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Abstract. We study the scheduling of different types of tasks on different 

types of processors. If there are k types · of tasks and m. identical processors 
i 

for tasks of type i, the finishing time of any demand driven or list schedule 

is at most k+l-(1/max(ml' ... ,mk)) times worse than the optimal schedule. This 

bound is best possible. If the processors execute at different speeds then the 
' ' 

performance ratio of any list schedule (relative to the optimal schedule) is 

bounded by k plus the maximum ratio between the speeds of any two processors of 

the same type. 

Keywords. scheduling, list scheduling, typed task systemst data flow 

computation, worst case performance bounds 

1. Introduction 

The problem of job scheduling on multiprocessor systems has been 

extensively studied (for a current survey see [1,7]). The conventional approach 

has been to consider a system where each processor may handle any job or task. 

These systems are referred to as "ordinary" task systems. In some systems it 

may be useful to have certain tasks processed only by designated processors for 

those tasks. Examples of these include ·data flow models of computation [2,8] 

where primitive operations are computed by different processors. Similarly, in 

• This report was prepared with the support of a National Science Foundation 

graduate fellowship, and National Science Foundation grant no. MCS77-19754. 
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machines such as the CDC6600, there are several specialized functional modules. 

Also, in a system where 1/0 tasks and arithmetic tasks are handled by different 

processor units, such an assumption may be relevant. In this paper we analyze 

some of the properties of schedules for systems with different t1pes of tasks. 

Many of the results for ordinary task systems immediately generalize to the 

typed case. The NP completeness results of [12] clearly carry over directly, 

as do approximate solutions for certain special cases (for example when the 

tasks are independent [3]). 

The complexity of · determining the optimal schedule ls NP-complete in 

very simple cases. It is shown in [ 5], that the problem of determining whether 

a schedule exists for a given typed task system that requires fewer than a given 

number of steps is NP-complete even if there are only two processors, one of 

each type. Also, if • the· number of types of processors varies, the problem is 

NP '.""complete even if the precedence constraint is restricted to being a forest. 

The techniques used there are adaptations of those found in [1.4]. 

The focus of this paper is to extend the results of Graham [6], which 

provide general bounds for non-preemptive list scheduling strategies which 

satisfy fundamental "no-waste" requirements. The performance criterion ls that 

we attempt to minimize the finishing time of the system. In ordinary task 

systems, any list schedule is at most 2-( 1/m) times. worse than optimal where m 

is the number of processors. For typed task systems as defined in Section Z a 

similar bound is obtained. With a similar definition of "unwasteful 

schedules", it is shown in Section 3 that any such schedule ls at most 

k+1-(1/max(m1' ... ,mk)) times worse than optimal, where k ls the number of 

types of tasks and m. is the number of processors of type t. This bound ls 
i 

achievable for any value of k and any values of m1' ... ,m1 as shown in Section 4. 
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The results of [9,10] which provide general bounds for list schedules 

on machines with processors of different speeds are also extended. In ordinary 

task systems with processors of different speeds, any demand driven schedule is 

at most (approximately) (f/s)+l times worse than optimal where J is the speed 

of the fastest processor and s the speed of the slowest processor. It is shown 

(in Sections 6 and 7) that the bound for typed task systems is (approximately) 

k+max(f 1 Is 1' ..• Jk/sk) where Ji is the speed of the fastest processor of 

type i and si is the speed of the slowest processor of type t . Section 5 

introduces additional definitions needed to discuss the case where processors 

run at different speeds. 

2. Typed Task Systems 

An ordinary task system Cr,<,µ) consists of: 

(1) The set i=(T 1' ... ,T r); the elements Ttei are called tasks. 

(2) A partial ordering < on i. 

(3) A time Junction µ:i -+IN. 

The set i represents t~e set of tasks or jobs that need to be executed. 

The partial ordering specifies which tasks must be executed before other tasks. 

The value µ(T) is the number of steps required by the task T. For simplicity 

we have assumed that the range of µ is IN . This corresponds to the assumption 

that each operation requires an integral number of steps. 

The preceding is the conventional definition of task systems. We now 

extend the model to the situation where there are many types of processors. 

