
MIT/LCS/'IM-111

EOJNDS ON THE SCHEDULING

OF

TYPED TASK SYSTEMS

Jeffrey M. Jaffe

September 1978

Bounds on the scheduling of typed task systems

Jeffrey M. Jaffe, MIT •

Abstract. We study the scheduling of different types of tasks on different

types of processors. If there are k types · of tasks and m. identical processors
i

for tasks of type i, the finishing time of any demand driven or list schedule

is at most k+l-(1/max(ml' ... ,mk)) times worse than the optimal schedule. This

bound is best possible. If the processors execute at different speeds then the
' '

performance ratio of any list schedule (relative to the optimal schedule) is

bounded by k plus the maximum ratio between the speeds of any two processors of

the same type.

Keywords. scheduling, list scheduling, typed task systemst data flow

computation, worst case performance bounds

1. Introduction

The problem of job scheduling on multiprocessor systems has been

extensively studied (for a current survey see [1,7]). The conventional approach

has been to consider a system where each processor may handle any job or task.

These systems are referred to as "ordinary" task systems. In some systems it

may be useful to have certain tasks processed only by designated processors for

those tasks. Examples of these include ·data flow models of computation [2,8]

where primitive operations are computed by different processors. Similarly, in

• This report was prepared with the support of a National Science Foundation

graduate fellowship, and National Science Foundation grant no. MCS77-19754.

2

machines such as the CDC6600, there are several specialized functional modules.

Also, in a system where 1/0 tasks and arithmetic tasks are handled by different

processor units, such an assumption may be relevant. In this paper we analyze

some of the properties of schedules for systems with different t1pes of tasks.

Many of the results for ordinary task systems immediately generalize to the

typed case. The NP completeness results of [12] clearly carry over directly,

as do approximate solutions for certain special cases (for example when the

tasks are independent [3]).

The complexity of · determining the optimal schedule ls NP-complete in

very simple cases. It is shown in [5], that the problem of determining whether

a schedule exists for a given typed task system that requires fewer than a given

number of steps is NP-complete even if there are only two processors, one of

each type. Also, if • the· number of types of processors varies, the problem is

NP '.""complete even if the precedence constraint is restricted to being a forest.

The techniques used there are adaptations of those found in [1.4].

The focus of this paper is to extend the results of Graham [6], which

provide general bounds for non-preemptive list scheduling strategies which

satisfy fundamental "no-waste" requirements. The performance criterion ls that

we attempt to minimize the finishing time of the system. In ordinary task

systems, any list schedule is at most 2-(1/m) times. worse than optimal where m

is the number of processors. For typed task systems as defined in Section Z a

similar bound is obtained. With a similar definition of "unwasteful

schedules", it is shown in Section 3 that any such schedule ls at most

k+1-(1/max(m1' ... ,mk)) times worse than optimal, where k ls the number of

types of tasks and m. is the number of processors of type t. This bound ls
i

achievable for any value of k and any values of m1' ... ,m1 as shown in Section 4.

3

The results of [9,10] which provide general bounds for list schedules

on machines with processors of different speeds are also extended. In ordinary

task systems with processors of different speeds, any demand driven schedule is

at most (approximately) (f/s)+l times worse than optimal where J is the speed

of the fastest processor and s the speed of the slowest processor. It is shown

(in Sections 6 and 7) that the bound for typed task systems is (approximately)

k+max(f 1 Is 1' ..• Jk/sk) where Ji is the speed of the fastest processor of

type i and si is the speed of the slowest processor of type t . Section 5

introduces additional definitions needed to discuss the case where processors

run at different speeds.

2. Typed Task Systems

An ordinary task system Cr,<,µ) consists of:

(1) The set i=(T 1' ... ,T r); the elements Ttei are called tasks.

(2) A partial ordering < on i.

(3) A time Junction µ:i -+IN.

The set i represents t~e set of tasks or jobs that need to be executed.

The partial ordering specifies which tasks must be executed before other tasks.

The value µ(T) is the number of steps required by the task T. For simplicity

we have assumed that the range of µ is IN . This corresponds to the assumption

that each operation requires an integral number of steps.

The preceding is the conventional definition of task systems. We now

extend the model to the situation where there are many types of processors.

A k type task system (:f,<,µ,v) is a task system (i,<,µ) together with

a type Junction v:i-+{1, ... ,k}. Intuitively, if v(T)=i then T must be executed

a processor of type i .

