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Abstract: Church's thesis equates the intuitive notion 'effective' with the 
mathematical notion 'recursive'. In order for this thesis to provide any information 
to us we have to have a clear understanding of. both notions. We consider one of the 
prevalent definitions of 'effective' and compare it with the notions of syntactic and 
semantic consequence to see which one it corresponds to better. The notion of 
syntactic consequence, while useful, is subservient to the semantic notion and when we go 
from one language to another we expect to have to change the syntactic notion of 
consequence, if we are lucky enough to have one at all. Similarly the prevalent 
notion of effectiveness is a restricted one and has had the effect of limiting our 
view. At the end of section 3, we give a more general analysis of effectiveness and 
propose a mathematical theory. In section 4 we consider the question whether the set 
of grammatical sentences of English is recursive. We show that this question is not 
well posed and that the arguments in favour of a positive answer are question 
begging. We reformulate this question in the form "How recursive is the set of 
grammatical sentences of English?", and propose a way of turning it into a precise 
technical problem. The method used is a generalisation of the Kolmogorov-Chaitin 
theory of randomness which is briefly sketched. 
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The following definition2 of effectiveness has come to be widely accepted in the 
discussions of Church's thesis in the literature: 

Def 1: A task is effectively performable iff there exist explicit instructions for 
performing it. 

I shall begin by discussing this definition and show that while this definition is 
very useful in the context of Turing machines and programs, it is nonetheless 
circular and therefore useless in more general contexts where we are investigating a 
new situation with a view to knowing what an appropriate formal definition of 
effectiveness in this context might be. 

Let us consider a related situation in logic. It is conventional there to give two 
separate definitions for the notion of logical consequence. One of these definitions 
defines the notion of semantic consequence usually denoted ~- This notion is defined 
by reference to models, valuations, or whatever. ( E.g. in the predicate calculus r F A 

_ means:"A holds in all models of r".) The other definition gives a syntactic 
notion of consequence, usually denoted t-. (r r A usually means: "There is a formal 
derivation of A from r.11

) This syntactic notion is more useful in practice in that 
it ·actually allows us to prove various theorems, though, perhaps, for independence 
results, it is the semantic notion that is more useful. 

Be that as it may, there is a clear feeling that in some sense it is the semantic 

notion that is primary and the syntactic notion is subservient to it3• A soundness 
result establishes that t- is included in ~ , whereas a completeness result shows 

that i= is included in r . In each case, it is the soundness or completeness 
respectively off- that we are worried about, and not that of ~ • As further evidence 
of the same point, note that different formalisations, say, of predicate logic, can 
differ quite radically in their manner of defining r , but agree on their 
definitions of I= , at least for sentences. 

The question that now arises is, does the definition of effectiveness that we gave 
above correspond to ):: or ~ ? This question really amounts to asking if that 
definition ( let us call the notion defined by it 'effective-!' from now on) sets a 
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goal for us, as the semantic definition did for the notion of consequence, or if it 
gives us a proposed solution to an already understood goal, as the syntactic 

definition did for consequence4. If we call I:: a goal notion or a g-notion, and call 
t- a method notion or an m-notion, then our question is: "Is 'effective-1' a g- notion 

or an m - notion ?" 

This question is quite crucial for us for if 'effective-1' is an m-notion, then 
we can expect it to be quite useful in cases th~t are well understood but to be a 
very poor guide in cases that are, as yet, uncharted. And this is because knowing a 

more or less detailed solution in one context does not give us much guidance in a 

novel situation, whereas a clear understanding of our goal would at least define the 
· problem clearly in a different context though it may not tell us how to go about 

solving it. Thus for instance, F can be easily generalised to second order logic by 
merely changing the class of models, but I- has no obvious analogue. If we are to 
study more than one notion of effectiveness, then we have to be quite clear about 

what it is that ties them ali together. 

SECTION 2 

Before we proceed any further with our inquiry, perhaps it is well if we settle a 
preliminary question. Doesn't Church's thesis, which equates effectiveness with 
recursiveness solve the problem of characterising effectiveness ? And if it does, 
then why should we care if a particular definition of effectiveness is like I= or 

like I- ? 