A k type task system (:f,<,µ,v) is a task system (i,<,µ) together with 

a type Junction v:i-+{1, ... ,k}. Intuitively, if v(T)=i then T must be executed 

a processor of type i . 
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The execution of a task system by processors of a machine is modelled 

by the notion of a schedule. A schedule for c:r,<,l',JI) is a total function 

g:T" -+IN. We refer to g(T) as the starting time of the task T and g(T)+,i(T) as 

the finishing time of the task T. We also say that Tei is being executtd at 

time t for g(T)9<g(T)+p.(T). We often refer to time t as the , th step 

of execution. 

A valid schedule for (T",<,µ,v) on a set of equall"j fast processors 

(P={Pif19Sk and 1S}Smi} is a schedule for (:r,<,µ,v) with the 

properties: 

( 1) For all i= 1, .•• ,k and all telN the number of tasks of type t being 

executed at time t does not exceeds mi" 

(2) whenever S<T, the starting time of T is not smaller than the 

finishing time of S. 

Condition one asserts that processor capabilities may not be exceeded. 

Condition two forces the obedience of precedence constraints. 

The finishing time of a valid schedule is defined to be the maximum 

finishing time of the set of tasks. An optimal schedule is any valid schedule that 

minimizes the finishing time. For two valid schedules g and g', with finishing 

times w and w., the performance ratio of g relative to g' is w/w'. 

There are schedules that may be arbitrarily worse than the optimal 

schedule. For example, there may be a time before the finishing time at which 

no task is being executed, but such trivially improvable schedules are not 

interesting. Schedules of interest are not so blatantly wasteful. We 

restrict attention to schedules conforming to a heuristic (or what may be used 

as part of a heuristic) that has attracted attention for ordinary task systems 

[6,9,10]. Specifically, a (priority) list L=(Ul' ••• ,U,) (U,eT") consists of a 
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permutation of all the tasks of J. The list schedule for ('r,<,µ,v) with the 

list L is defined as follows. At each step that at least one processor 

completes a task, each processor that is not still executing a task chooses an 

unexecuted executable task of its type. The tasks are chosen by giving higher 

priority to those unexecuted tasks with the lowest indices. If n> 1 processors 

of the same type simultaneously look for tasks, then the n highest priority 

unexecuted, executable tasks are selected for execution. The decision as to 

which processor gets which task is made arbitrarily. Only if no executed tasks 

of its type are executable does a processor remain idle. List scheduling is 

un wasteful in the sense that if at time t. all predecessors of a task T have 

been finished, and there are free processors of type v(T) (that is at most 

mv(T)-1 tasks of type v(T) are being executed at time t) then the starting 

time of T is no later than t. It is imwrtant to note that any schedule that 

is unwasteful in the sense that processors are never permitted to be idle 

unless no free tasks are ·available can be formulated as a list schedule. 

The motivation for this heuristic comes from several sources. The 

primary motivation emanates from the optimality of some list schedule in the 

unit execution time case. It can be shown that when each task requires an 

equal amount of time at least one list schedule is an optimal schedule. While 

optimality does not occur if tasks have different time requirements, we feel 

that it is nonetheless worthwhile to evaluate list schedules. Other sources of 

interest include the fact that it is simple to implement, and due to its 

simplicity, it is a good starting place for building other heuristics. 

(Notation: The total number of steps required by all the type t tasks 

will be denoted by µ .• ) 
l 
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3. Performance bounds for list scheduling 

In this section a bound is obtained on the performance ratio of any 

list schedule relative to an optimal schedule. It is shown that in a k. type 

task system, the ratio is at most k+1-(1/max(m1' ... ,m1)). A naive bound on the 

performance ratio of any list schedule relative to an optimal schedule is given 

by m 1 + ... +mk. This follows from the fact that an optimal schedule may use at 

most m 1 + ... +mk processors at each step, and the fact that any list schedule 

uses at least one processor at every step. The result of this section is that 

any list schedule is far better than the naive bound. Note that the comparison 

of list schedules to o,1>timal schedules is applicable even to the situations 

that no optimal schedule is a list schedule. 

We first prove the theorem for "unit execution time" task. systems. A 

task system CT,<,µ,v) is a unit execution time task system if µ(T)=t for every 

T EJ. As indicated in Section 2, this case is particularly interesting due to 

the optimality of some list schedule for unit execution time systems. The 

result for non unit execution time task systems will then follow directly from 

the unit execution time case. 