4

The execution of a task system by processors of a machine is modelled

by the notion of a schedule. A schedule for c:r,<,l',JI) is a total function

g:T" -+IN. We refer to g(T) as the starting time of the task T and g(T)+,i(T) as

the finishing time of the task T. We also say that Tei is being executtd at

time t for g(T)9<g(T)+p.(T). We often refer to time t as the , th step

of execution.

A valid schedule for (T",<,µ,v) on a set of equall"j fast processors

(P={Pif19Sk and 1S}Smi} is a schedule for (:r,<,µ,v) with the

properties:

(1) For all i= 1, .•• ,k and all telN the number of tasks of type t being

executed at time t does not exceeds mi"

(2) whenever S<T, the starting time of T is not smaller than the

finishing time of S.

Condition one asserts that processor capabilities may not be exceeded.

Condition two forces the obedience of precedence constraints.

The finishing time of a valid schedule is defined to be the maximum

finishing time of the set of tasks. An optimal schedule is any valid schedule that

minimizes the finishing time. For two valid schedules g and g', with finishing

times w and w., the performance ratio of g relative to g' is w/w'.

There are schedules that may be arbitrarily worse than the optimal

schedule. For example, there may be a time before the finishing time at which

no task is being executed, but such trivially improvable schedules are not

interesting. Schedules of interest are not so blatantly wasteful. We

restrict attention to schedules conforming to a heuristic (or what may be used

as part of a heuristic) that has attracted attention for ordinary task systems

[6,9,10]. Specifically, a (priority) list L=(Ul' ••• ,U,) (U,eT") consists of a

5

permutation of all the tasks of J. The list schedule for ('r,<,µ,v) with the

list L is defined as follows. At each step that at least one processor

completes a task, each processor that is not still executing a task chooses an

unexecuted executable task of its type. The tasks are chosen by giving higher

priority to those unexecuted tasks with the lowest indices. If n> 1 processors

of the same type simultaneously look for tasks, then the n highest priority

unexecuted, executable tasks are selected for execution. The decision as to

which processor gets which task is made arbitrarily. Only if no executed tasks

of its type are executable does a processor remain idle. List scheduling is

un wasteful in the sense that if at time t. all predecessors of a task T have

been finished, and there are free processors of type v(T) (that is at most

mv(T)-1 tasks of type v(T) are being executed at time t) then the starting

time of T is no later than t. It is imwrtant to note that any schedule that

is unwasteful in the sense that processors are never permitted to be idle

unless no free tasks are ·available can be formulated as a list schedule.

The motivation for this heuristic comes from several sources. The

primary motivation emanates from the optimality of some list schedule in the

unit execution time case. It can be shown that when each task requires an

equal amount of time at least one list schedule is an optimal schedule. While

optimality does not occur if tasks have different time requirements, we feel

that it is nonetheless worthwhile to evaluate list schedules. Other sources of

interest include the fact that it is simple to implement, and due to its

simplicity, it is a good starting place for building other heuristics.

(Notation: The total number of steps required by all the type t tasks

will be denoted by µ .•)
l

6

3. Performance bounds for list scheduling

In this section a bound is obtained on the performance ratio of any

list schedule relative to an optimal schedule. It is shown that in a k. type

task system, the ratio is at most k+1-(1/max(m1' ... ,m1)). A naive bound on the

performance ratio of any list schedule relative to an optimal schedule is given

by m 1 + ... +mk. This follows from the fact that an optimal schedule may use at

most m 1 + ... +mk processors at each step, and the fact that any list schedule

uses at least one processor at every step. The result of this section is that

any list schedule is far better than the naive bound. Note that the comparison

of list schedules to o,1>timal schedules is applicable even to the situations

that no optimal schedule is a list schedule.

We first prove the theorem for "unit execution time" task. systems. A

task system CT,<,µ,v) is a unit execution time task system if µ(T)=t for every

T EJ. As indicated in Section 2, this case is particularly interesting due to

the optimality of some list schedule for unit execution time systems. The

result for non unit execution time task systems will then follow directly from

the unit execution time case.

Theorem 1.. Let (i,<,µ,v) be a k. type unit execution time task system.

Then the performance ratio of any list schedule relative to an optimal schedule

is at most k+1-(1/max(m1' ... ,mk)).

It will be convenient to break up the proof into two parts. First, a

lower bound is derived on the finishing ·time of any optimal schedule for i'.

Then an upper bound on the finishing time of any list schedule is obtained.