Now, of course, Church's thesis is not accepted by everyone5 without any 
reservations. And while it may be true that people with reservations about it are a 
minority, they form a somewhat larger fraction of people who consider the question 
at all. But even if we did accept Church's thesis, that would only tell us that the 
two notions of effectiveness and recursiveness were equal, and unless we had 
already a notion of effectiveness, we would not know just what it was that Church's 

thesis was telling us. It is useless to be told that a = b if all that we know about 
a is that it is equal to b. To see this more concretely, consider the question 
whether we can write a program to translate mechanically from German to English. In 
order to decide if we should take on this task, we have to decide first if we regard 
the task as effectively performable. And here Church's thesis is of no help at all 
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unl~ss we have already written such a program, and in that case, naturally, Church's 

thesis is redundant. 

Thus Church's thesis, in itself, does not make our inquiry superfluous. But are 
there, in any case, situations where Church's thesis is not even indirectly 
relevant? 

Surely there are many such situations. Shepher~son6 mentions the 
problem of packing sardines though he seems not to b·e very optimistic about 

the possibility of an interesting theory to cover such cases. Engeler7 

regards the famous ruler compass problems as effectiveness problems. (See also 

the very interesting paper8 by Luckham, Park and Paterson on program 
schemata. The operations which are used to construct their schemes do not have 
to be recursive, only effective, for the whole program to make sense as an 

effective procedure.) Surely a cooking recipe or directions for getting from 
one place to another are examples of algorithms and the tasks that they enable 
us to perform must be regarded as effectively performable under ordinary 
circumstances. In general, we may say that an advance in technology, or 
sometimes just an advance in our understanding of some area enables us to 
transfer a particular task from the domain of 'non-effective' (or, more 
precisely, 'not kno_wn to be effective') to the domain of 'effective'. 

To be sure, when we consider tasks as general as these, we may have to allow the 
existence of several different notions of effectiveness and even various degrees of 
effectiveness. But the point is made that .some tasks that do not consist of 
manipulating strings are thought to be effectively performable and some other tasks 

of the same nature are not9• If we want even the beginnings of a theory in this area 
( and surely any theory here would have some use) then we must wean ourselves away 

from the notion that Church's thesis solves the problem of effectiveness once and for 
all. 

SECTION 3 

To return now to the question we raised originally. Is 'effective-!' a g-notion 
or an m-notion ? If the former, then we can just use it as a general guide in our 
inquiry. If the latter then we should look for a better candidate which works more 
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generally and also ask what is special about Turing machines etc. that makes 
Def. 1 work. there. 

We tend to think of a Turing machine10 _as an object. However, we may, if we 
like, also think of it as a program operating on structures. The sorts of structures 
on which it operates are doubly infinite binary strings ( these are mostly blank in 
ordinary circumstances) with exactly one state symbol occurring somewhere. Each 
quadruple is an instruction, and the problem of scheduling.is neatly solved by 
stipulating that for each structure, at most one of these instructions can apply. 
Thus if the structure looks like _bcq1cd." , then only ·a quadruple that begins 

wi_th q 1 c can apply and it is part of the definition of a Turing machine that there 

is at most one such quadruple. 

If we put aside the problem of scheduling for a moment, then we have a finite 
number of atomic actions that are possible in such a context. These consist of 
writing a symbol, one of finitely many, moving right, moving left, _and if you like, 
halting. For a particular computation that does halt, what is performed is simply a 
sequence of such atomic actions. Thus gi.ven the set of possible atomic actions, the 
problem of effectiveness reduces to the problem of scheduling, i.e. of determining 
how the particular sequence of atomic actions that is performed is going to depend on 
the particular structure or input. ( In programs this job is often performed by 
tests.) This second_ problem is of course no~ trivial, but it is only in the context 
of a finite complete set of atomic actions that the solution to the scheduling 
problem yields a solution to the whole problem of effectiveness. 

