
MIT/I:CS/IM--122

EFPICJD111 SCHnX1LlNG OF TASKS WI'l'HOOT

FULL USE OF PRCX::F.SSOR RESCURCffi

Jeffrey Jaffe

Januacy 1979

Efficient scheduling of tasks without full use of proce.ss,or resources

Jeffrey Jaffe •

Abstract. "Phe nonpreemptiw scheduling of a partially ordered set or

tasks 011 a machine with m processors ,of different. sp eds ts studied.

Heuri:,tics are resent ri which benefit fr,om select ve non-use of .slow

processors. Tl e performance of hese heurjsUcs is asymptotic to ../m times

worse than optimal, whereas demand drivPn sched , les are unboundledly- worse thain

optin1al for an3• Ih.:ed value of n.

The al,S:orl thms ar ex-tended to the situation where funciional y

dedicated processors must process tasks of a giv,en lype. Here ·too the worst

cas performance of th algmHh1:11s improves ,on the worst case performance or
know algorithms. The t chniques of analyzing these schedules a:re used to

obta 1 a bound on a large class of preemptive schedules.

Keywords,. scheduling, list schedules, worst case perfo,rmance

bol n s, preemptive and nonpreernpttve schedules

• La or tory for Computer c ·e ce. MIT, 545 Tech. Sq .. , Cambl' dge, MA 02139

This rc,port was pr~parcd Hh the support of a at· onal Science Foundation

gradna e fellow:-;hip. a,nd National Science Foundation grant no. MCS77-19754.

The computa ions on MACSYMA wer supponed by ERDA contract no. E(l 1-l)-3i070

and NA A granl :no. N G 1323.

t .. Introduction

The problem of nonpreempUve job scheduling on a ma,chine w:Uh, m,

pr,ocessors of different speeds ,, as introduced by Liu and Liu [5.6]. They

studied a class of schedules known as demand driven o·r list schedu es. The

characterisUc p.roperty •Of h~se sched.oles is that at no time is there an idle

processor at the same time that he system has an unexecuted executable task..

They show d hat any hst schedule has a finish.i.ng lime that is at most

l+(b I lf.1
11.)-(b 1 /(b 1 + ... +bm)) times worse than opthnal where b, is the

spe d of the l
th fastest pr-oces.•;or (in this paper the ,ophmal sch 4ule will

always be thP. one with 1,east Hnishing time). In addition,, examples .. were

presen le , hich showed that demand drtven or Hst schedu es did in fa.ct perfot'm

as poorly as th!=! bo,md. Th ·s s a discouraging result in that a large gap

between the speeds of the fastest aud slowest processo!rs implies Oie relative

ineff _cHven .!-S of list scheduling. i'I: dependent of the speeds of the ,oth~r

p:rocpssors or numher of processors. L st scheduling has been the prototype of

approximation algorithm.s since its introducti:on in the identical processo case

[1].

One way of avoiding the problem of this u.nboundedly bad behavlo,r is to

us,e preemptive scheduHng. Hol·vath. Lam, and Se M studied a "level algorithm"

for h preempt ve scheduling or tasks [2) which generalizes the algorithms of

[8,9]. The \"'-'Orst case pedormance of this and many other preemptive algorithms

is at most (1 /Z)+.Jrn times worse th.an optimal (3). This class ,of schedules ts

suHki"tl ly g,en ral t11at any schedule may be easHy transformed into a

scilPdul in the class. where the new schedlule has a finishing time at least as

smaJ l as the original schedule.

· The focus of this paper is to provide nonpreemptive heuristics which

3

are guaranteed to be no worse than O(✓m) times worse th.an optimal.

regardl~:!;S of the speeds of the processors. While ✓m and t., /bm are

strictly speakrng incotnparah1. (in that either may be smaller for any

pat"ticular se of processor speeds). the natured way that th,e heurisUcs are

,dev]op d g rnrontees that the worst case pcrfonnance for any fixed set of

proc:essor speeri!. is not wors~ than the bound obt,>"ned in [5,6] for arbitrary

list scheid ulP.s. The basic strategy of the heuristic is to use only the fastest

i proces..,ors for an appmpr.iately chosen value of i. After formal der -nttions

ar.e p:roviaed in 1,!Ctmn Z, Section 3 describes which processors are to be used

. f 0(✓m) beh.av1o:r is de.sir•ed. A bound or -Im+ O(m 114) is obtained on the

performance of lhe heuristic. Also, exact bounds are computed for small values

o,f 1tl which de:-cri be t exact worst case performance of the heuristic, This is

significant as O(~li ·t 14) is potent"a]ly a ,dominating factor for small values

of rtt.