The ratio between these bounds is an upper bound on the performance ratio of

7

any list schedule relative to an optimal schedule.

A notion that is needed in both parts of the proof is the notion

of the height of tasks in (i,<,µ,v). A height of 1 is assigned to any task. T

that has no successors. Inductively, the height assigned to a task. T is one

plus the maximum height of all the immediate successors of T. The Mlgltt of

Cr,<,µ,v), denoted h., is the maximum height of the set of tasks Te.i.

Lemma 1. Let (i,<,µ,v) be a k type unit execution time task. system with

g0 an optimal schedule for (i,<,µ,v). Then the finishing time, w0 ,

of g0 satisfies: w0 zmax(h.,µ 1 Im 1' ••• ,µk/mk).

Proof. Clearly at most m. total steps of type l tasks may be executed during
. '

each time unit (for every i). Thus at least rp./mtl units of time must be

spent on the execution of i for every i. A conservative lower bound is thus

max(µ 1 /m 1, ... ,µ k lmk).

Also, consider a chain of length h. in the graph specified by er,<).

At least one such chain must exist by the way height is defined. Since each of

these tasks must be executed at different steps, we conclude that h. is a lower

Lemma 2. Let cr,<,µ,v) be a k type unit execution time task. system and g

a list schedule for (i,<,p.,v). Then the finishing time, w of g satisfies

w~(µ 1 Im 1)+(µ2 /m2)+ ••. +(µimk)+h.(1-(1/max(ml' .•. ,mk))).

Proof. The basic idea is to analyze two types of steps that occur in list

schedules. The first type of step occurs when progress is made in finishing

8

one of the Ii "height levels" in the graph specified by <. The second type of

step occurs when no progress is made towards completing a level of the graph.

We say that level j of r:r,<,µ,,) is ftnish.td at time t if t ts the

smallest time with the property that t">t. implies that no task of height J ls

started at time t ". Time t is said to be a ltvtl ftntsh.J.ng sttp if there

exists a j, such that level j is finished at time t.

To prove the lemma, the steps of any list schedule are broken into two

parts. The first part consists of the level finishing steps. There are at

most Ii of these steps. This follows from the fact that the height (or number

of levels) of Ci,<,µ,,) is only h. and the fact that there is one "last step"

per level. The goal is now to show that there are no more than

(µ 1 Im 1)+ ... +(µ klm1)-Ulmax(m 1, ... ,m1i)) "non-level finishing steps"~

Note that at any step t at which a level is not finished, mi tasks of

type i must be executed for some i. The reasoning is as follows. Let j be the

greatest level that did not finish before time t. Note that if a task ls at

height j all predecessors of the task have been finished. Thus if a task of

height j has not yet executed, the task must be executable at time t. Assume

that at this step we do not use all mi processors for any t. That is,

for each i, at least one processor is unused at this step. Such a "potential

was te" of processors may occur only if all executable tasks are being executed

since otherwise one of the unused processors would be used.. In particular all

tasks at height j are being executed and level J is finished. Thus time t ls a

level finishing step contradicting the assumption.

Let Ii . denote the number of steps of type t tasks executed during
l

level finishing steps. Clearly ii!thi~h. since for each level, at least one

task at the level is executed during a level finishing step. Now an upper

9

bound on the number of non level finishing steps is obtained. Note that mi

tasks of type i are executed at no more than L(µ.-'1.)/m.J non-level finishing
' ' '

steps. Thus, executing m. tasks of type t at one step for some t may occur
'

are at most

(µ 1 /m 1)+ ... +(µk/mk)-((h 1 Im 1)+ ... +(hk/mk))~(µ 1 /m 1)+ ... +(µ,/mk)-(li/max(m t •···•mk))

non-level finishing steps. A bound on w is thus given by:

' We may now put together the upper bound on list schedules and the lower

bound on optimal schedules. The two results combine to show that the worst

possible performance ratio is k+t-(1/max(ml' ... ,mk)).

Proof of Theorem. Fix a k type unit execution time task system ('r,<,1,1,J1), and

let p=max(µ 1 Im 1, ... ,µ1/mk,h). Then a lower bound on the optimal schedule is

p. A conservative upper bound on any list schedule is

(k+1-(1/max(m1' ... ,mk)))p. Thus the performance ratio of the list. schedule

relative to the optimal schedule is bounded by k+1-(1/max(m1' ..• ,mk)). □ .