Consider now a recipe for scrambled eggs as an algorithm. It might go: "Break 
three eggs in a bowl. Add half a teaspoon salt, and a quarter cup milk, stir 
thoroughly, ... ". It can't be said that the various actions described are atomic. 
In the first place, someone who does not know English will not be able to perform 

them. That means that these instructions are not written in whatever would correspond 
to 'machine language' for people. Otherwise they would be the same for all humans. 
But apart from that, each step really consists of a sequence of substeps which are 
not mentioned, but have to be performed nonetheless. 

Thus the various steps in our algorithm are not atomic but really look like 
subroutines. But in what language are these subroutines written ? It is not a 
language that any of us can speak or program in. These steps that turned out not to 
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· be atomic are not created by programming but by training. One learns to break eggs 
by watching other people do it and by trial and error. One is not necessarily aware 
of the little steps that make up the process of breaking an egg. Riding a bicycle is 
perhaps an even more extreme example of this. Very few people who ride a bicycle have 
any idea of just what it is that they are doing in the sense of being ·conscious of 
all the little a:ctions that are necessary to preserve stability. If this were not 
so, the problem of making a robot that can ride a bicycle would be easy, at least in 
theory, but in fact it is quite hard - the robots keep falling off. 

Compare now the recipe for eggs with the following 'algorithm' for deciding the 
truth or otherwise of number-theoretic statements: "Write the given formula as a 
truth-functional combination of formulae that are either atomic or begin with a 
quantifier. Decide the simpler formulae thus obtained. Now use truth tables to decide 
the original formula." A more facetious algorithm solves the problem posed by the 
following question. "How do you put four elephants in a VW bug ?". Answer: "Two in 
the front. Two in the back." In each case there is no algorithm, but the only way to 
see this is by seeing that the individual steps are not effective. And we don't know 
yet how we do this. Until we have discovered this, Def 1 is circular in that it 
presupposes what we mean by the effectiveness of individual steps. And after we have 
done this, the problem that it solves for us is trivial. 

This problem did not arise with Turing machines because we had an exhaustive list 
of effective atomic actions, and any other action was acceptable as effective only if 
it could be reduced to these, but in the present context we have no such list. Still 
we know that the 'algorithms' for seating elephants and for deciding number-theoretic 
truth are not genuine algorithms, but the recipe for scrambled eggs is a genuine 
algorithm, albeit in a condensed form. How do we know? The simple answer is that we 

know that under ordinary circumstances, people can carry out the individual steps. 
And of course, if people can carry out the individual steps then they can also carry 

out the whole algorithm, provided only that they. can remember11 it, and not get too 
tired on the way etc. Thus we have a second definition. 

Def 2: A task is effectively performable iff it is possible for sufficiently many 
people, perhaps aided by some ( fixed) instructions, to carry it out under ordinary 
circumstances. 
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This definition has a certain amount of vagueness. How many people have to 

levitate before we consider the task to be effectively performable ? On the other 

hand if we replace 'sufficiently many' by 'all' in the definition, then we get too 

restrictive a notion of effectiveness. No matter how simple a task, you can always 
find some people who are either unable or unwilling to do it! Nonetheless this 

definition does express what we intend the word 'effective' to mean and it does shed 

a certain amount of light on various problems. To take a particular example, it is 

often asserted in logic texts that Church's thesis cannot be proved because it 
asserts the equivalence of two notions of which one is intuitive whereas the other is 

mathematical However, Kreiset12, has pointed out that such arguments are not 

really releva~t. 

Almost always, when one is attempting to give a mathematical definition of an 
intuitive notion, one attempts to put down sufficiently many intuitively evident 

properties of the intuitive notion. One then tries to prove that there is a uniqut 
m~thematical notion that has these properties. A very good example of this is the 

Riemann integral . One writes down certain intuitive properties of the notion of 
area, e.g. that the area of a disjoint union of ~wo figures is the sum of their 

areas. It can then be shown that at least for continuous functions, the Riemann 
integral is the unique functional having the stated properties. 

In the present case, where we are considering the equivalence of 'recursive' with 

'effective' ( where we are considering only the string manipulation aspect of the 

second notion) we know enough properties of the intuitive notion that we can convince 
ourselves that 

recursive ~ effective 

provided we have no qualms about assuming unlimited time and space resources. 
However, even with this generous allowance, we have difficulty being equally 
convinced of the reverse inclusion 

effective ~ recursive. 