"R cently, he scned ling .of systems wHh diHer.ent types: of processors

- dedicated to ,Hffer t yPe.s oI tasks has bee sludied [4.7). n (4],. the

behavior of schedules for such typed s:;rstems was analyzed ·when different

proces.sors of th~ sam~ type may e of d:iffe ent .speeds. As in the untyped

case. the ehavior of lisl schedules may be unbou-ndedly bad for a fixed

specific 1Uon of the number of processors oi each type.

Sec ion 5 generalizes ·the heuristics of Section. 3, and develops a

he uistk whkh in th worst case is at most +2.J mjx (km} times worse

than optimal where mj is the number of processors of type J and l is the

nm lher of lJfpes. SC'ction 6 discusses the preetmptive oched·uung of typed task

systP.ms. 'Whereas the techniques of [3], did not generalize dtrectly to provid.e

a speecl independent 1,ound for the preemptive scheduling of ty-ped task. systems,

4

the techniqui?'s used in this papeir provide the insight needed to get speed

indep nden bou11ds for J)re mptjve scheduling of typed task systems.

2. Task Sy.stems

A(n o,dina y) tn.sks1strw (J,<,µ) consists of~

(1) The set T={T 1 T r); th,e elements T1ET are caned ta.sks.

(2.) A J f1rlial or.laing < on 1.

(3} A timt fwncricm µiT -IR,

The se r pres nts the set of tasks or .obs tha,t need to be executed.

The partial OTd~ring spr,ic.i.fies which tasks rnus:it ba executed before other tasks.

The value µ(T) is the rim.t requ,remrnt of the t.ask T.

When the set of proc€'ssors (P:(P(19~rn) are not identical there

is a rMr fa . ~s,<,odated with P . u, 1>b2> ... >b_>O). If a task T is assigned r l - - - ...

to a processor P with rate b, then J'(T)/b time units are required for the

processing of T ,on P. (When discussing a generic processor "P'\ the associated

rate is taken to be ''t,".)

The execution or a task sys em by processors of a machine is modeHed

by the. no fon of a schPdul • A sch,dufr f ,or (T <,J.1.) on a set of processors, (i'

rvirh HUo l•
1

, bm is a total function S:1-Jtx(P (where if Sff)-(r.P) then the

1tt1,rring time of T is r and the ftits/iing fimr of T is .r+(µ(T)/b)) such that

(a) For every task T. if S(T)=(t.P) tll n no ,othe[task T' may have

S (T.,)=(t ~ ,P) fo.r any t" ~t which is earlier than the Hnishing time of T.

(b) wh never T <U the starHng tim.,e of U is no ~ess: than the finishing

time of T.

Cond Lion (cl) asserts that processor capabHities may not be exceeded..

Condition (li} forces the ob dience of precedence constraints.

5

If S(T)=(t ,P) ben the task T is being executed on proc,essor Pat time

I" for t __ t' <t+(µ (T)lb).

The _{ini$liing tim~ of ,i'l :schedule is the maximum hnishiug time- of the

set of tasks. 1--\n opth 101 schedule is any schedule that minimizes the finishing

time. foi- two scheciu)e:s S and S", with fh1isMng times w and w" the

pnjN1 mua rnrrci ~f S rdalivf to S' js wlw" .

There are schedules that may be arbitrarily worse than the optimal

sch dulP. Fo:r r . ·amp)P-, there may be a.n i.nterval of time before the finishing

tlnH? during which no task is e ng executed. Schedules of inte1est are not :so

blatantly was eful. Thus earaer papers [1. 5,6] h.a.ve :restricted attention to

schefiuli:is conforming to a heuristic (or what may be used a,s part of a

heuristic) Lhal s ems to, be as us rut as possible al each moment in time.