Theorem 1.. Let (i,<,µ,v) be a k. type unit execution time task system. 

Then the performance ratio of any list schedule relative to an optimal schedule 

is at most k+1-(1/max(m1' ... ,mk)). 

It will be convenient to break up the proof into two parts. First, a 

lower bound is derived on the finishing ·time of any optimal schedule for i'. 

Then an upper bound on the finishing time of any list schedule is obtained. 

The ratio between these bounds is an upper bound on the performance ratio of 
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any list schedule relative to an optimal schedule. 

A notion that is needed in both parts of the proof is the notion 

of the height of tasks in (i,<,µ,v). A height of 1 is assigned to any task. T 

that has no successors. Inductively, the height assigned to a task. T is one 

plus the maximum height of all the immediate successors of T. The Mlgltt of 

Cr,<,µ,v), denoted h., is the maximum height of the set of tasks Te.i. 

Lemma 1. Let (i,<,µ,v) be a k type unit execution time task. system with 

g0 an optimal schedule for (i,<,µ,v). Then the finishing time, w0 , 

of g0 satisfies: w0 zmax(h.,µ 1 Im 1' ••• ,µk/mk). 

Proof. Clearly at most m. total steps of type l tasks may be executed during 
. ' 

each time unit (for every i). Thus at least rp./mtl units of time must be 

spent on the execution of i for every i. A conservative lower bound is thus 

max(µ 1 /m 1, ... ,µ k lmk ). 

Also, consider a chain of length h. in the graph specified by er,<). 

At least one such chain must exist by the way height is defined. Since each of 

these tasks must be executed at different steps, we conclude that h. is a lower 

Lemma 2. Let cr,<,µ,v) be a k type unit execution time task. system and g 

a list schedule for (i,<,p.,v). Then the finishing time, w of g satisfies 

w~(µ 1 Im 1 )+(µ2 /m2 )+ ••. +(µimk)+h.( 1-(1/max(ml' .•. ,mk))). 

Proof. The basic idea is to analyze two types of steps that occur in list 

schedules. The first type of step occurs when progress is made in finishing 
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one of the Ii "height levels" in the graph specified by <. The second type of 

step occurs when no progress is made towards completing a level of the graph. 

We say that level j of r:r,<,µ,,) is ftnish.td at time t if t ts the 

smallest time with the property that t">t. implies that no task of height J ls 

started at time t ". Time t is said to be a ltvtl ftntsh.J.ng sttp if there 

exists a j, such that level j is finished at time t. 

To prove the lemma, the steps of any list schedule are broken into two 

parts. The first part consists of the level finishing steps. There are at 

most Ii of these steps. This follows from the fact that the height (or number 

of levels) of Ci,<,µ,,) is only h. and the fact that there is one "last step" 

per level. The goal is now to show that there are no more than 

(µ 1 Im 1 )+ ... +(µ klm1)-Ulmax(m 1, ... ,m1i)) "non-level finishing steps"~ 

Note that at any step t at which a level is not finished, mi tasks of 

type i must be executed for some i. The reasoning is as follows. Let j be the 

greatest level that did not finish before time t. Note that if a task ls at 

height j all predecessors of the task have been finished. Thus if a task of 

height j has not yet executed, the task must be executable at time t. Assume 

that at this step we do not use all mi processors for any t. That is, 

for each i, at least one processor is unused at this step. Such a "potential 

was te" of processors may occur only if all executable tasks are being executed 

since otherwise one of the unused processors would be used.. In particular all 

tasks at height j are being executed and level J is finished. Thus time t ls a 

level finishing step contradicting the assumption. 