Or if we are convinced, it is not for logical reasons, but simply because no one has 
found -any counterexampl,es yet. An informal proof of the second, problematic inclusion 

is lacking. And this problem is immediately traceable to Dtf. 2. 
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It has on the face of it, the property, that when the definition ts satisfied, 
then at least in theory we can find out that it is. On the other hand if the 
definition is not satisfied then the definition gives no immediate help in 
discovering this fact. Thus we can see why it happens that the 'recursive ~ 
effective' part of Church's thesis is less problematic than its converse. To 
establish the first, we merely have to convince ourselves that the various atomic 
actions th at are part of the definition of 'recursive' are in fact effective. But to 

get the converse, we need some control or upper bound on the atomic actions13 that 
people can perform. If we had a biological theory of people that told us what atomic 
actions people might be able to perform, then of course we would have such an upper 
bound. As things stand, this theory is lacking, and at least for some people, a 
belief in Church's thesis may be an indirect way of asserting that there is such a 
theory. 

The analogy between 'effective-1' and ~ that we have been hinting at has a rather 
concrete part. An algorithm is rather like a proof with concatenation or ; ( which 
stands roughly for: "and then do") as the sole rule of inference and the basic steps 
as the axioms. In defining the notion of recursiveness, the 'axioms' are explicitly 
given, and we have what amounts to a completely formalised system. In defining 
informal human effectiveness, the basic steps are still the 'axioms', but the 
criterion for their being so is no longer that they belong to some fixed finite list 
given in advance. Rather it is that we find them plausible. If we accept that each 
step in an algorithm is effectively performable, then we will accept the whole thing. 
But we no longer have any way of deciding when we will find each step of an algorithm 
so acceptable. Thus while 'effective-1' and and t- are both m-notions, the latter 
is more exact and a better analogy would be between t- and 'recursive' whereas 
'eff ective-1' corresponds better with 'has an intuitively acceptable proof". Finally, 
there is a third analogy, namely that between 'valid' and 'effective-2'. 
Unfortunately the latter notion lacks a mathematical correlate that would correspond 
to I=. Wanting some mathematical correlate, we took 'recursive', but that is an 
m- notion, not a g-notion and has had the effect of limiting our field of vision. 

Before we finish with this section, one or two particular observations may be 

in order. During recent years a theory of program correctness14 has evolved whose 
purpose ( among others) is to prove that a program does what it is supposed to do. In 
this context we have assertions of the form P➔(a)Q which stand roughly for: "If the 
condition P holds when the program a is started, then the program terminates with 
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condition Q holding". ( We are assuming for simplicity that the program is 
deterministic). Now it is easily shown that these correctness statements, as they are 
called, do not completely characterise a program. But in the theory of programs, we 

also h~ve other ways of saying what a program is or does. Now when we condition or 

train animals or people, what we are doing is asking the subject to come up with a 
program which satisfies some given correctness condition. E.g. "when the bell 
rings( P), this lever should be depressed( Q) ". We have no way of controlling what goes 
on in between. Moreover, apart from stipulating that condition Q is fulfilled at the 
end, we do not have much control over what things look like otherwise. ( A 11 of us can 

carry out the instruction "Write 'John Smith"', but the banking system depends on the 
fact that only John Smith himself carries it out in a particular way. To be sure, we 

can also find differences between the way two different computers ,or more precisely, 

printers, carry out this instruction, but the theory in that case ignores the 
differnces.) Thus for a procedure that people follow, the correctness conditions that 

it satisfies, are nearly all that we know about it. Of course, we can break up an 

algorithm into smaller bits, and impose conditions along the way, but there is a 
limit to how far one can go- there is no way to completely characterise a 

'computation' as one can do with computers. Whereas in the context of computers, we 
start with detailed knowledge of the program and _ try to come up with its correctness 

conditions, so that if we are lucky, we have both. 