Specific.:l ly, a (priority) /f.sr L=(U
1

.... ,U), W.e,) consists of a permutation of r .r

all th"' ask.c; of T. Th~ IW Jcl1cd11/t for (:1".,<,µ) with the lisl t, is defined

as .follows" At each point in time that at least one processor completes a

task. each proc s,o;;o:r that is not still ex cuUng a task chooses an. unexecuted

execu tJb1 e task.. The asks are chosen by giving higher priority t,o those

un xecut,f?d tasks wHh the lowes indices. lf n> l processors simultaneously

look for ta~k!.. 11 en lhe- r1 highest priodlj' unexe,cut,ed. executable tasks are

sel cter:l for execulmn. The decision as to which processor gets which task is

made arh1 rarily (or one may choose to assign Mgher priority tasks to fa:steT

PTOCP.ssor$). Only if not enm1gh unexecuted tasks are executable do processors

rema11 idl~~ It is i.mportant to note that any schedule that ·s unwasteful in

the sen~ that proce~sors art> n er perrni t ed to be idle unless no free ta,sks

are avai1ahl~ can lie formulated as a list schedule.

Wlien th processors are of d ff •rnnt speeds, list schedules may be as

6

bad ;is l+(lt 1 /l m)-(b 1 /(t, 1 + ... +bm)) imes worse than optimal [5.6]. The

r a.son for this "unbom1ded.ly'' bad behavior ·s that an extreme1y slow processor

may bottleriP.ck the r.nUre sy·stem by sp-e-nding a 1arge amount of time o,n a task.

This moti ;ates the foUowi:n,g class ,of heuristics. · A liJ.t schedule on rht

failrst i procrHMS has a priority Ust as atiove. The difference in the

ex,ec 1 t ion stratt'!gy s that the slowes m-i processors are never used, and tasks

are. :scheduled as ii the only processors av,ailab e were the fastest

processors.

To an,113-·2:P. t:his cl.iss or schedules !t will be useful to .have the

fo . owing d Hnitions. A drain C is a sequence of -iasks C=(U i-···,u1)1 wi h Ui.eT

such tha for l j. 15j<I., U/Uj+ 1. C starfs with task U 1• Th,e ltngtli of C

"' I . is equa1 to ""J=1µ.(11}· Th,~ l1cigM of a task TeT is the ;max mum over all

chains starting with T of the length or the chain. The Mtg/it of (J" <,-...) is

the ma xi 1 ,Hm mrer an tasks T E.J of t hf?- heigh of T.

WhH,,. the no ion of the 11eight of a tas,k is a static notion which is a

Ji.top rty of (T, < ,µ.). we c1lso associate a dymunic notion of the height of a

task '\>V'ith any ,c;chedule for (i,<,jl),. Spedfica ly, let S be a schedu e ror

a-.<.~,). and]el , e Jess than the f nishhig time of S. Then the hctgM of

tb.F tnsk T a ' tbr rimr f is p,qual to thi:i 11ei.ght of T in the unexecuted portion

of th.e ta.i;'k .'!;_:rstem (tl at is, the maxi um over an chains starting with T ,of the

· ength of th chain. where the length of th chain considers ou y the

un"'X cntr im Tl'>Qllil'Pments). s ·mnarly, the height of (T,<,,u) M limf! l is

th.e UhXimnm over ~1U lasks {nol :1,•et compl lad) TeT of t)le height of T. No·te

th.at if por ion of a ta,sk hM bN•n fhiishrd at time t. then it contr butes to

the h igh h roportion cf , he time r, qui:remen1 not ye,t completed.

It wil oll~n be conv,enient to, anaiy~e portions of the scbed ule based

7

on ,-v-hether or not the height is decreasi.ng during, an interval of Hme. One may

plot the h igllt of J-,<,µ) as a function of time (for a given schedule S).

and obsc-tve that 'i is a non.increasing runcUon that :starts (at t-=O) at the

original }u:.j h of (T, < ,µ) and nds (al th f i nisMng time) at height 0. If

durine a1 inL r .1] of time. the h ight W«lS a mono,tonically decreasing funcl-ion

of t llP. th n l at int rv;il h caUed a lrrlgM rulucing inurval. If during an

intervill the heigJH is constant the interval :is called a co1utant height

intfn1al. Any schedule may be complete y partitioned into portions executed

during heigllt Tf;!'d 1cing intervals, and portions executed dur·ng oonsta,nt height

int rvals.

