
MIT/LCS/TM- 1O4

THE USE OF QUEUES IN THE PARALLEL DATA FLOW EVALUATION

OF "IF- THEN-WHILE" PROGRAMS

Jeffrey Jaffe

May 1978

MIT/LCS/TM- 104

THE USE OF QUEUES IN THE PARALLEL DATA FL& EVALUATION

OF "IF-THEN-WHILE" PROGRAMS

Cambridge

Jeffrey Jaffe

May 1978

Massachusetts Institute of Technology

Laboratory for Computer Science

Massachusetts 02139

The Use of Queues in the Parallel Data Flow Evaluation

of "If-Then-While" Programs

Jeffrey Jaffe •

Abstract

A property of a model of parallel computation is analyzed. We show

that the use of queues may speed-up the execution of well formed data flow

schemas by an arbitrarily large factor. A general model of data flow

computation is presented to provide a framework for the comparison of data flow

models. In particular a formal definition of a data flow version of the

Computation Graphs of Karp and Miller and the Data Flow Schemas of Dennis are

provided within the context of this model.

KEYWORDS: Computation graphs, data dependency programs, data flow computation,

if-then-while programs, parallel computation, parallel schemata, queues, well

formed data flow schema.

• This paper was prepared with the support of National Science Foundation research
grant no. M::S77-19754 and a .National Science Foundation graduate fellowship .

1. Introduction

This paper studies a property of' the data flow models of computation

(1,3,4,5,6,7,10,11,12] which are models of parallel asynchronous execution.

The property that we analyze is the effect of queues or buffers on the data

flow implementation of "if-then-while" programs. These programs may be

easily translated into what are called well formed data flow schemas (5,6].

Two properties of well formed data flow schemas are that termination does not

depend on the size of the queues used and that at termination the output of any

computation is invariant under changes in the queue size. It is shown (in

Section 6) that for any integer i, .there is some "if-then-while"

program, whose parallel evaluation using well formed data flow schemas is

sped-up by a factor of i when queues are used. Thus, while queues do not

change the final outcomes of computations as they do in other models (10) they

can improve efficiency of computation. We will presently describe an example

of a well formed data flow schema but leave precise definition for Sections 3

and 4 .

The notion of a data dependenc1 program is also defined. These

programs are a very general model (similar to that of [1]) that are presented

to give a common framework for the comparison of different data flow models.

In Section 3 it is shown that some of the models that ,have been studied

(certain versions of computation graphs, data flow schemas) are special cases

of our data dependency programs.

The following is an example of these well formed data flow schemas, and

a discussion of the intuitive meaning of their computation. They are proposed

as a natural asynchronous implementation of "if-then-while" programs,

3

and we illustrate this relationship with the example. Consider the following

"while" program:

i:= 1

n:=100

while i~n do i:=i•i+sqrt(n)

The corresponding well formed data now achema 1a gtwa iD Figure t.

false a false J4----0

Figure J.

This is a simple example of an "iteration construct". Intuitively,

execution proceeds as follows. Since the third arc that leads to each "merge

node" is initially false the iteration commences by obtaining the initial

values from the second incoming arc to each merge (and not the first arc). If

the test evaluates to true, the values of the variables are passed through the

"true nodes" and one iteration of the while statement ts executed. The values

continue to circulate until the test evaluates to false. In that case the

while statement terminates and outputs the results through the "false nodes".

4

This computation takes place on a machine with many processors for each type or
node, and thus many nodes may be asynchronously executing.

2. Data dependency programs

This section presents the general data flow model of .computation. The

basic structure of data flow programs is presented along with a definition or

the meaning of their execution. Intuitively a directed graph will represent a

program. Each node in the graph will be associated with some primitive

function from its incoming arcs to its outgoing arcs. Data is viewed as lying

in a queue on the · arcs of the directed graph.

If a graph has certain values on designated input arcs, one may observe

the function that it computes on this input. · The way · that computation proceeds

is as follows. At each instance during a computation, every arc has an

associated data queue. Based on its incoming queues a node may cause a change

in state by operating on the incoming data, and placing result data on the

outgoing arcs. This continues until the state cannot be changed by any node.