Let Ii . denote the number of steps of type t tasks executed during 
l 

level finishing steps. Clearly ii!thi~h. since for each level, at least one 

task at the level is executed during a level finishing step. Now an upper 



9 

bound on the number of non level finishing steps is obtained. Note that mi 

tasks of type i are executed at no more than L(µ.-'1.)/m.J non-level finishing 
' ' ' 

steps. Thus, executing m. tasks of type t at one step for some t may occur 
' 

are at most 

(µ 1 /m 1 )+ ... +(µk/mk)-((h 1 Im 1 )+ ... +(hk/mk))~(µ 1 /m 1 )+ ... +(µ,/mk)-(li/max(m t •···•mk)) 

non-level finishing steps. A bound on w is thus given by: 

' We may now put together the upper bound on list schedules and the lower 

bound on optimal schedules. The two results combine to show that the worst 

possible performance ratio is k+t-(1/max(ml' ... ,mk)). 

Proof of Theorem. Fix a k type unit execution time task system ('r,<,1,1,J1), and 

let p=max(µ 1 Im 1, ... ,µ1/mk,h). Then a lower bound on the optimal schedule is 

p. A conservative upper bound on any list schedule is 

(k+1-(1/max(m1' ... ,mk)))p. Thus the performance ratio of the list. schedule 

relative to the optimal schedule is bounded by k+1-(1/max(m1' ..• ,mk)). □ . 

The next result is an explanation of how Theorem 1 may be easily 

generalized to apply to non unit execution time task systems. The method is to 

reduce an arbitrary task _system to a unit execution time tc1$k system and then 

apply Theorem 1. 

Theorem 2. Let cr,<,µ,v) be a k type task system. Then the performance ratio 

of any list schedule relative to an optimal schedule is at most 

k+ 1-( 1 /max(m 1 , ••• ,mk )). 
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Proof. For a given task system (i,<,µ,v) define an inductd unit execution 

time task system (i" ,<' ,,.,. ',v') as follows. For a task Tei there are µ(T) 

corresponding unit execution time tasks in i'. These 1,&(T) tasks are linearly 

ordered by <' and are of the same type as T. The rest of <' is defined as 

follows. If S ,Tei and S<T then each of the µ(S) tasks that correspond to S 

must precede each of the 1,&(T) tasks that correspond to T. 

Note that an· optimal schedule for (i,<,µ,v) has at least as large a 

finishing time as an optimal schedule for (i',<' ,µ' ,v'). This follows from 

the fact that any valid schedule for (i,<,µ,v) may be easily transformed 

into a valid schedule for (i",<",1,&",v") merely by executing the µ(T) tasks 

in i' (that correspond to Tei) during the same µ(T) steps that T is 

executed. Thus an optimal schedule for (i,<,µ,v) corresponds to some schedule 

for (i",<",µ',v "). In a similar manner, any list schedule for (1",<,1&,JI) may be 

easily transformed into a list schedule for (i" ,<' ,µ ',v'). Thus the "worst" 

list schedule for (i,<,µ,v) (i.e. the one with the greatest finishing time) is 

no worse than the "worst" list schedule for (i",<" ,µ' ,v"). 

Let w
0 

and w be the finishing times of an optimal schedule for 

('r,<,µ,v) and the "worst" list schedule for (i,<,µ,v) respectively. Let w0 
and w"be the finishing times of an optimal schedule for (i' ,<' J& ',v') and 

the "worst" list schedule for (i',<',µ',v') repectively. We have that 

woswoswsw~ 
Since (wfw0)s(k+t-(1/max(m 1' ... ,mk))) 

we conclude that (w/w0 )s(k+1-(1/max(m1' ... ,mk))). □ 

We remark that in the classical case where k=l, the result of this 

section reduces to the bound of 2-(1/m) obtained in [6]. 
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4 . . Achievability results for list scheduling strategies 

In this section it is shown that the bound of Section 3 is achievable. 

Specifically, for any k and any values of m 1, ... ,mk there is a k type task. 

system and a list schedule for the system with the property that the schedule 

is k.+t-(1/max(ml' ... ,mk)) times worse than optimal. 

The set of task systems used for this proof are sketched below (Figure 

1 ). Each node in the graph represents one task. Arrows specify the partial 

ordering and the labels of the nodes represent the type of the tasks. Each 

task has unit execution time. (Assume without loss of generality that 

mk. =max(m 1, ... ,mk ).) 

In the task systems, there are m. columns of tasks that informally 
' 

speaking "correspond to tYPe i" (t~i~k-1). Each of these mt columns contains a 

chain of n+k-1 tasks (n arbitrary). The /h task in each of these columns 

has v(T)=j (for j5i-1) and v(T)=i (for t9). 