3 .. List schedules on the fas test i processors

The first portion of this s ction en tails an analysis ol the worst case

p rformance of list schedules on the fastes z processors. Gi.ven a set of

sp eds l 1 .•.. .l•m· and given ,. a hound wil be obtained in terms of the

para11et1?rs (th~ {, / s and i). The St>Coud :poTHon of this section analyzes this

bound morP c;irrfu11y, ;ind indicates why for each se of processor speeds, an

easily iietermin.,.d val e of i causes the performance· ratio lo be no worse tb.an

1+2✓m times worse th.au op imaL A more complicated analysis then shows

that n , act some value of l will permi'l a :raho of n,o worse than

✓m + O(11
114)1

• The fina] portion of this sect on pr,o 'des examples that

indicate that he rerforma ce bound is he correct on:ier of magn1tude. F,or

certain sets of spePds, our heuristic and a class of related heuristm.cs are as

bad as ✓~ tim£-s worse tha11 op imal.

It is ,easy to get a speed indepen.de:nt ttound for one c ass of schedules,

b l this hound is not v ,ery good. l t ls not hard 1o see tha\ if only the

fastest processor is \ snd, and it is always used, that the 1esulUn:.g schedu e

is no ,4-•orse than m times 1 orse than optimal. The bound of this section (which

discusses a n.alural gen •raHzat:i:on of using on.ly the fastest processo) is

substanU.ilJy better lhan this.

3.1 Perf,ormance bound on list sche.dules on the fastest i P'rocessors

Th~ approach to h \! sed is to obtain two lower bounds on the optimal

~hedule for a gi en task Sl sten1,. and lo compa, them to an upper bound on the

effect·vC'n ::;.-. of the sch dulc of nterPs. The r sulhng rat·o is then an

upper hound on he p~r.ronnancee ratio of the sched~le relaU.ve to op,timal.

Define B1='Ej=\ t,I Thus Bi is he toM.l proce.s.sing power of the

8 is the total proc:P.ssing power of an the processors m

or the mach.ini?, and B 1 =b 1.

For a givc.,n task ·system. 1 t fl denote the sum of tbe time :requirements

of the tasks in th.e sy~tem (by ,abuse of notation) and let It deno e the

(original) hei ht af the system.

Lemn1a 3.1. L t o-.<.,-.) be a lask system executed on processors of

different sp . ds as above. Let w opt be the finishing time of an op imal

schedul Th n w
0

p1~ max(µ/B\,
1
,Mb 1).

Pro,of. The most that any schedule can process in unit time is Bm time

units of ,he lime r quit ment of the system. It is thu,::; immediate that

m opt~ µ. 18m·

If one- fixes attention on one chain of length h, it is evidlent tha

9

this chain requires at lea.st time Mb
1

to be processed, even if the fastest

processor is a wayl'=: used on he chain. 1t follows that wopt~/tlb 1. □

Lem1na 3.2. Let (T,<,µ) as jn Lemma 3.1. Let ru. be the finishing time of
r

,a Ust sch~tlule on thP. i fastest processors. Then u,_((•·•./B.)+(/i/b.).
,[- ,.. • l

Proof~ To analyze the effec:tiveness of any list schedule ,on the fastest

i proces.sors. it ts con venien to break up the schedule o.f interest in to height

reductn,g intervals and constant heitht intervals. The sum of the total lengths

of these intP.rvals equaJ.s wl'

Consider any constant height interval. Throughout th.e inte1val all of

the fastest I processors are in use. The reason js as· f ollo ,.,,s, Assume that

this as~Pr1ion i~ false. and time r is a Ume within a constant height interval

-when fE-wP.r than i processors are in use. Consider the set of tasks that are at

ma, ·i mum h i~h t at ti me r. Each of these ta.sks is executable (i .. e. has no

nfi 1 L~l Pd prPd cessors). Since not aU i processors are in use. and the

schedule is a Jist scl edule on the fastest i processors, it m.ust be that all of

thesP maxim um height t<l.sks are bei ri.g e ·ect ted. But then. it follo,ws that the·

h •eigh t af the task system in this · nterval is being reduced, cont.radicling the

fact thal l.his is a constant he1ghL .interval.

