

The corresponding well formed data now achema 1a gtwa iD Figure t. 

false a false J4----0 

Figure J. 

This is a simple example of an "iteration construct". Intuitively, 

execution proceeds as follows. Since the third arc that leads to each "merge 

node" is initially false the iteration commences by obtaining the initial 

values from the second incoming arc to each merge (and not the first arc). If 

the test evaluates to true, the values of the variables are passed through the 

"true nodes" and one iteration of the while statement ts executed. The values 

continue to circulate until the test evaluates to false. In that case the 

while statement terminates and outputs the results through the "false nodes". 
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This computation takes place on a machine with many processors for each type or 
node, and thus many nodes may be asynchronously executing. 

2. Data dependency programs 

This section presents the general data flow model of .computation. The 

basic structure of data flow programs is presented along with a definition or 

the meaning of their execution. Intuitively a directed graph will represent a 

program. Each node in the graph will be associated with some primitive 

function from its incoming arcs to its outgoing arcs. Data is viewed as lying 

in a queue on the · arcs of the directed graph. 

If a graph has certain values on designated input arcs, one may observe 

the function that it computes on this input. · The way · that computation proceeds 

is as follows. At each instance during a computation, every arc has an 

associated data queue. Based on its incoming queues a node may cause a change 

in state by operating on the incoming data, and placing result data on the 

outgoing arcs. This continues until the state cannot be changed by any node. 

The result of the computation is then observed by looking at certain designated 

"output arcs". 

We now proceed to the formal definitions, in which the above ideas are 

expressed in full generality. 

Definition 1. A data dependency program (DDP), (P, consists of: 

(1) A directed graph, G, with a node set M={mt'···•'"IMI} and an arc set 

A={a 1, ... ,alAI}. 

(2) V=Jii11 Vi the value domain. Vi is called the value domain 

associated with the arc a., and each V. may be any set. (By abuse of notation 
i i 
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Va also denotes the value domain associated with an · arc a.) Let Q be the set 

of mappings of each arc aeA into a finite string over V 
4 

(formally, Q={qlq:A-+J/ 

W•here· q(a)e(V a).)). The set Q is called the set of states. If A'cA, 

Q(A') denotes the set of restrictions of Q to A'. · 

Notation: If meM, B denotes the set of incoming arcs to m, and C 

denotes the set of outgoing arcs from m. 

(3) T={tmlmeM} is a set of local transtttonfuncttons of QJ indexed by 

nodes. The fu·nction tm has domain and range specified by 

tm:Q(BUC)-+Q(BUC). If teT, then t depends only on the incoming queues and the 

size of the outgoing queues. Thus if q,q' eQ(BUC) with q(B)=q'(B) and 

lq(c)l=lq'(c)I for every ceC-B (where lwl is the length of the string w) then 

t(q)=t(q'). 

Arbitrary data dependency programs may not be determinate [9]. However, 

the specific models discussed in this paper are determinate. 

If qeQ we let tm(q) be a shorthand for tm(ql(BUC)), called tlte value of . 

the local transition Junction at the node m and state q (where qJA' is the 

restriction of q to a set A' cA). 

A DDP QJ, is FIFO if for every node m, and state q, if tm(q)=q' then for 

each beB-C, q'(b) is a suffix of q(b). Intuitively, the meaning a function teT 

(for a FIFO DDP) is that it tells you what is _left on incoming arcs, and what · 

is added to arcs that are only outgoing arcs. 

The state of a DDP, (P, is an element qeQ. An tnttialtied DDP is a DDP 

together with an element qeQ called the initial state. 

The next state, q', after firing M'cM in state q, (sometimes denoted 

f(M ',q )), is defined as follows: 

( 1) If a is neither an incoming arc nor an outgoing arc for any meM' 
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theii q"(a)=q(a). 

(2) If a is an incoming arc of some node meM" and is not an outgoing 

arc of a different meM" then q"(d)=tm(q)(a). 

