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Applications of Modal Logic to Programming · 

Vaughan R. Pratt . 

BACKGROUND 

Before dealing with the modal logic connection a few words on the general role of 

logic in programming may be in order. What makes programming a different activity from 

operating a calculator is the use of variables in place of concrete values. The sequence of 

keys pressed by the calculator user describes a single computation, while a program describes 

a set of computations, using variables as place-holders for values. The meaning of a variable 

in a computer program is as for the Tarskian semantics of formulae: the state of the computer 

memory at the time the program is executed defines an interpretation of the program variables, 

so that the computer always calculates with concrete values. 

11'.l confr_a~ to the computer, th~ pr~grammer. _must aspire to·. a- higher order of 

calculation in convincing himself that his program works as intended on all possible inputs. 

The programmer's problem is that the variables are not interpreted (do not have particular 

values) at the time of writing the program. The programmer need not be the only one with this 

problem; if a program needs to be audited for any reason (e.g. in verifying that a payroll 

program will not transgress the tax laws) then the auditor inherits the programmer's problem. 

To deal with the problem one introduces additional calculation rules that work even for 

· incompletely specified values, ranging from simple rules such as evaluating x-x as O and x+O 

as x, up to more elaborate rules such as induction and quantifier elimination. Logic supplies 

exactly the machinery needed for such symbolic calculation. 

Connections between modal logic and programming can be made at two levels, 1yntactjc 

and semantic. At the syntactic level the modal logician uses such referentially opaque 

constructs as "necessary" and "possible," or "compulsory" and "permitted," while the computer 

scientist would like to say that his program always leaves the variable x non-negative, or 
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eventually . halts, which can also be viewed as referentially opaque constructs. At the 

semantic level there exist natural correspondences between what the modal logician calls a 

possible world and the computer scientist calls a state of a machine, and between the modal 

logician's relation of accessibility and the computer scientist's program viewed abstractly ·as 

a function (or relation in the case of nondeterministic programs) on states. 

This paper describes dynamic logic, a system of reasoning about action that represents 

one possible application of modal logic to programming that makes the above-mentioned 

connections. This is by no means the only such application, and a brief survey of other 

applications appears at the end of the paper. The emphasis here on dynamic logic reflects the 

author's personal involvement with that system. 

The origins of dynamic logic are as follows. In the spring of 1914 I was teaching a 

class on the semantics and axiomatics of programming languages. At the suggestion of one of 

the students, R. Moore, I considered applying modal logic to a formal treatment of a construct 

due to C. A. R. Hoare, "p{a}q," which expresses the notion that if p holds before executing 

program a then q holds afterwards. Although I was sceptical at first, a weekend with Hughes 

and Cresswell convinced me that a most harmonious union between modal logic and programs was 

possible. The union promised to be of interest to computer scientists because of the power 

·· : and mailief"l'latic;u elegance of the trea.tm~nt, It also s~emed likely to interest rriodat logicians 

because it made a well-motivated and potentially very fruitful connection between modal logic 

and Tarski's calculus of binary relations, a connection which in hindsight should have been 

studied . in detail many years ago. The system was first described in class notes [26] and was 

later published in 1976 [271 The epithet "dynamic" was not applied until [12], the term· being 

chosen in ·preference_ to some word suggestive of programs in recognition of the potential of 

the. system for reasoning about actions arising in non-programming contexts. 

SYNTAX 

A language is a set· of expressions. In dynamic logic an expression may be a formula, 

a term, or a program. Just as propositional calculus contains only formulae, and first-order 

logic only formulae and terms, propositional dynamic logic (POL) contains formulae and 

programs, and first-order dynamic logic contains formulae, terms,· and programs. 
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We shall let the metavariables h,h', ... range over expressions, p,q,r, .•. over 

formulae, x,y,z, ... and f,g,.:. over terms (the latter being exclusively for terms not of 

ground type, i.e. functions and functionals), and a,b,c, .. . over programs (the latter being 

for programs not of ground type). We let L = ~UTU? range over languages consisting of 

formulae, terms, and programs respectively. 

There is no fixed language associated with dynamic logic. Rather one chooses for 

study some manageable subset of the following constructions. T he research surveyed below 

deals for the most part with mercifully small such subsets. 

~: T, ""P, pvq, [aJp, <a>p, ooa, x;y, .. . 

T: f(x), ff, 0, x+y, ... 

~ : aUb, a;b, a*, a-, p?, x:=?, x:=y, «a.b, ... 

In addition one may choose to draw on variables of each kind, propositional variables 

P,Q,R, .. . ranging over truth values, term variables X,Y,Z, ... and F,G, ••. ranging over 

individuals and functions, and program variables A,B,C, ... ranging over relations on states. 