By the above rt?marks. it follows that during each co,nstant height

interval, the processors or tlrn machine are processing at least B. units o,f
i

the lime rcqui~ment of the task system per unit Hme. Thus the total time

spent on constant height. intervals is at most p/8 ..
'

N xt, examine the height r ducing intervals. A:t each point in_ time.

s01ne of thl' (at most ;) ta:.ks eing execut d are at the maxim.um height (of an

10

remai11ing asks). Which1:.>ver are al the maximum height are being processed at

th ' rate of al kast ~ .. Since he total height may be r duced by at most h
l

thro igho\lt the schedule. h follows the the total amount or time spent on

height reducing intervals is at most li/l,i" Together with the above bound ,on

the amount of time in a constant height interval. one may conclude that

tui5,_(µ.f B1)+(11 fl,;) .

Aclually :H is easily shown that w,~cc,.-h)/Bi)+(h/bi '), but thiis does not

substantially improve the peTformance i'iound. This hnp,ro,vemel'lt foHows from the

fact that at least h Uil..Hs or the time requirement are executed during height

reducing inteti.'als l ,wing ,only µ-Ii. for constant height intervals. 1t will be

impor1an:t. to Ternember this impToved bound for some numerical results in Section

3.2. 0

I rollows from Lemmas 3.1 and 3.2 that:

(u/B .)+(li/b.)
,- l i

wopt

Equation (1) presents u.s with an opportunity \o formally stale the

schcdul that will be used. Given a task system (s.<,p). determine the total

time r(?.quirement or all tasks (si). and. the height o,r he system (h). Compute

the right hand si.de of equation (]) for each value o[i.-1, •..• m. T'he value of

t that minimizes the exprS!ssi.on i.o; the nt1mber of processors that Wi l be used.

Devise any lisl schedule on the fastest i processors.

In Section 3.2 H will be shown that the performance ratio of the above

11

schPdule (r Ja ive to optimal) is at most ✓m + O(m 114). Before

proceeiling to the proof or that fact, a modificatfon in the sch,eduUng

algorithm vm he .suggcs ~d. Th,e strat<:>gy as stated. invo ves doing a separate

calc lation for each task system in order to d!i!termine how many processo s to

use. In f ct, to ge h ✓m + O(m 114) behavior, i.t is possible to use

the• same nuni't:ter or processors indepe dent or the task .sysiem (based only on, the

ote h<1 e-qua ion (1) also impliest

wi (~/Bi) (hlb
1
) Bm

(2) < ----·-- + = +

rllo:pt (p. I B m.) (lt/b
1

) s.,

f he !; rategy is to use a list sch•edule on the fastest i processors

where i minunizE:>s th.is last performance bound. then (as shown in Section 3.2),
'

any resul ing s:ch~dule is never !II0rse than ,/iii"+ O(m 114) times worse than

opt ·n al ir r.-sp ctive. of the vatuie or the b/s.

ote that if the bound used on w. is w.<((u-/i)/B.}+{A/b,) t'hen one may
I i- r l ,

obtain a bound ou the algorithm of:

lt/ .
I

B· m bl b1

(3) ~ --- + --- -
111opt B. b. B.

I [t

Thus, an ~Hernat1ve scheduling algorithm chooses i on the basis of

~quation (3). This in1prove algorithm does not have better asymptotic

]2

behavior, bn t does ·provide c1 be l"!r a}gor thm for smaU values of m. This wit

e ,discussed further when num.eirkal r snUs are discussed.

3.2 Calcula.t·on of speed-independent bo,und

This s ction analyzes he bound of Section 3. t in three diffe:rent ways.

The first way pToviri .s an indicaUon of wh ch processors to use. SpecificaUy?

if the processors nsed are those hat are wj hin a factor o,r -Im of the

fastest pror.e:ssor. th,m it is not too difficult to see that a,ny Ust schedule

is a.t mos 1 +2✓m times worse than op imal. The second approach proves

that on • ma. always choose i such that the ound is ,/m + O(m 114). Th"s

compl:ka1P. d proof riollls not give any intuitive id.ea how ·to ch,oose i in general.

a though ll is c~r ainJy quite easy to calculate (B /8 .)+(b 1/bi) for each
'" i

valne of i <'!nrJ then to minimize. The third me hod of am,,lysis js a calculation

of the act al m .rnte rical ounds for very sma l va,lue-s of m. These bounds are

better than 1+2.../m and are more exact than. a bo nd with an O(m 114)

term.