There are mk+t columns that "correspond to type k.". In each of these 

columns the /h task (for j~k-1) has v(T)=j. For the. first mk. of these mk.+1 

columns there is a chain of n-(n/mk) additional tasks, with v(T)=k for each task 

in the chain. For the (mk + 1 )st column there is a chain of n additional tasks, 

with v(T )=k for each task in the chain. 

The following is an asymptotically optimal strategy. The first k.-1 

tasks of each column are executed using an arbitrary list schedule. For fixed 

values of k and the mi., s this may be done in constant time. Now, only n steps 

are required to complete the entire system. It is clear that only n steps are 

required to finish the columns corresponding to each of the first k.-1 types of 
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n 

Figure I-



13 

th processors. During these same n steps the columns corresponding to the k 

type of processor may be completed as follows: During each of the n steps, one 

of the mk processors of type k is used on the (mk + ost of these columns 

finishing this column in n steps. The other mk -1 processors are used on · the 

other mk columns in rotation. Thus during the first step, no task is executed 

from the first column, during the second step, no task is . executed from the 

second column, etc. Thus, the total number of steps for this procedure is 

n+O( 1 ). 

An inefficient list schedule is now presented. The schedule first 

handles all type 1 tasks, then all type 2 tasks, etc. For the first n+k-1 

steps only tasks from columns that correspond to type 1 are executed. At the 

next n+k-1 steps all tasks from columns that correspond to type Z are executed, . 

stripping off type 1 tasks from the tops of the rest of the columns in the 

process. In this manner, about (k-l)n steps are required to finish all of the 

columns that correspond to the first k-1 types of processors. 

Now the last mk+t columns of the program are executed. Using a list 

schedule, only the first mk of them are processed for the next n-(n/mk) steps, 

completing these columns in their entirety. Another n steps are required just 

to process the last of these mk+l columns. The total number of steps with this 

schedule is thus n(k+l-(1/mk)) and the performance ratio between this and the 

optimal schedule is n(k+t-(1/mk))/(n+O(t)). As n goes to infinity, the ratio 

approaches k+l-(1/mk). D 

A few remarks may be made about the nature of the construction. 

First, all tasks take unit time in the example. Thus, although the general 

bound on performance (Theorem 2) applies to any k type task system, it is 

achievable even in the special case where each task requires only unit time. 
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This is particularly significant in light of the fact that for this special 

case some list schedule is guaranteed to be optimal. Thus, even in the 

situations where nothing is "lost" by restricting attention to list schedules, 

the bound is still achievable. Another feature of interest is that the system 

used is a disjoint union of ~hains. Each chain may be viewed as one large 

task. and each task within the chain may be viewed as a subtask of the larger 

task. We thus overcome the objection that the example is a contrived, 

complicated system which is unlikely to occur in practice. Finally, the "bad" 

schedule was an uncontrived type of schedule. It is a schedule that operates 

on a LIFO (or last in first out) principle. That is, the schedule executes 

those tasks which most recently became executable. 

6. Uniform non-identical processors 

We now analyze the situation where each processor runs at a different 

rate. This is of particular interest due to the fact that in the models of high 

speed computation that partially motivate this research [2,8], the idea is to 

use many processors of potentially different speeds. This generalization is 

also the natural extension of the work of (9,10] which considered processors of 

different speeds for ordinary task systems. 

The processors of each type are assumed to be uniform in this analysis. 

That is. the relative speeds of the processors are independent of the tasks 

being executed. The more complicated situation in which certain processors 

handle some tasks relatively quickly, but others relatively slowly is not even 

very well understood for ordinary task systems. Also, this situation is less 

likely to occur in a system where the tasks have already been subdivided into 

different types. In this regard typed task systems may be viewed as a special 
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case of non-uniform ordinary task systems. If a processor is of a different 

type than a task, then the speed for the ·processor on the task is infinity. 

When the set of processors Ql={Pi/lsisk. and l~sm,} are not equally 

fast, there is an associated rate Junction r:{P ... JN. Informally, the rate 

function specifies the speed of a processor. If a t~k T is assigned to a 

processor P then µ(T)/r(P) time units are required for the processing of T on 

P. 