. ,Some of these constructs should be familiar to everyone, particularly T (true} ,., v 
·'=•; 0 +. and :'f(~) (ap.plicati~~- 'of t to x). Some readers will also ·recognize U ; * - (the 

relational calculus constructs of union, composition, ancestral, converse), and x:=y 

(assignment, a programming construct, with x constrained to be a variable}. Modal logicians 

should see through the thin disguises of the dual constructs [a]p and <a>p (the role of ''a" is 

to name the particular relation of accessibility intended). In fact only oo ff ? :=? and 

~a. b should raise questions in the minds of the majority of the readers. The construct ooa 

means that the program a may run forever; f~ is the ftJnction satisfying f~i)=x and 

f~j)=f(j) for j;i!i {useful for assignments to arrays); p? is a test (useful for synthesizing 

various conditiorral constructs in programs); x:=? is random assignment (useful for 

defining quantification); and «a.b is the least a that makes a=b (where b is presumably some 

program containing free occurrences of the program variable a). 

The constructs x=y, 0, x+y, . .. are relevant to dynamic logic o,:aly inasmuch as a full 

fledged system of logic for reasoning about action will need these and many more constructs._ 

We will not mention them further. 
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We adopt a fairly standard set of syntax conventions, for example reading <a>p=>q as 

. (<.a>p)=>q and p/\q=>rvs as (p/\q)=>(rvs). Spacing will also .be used judiciously, so that p=>q => r=>s 

. is to be read as (p=>q)=>(r=>s). 

SEMANTICS 

The framework within which we shall embed all our definitions of the meaning of the 

constructs we consider is based on the one familiar to modal logicians, using possible worlds 

or states as we shall_ call them. A semantic structure for dynamic logic is a quadruple 

(L, W, D,µ) where L is .a language, W a universe of states, D a semantic domain, and µ:L...(W➔D) 

a semantic function which for each expression ML and state wf W specifies what h denotes in 

·Statt w. 

When L consists solely of formulae as in the case of the propositional calculus D need 

.contain only ·truth values. When L consists solely of ground terms in integer arithmetic, say, 

D need contain only integers. When L consists of ground programs, D need contain only 

elements (or subsets if nondeterminism is to be treated) of W. When L consists of 

combinations of these, D becomes accordingly more complex . 

. ·· ·cert'eraliiing a much...:used convention, we write ·µt=h for µ(h)(u) where h is arf 
expression and u is a state. Thus ul=p will be a truth value as usual, while ul=x will be an 

element of D, possibly an integer or a function, and ul=a may be a state or a set of states 

depending on which particular iogic we have. (For readers accustomed to thinking in terms of 

binary relations, the binary relation R implicitly assigned to a by µ in this scheme of 

things satisfies uRv just when v f ul=a. This assumes the case when ul=a ls a subset of W.) 

A formula p has a model S, or is satisfiable, when ul=p is true for some u(;;W of some - --- --
semantic structure S. Furthermore p is valid when "'P is not satisfiable. The theory of a 

system with language L is the set of valid formulae of L 

We are now in a position to identify some familiar and not-so-familiar logics. 

Propositional calculus consists of propositional variables, "' and v (with other logical 

connectives being .definable in terms of these). D must then contain true and false, and I' 

must satisfy the constraints 
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ul=---p - utlp 

ul=pvq - ul=p or ul=q. 

(Note that "..," and "v" are in the object language, i.e. the language under study, 

while "u," "I=," "=," "or," and the variables p,q, are in the metalanguage, the language we 

are using unquestioningly to communicate with in this paper.) 

We may remark that the propositional calculus formula p has a model if and only if it 

has • a model with. one state. 

The theory of propositional calculus is recursive; more accurately, it is complete (to 

within log space) in nondeterministic polynomial time. (We include this and other· 

computational complexity results for the sake of those familiar with the terminology, which we 

shall not define here. See, e.g., [31] or [11) Furthermore a complete Hilbert-type axiom 

system can be constructed froni an adequate supply of tautologies together with the rule Modus 

Ponens. 

We may now make the transition from propositional calculus to modal logic. From our 

viewpoint the system K of modal logic extends propositional calculus by adding to L exactly 

:-one pFogr:am. v a:r1atile A and the con$truct <a>p · ( wh~re· · a ·can only· be A), with u1=·a bltng· a set of 

states, with ul=A being otherwise unconstrained, and with µ further satisfying 

ul=<a>p - Jv f ul=a such that vl=p. 