Theo1·en1. 1. Consider a s~t or 11 processors of different speeds. Then some

value ,of i (19~m) has the properly that for any task system 1(with optimal

finishing im P. mopt). and c'lny Ust ~che-dule on the fastest i processors for

t at task sy:a~m. (with fin_iish ·ng time w l r11 . / 11J 1< l+Zv'rn.
l O:P -

Proof. R c;il] that w ./r11
1
-< (D IB .)+(li 1/b .). Choose i such that ,/i7i"b.>b 1 J op - m. J J .-

nd ✓~l\+t <r 1. Certainiy some bj .sa isfi s -./mbj'?_b 1 (since &1 satisfies

it) and if no t,j satisfies ✓ml'.J+t <b 1. then choose ·; m. Now from ,equation (2)

and ll e choicl? of ii

(4)1

01 .
,I

wop\ B
l

13

+

b.
l

This foHows from breaking up Bm into B1+bi+l + ..• +ti711 and

using th ~ 11pp r l ouncl on ti 1.

Now clParty D/~b 1. Also using Lhe lower bound on bi+t (which is

also a lm.ver liouud on b . fo:r any pn. (4) maY' be modified to o,b1ain: .,

w.
I

(v:i-i)(b t /./m)

< 1 +

wopt

Sine . (m-;)fm one may cone ude that ru/ru
0

.<t+Z✓m. □ p~- .

No'le that as clairned above. the bound is never worse than the bou.nd or

1+-(f. 1/t,m) ev n if hat bouiid is sman. The reason is that one may always_

choosP 1=111 if that g -ves the smallest value ol ·the expression (Bm/B1)+(b 1/bi.).

Th next result to be pre~ented is a more compUca.t.ed proof which.

improv s the bound of Th orem l,

Theorem 2. Considc,r a set of m p.rm:::essors of d ifferen l speeds, Then some

value of i (1 $iS: n) has the property that for any task system (wit'h opt·mai

finishing time r"opt) , and any list schedule on the fastest i processors for

that ·ask sys m (wiU finishing Ume rl.l,) w./w
1
<vm + O(m t/4).

l l Op -

'14

Proof.

the sup js taken over all S>F.!ts of speeds b1~b 2~ ... ~b,,?O- It will be shown

that /(m) is actually achieved by a particu]ar set o,f speeds b1 •..• ,bm.

Also. thP,se spE'ed have the property Uiat for every i f(,n)=(b 1 /b,)+ 1(8
17

/ Bi).

Using this fi!ct on~ may conclude that J(m)S./m + O(m 114).

Define Be m lll,• B={(b 1, •..• ~m)E1Rm: : b1~b2 ~ ... ~b
111

~0 and Bm=t}.

Not that R consists or ,every legal siet of processor speeds (normalized tio sum

to 0, and some illegal sets (e.g. ~m=Ot for bE.B, with b=,(bl' •.• ,bm)•

d ,efine E .(r•)=(b 1 /b .)+(1 !B,) and g{b)=min £ .(b). (Note that g(h)f<Q since
, . l l i l

E (Ii):= +(lib 1)<-v.) If bm~o. then g(b} is a bound on the heuristic with

proces or spe~ds b 1 •.•. ,bm. Since B i.s compa,ct and g is ,continuous, g

attains a ma,ximmn at some particu~a, point b =(b•
1
, •.. ,b •)e:B. Note that . m

g(b*)Y(m).

U must 11e that g(b)=£111(b•). 0 her-wise, one could define b"' by

b/ ;;[,/' I(1 +E) and bn-/ =(br; +E)/(1+-e). Then £1(~'))Ef(b•) for i<m. If

g(b*)jt£m(l). then for sufficient l smaU ~. g(b }<E n(b') {contradicting

the fact that l• maximizes g). (If b_;=(,m:- t = •.. =bi; 1 (bi•. then one may

similarly· d fin~ 1' .;={b ... +(e/(m-l)})/(l+d for j~i+l •... ,.m jn order to preserve
_, j

the d.ecr,easing na1ur of the vector b'. Ess ntia.Uy the same prnof r,oUows.)