The next result is an explanation of how Theorem 1 may be easily

generalized to apply to non unit execution time task systems. The method is to

reduce an arbitrary task _system to a unit execution time tc1$k system and then

apply Theorem 1.

Theorem 2. Let cr,<,µ,v) be a k type task system. Then the performance ratio

of any list schedule relative to an optimal schedule is at most

k+ 1-(1 /max(m 1 , ••• ,mk)).

10

Proof. For a given task system (i,<,µ,v) define an inductd unit execution

time task system (i" ,<' ,,.,. ',v') as follows. For a task Tei there are µ(T)

corresponding unit execution time tasks in i'. These 1,&(T) tasks are linearly

ordered by <' and are of the same type as T. The rest of <' is defined as

follows. If S ,Tei and S<T then each of the µ(S) tasks that correspond to S

must precede each of the 1,&(T) tasks that correspond to T.

Note that an· optimal schedule for (i,<,µ,v) has at least as large a

finishing time as an optimal schedule for (i',<' ,µ' ,v'). This follows from

the fact that any valid schedule for (i,<,µ,v) may be easily transformed

into a valid schedule for (i",<",1,&",v") merely by executing the µ(T) tasks

in i' (that correspond to Tei) during the same µ(T) steps that T is

executed. Thus an optimal schedule for (i,<,µ,v) corresponds to some schedule

for (i",<",µ',v "). In a similar manner, any list schedule for (1",<,1&,JI) may be

easily transformed into a list schedule for (i" ,<' ,µ ',v'). Thus the "worst"

list schedule for (i,<,µ,v) (i.e. the one with the greatest finishing time) is

no worse than the "worst" list schedule for (i",<" ,µ' ,v").

Let w
0

and w be the finishing times of an optimal schedule for

('r,<,µ,v) and the "worst" list schedule for (i,<,µ,v) respectively. Let w0
and w"be the finishing times of an optimal schedule for (i' ,<' J& ',v') and

the "worst" list schedule for (i',<',µ',v') repectively. We have that

woswoswsw~
Since (wfw0)s(k+t-(1/max(m 1' ... ,mk)))

we conclude that (w/w0)s(k+1-(1/max(m1' ... ,mk))). □

We remark that in the classical case where k=l, the result of this

section reduces to the bound of 2-(1/m) obtained in [6].

11

4 . . Achievability results for list scheduling strategies

In this section it is shown that the bound of Section 3 is achievable.

Specifically, for any k and any values of m 1, ... ,mk there is a k type task.

system and a list schedule for the system with the property that the schedule

is k.+t-(1/max(ml' ... ,mk)) times worse than optimal.

The set of task systems used for this proof are sketched below (Figure

1). Each node in the graph represents one task. Arrows specify the partial

ordering and the labels of the nodes represent the type of the tasks. Each

task has unit execution time. (Assume without loss of generality that

mk. =max(m 1, ... ,mk).)

In the task systems, there are m. columns of tasks that informally
'

speaking "correspond to tYPe i" (t~i~k-1). Each of these mt columns contains a

chain of n+k-1 tasks (n arbitrary). The /h task in each of these columns

has v(T)=j (for j5i-1) and v(T)=i (for t9).

There are mk+t columns that "correspond to type k.". In each of these

columns the /h task (for j~k-1) has v(T)=j. For the. first mk. of these mk.+1

columns there is a chain of n-(n/mk) additional tasks, with v(T)=k for each task

in the chain. For the (mk + 1)st column there is a chain of n additional tasks,

with v(T)=k for each task in the chain.

The following is an asymptotically optimal strategy. The first k.-1

tasks of each column are executed using an arbitrary list schedule. For fixed

values of k and the mi., s this may be done in constant time. Now, only n steps

are required to complete the entire system. It is clear that only n steps are

required to finish the columns corresponding to each of the first k.-1 types of

12

n

Figure I-

13

th processors. During these same n steps the columns corresponding to the k

type of processor may be completed as follows: During each of the n steps, one

of the mk processors of type k is used on the (mk + ost of these columns

finishing this column in n steps. The other mk -1 processors are used on · the

other mk columns in rotation. Thus during the first step, no task is executed

from the first column, during the second step, no task is . executed from the

second column, etc. Thus, the total number of steps for this procedure is

n+O(1).