From the programmer's point of view ul=a is the set of states program a may terminate 

in when started in state u, while <a>p asserts of a state u that if program a is started in 

u, it · may terminate in a state satisfying p. If deterministic programs were to be. treated 

exclusively, ul=a could be taken to be a single state, although then one would need a 

distinguished "limbo" state to represent nontermination (failure to reach a final state). 

We may introduce [a]p as the abbreviation for ---<a>---p, or (with equivalent effect) as 
the construct satisfying ul=[a]p = Vv f ul=a, vl=p. As such it is the dual of <a>p. [a]p 

asserts of u that if program a is started in u then if and when it halts p will be true. 
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The satisfiable formula P /\<A)..,p demonstrates that a one-state model will not always 

suffice in satisfying a formula of K. This in turn establishes that no formula q of 

propositional calculus can express <A>P in the sense that q has the same truth value as that 

of <A>P in all states of all semantic structures, since such a q would have to be satisfiable · 

in some one- state model, a contradiction. 

The theory of K is recursive [18], and in fact complete in polynomial space [201 A 

complete axiom system can be obtained by extending a complete axiomatization of propositional 

calculus with the distributive axiom [a](p=>q) => [aJp=>[aJq and the rule of Necessitation, 

from p infer [a]p. 

Defining the system K via a single variable A leads very naturally to the system K *, 
which is K with an inexhaustible supply of program variables A, B,C,... K * by itself is an 

uninteresting extension of K for about the same reason that propositional calculus without 

logical connectives is uninteresting. The axiomatization of K serves as an axiomatization of 

K * without change. However, K * leads us to the core of dynamic logic, the integration of 

· program connectives into modal logic. We begin with the three regular connectives, U ; and *·· 

Union. A natural concept for actions is that of having a choice of which action to carry out. 

The ·.action aUb: ··off~rs "t-he · choice o"r· actions · .a. ~r b. The associated · constrairi"t · on µ· is 

ut=aUb = ut=a U ut=b. 

The validity <aUb>p = <a>pv<b>p, which we may call the union axiom, completely ----
captures union in dynamic logic. This axiom demonstrates that adding union to K * does not 

increase expressive power since every formula of K * with U can be translated to one without U. 

On the other hand a certain degree of succinctness is obtained as can be seen by conside_ring 

<AUB><AUB> .. . <AUB>p, i.e. <AUB>"p, which is not expressible by a K* formula of length less 

than 2n, as the reader may verify. (Hint: show that in any such formula .q and for any string· 

s of A's and B's of length n there must be a path from the root of q viewed as a ·tree such 

that the first n <A> and <B> connectives encountered along that path correspond to s. 

Otherwise ~here would be a model of q consisting of n+l states threaded by a path of A's and 

B's corresponding to s such that one of those edges could be removed without affecting the 

value of any of the subformulae of q, so that q would be true when it should not.) 
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Composition. A familiar concept to programmers is that of executing one program after 

another; we may execute first a and then b. The composition of a and b, written a;b, 

describes the net effect of executing first a and then b. Formally: 

ut=(a;b) = (ut=a)t=b 

where Ut=b, for Uc;;;W, is the union of the ut=b's for each u in U. 

The validity <a;b>p = (aXb)p, the composition axiom, completely captures composition 

· in dynamic logic. Like the union axiom, the composition axiom demonstrates that ; adds no new 

expressive power. Unlike the union axiom, which amounts to a distributivity axiom, the 

composition axiom deals with associativity, and it does not even improve succinctness. 

Iteration. In order to get a program to run for a substantial time some way of executing 

programs repeatedly is called for. The most elementary form of repetition is the iteration 

(or the ancestral, or reflexive transitive closure) of a, which from the programmer's point 

of view means execution of an action an arbitrary number of times. We write a* (a- star) for 

the iteration of a. Formally 

ut=I .'. ·-=·. {u} : .. · (I · is the-identity actirip, h~~ded for the next .line) 

ut=a* = ut=O U a U a;a U a;a;a U ... ) 

where the ellipsis is meant to go only as far as the natural numbers (no nonstandard models). 

Axioms for iteration are not as easy to come by as for union and composition. In fact 

when we introduce assignment later we will not be able to ·get a complete axiomatization of 

iteration. Without assignment however, we can achieve an axiomatization of iteration as 

follows. 

[a*Jp ~ p 

[a*Jp ~ [aJp 

[a*Jp ~ [a*J[a*Jp 

p /\ [a*J(p~[aJp) ~ [a*Jp. 
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The second and third of these may be replaced by [a*]p ::> [aJ[a*]p. The fourth 

may . be replaced by the .rule, from p=>[alp infer p=>[a*]p. 