The result of the computation is then observed by looking at certain designated

"output arcs".

We now proceed to the formal definitions, in which the above ideas are

expressed in full generality.

Definition 1. A data dependency program (DDP), (P, consists of:

(1) A directed graph, G, with a node set M={mt'···•'"IMI} and an arc set

A={a 1, ... ,alAI}.

(2) V=Jii11 Vi the value domain. Vi is called the value domain

associated with the arc a., and each V. may be any set. (By abuse of notation
i i

5

Va also denotes the value domain associated with an · arc a.) Let Q be the set

of mappings of each arc aeA into a finite string over V
4

(formally, Q={qlq:A-+J/

W•here· q(a)e(V a).)). The set Q is called the set of states. If A'cA,

Q(A') denotes the set of restrictions of Q to A'. ·

Notation: If meM, B denotes the set of incoming arcs to m, and C

denotes the set of outgoing arcs from m.

(3) T={tmlmeM} is a set of local transtttonfuncttons of QJ indexed by

nodes. The fu·nction tm has domain and range specified by

tm:Q(BUC)-+Q(BUC). If teT, then t depends only on the incoming queues and the

size of the outgoing queues. Thus if q,q' eQ(BUC) with q(B)=q'(B) and

lq(c)l=lq'(c)I for every ceC-B (where lwl is the length of the string w) then

t(q)=t(q').

Arbitrary data dependency programs may not be determinate [9]. However,

the specific models discussed in this paper are determinate.

If qeQ we let tm(q) be a shorthand for tm(ql(BUC)), called tlte value of .

the local transition Junction at the node m and state q (where qJA' is the

restriction of q to a set A' cA).

A DDP QJ, is FIFO if for every node m, and state q, if tm(q)=q' then for

each beB-C, q'(b) is a suffix of q(b). Intuitively, the meaning a function teT

(for a FIFO DDP) is that it tells you what is _left on incoming arcs, and what ·

is added to arcs that are only outgoing arcs.

The state of a DDP, (P, is an element qeQ. An tnttialtied DDP is a DDP

together with an element qeQ called the initial state.

The next state, q', after firing M'cM in state q, (sometimes denoted

f(M ',q)), is defined as follows:

(1) If a is neither an incoming arc nor an outgoing arc for any meM'

6

theii q"(a)=q(a).

(2) If a is an incoming arc of some node meM" and is not an outgoing

arc of a different meM" then q"(d)=tm(q)(a).

(3) If a is not an incoming arc of any node meM.,, and is an outgoing

arc of some meM.,, then q"(a)=q(a)·tm(q)(a).

(4) If a is an incoming arc of a node meM" and an outgoing arc of a

different node neM.,, then q"(a)=tm(q)(a)·tn(q)(a).

An execution sequence, e, for a DDP is a sequence of nodes M 1, ... ,M m

where MicM for i=1, ... ,m. The state of an initialized DDP (with initial

state q) after an execution sequence e=M t'···•Mm is

f(M ,,,,(.. ·(J(M 2 ,(f(M 1,q))))· ..)). A state qeQ is said to be a final

state if f({m},q)=q (for every meM).

An //0 DDP is a DDP with two sets /,OcA, I and O disjoint, where

/ is called the set of input arcs, and O is called the set of output arcs.

Each output arc must be an arc that is incident on a node with no outgoing arcs

(called an output node). These nodes have the identity function as their local

transition function.

Let (P be an initialized 1/0 FIFO DDP with initial state qeQ. We will

describe the meaning of the relation R((P) computed by (P on an input q'. Examine

the program (P in its initial state an4 then replace the initial data words of

all input arcs as specified by q". Execute (P until a final state is reached

if one exists. If the value of the output arcs in this final state is q" then

(q" ,q" ")eR((P). In the interesting case that (P is determinate, the value, q' ',

is unique if it exists and (P specifies a partial function.