An inefficient list schedule is now presented. The schedule first

handles all type 1 tasks, then all type 2 tasks, etc. For the first n+k-1

steps only tasks from columns that correspond to type 1 are executed. At the

next n+k-1 steps all tasks from columns that correspond to type Z are executed, .

stripping off type 1 tasks from the tops of the rest of the columns in the

process. In this manner, about (k-l)n steps are required to finish all of the

columns that correspond to the first k-1 types of processors.

Now the last mk+t columns of the program are executed. Using a list

schedule, only the first mk of them are processed for the next n-(n/mk) steps,

completing these columns in their entirety. Another n steps are required just

to process the last of these mk+l columns. The total number of steps with this

schedule is thus n(k+l-(1/mk)) and the performance ratio between this and the

optimal schedule is n(k+t-(1/mk))/(n+O(t)). As n goes to infinity, the ratio

approaches k+l-(1/mk). D

A few remarks may be made about the nature of the construction.

First, all tasks take unit time in the example. Thus, although the general

bound on performance (Theorem 2) applies to any k type task system, it is

achievable even in the special case where each task requires only unit time.

14

This is particularly significant in light of the fact that for this special

case some list schedule is guaranteed to be optimal. Thus, even in the

situations where nothing is "lost" by restricting attention to list schedules,

the bound is still achievable. Another feature of interest is that the system

used is a disjoint union of ~hains. Each chain may be viewed as one large

task. and each task within the chain may be viewed as a subtask of the larger

task. We thus overcome the objection that the example is a contrived,

complicated system which is unlikely to occur in practice. Finally, the "bad"

schedule was an uncontrived type of schedule. It is a schedule that operates

on a LIFO (or last in first out) principle. That is, the schedule executes

those tasks which most recently became executable.

6. Uniform non-identical processors

We now analyze the situation where each processor runs at a different

rate. This is of particular interest due to the fact that in the models of high

speed computation that partially motivate this research [2,8], the idea is to

use many processors of potentially different speeds. This generalization is

also the natural extension of the work of (9,10] which considered processors of

different speeds for ordinary task systems.

The processors of each type are assumed to be uniform in this analysis.

That is. the relative speeds of the processors are independent of the tasks

being executed. The more complicated situation in which certain processors

handle some tasks relatively quickly, but others relatively slowly is not even

very well understood for ordinary task systems. Also, this situation is less

likely to occur in a system where the tasks have already been subdivided into

different types. In this regard typed task systems may be viewed as a special

15

case of non-uniform ordinary task systems. If a processor is of a different

type than a task, then the speed for the ·processor on the task is infinity.

When the set of processors Ql={Pi/lsisk. and l~sm,} are not equally

fast, there is an associated rate Junction r:{P ... JN. Informally, the rate

function specifies the speed of a processor. If a t~k T is assigned to a

processor P then µ(T)/r(P) time units are required for the processing of T on

P.

Since the speeds of the processors are not the same, the schedule must

now specify which task is assigned to which processor. Thus, a valid scliedult

for (i,<,µ,v) on a set of uniform non-identical processors (P with rate function

r ts a total function g:i-+IN x(P (where if g(T)=(t,P) then the starting time of T

ts t and the finishing time of T is t+(µ(T)/r(P))) such that

(a) If g(T)=(t,Pi} then v(T)=i.

(b) For every task T, if g(T)=(t,P), then no other task T' may have

g(T ')=(t ',P) for any t ''c_t which is earlier than the finishing time of T.

(c) whenever S<T the starting time of T is no less than the finishing

time of S.

Informally, if g(T)=(t,P) then the task T is processed by the processor

P from time t to time t+(µ(T)/r(P)). There is no loss of generality in assuming

that each task is assigned an integer starting time as one may always take a

common rational divisor of {1/r(P):PE(P} as the unit of time. ·

The definitions of 'being executed at .time t, finisliing time of a

schedule, optimal schedule, and performance ratio generalize in a

straightforward manner and are omitted.

A list schedu.le may be generalized in two ways. One way is to only

insist that at no point in time may a task of a certain type be executable

16

while a procassor of the same type remains unused. A second potential

generalization is to further insist that when tasks become executable they are

assigned to the fastest available processors. The bounds obtained are

applicable to either generalization.

The definition of "i' the total number of steps required for

type tasks is the same as in Section 2.

The total processing power of processors of t1pe t, denoted r1

is defined by:

r.=
l

This represents the total number of steps of type t tasks that may be

processed in unit time.