It is not at all apparent that these axioms generate all the valid formulae of POL 

(propositional dynamic logic). The fact that they do was first announced in the Notices of 

the AMS by K. Segerberg [34]. Later (Jan. 1918) Segerberg found a lacuna in his proof, which 

he repaired some months after. Meanwhile R. Parikh [24] had worked out what seems to be the 

first satisfactory proof. The present author [28] and D. Gabbay [11) have both given sketches 

of completeness proofs. 

It is also not at all apparent that every satisfiable formula has a model with 

finitely many states. This was first shown by M. Fischer and R. Ladner [16), who showed by a 

filtration argument analogous to the one used to show decidability of monadic predicate 

calculus that as few as 2n states sufficed where n = lpl. They also showed that at most n 

formulae and programs needed consideration in determining the ex-istence of a model of that 

size. This leads to a nondeterministic decision method for satisfiability: guess a structure 

of the appropriate size and check whether it can be extended to a model of p. The checking 

can be done in time a polynomial in the size of the model, establishing that the theory of POL . 

is in NTJM ~(cn) (nondeterministic Turing machine exponential time) for some c. What spoils 

. ·this· .mettiod ·for::' p.racticat computation is tha~ the obvious . deterministic version of the . . . .. . 

algorithm needs to consider up to 24n models even when only one program appears in · 

the formula. Fischer and Ladner also showed that there was some d)l such that no algorithm 

could test satisfiability in less time than dn. The author has recently given an algorithm 

that takes deterministic time en for some c [30], meeting the Fischer-Ladner lower bound to 

within a polynomial. 

At this point it might be worth interrupting the development to review the situation. 

We have introduced two types of expressions, formulae and programs. We have specified a 

framework within which primitive constructs might be defined, based on the notion of a 

semantic structure containing a language, a universe of states, a semantic domain, and a 

meaning fu_nction. Using this machinery we have defined as primitives the logical connecUves 

~ v <> U ; and *· And we have introduced variables of type formula and program. 
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. Although this· gives us most of the material we need for a zero-order logic of 

programs, it contains essentially nothing mathematically novel. The propositional connectives· 

date back .to 184-7 (Boole. and DeMorgan) .. The O connective is Lewis's "possibly" connective, 

generalized . in the light ~f relational semantics on possible worlds to a set of such 

connectives denoting diffe.rent relations. And the binary relation connectives U ; and * are 

also well established in mathematics. Thus no component of what we have developed to date ts 

novel. What is novel is the combination, both from the mathematical viewpoint as evidenced by 

the recent rush of results on .the topic, and from the programmer's viewpoint, most programmers 

being of the opinion that a considerable degree of novelty is necessary for the development of 

logics that treat programs that manipulate states. 

We now proceed with the development. 

Tests. Conditionals in a programming language are usually introduced with "if-then-else." 

However the rules of reasoning can be simplified by using a "smaller" notion of conditional, 

the test, which can be used in conjunction with U and ; to synthesize if-then-else, and with ; · 

and * to form while-do. x>O? is an instance of a test, as is j=Ovp(j)=t(k)?. 

A test p? is constructed from a. formula p of the logical !anguage. The idea of a test 

- ls- ·.that a.·. corr1put'ation ·ma{ ~roceed ~ast a tes( just when· that" test ev~lu'iites to trtJ~ in the 
. . --

current environment, otherwise the computation must block (not reach any final state). 

Formally: 

ut=p? = {u} if ut=p 

{} otherwise. 

The test axiom is <p?>q = p/\q. 

Used in conjunction with the regular connectives, tests make it possible to define ••if 

p then a else b" as (p?;a)U(,.,p?;b), and "while p do a" as (p?;a)*;..,p?. They also make_ it 

possible to eliminate one more logical connective as a primitive construct, by permitting pl\q 

to ·be the abbreviation of <p?>q. 
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Tests introduce no additional complexity to the problem of deciding satisfiability; 

nor do they compromise completeness of the axiom system; the test axiom is adequate to 

axiom~Uze tests. · However tests do increase the expressive power of propositional dynamic 

logic; there is no formula in test- free PDL equivalent to <(p?;A)*)q, as shown in an 

interesting argument by Berman· and Paterson [SJ. 

Example. The following gives a simple example of the sort of . problem PDL is useful for. 

Consider the two programs "while P do (A;A)" and _"while P do A". (We assume that testing P 

has no side-effects, that is, does not cause a change of state.) It is the case that if the 

first program can reach a final state when started in a given state, so can the second. This 

is true even if A is nondeterministic. (When A is deterministic, "can reach a final state" 

means "is guaranteed to halt," or "terminates.") For if not, then P must hold after every 

execution of A, whence it holds after every execution of A;A. 