·Thus we see that structurally, there is a crucial difference between a computation 

and an ordinary procedure. What the latter is, is not a program but a sequence of 

correctness assertions. A procedure ( P 1 , ... ,P n) stands for: "Find effective ways 

a1 , ... ,an-l' such that for each i < n, Pt<a?Pr+i" is true". If the ways 

a1, ... ,a
0

_1 are found, then we have a way of going from P1 to P n· In many ways 

these sequences look like programs. They can be composed by concatenation when the 

ends can be matched. If I have a sequence (P1,-.,P n) and another sequence 

(Q1, ... ,Qm), then I can concatenate them if P n implies Q1, and create the new 

sequence ( P 1, ... , P n,Q2, ... ,Qm). We can then go on and build a theory of 

computation based on such sequences which will behave in some ways like recursive 
function theory. However, there are some significant differences. First of all we 

don't need to bring in atomic instructions at all. Secondly, we have a partial ordering 

here that becomes important. If we think of (Pl ,-P n), as the set of all 

procedures that start with P 1 holding ( input assumption) and achieve successively, 

conditions P 2, ... ,P n' then, for instance, if Q implies R, then (P,Q) is included in 
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(P,R), whereas (R,P) is included in (Q,P). We also have the following laws that will 
· hold quite generally. 

1) (P,QAR) = (P,Q)n(P,R) 2) (P,Q)u(P,R) ~ (P,QvR) . 

3) (P,R)u(Q,R) ~ (PAQ,R) 4) (PvQ,R) = (P,R)/'l(Q,R) 

Proceeding this way we can build a general mathematical theory of which the usual 

recursive function theory will be the atomic, finitely generated case, but which will 
also have atomless models. Some of these models may well be suited to analysing 

situations where effective procedures do not proceed in discrete time. 

SECTION 4 

Let us now consider the question of effectiveness in the more familiar context of 
strings where Church's thesis does have relevance. It has been argued by Hilary 

Putnam15 that the set of grammatical sentences of a natural language is recursive. 

The argument he gives for this conclusion goes roughly as follows: 

We may take it that the human brain may, for our purposes be thought of as a 

Turing machine. Since human beings can recognize16 whether a given string is 
grammatical or not, the set of grammatical strings must be recursive. 

Since such arguments are widely accepted, I would like to examine them here. I 
shall argue, not that Putnam's conclusion is incorrect, but rather that it is 

theory-laden. There is nothing wrong with the theory as such, no doubt it is 

correct, but since the answer to the question is already built into the theory, it 

does not give us the information we want. I shall start by developing my argument 
that Putnam's conclusion is built-in. Later in this section I shall sketch a 
technique for asking the question in such a way that the answer is not built in and 
can give us the information we want. The new form of the question could be 

formulated as: "how recursive is the set of grammatical sentences of a natural 
language?". 

Let us now reconsider the argument that the set of grammatical sentences of a 

natural language is recursive. Let G1 be the ( finite) set of strings ( of words or 
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letters) that we have admitted as grammatical. Similarly let Ul be the set 

of strings that we have rejected as ungrammatical. And finally let G be the set of all 

grammatical strings. Then we have the following conditions: 

These conditions do not determine G. There are uncountably many solutions. Then 

why not simplify matters for ourselves by taking G to be equal to c1? It would be 

recursive as well as finite. 

The objection to this admittedly frivolous suggestion is that we know perfectly 
evident rules that force C to be infinite. An example would be " if x, 'j are 

grammatical, so is 'x and y' ", thus C cannot equal c1. 

Thus the principal reason why we consider the set of grammatical sentences to be 
recursive is that it is closed under certain rules. The obvious solution for C now 
is that C is the smallest set containing c1 and closed under the rules. If there 

is any uncertainty about C, it is only because we are not sure we have all the 
necessary rules. And if we do not know any good argument for the criterion 
"smallest", we don't know anything against it either and taking G to be the smallest 
set, etc. does at least have. the effect of determining G. 

However we have now forced G to be r.e., and if we can get by with length 

increasing rules, or with rules that do not decrease length drastically, C will be 
recursive. 