Let Ji denote the rate of the fastest processor of type i. That

is, J,.=max{r(P ..):t9<m.}. Similarly, s. denotes the rate of the slowest
l lJ - l l

processor of type i. Also, q=max(J1ts 1, ••• J,1/sk) denotes the greatest ratio (or

quotient) between processor rates for any single type of processor. Finally,

d=rnin(f 1 Ir 1, •.. ,fk/rk), denotes the smallest percentage contribution made

by the fastest processor of a particular type.

6. Performance bounds for list schedules on machines with uniform

non-identical processors

Following the general outline of Section 3, we obtain a lower bound on

the performance of an optimal schedule and an upper bound on the performance of

any list schedule. A comparison of the two results provides an upper bound on

the performance ratio of any list schedule relative to the optimal schedule.

The main result of this section is:

.17

Theorem 3. Let (i,<,µ,v)· be a k. ·type task system on a set of uniform

non-identical processors. Then the performance ratio of any list schedule

relative to the optimal schedule is at most k+q-d.

Proof. It will again be helpful to define a notion of the lzetglit of a task..

The notion of height differs slightly from the notion used when the processors

were equally fast. Intuitively, the notion of height does not generalize

directly from the identical processor ·case for the following reason. A task. T

always requires µ(T) time units to be processed with identical processors.

However, in the non-identical situation the amount of time required is a

function of which processor is used for the task.

In deciding how many "levels" should be assigned to each task., the

important idea is to insure that at every step each non-idle processor executes

at least one level of the task it is processing. Thus, if a task T of type j

requires time µ(T), then T is ~ssigned µ(T)/sj levels. Similarly, if T has no

successors then it is at lzeiglzt µ(T)/sf Otherwise, the height of T is

p.(T)/sj plus the maximum height of the set of immediate successors of T. The

h.eigh.t of c,,<,µ,v) is the maximum height of the set of tasks Tei. If T is of

height h.' and g(T)=(t,P) then for i=O, ... ,µ(T)/r(P)-1 the lzalj-open interval

(Ii' -(r(P)/sj)(i+t) , Ii' -(r(P)!s}(i)] of T ts executed at time

t+i. Level j of T is executed at time t+i if j is a point in the interval of T

that is executed at time t+i. Note that at least one level of a task is

finished at each step that the task is executed. Level J is fintslied at time t

if time t is the last step during which level j of some task is executed.

We first obtain· the upper bound on list schedules. Fix a list

schedule, g, and let p denote the number of level finishing steps used by

18

the list schedule (note p5,_li since each level contributes to at most one level

finishing step).

At a non-level finishing step a list schedule must use all m, processors of

type i for some i. The reasoning here is the same as in Section 3; otherwise

the greatest unfinished level must be completed. Since there are at most

lµ/riJ ~teps during which all processors of type t may be used, an upper

bound on the number of steps during which a level is not finished is given by

(µ 1 Ir 1)+ . .. +(µ.kirk). As in Section 3, this may be tightened. Recall that

there were p level finishing steps. Let Pt denote the sum of the sizes or

intervals of type i tasks executed during level finishing steps. (Note

p 1 + . .. +pk~ P since the size of each interval is at least one.) By the

definition of the intervals at least P/t units of the time requirement of

type i tasks are executed during level finishing steps since executing an

interval of type i and size 1 corresponds to executing st units of the time

requirement of type i. Thus there are at most (1' 1-~1s 1)lr1+ •.• +(1&1r,-Pi.,S1r,)/r1r,

non- level finishing steps.

To obtain a lower bound on the finishing time of any optimal

schedule, note that only ri steps of type t tasks may be executed in one

time unit. Th us a lower bound is given by max(I' 1 /r 1 , ... ,I' 1/r k).

Also, consider a set of tasks T 1 <T 2< ... <T 'J where, informally speaking the

whole path is of height Ii. _ (Formally, h=:Ei?tl,l(T,)/sv(Tt)·) Some such path

must exist by the way that height is defined. Let 't be the sum or the J'(T)' s

for tasks of type i along this path. (Note h=c1ts 1+ ... +(k/sk.) At any point

in time at most one of these tasks may be executed. Thus, a lower bound is

given by c 1 If 1 + ... +ck/Jk.