Since the speeds of the processors are not the same, the schedule must 

now specify which task is assigned to which processor. Thus, a valid scliedult 

for (i,<,µ,v) on a set of uniform non-identical processors (P with rate function 

r ts a total function g:i-+IN x(P (where if g(T)=(t,P) then the starting time of T 

ts t and the finishing time of T is t+(µ(T)/r(P))) such that 

(a) If g(T)=(t,Pi} then v(T)=i. 

(b) For every task T, if g(T)=(t,P), then no other task T' may have 

g(T ')=(t ',P) for any t ''c_t which is earlier than the finishing time of T. 

(c) whenever S<T the starting time of T is no less than the finishing 

time of S. 

Informally, if g(T)=(t,P) then the task T is processed by the processor 

P from time t to time t+(µ(T)/r(P)). There is no loss of generality in assuming 

that each task is assigned an integer starting time as one may always take a 

common rational divisor of {1/r(P):PE(P} as the unit of time. · 

The definitions of 'being executed at .time t, finisliing time of a 

schedule, optimal schedule, and performance ratio generalize in a 

straightforward manner and are omitted. 

A list schedu.le may be generalized in two ways. One way is to only 

insist that at no point in time may a task of a certain type be executable 
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while a procassor of the same type remains unused. A second potential 

generalization is to further insist that when tasks become executable they are 

assigned to the fastest available processors. The bounds obtained are 

applicable to either generalization. 

The definition of "i' the total number of steps required for 

type tasks is the same as in Section 2. 

The total processing power of processors of t1pe t, denoted r1 

is defined by: 

r.= 
l 

This represents the total number of steps of type t tasks that may be 

processed in unit time. 

Let Ji denote the rate of the fastest processor of type i. That 

is, J,.=max{r(P .. ):t9<m.}. Similarly, s. denotes the rate of the slowest 
l lJ - l l 

processor of type i. Also, q=max(J1ts 1, ••• J,1/sk) denotes the greatest ratio (or 

quotient) between processor rates for any single type of processor. Finally, 

d=rnin(f 1 Ir 1, •.. ,fk/rk), denotes the smallest percentage contribution made 

by the fastest processor of a particular type. 

6. Performance bounds for list schedules on machines with uniform 

non-identical processors 

Following the general outline of Section 3, we obtain a lower bound on 

the performance of an optimal schedule and an upper bound on the performance of 

any list schedule. A comparison of the two results provides an upper bound on 

the performance ratio of any list schedule relative to the optimal schedule. 

The main result of this section is: 
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Theorem 3. Let (i,<,µ,v)· be a k. ·type task system on a set of uniform 

non-identical processors. Then the performance ratio of any list schedule 

relative to the optimal schedule is at most k+q-d. 

Proof. It will again be helpful to define a notion of the lzetglit of a task.. 

The notion of height differs slightly from the notion used when the processors 

were equally fast. Intuitively, the notion of height does not generalize 

directly from the identical processor ·case for the following reason. A task. T 

always requires µ(T) time units to be processed with identical processors. 

However, in the non-identical situation the amount of time required is a 

function of which processor is used for the task. 

In deciding how many "levels" should be assigned to each task., the 

important idea is to insure that at every step each non-idle processor executes 

at least one level of the task it is processing. Thus, if a task T of type j 

requires time µ(T), then T is ~ssigned µ(T)/sj levels. Similarly, if T has no 

successors then it is at lzeiglzt µ(T)/sf Otherwise, the height of T is 

p.(T)/sj plus the maximum height of the set of immediate successors of T. The 

h.eigh.t of c,,<,µ,v) is the maximum height of the set of tasks Tei. If T is of 

height h.' and g(T)=(t,P) then for i=O, ... ,µ(T)/r(P)-1 the lzalj-open interval 

( Ii' -(r(P)/sj)(i+t) , Ii' -(r(P)!s}(i) ] of T ts executed at time 

t+i. Level j of T is executed at time t+i if j is a point in the interval of T 

that is executed at time t+i. Note that at least one level of a task is 

finished at each step that the task is executed. Level J is fintslied at time t 

if time t is the last step during which level j of some task is executed. 