Clearly there is something suspicious about an argument that yields the. r.e.-ness 
of G with so little trouble. We did not need to know anything specific about 
grammaticality at cill. I shatl now show that the argument isn't reatly sound in that 
it may yield the same sort of conclusion even in situations where the conclusion is 
false. I shall use two quite different examples to this end. 

Consider the following hypothetical situation. Suppose that the human brain has 
the capacity to ask questions of some nonrecursive oracle. This oracle may be God or 
perhaps an inhabitant of some other universe connected to ours by your favorite 
scientific device. However, the oracle is not for G but for some other nonrecursive 

s·et11• We are ourselves not aware of this, but in fact we use this oracle to decide 
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questions about the grammaticality of English sentences. I am supposing, of course, 
that G is nonrecursive. The argument given above for the recursiveness of G is still 
going to work. Our data will still consist of .two finite sets c1, u1, some finite 

set of rules, and we will still think G to be the smallest set containing c
1 

and 

closed under the rules. Since we are unaware of the communication with the oracle we 
will require the rules to be recursive for theoretical reasons and will come out with 
the false conclusion that G is r.e. if not recursive. 

Thus we have rigged our theory in favour of a positive answer to the question of 
the recursiveness of G. If we compare the situation here with that in number theory, 
we see that our rigging the answer there in the same way is prevented by the fact 
that we have an independent definition of the corresponding set, namely the set NT of 
true sentences of number theory. There we also have a finite set of known elements 
of the set, and a set of recursive rules under which we consider NT to be closed. 

The closure, say is Peano Arithmetic18. But having a dtfinttion of NT enables us 
to show that Peano Arithmetic is not NT. 

The principal difference between the case of G and that of NT is that with NT we 
have an independent definition which we lack with G. But now we are looking for an 
answer to the question "Is G recursive?", to the same theory on which we depend to 
tel1 us what G is. That is the sense in which the answer is rigged. 

To see th is more clearly, let us consider another argument in favour of the 
recursiveness of G. This second argument explicitly rejects the oracle I mention 
above, presumably on the grounds that there is no evidence for it. It fo11ows, then 
that since the human brain can effectively process questions about the grammaticality 
of sentences without any outside aid, the set of grammatical sentences must be 
recursive. 

It is sought here to establish the conclusion that G is recursive, on empirical 
evidence which is somewhat doubtful. But even granting this evidence, there is an 
inherent risk in using empirical evidence in a situation as complex as that of 

recursi ve function theory. Suppose for example that the human brain uses an algorithm 
for G which depends for its correctness on a mathematical assumption which is false. 
E.g. suppose the algorithm depends on the assumption that the Burnside conjecture is 
true, when in fact it fails for large n. Then the algorithm may in fact work in 
practice, but does not establish the recursiveness of C. One could, of course take 
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the point of view that whatever this algorithm accepts should be ca11ed the set of 
grammatical sentences. However, this is again a circular argument of precisely the 
kind that I objected to earlier. Moreover, even this device will work only if 

everyone uses the same algorithm. We have no evidence for this beyond the fact that 
people accept ( more or less) the strings in c1 and reject the strings in Ul. And 

that evidence has already been rejected as insufficient. Any convincing evidence must 
now account for all of G and not just c1, since it is precisely the part G-G1 where 

the problems arise. If we do think of G as a set that has some independent 
characterisation, and we are not assuming at the very outset that it is r.e. then it 
would seem that the existence of algorithms of the sort I considered would be an 
evolutionary necessity. For there is no reason whatever to assume that the algorithm · 
that works best all the time is always better than the one that works best for all 

the cases that arise in practice. 

Thus what the empirical argument argument really establishes is the recursiveness 
not of G but of c1, and that recursiveness need not be established since c1 is 

finite. But now, consider the ( finite) set of street names in Boston together with 

the binary predicate "intersects". The average cabby knows the diagram of this 
finite first order structure, but we are not tempted therefore to call it recursive 
or not recursive. We assume that the cabby has a large enough memory which he uses 
to answer questions about this structure, and that there are very few mathematically 
interesting properties that this structure has. 

The street diagram of downtown Boston comes fairly close to being ~ random binary 
· relation, as we all know. Why can't c1 be equally random? 