This val.id statement about the relationship between the termination of the respective 

programs can be .easily stated in PDL, as <while P do (A;A)>T => (while P do A>T, or 

---<<(P?;A;A)*;,.,P?>---<P?) ... P?>---<(P?;A)*;~P?>"'<P?>"'P if we were to expand out all our 

abbreviations (which we obviously wouldn't want to have to do in actual applications). 

·-,FtRS·T ORI>-ER REG:t.JLAR .DYNAMIC "LOGIC 

The transition to any first order logic is made when terms are introduced into the 

language. A term ·denotes an arbitrary domain element, not merely a truth value as in the 

case of a formula, or a set of states as in the case of an· action. 

The one term-related concept that we encounter here in connection with programs ·. is 

assignment. We shall see both random assignment x:=? and specific assignment x:.=y, where x is 

· a term variable (one of X, Y,Z, ... ) and y is a term. Both depend on the equivalence relation 

Rx on· states; uRx v holds just when ul=z = vl=z for all variables z other than x~ Their 

r~pedive definitions are: . 

uJ=x:=? = { vluRx v} 

u~x:=y = {vluRxv and vl=x = ul=y} 
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The· main role for x:=? is for defining quantifiers: Vx is just (x:=?J. Specific 

assignment is a sine qua ~ of conventional programming languages. 

Rl 
R2 

s 

The following serve as axioms fo~ these forms of assignment. • 

p => Vxp 

Vxp(x) => p(y) 

[x:=y]p(x) = p(y) 

when x does not occur free in p 

for any term y 

These axioms overly simplify matters. Free occurrences of variables are defined in a 

more complicated way in dynamic logic (for example x occurs free in [x:=x+l)x=S but not in 

(x:=y+lJx=S or [x:=3;x:=x+1Jx=S). Once this notion is defined ·however, p(y) as used in the 

above context can then be taken as usual to mean p(x) with all free occurrences of x replaced 

by occurrences of y with the usual precautions. 

· Rl says that x-;=? !"lay not change any variables other than x. R2 says that x:=? must 

be able to set x to any value namable in the present state by a term y. As such Rl and R2 act 

as upper and lower bounds respectively on the interpretation of x:=?. 

Those familiar with complete axiomatizations of first order predicate calculus will 

have. little difficulty proving its axioms as theorems of the system axiomatized as for K 

together with · Rl and R2. The language should omit program variables and specific assignments, 

and include the application construct along with term variables of types o0 (considering 

Do~D to be the usual notion of the set of individuals in a predicate calculus model) and 

Db➔{true,false}. This permits formation of atomic formulae of the form f(x1, ... ,xk), the 

application of the predicate symbol f (considered here to be a term variable of type 

Db➔{true,false}) to k term variables of type n0. Assignments p:=? must be forbidden. The 

rule of Generalization common in Hilbert- style systems is here "generalized" to the rule of 

Necessitation. It follows that our axiom system for this language is complete. This 

viewpoint of predicate calculus axioms may have some appeal to those comfortable with our use 
of K to axipmatize change- of-state. 
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If we now include specific assignment, the amount of logic we have introduced at this 

point more than covers that catered for in [15], one of the classic papers on logics of 

programs. Not only does it completely subsume every.thing offered in that paper, but it goes 

well beyond it in offering constructs to talk about termination and equivalence of programs, 

as well _as permitting more than one such program-oriented co~struct as subformulae of a single 

formula. In contrast the language of [15] permitted only program-oriented formulae of the form 

p{a}q (meaning p=>[a]q), a form which could not be a subformula of other formulae. 

The question arises as to the adequacy of the axiomatization of assignment in the 

presence of the regular program connecti,ves. The story on this may be found in [12,141. . Once 

one has. term variables (including function · and predicate symbols), application, logic~I 

connectives, <a>p, * and specific assignment, the theory is complete in Ill [12]. Hence a 

finite . axiomatization is out of the question. Refining this a little further, even if the 

language is restricted to formulae of the form ]x]y[z:=f(z)*Jp where x, y,z are term variables, 

f is a function symbol and p is a formula containing no <> constn1ct (and so containing only 

quantifier- free first-order formulae), the IIl lower bound still holds . for the corresponding 

theory. If the language is restricted to formulae of the form [x:=f(x)*Jp where p is any 

first order formula (quantifiers permitted) then the theory is complete in n9. (This 

construct is of particular interest from the p«;>int of view of [15), which in essence con1ines 

ltse.lf to soch : constructs; the ability t~ prefix "[aJq" with "p=>" where p · is another 

first-order formula leaves the n9 result unchanged.) 