We first obtain· the upper bound on list schedules. Fix a list 

schedule, g, and let p denote the number of level finishing steps used by 
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the list schedule (note p5,_li since each level contributes to at most one level 

finishing step). 

At a non-level finishing step a list schedule must use all m, processors of 

type i for some i. The reasoning here is the same as in Section 3; otherwise 

the greatest unfinished level must be completed. Since there are at most 

lµ/riJ ~teps during which all processors of type t may be used, an upper 

bound on the number of steps during which a level is not finished is given by 

(µ 1 Ir 1 )+ . .. +(µ.kirk). As in Section 3, this may be tightened. Recall that 

there were p level finishing steps. Let Pt denote the sum of the sizes or 

intervals of type i tasks executed during level finishing steps. (Note 

p 1 + . .. +pk~ P since the size of each interval is at least one.) By the 

definition of the intervals at least P/t units of the time requirement of 

type i tasks are executed during level finishing steps since executing an 

interval of type i and size 1 corresponds to executing st units of the time 

requirement of type i. Thus there are at most (1' 1-~1s 1)lr1+ •.• +(1&1r,-Pi.,S1r,)/r1r, 

non- level finishing steps. 

To obtain a lower bound on the finishing time of any optimal 

schedule, note that only ri steps of type t tasks may be executed in one 

time unit. Th us a lower bound is given by max(I' 1 /r 1 , ... ,I' 1/r k ). 

Also, consider a set of tasks T 1 <T 2< ... <T 'J where, informally speaking the 

whole path is of height Ii. _ (Formally, h=:Ei?tl,l(T,)/sv(Tt)·) Some such path 

must exist by the way that height is defined. Let 't be the sum or the J'(T)' s 

for tasks of type i along this path. (Note h=c1ts 1+ ... +(k/sk.) At any point 

in time at most one of these tasks may be executed. Thus, a lower bound is 

given by c 1 If 1 + ... +ck/Jk. 

Let w be the finishing time of an arbitrary list S(:hedule and let w0 
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be the finishing time of an optimal schedule. A bound on the performance ratio 

between any list schedule and the optimal schedule is given by: 

w <1-&cP1s1>lr 1+ •.• +(µk-P1t.S,i.)lr1i,+P 

(1) ::; --------------------------------
WO max(µ 1 Ir 1, ... ,p.klr k,(c 1 If 1 )+ ••• +(cklfk)) 

where the c 1 If 1 + ••. +cif1i. term i~ the denominator represents the sum of 

the p.(TY s for any path of "height" h as above. Rewriting ( 1) provides 

w (µ 1 Ir 1 )+ ... +(µklr 1i,>+p-((p 1 s 1 Ir 1 )+ •.• +(pk.sic.Ir Jc.)) 

(2) ::; --------------------------------------

WO max(µ 1 Ir 1, ••. ,µir 1i,,(c 1 If 1 )+ ••• +(c1i,lf1c.)) 

To obtain an upper bound the value of the numerator may be increased. 

Recall that q=max(f1/s1' ... Jisk) and d=min(f1lr1, ... /A'rk). Since 

q''~J/si we may replace si with f/q. Then, f/ri may be replaced with d 

(the· minimum of the //r/s). Finally, using p~p 1+ ••• +pk. results in: 

· w (µ 1lr 1)+ ••. +(µklr1i,)+(1-(dlq))p 

(3) ::; --------------------------

WO max(µ 1 Ir t'···JJ.irk,(c 1 If 1 )+ ••• +(cklfk)) 
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Since p~h and lz=(c 1 Is 1 )+ ... +(ck/sk) (3) may be rewritten as: 

w 

(4) ~ ----------------------~-----------

Again using q"?J/si for every i yields 

w (p 1 Ir 1 )+ ... +(pk/r k)+q(l-d/q)((c 1 tJ 1 )+ ••• +(ckl/1,,» 

( 5) ~ ---------------------------------

Wo max(µ 1 Ir 1, ••• ,µk/r k•(c 1 If 1 )+ •.• +(ci/1,,» 

The ratio between the sum of k+q-d terms and the maximum of the same 

terms is at most k+q-d. □ 

Note that when the processors of each type are equally fast then q= 1 

and d= 1 /max(m 1, ... ,mk) and the bound matches that of Section 3. Also, if 

k= 1, then the bound of l+if 1 Is 1 )-if 1 Ir 1) matches the bound of [9, 10]. 