It isn't, of course, but we can see now that calling it recursive is entirely 
beside the point. What we really want to know is: "to what· extent are questions 
about c1 answered from memory and to what extent ~re they answered on the basis of 

some sort of computation~" In other words, how recursive is c1? 

I do not have an answer to this specific question, but I shall propose a technical 
device for answering this sort of question for finite sets in general. There is a 

theory of randomness for finite strings which goes back t~ Ko1mogorov19. Much of 

the recent work in this theory is due to G. Chaitin20. 
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The principal tool used here is the length of a program. Consider a string x of 
symbols. Since the string is finite, there is a program P written, say, on a 
universal Turing machine Z which prints out x. In fact, one such program could 
consist of just saying, "print x". Such a program would contain an occurrence of x 
and would therefore be longer than x. However, if the string has regularities, then 
we can take ad vantage of this. A very short program could print out a string 
consisting of 10,000 l's. 

Now, the theory goes, let us call a string random if the length of the shortest 
program to p_rint it is roughly the length of the string itself. ( This definition is 
almost independent of which particular Turing machine we were using.) If a _string is 
very structured, i.e. an initial portion of some simple recursive set, then the 
string can be completely specified by simply giving a description of the infinite 
string in question together with a specification of how long an intial portion was x 
its~lf. Such a string would be highly nonrandom. 

The Kolmogorov-Chaitin theory is primaril_y concerned with defining rand_omness for 
strings, but since a finite set of strings can be coded as a single string, the 
theory can be adapted to sets of strings. Moreover, we need not be concerned only 
with the two extremes of randomness and utter simplicity. There would also be 

· intermediate classes of strings which were not quite random, but were not simple 
either. By comparing the length of a string with the length of the shortest program, 
one could place it in an intermediate class. If the string coding a set of strings 
is nearly random, then deciding if a given string is in the set is primarily a memory 
problem. As the program gets shorter relative to the string itself, more computation 
and less memory are involved. This would, at least in principle, give us a means of 
deciding how recursive is grammaticality. 

I shall not here develop the details of such a theory. Clearly that task belongs 
to a more technical paper. However I hope I have put forward a case that the task is 
both worthwhile and feasible. 
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FOOTNOTES 

1. This paper has developed out of a talk entitled "Church's thesis-does the orthodox 
Church view need re-examination ?" given at the Boston Co1loquium for the Philosophy 
of Science, November 18, 1975. However, my primary purpose here is not to question 
Church's thesis as much as to point out the limitations of its domain of 
applicability, even in discussions of effectiveness. Note that Church's thesis should 
realty be referred to as the Church-Turing thesis, but I have used the terminology 
which is more prevalent in the literature. 

2. For example, the discussion of effectiveness in Enderton's comparatively recent 
book ('A Mathematical Introduction to Logic', Academic Press, 1912, see esp. p.60) is 
quite close in spirit to definition 1. Hartley Rogers ( 'Theory of Recursive 
Functions', McGraw-Hill, 1967, which is st11 a sort of standard work,) uses the 
expression "algorithmic function", and again definition 1 would be the favoured 
interpretation. 

5. M. Dummett, the Justification of Deduction; Proc. of the Brtttsh Academ1 LIX 
(1913) 

· 4. Here is another example. Suppose it happens that in a certain zoo, tigers are the 
only striped animals. It will then be convenient to identify, tigers by looking for 
stripes. However, if one plans to visit another zoo which might contain zebras, then 
one had better remember that identifying tigers with the striped animals was only a 
matter of convenience. ( These remarks have of course no connection· with whether 
tigers are a natural kind.) The distinction between a g-notion and an m-notion does 
have some distant resemblence to that between intensional and extensional equality. 
In the present context, 'intentional' would be a better term. 

S. See for example, L. Kalmar's "An argument against the plausibility of Church's 
thesis",Con.structivitJ in Mathematics (Ed. A. He,ting) North-Holland 1959, 12-80. 