Two approaches to axiomat_izing this theory that have been considered are to give 

enough axioms to -permit translation of any problem into a problem in arithmetic augmented with 

uninterpreted function symbols [14], and to give the infinitary rule, from p,[aJp,[aJ[aJp, ••• 

'infer [a*Jp, essentially what is done in [231 Completeness proofs for both approaches have 

been supplied by their proponents. 

The expressive power of this language is no more than that of constructive 

LC1>lC1>' as can be seen by expanding <a*>p as pv<a>pv<aXa>pv ••• and 

applying axiom S to eliminate all assignments, and the axiom for tests to eliminate all tests. 

Meyer and Parikh [22] ·have shown that wtien tests are restricted to being first-order formulae, 

DL is strictly weaker than constructive L(&)l(&)' 
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Example. We give an example of· a proof of correctn·ess of a program. A traditional example in · 

computer science circles is the problem of computing the factorial function. The program 

A:=l; (X>O?; A:=XxA; X:=X- 1)*; X=O? will initialize an accumulator A to 1, and then while X 

remains positive mu'ttiply the. accumulator by X and decrement X. When X becomes O the program. 

is permitted to halt. 

One claim that can be made for the program is that provided X~O initially the program 

wi.11 always halt. We may express this as X~O=><a>T where a is the program above. A proof · 

of this. might proceed along the following lines. 

N~O/\X=N+l => <b)X=N (where b is the trio of commands within the * part of .a> 
N~O/\X=N => <b*>X=O (appealing to the obvious induction principle) 

X=O ;::, <X=O?>T 

N~O/\X=N .=> <a>T 

X~O => <a>T (one might argue this •by taking N to be X) 

In addition to merely establishing termination one might wish to show that whenever 

the prcigr2,01 halts it leaves the factorial of the initial value of X in A, which we can state 

as X=N => [alA=N! (which is true even if X is initially negative, since then a will- never halt. 

.We . might·prove this as :follows. 

AxX!=N! => [X>O?J(AxX!=N! /\ X>O) 

AxX!=N! /\ X>O => tA:=XxA]Ax(X-l)!=N! (using what we know about factorial) 

Ax(X-l)!=N! => [X:=X-llAxX!=N! 

AxX!=N! => [bJAxX!=N! (putting the above three pieces together) 

AxX!=N! => [b*]AxX!=N! (another induction principle) 

X=N => [A:=lJAxX!=N! (clearly) 

AxX!=N! => [X=O?JA=N! (tak:ing O! to be 1) 

X=N => [aJA=N! (putting the above three pieces together) 

A more detailed proof than this would obscure the way a dynamic logic proof proceeds. 

From a practical point of view this proof already exceeds the level of detail a modern program 

verifier would demand to be persuaded of the soundness of an argument. A sensible approach in 

building such a verifier is to have a general purpose algorithm for testing whether each 
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inference in a proof is sound, rather than whether the proof fits the axioms and rules of some 

axiomatization of the logic. Such an approach permits the user of the verifier to supply 
' ' 

shorter proofs - just liow short depends on how g~ the soundness checker is. 

The results of the above two proofs imply the result X=N/\N~0 ::> <a>A=N!. Although the 

converse is not strictly speaking true, knowing that the program is deterministic aliows us to 

infer the converse. In general, if a is deterministic then <a>p ::> [alp. Dually, if a is 

total (has a halting .state corresponding to every initial state), then [alp ::> <a)p. 

Assignment~ which is both deterministic and total, satisfies <x:=y)p = [x:.=ylp. 

MISCELLANEOUS CONSTRUCTS 

Converse. The converse of a, a-, can be viewed as the program a run backwards. Formatty 

The converse axioms are p=>[al<a->p and p=>[a-J<a>p. From these axioms one may prove 

[a*-]p = [a-*Jp and derive the rule, from p=>[a]q inf'E!r <a-)p=>q. Parikh [24] shows th1t these 

axioms alone suffice for a complete axiomatization when POL is augmented with conv~rse. 

While converse is not a construct used in ordinary programming, it is of use in 

reasoning about P,rograms. Programmers sometimes talk about forward and backward reasoning 

abo.ut a program. In forward reasoning one takes an assertion p and a program a that is 

started in a state satisfying p, and asks what holds when a halts. The strongest such 

assertion is called the strongest consequent of p via a. In backward reasoning one starts 

with an· assertion q. and a program a arid asks when progra'"!l a _is guaranteed to terminate. (if at 

all) in a state satisfying q. The weakest such condition is called the weakest antecedent of 

q . via a. 