7

3. Description of Other Models

This section indicates how to describe two data flow mod.els of

computation in terms of our data dependency programs. They are a data flow

version of the Computation Graphs of Karp and Miller [10], and the Data now

Schemas of Dennis [5].

If z is a string we denote the prefix of z of length t by z, and

the suffix of z of length lzl-i by i.
A node m is said to be enabled in a ·state q if tm(q)#q)(BUC).

A node m is said to be an ordinar, computatton node if for each

arc bE.B there are integers Tb' W b (with T b~W b), and for each arc ceC there

is an integer Uc such that:

(1) m is enabled iff lq(b >l~T b for every bEB.

(2) Whenever m is enabled

(i) tm(q)(b)=q(b)Wb for beB-C.

(ii) tm(q)(a)=q(a)Wa.d(q,a) where d(q,a) is a

string dependent only on q and a, and ld(q,a)l=U a for aeBnc.

(iii) ltm(q)(c)l=U c for every ceC-B.

(3) Let q and q' be two states in which m is enabled such that for each

beB, _q(b)T
6
=q"(b)Tb· Then tm(q)(c)=tm(q')(c) for ceC-B and d(q,a)=d(q',a) for aeCnB.

Intuitively what an ordinary computation node does whenever the size of

the data queue on each incoming arc b at least equals Tb' is operate on

the first Tb elements of arc b, remove W b of them, and place

Uc results on arc c.

A DDP is said to be a computation graph if all nodes are ordinary

computation nodes. This definition of computation graphs diff~rs from that of

Karp and Miller only in the fact that they allow their nodes to depend on some

8

auxiliary memory. Our computation graphs are thus a pure data flow model of

theirs.

A data flow schema is an initialized FIFO, 1/0, DDP where.

(1) For each arc t in the input set, there is a node m (called an

input node) such that

(a) The only outgoing arc from m is t.

(b) There are no incoming arcs to m.

(c) The local transition function on m is tm(q)(i)=e for every

(2) The nodes of the graph are either input nodes, output nodes,

ordinary computation nodes, True gates, False gates, or Merge gates, where the

latter three are defined below. Also, for each incoming arc to an ordinary

computation node T=W=t, and for each outgoing arc from an ordinary computation

node U=t.

(3) A True gate is a node with two incoming arcs a;b and an

arbitrary number of outgoing arcs. The value domain associated with b, the

second incoming arc is {true,false}. The val~e domain associated with all

other incoming and outgoing arcs must match each other. The local transition

function is given by t(q(a))=q(a)1; t(q(b))=q(b)\ t(q(c))=q(a)1 if

q(b) 1 =true and t(q(c))=e if q(b) 1 =false where c is any outgoing arc. A

False gate acts as a True gate with the role of false · and true reversed.

A Merge gate is a node with three incoming arcs a,b,d and an arbitrary

number of outgoing arcs. The value domain associated. with d, the third

incoming arc is {true,false}. The value domain associated with other incoming

and outgoing arcs must match each other. The local transition function is

given by: if t(q(d)) 1 =true then t(q(a))=q(a) 1, t(q(b))=q(b), t(q(d))=q(d) 1,

9

and q(c)=q(a) 1 where c is any outgoing arc, and if t(q(d)) 1=Jalse then

t(q(a))=q(a), t(q(b))=q(b)1, t(q(d))=q(d)1, and q(c)=q(b)1 where c ts any

outgoing arc.

4. "If-then-while" programs and weU formed data now schemas

This section fills in the details of the formal definition of the well

formed data flow schemas. An //0 well formed data flow scltema is a data now

schema whose graph fits one of the following inductive structural definitions.

(1) any ordinary computation node (which requires k incoming arcs and m

outgoing arcs) with k input nodes, m output nodes and arcs from each input node

to the ordinary computation node and from the ordinary computation node to

each output node.

(2) any conditional schema (as defined below)

(3) any iteration schema (as defined below)

(4) any acyclic composition of non-I/0 well formed data ·now schemas

with the proper number of input nodes and output nodes as in (1).