( 3) If a is not an incoming arc of any node meM.,, and is an outgoing 

arc of some meM.,, then q"(a)=q(a)·tm(q)(a). 

(4) If a is an incoming arc of a node meM" and an outgoing arc of a 

different node neM.,, then q"(a)=tm(q)(a)·tn(q)(a). 

An execution sequence, e, for a DDP is a sequence of nodes M 1, ... ,M m 

where MicM for i=1, ... ,m. The state of an initialized DDP (with initial 

state q) after an execution sequence e=M t'···•Mm is 

f(M ,,,,( .. ·(J(M 2 ,(f(M 1,q))))· .. )). A state qeQ is said to be a final 

state if f({m},q)=q (for every meM). 

An //0 DDP is a DDP with two sets /,OcA, I and O disjoint, where 

/ is called the set of input arcs, and O is called the set of output arcs. 

Each output arc must be an arc that is incident on a node with no outgoing arcs 

(called an output node). These nodes have the identity function as their local 

transition function. 

Let (P be an initialized 1/0 FIFO DDP with initial state qeQ. We will 

describe the meaning of the relation R((P) computed by (P on an input q'. Examine 

the program (P in its initial state an4 then replace the initial data words of 

all input arcs as specified by q". Execute (P until a final state is reached 

if one exists. If the value of the output arcs in this final state is q" then 

(q" ,q" ")eR((P). In the interesting case that (P is determinate, the value, q' ', 

is unique if it exists and (P specifies a partial function. 
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3. Description of Other Models 

This section indicates how to describe two data flow mod.els of 

computation in terms of our data dependency programs. They are a data flow 

version of the Computation Graphs of Karp and Miller [10], and the Data now 

Schemas of Dennis [ 5]. 

If z is a string we denote the prefix of z of length t by z, and 

the suffix of z of length lzl-i by i. 
A node m is said to be enabled in a ·state q if tm(q)#q)(BUC). 

A node m is said to be an ordinar, computatton node if for each 

arc bE.B there are integers Tb' W b (with T b~W b), and for each arc ceC there 

is an integer Uc such that: 

( 1) m is enabled iff lq(b >l~T b for every bEB. 

(2) Whenever m is enabled 

(i) tm(q)(b)=q(b)Wb for beB-C. 

(ii) tm(q)(a)=q(a)Wa.d(q,a) where d(q,a) is a 

string dependent only on q and a, and ld(q,a)l=U a for aeBnc. 

(iii) ltm(q)(c)l=U c for every ceC-B. 

(3) Let q and q' be two states in which m is enabled such that for each 

beB, _q(b)T
6
=q"(b)Tb· Then tm(q)(c)=tm(q')(c) for ceC-B and d(q,a)=d(q',a) for aeCnB. 

Intuitively what an ordinary computation node does whenever the size of 

the data queue on each incoming arc b at least equals Tb' is operate on 

the first Tb elements of arc b, remove W b of them, and place 

Uc results on arc c. 

A DDP is said to be a computation graph if all nodes are ordinary 

computation nodes. This definition of computation graphs diff~rs from that of 

Karp and Miller only in the fact that they allow their nodes to depend on some 
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auxiliary memory. Our computation graphs are thus a pure data flow model of 

theirs. 

A data flow schema is an initialized FIFO, 1/0, DDP where. 

( 1) For each arc t in the input set, there is a node m (called an 

input node) such that 

(a) The only outgoing arc from m is t. 

(b) There are no incoming arcs to m. 

(c) The local transition function on m is tm(q)(i)=e for every 

(2) The nodes of the graph are either input nodes, output nodes, 

ordinary computation nodes, True gates, False gates, or Merge gates, where the 

latter three are defined below. Also, for each incoming arc to an ordinary 

computation node T=W=t, and for each outgoing arc from an ordinary computation 

node U=t. 