The weakest antecedent of q via a can readily be seen to be expressed by [alq. What 

requires a little more thought is that <a->p expresses the strongest consequent of p via a. 

The equi-valid formulae p=>[alq and <a-)p=>q illustrate a certain duality between these two 

concepts. 
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Loop. The construct ooa, or loopa, expresses the idea that at leaast one possible computation 

of . a can run for ever ("diverge"). l!sing the semantics we have seen so far (namely ul=a is a 

subset of W), defining ooa ·can ·be awkward since the semantics appears to leave no trace of 

. diverging computations. Nevertheless a fair approximation to the notion may be defined thus. 

,,.,ooA 

ooaUb 

ooa;b 

ooa* 

-
-

-

(A atomic) 

ooa v oob 

ooa v (a)oob 

<a*>ooa v (a6>)T 

These are not meant as axioms to be added to PDL (though in fact the second and third 

could be, although the first goes against the principle that any program should be 

substitutable for a variable). Rather they define ooa inductively· on the program a. The 

meaning of <a(a)>T (not a PDL construct) is that it is true in state u just when then~ 

exists an infinite path of a's starting from u. (Cycles are permitted, so that the number of 

distinct states encountered along such a path need not be infinite.) If models are 

constrained so that lut=al is always finite (the "bounded nondeterminacy" of [8]), Koenig's 

lemma m~kes <a<a>>T equiyalent to Vn<an>T, the definition of ooa* used in (13]. 

T ,hose. famiHar . with ·the filtration process of QPJ will -easily- see that ooA* cannot be· 
• < • • 

expressed in POL For suppose p expresses ooA*. Then arbitrarily long but finite chains of 

A's supply models 0f "'P· But the filtration process applied to a sufficiently long such chain 

(having more thim 2n states where n is the length of ---p) will identify two states. in the 

·chain, producing a model of ooA*. Yet filtration for models of PDL formulae preserves 

model- hood, a· contradiction; 

Using non-trivial constructions Meyer and Wil"!klmann [21,311 have shown that the oo 

construct does not add to the expres.sive power of first-order DL, a quite surprising resulL 

D. · Gabbay [correspondence] has proposed the use of the Grzegorczyk axiom for 

axiomatizing ooa*, namely "'P A [a*J([a*J(p=>[a*Jp)=>p) => ooa*. In (13] D. Harel and the author 

proposed the strictly stronger axiom [a*J(p=><a>p) => (p=>CX>a*) ( which actually was given there 

in the still stronger form [a*J(p=>( <a>pvooa)) => (p=>(.X)a*)). It is not known whether this axiom 

completely axiomatizes oo, 
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E. Dijkstra [8] has developed a logic whose central construct is wp(a,p). Though 

h·e gives axioms for wp(a,p), he gives no semantics. However M. Wand has in effect shown that 

the weakest model of Dijkstra's axioms assigns to wp(a,p} the definition [aJp/\(a>T """ooa, though 

not 1,1sing the dynamic logic terminology. In [13) an axiomatization for first-order DL with 00 

is given and shown to be complete when arithmetically valid formulae may be taken as axioms. 

Such a system can then be used as a complete axiomatization of the wp construcL These issues 

are taken up in greater detail in [14). 

Array Assignment. An almost_ universally- used construct in programming languages is 

f(x)::::y, the assignment of the value of term y to an elemerit of the array f. A mathematically 

tractable w.ay of viewing this constru~t is to consider it to be the assignment f:=fI where 

fl is the function derived from f by changing tf:ie value of f at •X to y. 

Recursion. . An imperative program may well benefit from being able to call itself recursively. 

Such a facility may be conveniently defined via the least fixed point construcL If d(a) is a 

continuous function on relations (continuous in the sense that for all sets X of relations 

such that X is totally ordered by set inclusion, Ud(X) = d(UX)), then d has a least fixed 

point (least w. r. L set !nclusion), denoted aa.d(a). (Some writers use p. for « here, or_ 

~rite Y(~a. b).) The significance of fixed points is that the form of a recursive definition 

·-of ·a program I:> i<: 

b = d(b) 

where d(b) is some program whose meaning depends on b. The program def~ned by this is clearly 

meant to be some fixed point of d ; the significance of "least" is that the na_ive way of 

running· such a recursively .defined ·program happens to yield the least fixed poinL 

While one might expect that adding recursion to the language increases the difficulty. 

of deciding validity, in fact the problem remains within II}. In fact it would take an 

inherently intractable construct (e.g. one that worked by appealing to a Il} oracl~) to 

make the validity problem any harder than it is for * with assignmenL 
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The bulk of the work done on axiomatizing recursion in dynamic logic appears in CU], 

where an arithmetically complete axiomatization of recursion i~ given. No satisfactory 

infinitary rule has been proposed for recursion. 