6. J. Shepherdson, Computation over Abstract Structures, Logtc Colloquium '73 
(Ed. Ro.se and Shepherd.son), 445-513.(see esp. p. 446) 
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7. E. Engeler, On the Solvability of Algorithmic Problems, Logtc Colloqutum '13 
( Ed. Rose and S hepherdson), 231-252. 

8. "On formalised Computer Programs",/. of Computer and System Sctences, 4 (1970) 
220-247. See also "Comparative Schematology", by Hewitt and Paterson, Project MAC 
report, M.I.T., 1970. 

9. The question of effectiveness in such matters has a clear legal significance. For 
example the law can require us to drive on the right or the left as the case may be. 
As part of filling out a tax return it may require us to do some additions and 
multiplications. But it cannot require us to be lucky in love or in a lottery. While 
there is a general awareness that the notion of ethical or legal responsibility, as 
traditionally understood, involves free choice, the relevance of effectiveness is not 
as frequently pointed out. Since Church's thesis is often associated with mechanism, 
it is also worth remarking that in this particular context, effectiveness is not only 
not so associated, but rather, it forms a part of the notion of responsibility. You 
cannot hold someone responsible for something that they could not have helped, and 
hence, if the offence was one of omission then it must be that the action required 
was effectively performable. The notion of 'effective' will of course be one that is 

appropriate to the particular situation. 

10. I assume that the reader is familiar with Turing machines. However if ( s) he is 
not, · M. Davis' 'Computability and Unsolvability', ( McGraw Hill, 1958) is still an 

excellent reference. 

11. In fact the reason we ordinarily need instructions to perform a task is that we 
are carrying it out for the first time, and we only remember the breaks where we need 
to pay special attention. After we have done it many times, we no longer need to 
divide it up this way and, quite often, do not even remember the individual pieces. 
Thus the way a task is divided into smaller pieces is rather arbitrary. 

12. "Informal Rigour and Completeness Proofs", Phtlosop1t1 of Matliemattcs ( Ed. I. 
Lakatos) North -Holland 1967, 138-186. 

13. I am not convinced at all that there is such a set of atomic actions. It seems 
far more likely that there is either no such set, or at the very least, no such 
usable set. At any rate, addition is not an atomic action for people as it tends to 
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be for computers. Thus an assertion that computers are faster than people merely 
because they do arithmetic faster, seems unwarranted. It may well be that other 
actions that are quite complicated for computers are in fact quite easy for people. I 
have myself seen a demonstration ( by an engineering student from Poona University) of 
complicated calculations like the extraction of a fifth root to seventeen places, 

carried out with remarkable speed. 

14. The initial work in this area is due to Floyd and Hoare. See V. Pratt, 
"Semantical Considerations in Floyd-Hoare Logic", Proc. 17th IEEE s,mpostum on the 

Foundations of Computer Science, 1916, for a complete bibliography. 

15. H. Putnam, 'Some Issues in the Theory of Grammar,' Mind Language and Realtt•,= 
Philosphical Papers, Volume 2, Cambridge University press, London, England (1975) 
pp. 85-107. The arguments on this particula( issue are on pp. 102-10S. He gives 
several arguments, but none of them seems to get around the problem that we do not 

have a theory of G as an independent set. 

16. N. Chomsky ( private communication) points out that there is no empirical evidence 
one way or another. Moreover, if one takes the point of view that the words 'both' 
and 'all' can appropriately be applied only to collections of cardinality two, 
greater than two, respectively then undecidable questions can be coded into questions 
of grammaticality. 

17. The reason for having an oracle for a different set is to account for any 
thinking that goes on when one is trying to decide if a given string of symbols ts in 
fact a grammatical sentence of English. If the oracle was for G itself, then one 
might expect all answers to be _instantaneous. 

18. I am ·not assuming that Peano Arithmetic is finitely axiomatisable. At least one 
of the rules will allow substitution of one formula for another to get the infinitely 
many induction axioms. 

19. A.N. Kolmogorov, 'On the logical foundations of information theory and 
probability theory', Problems of information transmission S,3(July-Sep. 1969) 1-4. 

20. G.J. Chaitin, 'A theory of program size formally identical to information 
theory', ]. Assoc. Comp. Machintr"} 22(191S) 329.:340. 