(3) A True gate is a node with two incoming arcs a;b and an 

arbitrary number of outgoing arcs. The value domain associated with b, the 

second incoming arc is {true,false}. The val~e domain associated with all 

other incoming and outgoing arcs must match each other. The local transition 

function is given by t(q(a))=q(a)1; t(q(b))=q(b)\ t(q(c))=q(a)1 if 

q(b) 1 =true and t(q(c ))=e if q(b) 1 =false where c is any outgoing arc. A 

False gate acts as a True gate with the role of false · and true reversed. 

A Merge gate is a node with three incoming arcs a,b,d and an arbitrary 

number of outgoing arcs. The value domain associated. with d, the third 

incoming arc is {true,false}. The value domain associated with other incoming 

and outgoing arcs must match each other. The local transition function is 

given by: if t(q(d)) 1 =true then t(q(a))=q(a) 1, t(q(b))=q(b), t(q(d))=q(d) 1, 
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and q(c)=q(a) 1 where c is any outgoing arc, and if t(q(d)) 1=Jalse then 

t(q(a))=q(a), t(q(b))=q(b)1, t(q(d))=q(d)1, and q(c)=q(b)1 where c ts any 

outgoing arc. 

4. "If-then-while" programs and weU formed data now schemas 

This section fills in the details of the formal definition of the well 

formed data flow schemas. An //0 well formed data flow scltema is a data now 

schema whose graph fits one of the following inductive structural definitions. 

( 1) any ordinary computation node (which requires k incoming arcs and m 

outgoing arcs) with k input nodes, m output nodes and arcs from each input node 

to the ordinary computation node and from the ordinary computation node to 

each output node. 

(2) any conditional schema (as defined below) 

(3) any iteration schema (as defined below) 

(4) any acyclic composition of non-I/0 well formed data ·now schemas 

with the proper number of input nodes and output nodes as in (1). 

A non-//O well formed data flow schema is a well formed data now 

schema with input nodes and arcs and output nodes and arcs removed. 

A sample conditional schema is illustrated in Figure 2. The general 

conditional schema is composed as follows (refer to figure). P and Q are 

non-1/0 well formed data flow schemas requiring a compatible number of inputs 

and outputs, and C is a decision structure (to be defined below) with the saine 

number of inputs as P and Q. There are nodes labelled with True, False, and 

Merge with the quantity of such nodes based on the number of inputs and outputs 

of !' and Q. The data inputs for each merge come one each from P and Q. 
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Ftgurt 2. 

A sample iteration schemas is illustrated in Figure 3. The general 

iteration schema is composed as follows (refer to figure). P is a non-1/0 well 

formed d_ata flow schema requiring the same number of inputs as it does outputs, 

and C is a decision structure with the same number of inputs as P. There are 

nodes labelled with True, False, and Merge equal to the number of inputs of P. 

The "third" incoming arc to each merge is labelled with J<dst. These 

labellings are the only initializations of arcs permitted in well formed data 

flow schemas (aside from those of input arcs). 
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• Ftgurt J • 

A decision structure consists of a set of copy, predicate, and boolean 

nodes. The copy nodes accept inputs and send copies of them to predicate nodes 

which in turn produce boolean outputs to an acyclic composition of Boolean 

function nodes. For any set of incoming data there is a unique boolean result 

from this acyclic composition. 

In the above constructs we also· require that each .node (other than 

input nodes) have at least one incoming arc. 

In the sequel a well formed data flow schema Will always refer to an 

I/0 well formed data flow schema. 

True, False, and. Merge nodes were defined in Section 3. Cofr1 nodts are 

single input ordinary computation nodes that when enabled remove the first 

element of their incoming queue, and place it at the end of each outgoing 
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queue. Predicate nodes are ordinary computation nodes all of whose output arcs 

have value domain {true,Jalse}. The initializations of arc labellings to Jalst 

is the initial state of the well formed data flow schema. 

The input of a well formed data flow schema is constrained to have a 

string of length at most one for each input arc. The motivation for this is 

that the "if-then-while" programs represented by well for.med data flow programs 

do not have the capability to express queues of initial values. 