OTHER APPLICATIONS OF MODAL LOGIC TO PROGRAMMING 

This article has focused on drnamic logic mainly because it is the system the author 

is best qualified to describe in detail. There have however been other applications of modal 

logic to reasoning abqut programs, and we sketch them briefly here. Van Emde Boas has 

surveyed most of this work _ in more detail [9], omitting only the contributions of Bursta11, 

Ashcroft and Schwarz. 

The first published connection between modal logic and reasoning about programs 

appears to ha-ve been made in 1974 by R. Burstall [6], who in the closing section of a paper on 

a method ·of proving programs correct introduced the constructs "Sometimes p" and "Always p" in 

conjunction with the predicate "At(L)" where L labelled a point in a program. With these 

constructs one could say "V n~0[Always(At(Start) implies N=n) implies Always(At(Loop) implies 

P=2N-nn. ... One would have access not only to axioms dealing with At. but also to such 

familiar axioms as Always(p implies q) and Sometimes p implies Sometimes q. Burstall pointed 

out · the connection between possible worlds and machine states-, and suggested that the system 

S5 was the modal system closest to his program-oriented system. 

-F. · Kroeger [19] has developed a logic of programs based on modal logic in which the 

atomic commands are treated as propositional' variables whose truth in a given world represents 

the execution of that command when the processor executing the program is in that world. 

Again possible worlds correspond to processor states. 

E. Ashcroft [1] has developed a programming language in which programming constructs 

are represented with assertions. The purpose is to permit reasoning about programs by 

manipulating the programs directly· rather than indirectly via a separate logic-oriented 

language. The meaning of the language is specified with the help of first-order modal logic. 

The semantics uses a Kripke structure with a total ordering on states, so that the extension 

of each variable can be taken to be the sequence of values the variable takes on as time · -

passes. 
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P. van Emde Boas and T. Janssen [16,17] have applied Montague semantics and · Montague's 

"up" and "down" operators (for mapping between extensional and intensional forms of an 

expression) to define the meaning of "pointer" variables, a notion that arises in some modern 

progra_mming languages. Constructing a convincing semantics for thts notion appears to present 

obstacles of a magnitude not generally enc~untered in defining programming constructs, and no 

alternatives to Montague semantics are known for defining this notion in this generality. 

All of the above deals with programs whose initial and · final states are deemed the 

only significant states as far as reasoning about them goes. What the program does in order· 

to get from a given initial state to its final state is considered immaterial. Such logics do 

not cover the case of programs whose intermediate states are relevant. A program for 

monitoring a · patient's heartbeat, or scheduling other programs for_ execution, or answering a 

series of questions, may not be intended to h~lt, yet its behavior at its intermediate states 

is very important. 

A. Pnueli [25] has. applied temporal logic, in. particular the constructs Gp 

(henceforth p) and its dual Fp (eventually p), to the problem of reasoning about such 

ongoing processes. Although [25] proposes_ no semantics, Pnueli has indicated (in a talk given 

in June 1978) that his formulae should take as values sequences of states. 

J. Schwarz [33) has applied Burstall's modal notions of Sometimes and Always to a 

method of reasoning about systems of processes operating concurrently. Schwarz's semantics 

differs from other semantics in that it · abandons the notion of a single system state, and 

instead is based on the idea of an event, which though not new in computer science is 

certainly novel in modal logic. 

The author has introduced new modalities with non-Kripke semantics [28,291 to treat 

such · issues while retaining the syntax (but not the semantics) of the binary relation 

calculus. · The semantics is that a program denotes a set of sequences of states (rather than a . 

· set of pairs of states as per the usual Kripke semantics) while a formula denotes a set of 

states as usual. This work may be of interest to modal logicians interested in problems 

clearly within the scope of modal logic yet not amenable to treatment using binary relation 

semantics. 
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All of the above work makes explicit the connection with modal logic. There is in 

addition ·much · more work on logics of programs that could fruitfully make this connection. Two 

such logics worthy of · mention here are Salwicki's algorithmic logic [3,32] and Constable's 

logic [1]. Perhaps it should be argued that these logics are already within the dom~in of 

modal logic; however the size of the· survey has been. kept manageably small by inclusion only 

of those authors making the modal logic connection explicit. 
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