A non-//O well formed data flow schema is a well formed data now

schema with input nodes and arcs and output nodes and arcs removed.

A sample conditional schema is illustrated in Figure 2. The general

conditional schema is composed as follows (refer to figure). P and Q are

non-1/0 well formed data flow schemas requiring a compatible number of inputs

and outputs, and C is a decision structure (to be defined below) with the saine

number of inputs as P and Q. There are nodes labelled with True, False, and

Merge with the quantity of such nodes based on the number of inputs and outputs

of !' and Q. The data inputs for each merge come one each from P and Q.

10

Ftgurt 2.

A sample iteration schemas is illustrated in Figure 3. The general

iteration schema is composed as follows (refer to figure). P is a non-1/0 well

formed d_ata flow schema requiring the same number of inputs as it does outputs,

and C is a decision structure with the same number of inputs as P. There are

nodes labelled with True, False, and Merge equal to the number of inputs of P.

The "third" incoming arc to each merge is labelled with J<dst. These

labellings are the only initializations of arcs permitted in well formed data

flow schemas (aside from those of input arcs).

11

• Ftgurt J •

A decision structure consists of a set of copy, predicate, and boolean

nodes. The copy nodes accept inputs and send copies of them to predicate nodes

which in turn produce boolean outputs to an acyclic composition of Boolean

function nodes. For any set of incoming data there is a unique boolean result

from this acyclic composition.

In the above constructs we also· require that each .node (other than

input nodes) have at least one incoming arc.

In the sequel a well formed data flow schema Will always refer to an

I/0 well formed data flow schema.

True, False, and. Merge nodes were defined in Section 3. Cofr1 nodts are

single input ordinary computation nodes that when enabled remove the first

element of their incoming queue, and place it at the end of each outgoing

tz

queue. Predicate nodes are ordinary computation nodes all of whose output arcs

have value domain {true,Jalse}. The initializations of arc labellings to Jalst

is the initial state of the well formed data flow schema.

The input of a well formed data flow schema is constrained to have a

string of length at most one for each input arc. The motivation for this is

that the "if-then-while" programs represented by well for.med data flow programs

do not have the capability to express queues of initial values.

Well formed data flow schemas may be used to represent the data flow

version of programs expressed as a sequence of statements of the following

form: (1) x/=<constant>

(2) x/=xk

(3) x .:=fk(x . •.• .• x.)
J i1 in

(4) if <Boolean exp> then <program> else <program>

(5) while <boolean exp> do <program>

This is the class of programs refered to as the "if-then-while"

programs. Well formed data flow programs represent the parallel evaluation of

"if-then-while" programs in a straightforward manner [6]. Arcs between

ordinary computation nodes are viewed as representing the varial:,les on the left

hand side of definitions of the form (1), (2), and (3); conditional schemas

representing statements of the form (4), and iteration schemas representing

statements of the form (5).

5. Complexity of data dependency programs

We specify the notion of the number of steps required by a data

dependency program. Implicit in this definition is a consideration of how many

processors of various types are available, and the size of the queues that are

13

being used.

Let C be a machine with -. a fixed (perhaps infinite) number or proce~rs

for each type of node. . The parallel complextt1 of an 1/0, initialized,

FIFO, DDP with input q' on the machine C is the length of the shortest

execution sequence leading to a final state that does not exceed the processor

limitations. Specifically, for each Mi in the execution sequence, the

number of times that nodes with the same local transition function appear must

not exceed the number of processors for such nodes.

The role of queues in our model may be stated formally as follows. For

simplicity we restrict the formal definition to ordinary computation nodes. An

ordinary computation node on a machine with queues of size k, is enabled iff

lq(b)l~Tb for every beB (as before), and lq(c)j~k-U, _for every

ceC. The rest of the definition of ordinary computation nodes remains the

same. In general, no transition which could increase the size of a data queue

past k is allowed. Thus the parallel complexity of a fixed program depends

both on the number of processors, and the size of the queues of the machine.