Well formed data flow schemas may be used to represent the data flow 

version of programs expressed as a sequence of statements of the following 

form: ( 1) x/=<constant> 

(2) x/=xk 

(3) x .:=fk(x . •.• .• x. ) 
J i1 in 

(4) if <Boolean exp> then <program> else <program> 

(5) while <boolean exp> do <program> 

This is the class of programs refered to as the "if-then-while" 

programs. Well formed data flow programs represent the parallel evaluation of 

"if-then-while" programs in a straightforward manner [6]. Arcs between 

ordinary computation nodes are viewed as representing the varial:,les on the left 

hand side of definitions of the form (1), (2), and (3); conditional schemas 

representing statements of the form (4), and iteration schemas representing 

statements of the form (5). 

5. Complexity of data dependency programs 

We specify the notion of the number of steps required by a data 

dependency program. Implicit in this definition is a consideration of how many 

processors of various types are available, and the size of the queues that are 
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being used. 

Let C be a machine with -. a fixed (perhaps infinite) number or proce~rs 

for each type of node. . The parallel complextt1 of an 1/0, initialized, 

FIFO, DDP with input q' on the machine C is the length of the shortest 

execution sequence leading to a final state that does not exceed the processor 

limitations. Specifically, for each Mi in the execution sequence, the 

number of times that nodes with the same local transition function appear must 

not exceed the number of processors for such nodes. 

The role of queues in our model may be stated formally as follows. For 

simplicity we restrict the formal definition to ordinary computation nodes. An 

ordinary computation node on a machine with queues of size k, is enabled iff 

lq(b)l~Tb for every beB (as before), and lq(c)j~k-U, _for every 

ceC. The rest of the definition of ordinary computation nodes remains the 

same. In general, no transition which could increase the size of a data queue 

past k is allowed. Thus the parallel complexity of a fixed program depends 

both on the number of processors, and the size of the queues of the machine. 

Usually the number of processors will be fixed in which case the parallel 

complexity of a program (P with input q, on a machine with queues of size l will 

be denoted by PC3'<q). The symbol PC'q,(q) is used when the machine has 

unbounded queues. 

6. Improved efficiency with queues 

It is evident that for certain data dependency programs, the size of 

the queue available causes a change in the partial function computed by a 

program (9, 1 O]. By induction on the structure of well formed data flow 

schemas, it may be shown that the partial function computed on any input q', 
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with lq"(Ol=t for every tel is invariant under queue size [9]. This fact only 

serves to highlight the question of whether queues are useful for speeding up 

computations. Three results presented herein give an affirmative answer to 

this question. The later results are stronger than the earlier ones, but 

require a slightly more complicated variation or our construction. The 

programs -considered will have a single input variable, xdl • 

Theorem 1. For all ielN there is a "if-then-while" program, whose 

translation into a well formed data flow schema (P, is at least t times faster 

if unbounded queues are used. Specifically, 

p.111, inf (PcJ(x))/(PC~(x))>t. 

Theorem 2. For all i,kelN there is a well formed data flow schema (P, such 

that P-1\b inf (PC3'<x))/(Pc~+t(x))>i. 

Finally, in the realistic case when we have exactly r function 

processors the speed-up is at most"- r (actually, it may be slightly larger if 

one counts processors for the gates). In that case: 

Theorem 3. For all kelN and for all i<r there is a well formed data flow 

schema, (P such that Jj..11l:, inf (PC3,<x))/(PC~+t(x)))i. 

Proof of theorems 

We now present the proof of the three part theorem. The programs for 

the three parts are quite similar. Figure 4 is an outline of the well formed 

data flow schema used in the proofs. We omit the "if-then-while" program for 

brevity. There are i levels in the general program. The first t-1 are 
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identical, and the i
th differs from the others. The one depicted in the 

figure is. the three level version. A second parameter for this class of 

programs is s, the number of successive nodes in each of the t chains. Note 

that if /j is an n-ary node then the above program is modified as 

follows. For each occurrence of the node fj there are n incoming arcs, 

all emanating from the predecessor in the chain. The program fragments denoted 

Pi are not to be thought of as subroutine calls. It is merely used as a 

diagramming convention which means that Pl should be inserted (in its 

entirety) in place of the node labelled with Pc 

The Proof of the theorems involves an analysis of the complexity of the 

above class of program for each of the two queue conventions. We first analyze 

the complexity of the programs in the case where there are no queues. 