Let w be the finishing time of an arbitrary list S(:hedule and let w0

19

be the finishing time of an optimal schedule. A bound on the performance ratio

between any list schedule and the optimal schedule is given by:

w <1-&cP1s1>lr 1+ •.• +(µk-P1t.S,i.)lr1i,+P

(1) ::; --------------------------------
WO max(µ 1 Ir 1, ... ,p.klr k,(c 1 If 1)+ ••• +(cklfk))

where the c 1 If 1 + ••. +cif1i. term i~ the denominator represents the sum of

the p.(TY s for any path of "height" h as above. Rewriting (1) provides

w (µ 1 Ir 1)+ ... +(µklr 1i,>+p-((p 1 s 1 Ir 1)+ •.• +(pk.sic.Ir Jc.))

(2) ::; --------------------------------------

WO max(µ 1 Ir 1, ••. ,µir 1i,,(c 1 If 1)+ ••• +(c1i,lf1c.))

To obtain an upper bound the value of the numerator may be increased.

Recall that q=max(f1/s1' ... Jisk) and d=min(f1lr1, ... /A'rk). Since

q''~J/si we may replace si with f/q. Then, f/ri may be replaced with d

(the· minimum of the //r/s). Finally, using p~p 1+ ••• +pk. results in:

· w (µ 1lr 1)+ ••. +(µklr1i,)+(1-(dlq))p

(3) ::; --------------------------

WO max(µ 1 Ir t'···JJ.irk,(c 1 If 1)+ ••• +(cklfk))

20

Since p~h and lz=(c 1 Is 1)+ ... +(ck/sk) (3) may be rewritten as:

w

(4) ~ ----------------------~-----------

Again using q"?J/si for every i yields

w (p 1 Ir 1)+ ... +(pk/r k)+q(l-d/q)((c 1 tJ 1)+ ••• +(ckl/1,,»

(5) ~ ---------------------------------

Wo max(µ 1 Ir 1, ••• ,µk/r k•(c 1 If 1)+ •.• +(ci/1,,»

The ratio between the sum of k+q-d terms and the maximum of the same

terms is at most k+q-d. □

Note that when the processors of each type are equally fast then q= 1

and d= 1 /max(m 1, ... ,mk) and the bound matches that of Section 3. Also, if

k= 1, then the bound of l+if 1 Is 1)-if 1 Ir 1) matches the bound of [9, 10].

7. Achievability results for list scheduling on machines with uniform

non-identical processors

To obtain a lower bound on the performance of any list schedule for

uniform non-identical task systems we combine the construction of Section 4

with a construction used in [9,10]. The result used from [9,10] is as follows.

Fix a set of uniform non-identical processors (P, of one type. Then there are a

set of ordinary task systems for (P (with empty precedence relation) with the

property that the performance ratio of list schedules relative to optimal

21

schedules over this set of task systems is arbitrarily close to 1+(f/s)-(f/r)

where f is the speed of the fastest processor, s the speed of the slowest and r

the total processing power of the processsors of the machine.

Consider the task system of Figure 2. Diagramming conventions are as

in Section 4. The notation µ=r(P . .) means that the time required for the task
lj .

equals the rate of the processor P. _ A node labelled with B denotes a copy of
l)

one of the task systems in the set. used to obtain the lower bound in [9, 10]

with the type of each task in this task system being mk. The interpretation of

an arrow between two nodes labelled with B indicates a precedence dependence of

each task at the destination of the arrow on each task at the source of the

arrow. The class of task systems described in the figure is parameterized by

the variable n and the class of task systems described in [9, 10]. Let n.,

denote the time required to execute B using an optimal schedule. Assume

without loss of generality that max({(f/si)-(f/ri):i=1, .. ,k.}) is achieved by

processors of type k.

· An asymptotically optimal schedule first executes the first k-1 tasks

of each column using an arbitrary list schedule. Then only n more steps are

required. It is clear how to fin-ish the columns that correspond to the first

k-1 types of tasks in n steps. By using the optimal schedule for each

occurrence of B each occurrence of B requires only n., steps. Since there are

n/n., copies of B only n steps are required.