7. Achievability results for list scheduling on machines with uniform 

non-identical processors 

To obtain a lower bound on the performance of any list schedule for 

uniform non-identical task systems we combine the construction of Section 4 

with a construction used in [9,10]. The result used from [9,10] is as follows. 

Fix a set of uniform non-identical processors (P, of one type. Then there are a 

set of ordinary task systems for (P (with empty precedence relation) with the 

property that the performance ratio of list schedules relative to optimal 
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schedules over this set of task systems is arbitrarily close to 1+(f/s)-(f/r) 

where f is the speed of the fastest processor, s the speed of the slowest and r 

the total processing power of the processsors of the machine. 

Consider the task system of Figure 2. Diagramming conventions are as 

in Section 4. The notation µ=r(P . . ) means that the time required for the task 
lj . 

equals the rate of the processor P. _ A node labelled with B denotes a copy of 
l) 

one of the task systems in the set. used to obtain the lower bound in [9, 10] 

with the type of each task in this task system being mk. The interpretation of 

an arrow between two nodes labelled with B indicates a precedence dependence of 

each task at the destination of the arrow on each task at the source of the 

arrow. The class of task systems described in the figure is parameterized by 

the variable n and the class of task systems described in [9, 10]. Let n., 

denote the time required to execute B using an optimal schedule. Assume 

without loss of generality that max({(f/si)-(f/ri):i=1, .. ,k.}) is achieved by 

processors of type k. 

· An asymptotically optimal schedule first executes the first k-1 tasks 

of each column using an arbitrary list schedule. Then only n more steps are 

required. It is clear how to fin-ish the columns that correspond to the first 

k-1 types of tasks in n steps. By using the optimal schedule for each 

occurrence of B each occurrence of B requires only n., steps. Since there are 

n/n., copies of B only n steps are required. 

A bad list schedule spends (k- t)n steps completing the tasks that 

correspond to the first k.-1 types of processors. It then spends arbitrarily 

close to (n/n")(n")(t+Jk/sk-fk/rk) steps tQ complete the columns that 

correspond to the k th type of processor using the bad list schedule from 
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[9, 10]. The exact number of steps depends on which task system is used for the 

nodes labelled with B in the task system sketched in Figure 2. The ratio thus 

approaches k+Jk/sk-fk/rk for large n and _B's whose variation in execution 

speed approaches a ratio of 1+<fisk)-(fk/rk). D 

The gap between our upper and lower bounds on performance ratios is not 

very large. The gap is between k+max({f/si:i=1, .. ,k})-min({f/r,:t=1, .. ,k}) 

and k+max({(f/si)-(f/rt):i=1, .. ,k}). Since both are between k+q and 

k+q-1, for all practical purposes the result is tight. Also, for certain 

important subcases that have been considered, the result does reduce to a tight 

result. In p~rticular, if k=t or if processors of each type run at the same 

rate then the bound on performance ratio obtained in Theorem 3 is achievable. 

Also note that the notion of list schedule considered in [9, 10] is the 

version where whenever tasks become executable, they are assigned to the 

fastest available processors. Thus, as mentioned in Section 5, our results are 

applicable even to the more restrictive notion of list schedule. 

8. Conclusion 

We have presented a generalization of the ordinary task systems that are 

used to model scheduling problems. This generalization is a more effective model 

of the scheduling problem found on certain types of machines. We have 

presented general bounds on scheduling strategies for these systems. 

There are many extensions to our analysis that should be considered. 

The application of approximation techniques used in traditional scheduling theory 

would be a worthwhile endeavor, though we suspect that many of the special case 

results that have been obtained (for example when the precedence relation is 

empty) would be directly applicable to this case. Similarly, a study of typed 
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task systems with different optimality criteria would be of interest (see [7] 

for a survey of variations). 

Finally, it would be instructive to settle the gap between upper and 

lower bounds for typed task systems executed on a set of processors of 

different speeds. While the results presented give a fairly tight description 

of the worst case performance of demand driven schedules, we would Uke to have 

the result tightened from the mathematical standpoint. 
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