During the first eight steps only first level nodes are executed. The 

second and third loops complete one iteration, but only five of the/ 
1 

nodes 

may be fired. At this point, the >-1 test cannot execute since one of its 

outgoing arcs still contains a value. Clearly,_ no other node is enabled, 

except for those in the chain of / 1 's. Thus an additional s-5 steps are 

required until may begin the second iteration. 

The fact that (about) s steps were required for one iteration of the 

loop had nothing to do with the fact that we were working on the first 

iteration. It is easy to see that each iteration will require about s steps. 

Thus about sx steps are spent executing the first x iterations. At the last 

iteration, the value of y1 equals zero and the second level may start 

execution. The second level is not very different from the first level and 

about sx steps are spent on the second level. Similarly sx steps are required 
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for the third., . . . , i-1 st levels. Finally, it is easy to see that sx steps 

are required for the i th level. The total execution time for the program is 

six steps plus lower order terms. 

The performance of this program on· a machine with unbounded queues 

follows. The first eight steps are identical to the no queue case. However, 

the ninth step differs. While still executing the chain of/ 1 nodes as part 

of the first iteration, one may begin working on the second iteration. This is 

because the test of ·the iteration is enabled even though not all of its outgoing 

arcs are void. Continuing the third, . .. , xth. iteration · in the same 

manner, it will only take 7x+ 1 steps until the value , 1 =O is passed through 

the merge of t_he iteration. After 7x+5 steps the second level commences, even 

as we continue processing the first level. When the subsequent levels of the 

program are executed, 7x+5 steps are again required to get from level to level. 

Thus (7x+5)(i-1) steps are spent until the tth level is reached. At the 

i
th level · (s+3) (x+1) steps are spent finishing the iteration. In parallel, 

this time is also used to complete the execution of the other i-1 levels. 

Finally, very few steps are spent executing the "add" nodes to complete 

execution of the program. Thus the total complexity of the program is 7ix+sx 

plus lower order terms. 

The ratio is: 

. PcJ (x)/PC¥ (x)=six/(sx+7ix)=si/(s+7i)=t/(1+(7i/s)). 

Since s was an arbitrary parameter, s may be chosen to be as large as 

desired, causing the ratio to be arbitrarily close to t. (Actually, to remove 

low order terms in the denominator x must be chosen to be large.) D 

We remark that with a program of i levels the speed-up obtained was 

about i/( 1+(7i /s)). A program of i levels and s nodes in the chain of each 
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level has a total of about is nodes. Thus with a program of size ts, we 

obtained a speed-up of i/(1+(7i/s)). Using this, it may be determined how 

large a program is required in order to get a speed-up of i. For this 

particular proof a program of size 28t2 is needed to get a speed-up of t. 

This can be seen by looking at a program with 2,t levels and s=14i. Then using 

the above formulas the speed-up is _equal tot and there are 28i2 nodes. 

Proof of Theorem 2. To compare queues of size Jr. to queues of size Jr.+t, 

first analyze the performance of the program of Figure 4 with input x=k. Using 

a queue of size k, about 7k steps are spent running x and -,
1 

through the 

iteration k times. If s>7k, then at least s steps must be executed before the 

final iteration of the loop (and thus the beginning of the second level) is 

started. Continuing in this manner, s(i-1) steps are required until the last 

level, is started and then sk steps are required just on th~ execution of the 

last level. Thus the total complexity with a queue of size k is about s(t+.O. 