Usually the number of processors will be fixed in which case the parallel

complexity of a program (P with input q, on a machine with queues of size l will

be denoted by PC3'<q). The symbol PC'q,(q) is used when the machine has

unbounded queues.

6. Improved efficiency with queues

It is evident that for certain data dependency programs, the size of

the queue available causes a change in the partial function computed by a

program (9, 1 O]. By induction on the structure of well formed data flow

schemas, it may be shown that the partial function computed on any input q',

14

with lq"(Ol=t for every tel is invariant under queue size [9]. This fact only

serves to highlight the question of whether queues are useful for speeding up

computations. Three results presented herein give an affirmative answer to

this question. The later results are stronger than the earlier ones, but

require a slightly more complicated variation or our construction. The

programs -considered will have a single input variable, xdl •

Theorem 1. For all ielN there is a "if-then-while" program, whose

translation into a well formed data flow schema (P, is at least t times faster

if unbounded queues are used. Specifically,

p.111, inf (PcJ(x))/(PC~(x))>t.

Theorem 2. For all i,kelN there is a well formed data flow schema (P, such

that P-1\b inf (PC3'<x))/(Pc~+t(x))>i.

Finally, in the realistic case when we have exactly r function

processors the speed-up is at most"- r (actually, it may be slightly larger if

one counts processors for the gates). In that case:

Theorem 3. For all kelN and for all i<r there is a well formed data flow

schema, (P such that Jj..11l:, inf (PC3,<x))/(PC~+t(x)))i.

Proof of theorems

We now present the proof of the three part theorem. The programs for

the three parts are quite similar. Figure 4 is an outline of the well formed

data flow schema used in the proofs. We omit the "if-then-while" program for

brevity. There are i levels in the general program. The first t-1 are

15

p l :

s

f I

nodes

$
p· 2·

fo lse y

P3;

s
f2

nodes

~
P4:

s
f3

nodes

Figure 4.

a

Y1

/3

false y false y

y

8

8

e
V

e
I

0
n
e

e
V

e
I

+

w
0

e
V

e
I

•
h
r
e
e

16

identical, and the i
th differs from the others. The one depicted in the

figure is. the three level version. A second parameter for this class of

programs is s, the number of successive nodes in each of the t chains. Note

that if /j is an n-ary node then the above program is modified as

follows. For each occurrence of the node fj there are n incoming arcs,

all emanating from the predecessor in the chain. The program fragments denoted

Pi are not to be thought of as subroutine calls. It is merely used as a

diagramming convention which means that Pl should be inserted (in its

entirety) in place of the node labelled with Pc

The Proof of the theorems involves an analysis of the complexity of the

above class of program for each of the two queue conventions. We first analyze

the complexity of the programs in the case where there are no queues.

During the first eight steps only first level nodes are executed. The

second and third loops complete one iteration, but only five of the/
1

nodes

may be fired. At this point, the >-1 test cannot execute since one of its

outgoing arcs still contains a value. Clearly,_ no other node is enabled,

except for those in the chain of / 1 's. Thus an additional s-5 steps are

required until may begin the second iteration.

The fact that (about) s steps were required for one iteration of the

loop had nothing to do with the fact that we were working on the first

iteration. It is easy to see that each iteration will require about s steps.

Thus about sx steps are spent executing the first x iterations. At the last

iteration, the value of y1 equals zero and the second level may start

execution. The second level is not very different from the first level and

about sx steps are spent on the second level. Similarly sx steps are required

17

for the third., . . . , i-1 st levels. Finally, it is easy to see that sx steps

are required for the i th level. The total execution time for the program is

six steps plus lower order terms.

The performance of this program on· a machine with unbounded queues

follows. The first eight steps are identical to the no queue case. However,

the ninth step differs. While still executing the chain of/ 1 nodes as part

of the first iteration, one may begin working on the second iteration. This is

because the test of ·the iteration is enabled even though not all of its outgoing

arcs are void. Continuing the third, . .. , xth. iteration · in the same

manner, it will only take 7x+ 1 steps until the value , 1 =O is passed through

the merge of t_he iteration. After 7x+5 steps the second level commences, even

as we continue processing the first level. When the subsequent levels of the

program are executed, 7x+5 steps are again required to get from level to level.