A bad list schedule spends (k- t)n steps completing the tasks that

correspond to the first k.-1 types of processors. It then spends arbitrarily

close to (n/n")(n")(t+Jk/sk-fk/rk) steps tQ complete the columns that

correspond to the k th type of processor using the bad list schedule from

n+k-1

. . .
µ=r(P11 =r(P12l µ=r{P1ml

I

. . . I

µ= r(pll µ= r{P12) µ= r(Pim I)

I I
µ=dPi 1l µ=dPi 2 l µ=r(P1m l

I

I I · · · I · ·
µ=r(P11) µ.=r(P12 l µ=r(P1m1

)

m,

22

Figure 2

n+k-1

. . .
=r{Pk-11 =r pk-1,mk-l)

n
n'

23

[9, 10]. The exact number of steps depends on which task system is used for the

nodes labelled with B in the task system sketched in Figure 2. The ratio thus

approaches k+Jk/sk-fk/rk for large n and _B's whose variation in execution

speed approaches a ratio of 1+<fisk)-(fk/rk). D

The gap between our upper and lower bounds on performance ratios is not

very large. The gap is between k+max({f/si:i=1, .. ,k})-min({f/r,:t=1, .. ,k})

and k+max({(f/si)-(f/rt):i=1, .. ,k}). Since both are between k+q and

k+q-1, for all practical purposes the result is tight. Also, for certain

important subcases that have been considered, the result does reduce to a tight

result. In p~rticular, if k=t or if processors of each type run at the same

rate then the bound on performance ratio obtained in Theorem 3 is achievable.

Also note that the notion of list schedule considered in [9, 10] is the

version where whenever tasks become executable, they are assigned to the

fastest available processors. Thus, as mentioned in Section 5, our results are

applicable even to the more restrictive notion of list schedule.

8. Conclusion

We have presented a generalization of the ordinary task systems that are

used to model scheduling problems. This generalization is a more effective model

of the scheduling problem found on certain types of machines. We have

presented general bounds on scheduling strategies for these systems.

There are many extensions to our analysis that should be considered.

The application of approximation techniques used in traditional scheduling theory

would be a worthwhile endeavor, though we suspect that many of the special case

results that have been obtained (for example when the precedence relation is

empty) would be directly applicable to this case. Similarly, a study of typed

24

task systems with different optimality criteria would be of interest (see [7]

for a survey of variations).

Finally, it would be instructive to settle the gap between upper and

lower bounds for typed task systems executed on a set of processors of

different speeds. While the results presented give a fairly tight description

of the worst case performance of demand driven schedules, we would Uke to have

the result tightened from the mathematical standpoint.

Acknowledgements

The author would like to express· his thanks to Alan Baratz, Errol _Lloyd

Michael Loui, and Albert Meyer for helpful readings of this paper.

References.

1. E. G. Coffman, Computer and Job Sh.op Sch.edultngTh.eory, J. Wiley and Sons,

NY 1976.

2. J. B. Dennis, First Version of a Data Flow Procedure Language, Lecture

Notes in Computer Science 19 (G. Goos and J. Hartmanis eds.), pp 362-376. Also

Symposium on Programming, Institut de Programmation, Univ. or Paris, Parts,

France, April 1974, pp 241-271. Also MIT LCS TM61, May 1975.

3. M . R. Garey and R. L. Graham, Bounds for Multiprocessing Scheduling with

Resource Constraints, SIAM J. Comput. 4, 2, June 1975, pp 187-200.

4. M. R. Garey and D. S. Johnson, Complexity Results for Multiprocessor

Scheduling under Resource Constraints, Proceedings of tlte Etglttlt Annual Princeton

Conference on Information Sciences and Systems, 1974.

5. D. K. Goyal, Scheduling Processor Bound Systems, Proceedings of tlat Stxtli

Texas Conference on Computing Systems 1977.

25

6. R. L. Grahaiii, Bounds on Multiprocessing Timing Anomalies, SIAM J. Appl.

Math .• 17 (1969), pp 263-269.

7. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,

Optimization and Approximation in Deterministic Sequencing and Scheduling: A

Survey, Discrete Optimization. 1'717.

8. R. M~ Karp and R. E. Miller, Properties of a model for parallel

computations: determinacy, termination, queueing, SIAM J. of Applied Matlt .•

14, 6, Nov. 1966, pp 1390-1411.

9. J. W. S. Liu and C. L. Liu, Bounds on Scheduling Algorithms for

Heterogeneous Computing Systems, TR No. UIUCDCS-R-74-632 Dept. of Comp. Sci.,

Univ. of Illinois, June 1974.

10. J. W. S. Liu and C. L. Liu, Bounds -on Scheduling Algorithms for

Heterogeneous Computing Systems, IFIP74, North Holland Pub. Co., pp349-353.

1_ 1. J. E. Thornton, Design of a Computer - Tlit Control Data 6600, Scott,

Foresman College Division, (1971).

12. J. D. Ullman, NP-complete scheduling problems, JCSS J, June 1975, pp

384-393.