With a size k+t queue the program's behavjor is quite different. After 

7k steps the second level may start since the _queues are large enough to 

accommodate all k+ 1 firings of the test of the iteration. Similarly after 

7k(i-1) steps the last level begins. Naturally, sk steps are again spent on 

the last level. Thus the ratio is about: 

(si+sk )/( 7ki+ks )=(i+k)I( (7ki/ s )+k) 

This ratio is at least as large as t/(k+(7ki/s)). Thus to get a 

speed-up ratio of i, use a program of 2kt levels and s=14ki. This uses about 

28k2
i
2 nodes. 

The connection between the behavior of the program of Figure 4 on the 

particular input x=k and a general program that exhibits the above behavior is 
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made as follows. If a program uses the constant k as the ~oop counter for any 

input x, then the behavior of that program for any input is described by the 

above discussion! □ 

We µiay modify the construction to get a slightly better result in 

program size. The idea is to execute the chain of s actors only on the first 

time around each iteration. With queues of ~ize k, only about st steps are 

required since the additional sk steps on the last level are not needed. With 

queues of size k+t only 10ki+s steps are required for the execution of the 

program (the factor of 10 replaces the 7 due: to extra nodes in the new 

program). The ratio is thus about si/( 10kt+s)=i/(1+(10kt/s)). To get a ratio 

of i it now suffices to use a program with 2t levels and s=20kt for a total 

program size of 40ki2 , i.e. only 11near in k. 

Proof of Theorem 3. In the case where there are only r processors the 

maximum speed-up factor is bounded by r (or actually slightly larger if one 

counts processors for gates) since even with a queue of size one, at least one . 

node is executed at each step. We restrict attention to r level programs. 

Using the second program described fn the proof of Theorem 2 the ratio 

for an i level program with s nodes in a cha1n is t/(1+(10kt/s)) even with only 

r processors (as long as i~r). To get a speed-up of t (2t~r) we use the exact 

same program as above using 2t levels. However if Zt>r then we must use a 

slightly different construction. Specifically, we may take advantage of at 

most r levels. To get a speed-up of i in this case, we use r levels and a 

value of s=tOkri/(r-i) for a total program size of 10kr2tt(r-L). Here we 

cannot readily take advantage of using many · levels since et most r of them may 

execute at once. 
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Finally, in our analysis of the case where there are limited number of 

processors, it is unnecessary to worry about processors for the parallel 

execution of the various nodes that are not locat.~ in the chains. They are 

few in number (relative to the total number of nodes that are in the chain), 

and thus even if they are not executed in paralJ.el, the time spent on their 

execution has little effect on the total complexity. D 

7. Practical usage of queue results 

The argument may be raised that queues are useful for only a small 

class of programs. While we cannot provide · a complete answer to this 

objection, a few remarks are relevant. Any program that could be ·sped-up due 

to the capability of simultaneously executing three different executions of the 

body of a while statement benefits from the use of queues. This follows from 

the fact that three simultaneous executions of the body may not take place if 
I 

queues are not used. 

Of course . one might also argue that three simultaneous executions of 

the body of a "while" is rarely possible in real situations. In that case, 

there is a different possible useful modification in machine data flow 

implementation. 

There is a mechanism introduced in machine implementations to guarantee 

safety of programs [8]. Basically, a program is unsafe if a node may obtain 

all the incoming data needed to execute~ but is disabled due to data that 

remains on outgoing arcs. 

Many of the programs for which queues do not help are inherently safe. 

Specifically, if a constraint is im~osed that two executions of the body of a 

while statement never occur simultaneously, then the safety problem is 
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eliminated for well formed data flow schemas. This constraint does not hinder 

parallelism if the simultaneous execution of the body did not help parallelism. 

We summarize the above discussion. · If a program benefits from three of 

more simultaneous executions of the body of a "while" - it benefits from 

queues. If it does not even benefit from two simultaneous executions - we have 

a potentially simple solution to the safety problem for well formed data flow 

schemas. On:iy if a program benefits from exactly two simultaneous executions 

of the body do we lack a potential suggestion! 
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