Thus (7x+5)(i-1) steps are spent until the tth level is reached. At the

i
th level · (s+3) (x+1) steps are spent finishing the iteration. In parallel,

this time is also used to complete the execution of the other i-1 levels.

Finally, very few steps are spent executing the "add" nodes to complete

execution of the program. Thus the total complexity of the program is 7ix+sx

plus lower order terms.

The ratio is:

. PcJ (x)/PC¥ (x)=six/(sx+7ix)=si/(s+7i)=t/(1+(7i/s)).

Since s was an arbitrary parameter, s may be chosen to be as large as

desired, causing the ratio to be arbitrarily close to t. (Actually, to remove

low order terms in the denominator x must be chosen to be large.) D

We remark that with a program of i levels the speed-up obtained was

about i/(1+(7i /s)). A program of i levels and s nodes in the chain of each

18

level has a total of about is nodes. Thus with a program of size ts, we

obtained a speed-up of i/(1+(7i/s)). Using this, it may be determined how

large a program is required in order to get a speed-up of i. For this

particular proof a program of size 28t2 is needed to get a speed-up of t.

This can be seen by looking at a program with 2,t levels and s=14i. Then using

the above formulas the speed-up is _equal tot and there are 28i2 nodes.

Proof of Theorem 2. To compare queues of size Jr. to queues of size Jr.+t,

first analyze the performance of the program of Figure 4 with input x=k. Using

a queue of size k, about 7k steps are spent running x and -,
1

through the

iteration k times. If s>7k, then at least s steps must be executed before the

final iteration of the loop (and thus the beginning of the second level) is

started. Continuing in this manner, s(i-1) steps are required until the last

level, is started and then sk steps are required just on th~ execution of the

last level. Thus the total complexity with a queue of size k is about s(t+.O.

With a size k+t queue the program's behavjor is quite different. After

7k steps the second level may start since the _queues are large enough to

accommodate all k+ 1 firings of the test of the iteration. Similarly after

7k(i-1) steps the last level begins. Naturally, sk steps are again spent on

the last level. Thus the ratio is about:

(si+sk)/(7ki+ks)=(i+k)I((7ki/ s)+k)

This ratio is at least as large as t/(k+(7ki/s)). Thus to get a

speed-up ratio of i, use a program of 2kt levels and s=14ki. This uses about

28k2
i
2 nodes.

The connection between the behavior of the program of Figure 4 on the

particular input x=k and a general program that exhibits the above behavior is

19

made as follows. If a program uses the constant k as the ~oop counter for any

input x, then the behavior of that program for any input is described by the

above discussion! □

We µiay modify the construction to get a slightly better result in

program size. The idea is to execute the chain of s actors only on the first

time around each iteration. With queues of ~ize k, only about st steps are

required since the additional sk steps on the last level are not needed. With

queues of size k+t only 10ki+s steps are required for the execution of the

program (the factor of 10 replaces the 7 due: to extra nodes in the new

program). The ratio is thus about si/(10kt+s)=i/(1+(10kt/s)). To get a ratio

of i it now suffices to use a program with 2t levels and s=20kt for a total

program size of 40ki2 , i.e. only 11near in k.

Proof of Theorem 3. In the case where there are only r processors the

maximum speed-up factor is bounded by r (or actually slightly larger if one

counts processors for gates) since even with a queue of size one, at least one .

node is executed at each step. We restrict attention to r level programs.

Using the second program described fn the proof of Theorem 2 the ratio

for an i level program with s nodes in a cha1n is t/(1+(10kt/s)) even with only

r processors (as long as i~r). To get a speed-up of t (2t~r) we use the exact

same program as above using 2t levels. However if Zt>r then we must use a

slightly different construction. Specifically, we may take advantage of at

most r levels. To get a speed-up of i in this case, we use r levels and a

value of s=tOkri/(r-i) for a total program size of 10kr2tt(r-L). Here we

cannot readily take advantage of using many · levels since et most r of them may

execute at once.

20

Finally, in our analysis of the case where there are limited number of

processors, it is unnecessary to worry about processors for the parallel

execution of the various nodes that are not locat.~ in the chains. They are

few in number (relative to the total number of nodes that are in the chain),

and thus even if they are not executed in paralJ.el, the time spent on their

execution has little effect on the total complexity. D

7. Practical usage of queue results

The argument may be raised that queues are useful for only a small

class of programs. While we cannot provide · a complete answer to this

objection, a few remarks are relevant. Any program that could be ·sped-up due

to the capability of simultaneously executing three different executions of the

body of a while statement benefits from the use of queues. This follows from

the fact that three simultaneous executions of the body may not take place if
I

queues are not used.

Of course . one might also argue that three simultaneous executions of

the body of a "while" is rarely possible in real situations. In that case,

there is a different possible useful modification in machine data flow

implementation.

There is a mechanism introduced in machine implementations to guarantee

safety of programs [8]. Basically, a program is unsafe if a node may obtain

all the incoming data needed to execute~ but is disabled due to data that

remains on outgoing arcs.

Many of the programs for which queues do not help are inherently safe.

Specifically, if a constraint is im~osed that two executions of the body of a

while statement never occur simultaneously, then the safety problem is

21

eliminated for well formed data flow schemas. This constraint does not hinder

parallelism if the simultaneous execution of the body did not help parallelism.

We summarize the above discussion. · If a program benefits from three of

more simultaneous executions of the body of a "while" - it benefits from

queues. If it does not even benefit from two simultaneous executions - we have

a potentially simple solution to the safety problem for well formed data flow

schemas. On:iy if a program benefits from exactly two simultaneous executions

of the body do we lack a potential suggestion!

Acknowledgements

We would like to. thank Albert Meyer for his help in formulating the

data dependency model and his many suggestions on the presentation of the

results of this paper.

References.

1. Adams, D. A., A Computation Model With Data Flow Sequencing, TR CS t t 7.

Computer Science Dept., Stanford Univ., Dec. 1968.

2. Ashcroft, E., and Manna, Z. "The translation of 'goto' programs to 'while'

programs, Information Processing 71, North Holland Pub. Co. 1972 pp

250-255.

3. Bahrs, A. "Operation patterns," s-,mposlum on Tlteoretlcal Programming,

Novosibirsk, USSR, August 1972·.

4. Dennis, J. B., "Programming generality, parallelism, and computer

architecture," Information Processtng 68, N. Holland Pub. Co., 1969 pp

484-492.

5. Dennis, J. B., "First Version of a Data Flow Procedure Language", MIT LCS

zz

TM61. May 1975.

6 . Dennis. J. B .• and Fosseen. J . B. "Introduction to Data Flow Schemas" (to

appear).

7. Estrin. G., and Turn. R. "Automatic Assignment of Computations in a

Variable Structure Computer System". IEEE Trans. Eltct. Comp. EC-12

(1963) pp 755-773.

8. Hack. M .• "Analysis of Production Schemata by Petri Nets," MIT MAC TR94,

Feb. 1972.

9. Jaffe, J. M. Parallel Computation on Data Flow Machines, PhD Thesis in

preparation, Dept of EECS, MIT.

10. Karp, R. M. and Miller, R. E. "Properties of a model for parallel

compll;tations: determinacy, termination, queueing," SIAM J. of Applted Matlt.,

14, 6 (Nov. 1966) 1390-1411.

11. Kosinski, P. R., "Mathematical Semantics and Data Flow Programming, Jrd

POPL Symposium, pp 175-184.

12. Rodriguez, J. E., A graph model for Parallel Computation, MIT MAC TR64,

cam bridge, MA Sept. 1969.