To prov ·that for every i £ .(b~) is th1e same,. it :suffices to
,L

consid Pr th +? case 1'.hat g(b•)=Em(b*)= .. . =Ehl (l,.-)<E k (b•). In that case def ne

bk." =-bk.+e and 1-ol;+l ; =b{H- E. It is easy to verify tha'l both £k+t(b') and

ote that bk+ 1 '>b k.+Z' for small e since

bk+t >l•k+z· .However., l1i=~k-l is possible. In that case. the E: :is not added tio bi,,

but rather a totaL of € is added to \he processors whose speeds ,equa b{·

Con.tin.11 i!'g in this man:qer, we ma}: define b0
• b""" ,,so hat eac'h successiv,e

15

vector has lhe various E1 valu s a t eeing \vith g at on,e less value of t.

Fi11 ally. nn . Pt.s E (b)>f(l,w) foI some vector b
m "

, th each E.i (b) at least as

l a rge as g(b), and then the previous COJ:lstructloa again pro,vldes, a

con tradic lion.

U foUows from the fact that Ei(b11)=g(b'11:) for every i that :&;.·Jl:O and

thus . (b~)~J(ml.

The hound of ✓m + O(m 1141 wHL be prov d by using the fact tha t

/=j(n)·=E .((,~) for ec1ch value of t. Using f=E.(b) and J=E .(b•) one may
I t ~

con clude that ~,•;;;;D,"l('-1)(1B. - 1) since b. =b~11J . /(!B,•-1) and
I '.I y l t l V' l

hi=l/(f-t). This in turu proves that b, =(1/j(/-1))(1+(1.t(JB/-1))). From

t h is it fo1lows that:

I.n. o:rd i lo use the above equatio n to get a bound o,n f .a few othier

facts ar 11eerlF.!d. Not ha j)./m. This can be sh.awn. by considering the

vector b-" ,vhich s a normnl zed ve1sion. of the vector (✓ m 1 -.1.1, ..• ,1) since

g(t,')>v'm: Not(' also that ti 1 :::;✓ Hm. This foHows from the fact that

E 1(l,T)=Em(t,•) \i hich impli s U\at b
1
2 :f,~. Since ml>m51 the upper bound oa

bi follows. NotP. that each processor must tllerefore have a •·relatively" small

spe~n and in part· cl lar th successive sums Di,lla ...• B~ are spaced apart by a

d isli1t1Ce of at n1ost .J 1 /m. Th us, ff o,n, wan ts to find an t such th.at Bt=nti -11/ 4

ror some i twe~n ✓Zand 1 +--/z. this can always be done.

Let Bi :11,-. - ·t / 4 . Then 1 +Bi L 1 +e 1sing the expres.sion for E: in equation (6)

Thi.s follows from Lhe facl that (l3 , .. /E)::(IB _"' 2 -l9 .•)>(./m r 2m - l /Z_B .•)=(r2 - .B
1
•)>(2- 1)-1

I 1i ,- l -

and thus B; ~F.. Thns /if-l)~(m- i}(1+B/}IC1-B/ J,_J n-O{t+rm- 114)(1+2rm- 114) for

16

suffichmU'y large values of m. But then (by further increaslng the right hand

side) V-1l2~m+4tm314+4r2✓rn Which yields JS.Jm+2.rtn 114+1 for suHiciently

large valu s of m. □

While Theorem ,2 provides a heuer asymptotic estimate of the·

p rforn1 -nce of the algorithm than Theorem 1. it does not give a better bound.

for- practical situations. In principle the O(m 114) term may be the

dominating factor for the small! values of m that typical ,y arise in pracUce.

For tha reason, ·t :is i nportant to try to get a more meaningful bound. for

small valo s of m. A third way of evaluating the heuristic is thus presented.

~hlch gt,ves numerical bounds o.n the algorithm. for sman values or m, This also

w·n give an intuiti e :lidea as to the growth rate of j(m).

Recall that the heuristic takes its worse value at the vector 611 with

the proper y that £ 1(1> 11
) is U'le same for every i. Using £ 1 (b•)=EmO"') gives an

e.·pression rot t1 ;;, in terms of bi- Similarly, using Ei(~•)=E 1(b11
) gives an

expr':?ssion for b
1

in terms of bj,b,~ 1 •••• ~i+l· Inductively, this ,gives an

ex-pr ssion for \ • jn t ,P.rms of bi· The expression :iis:

(7)

This js obtained using B/"=1 - (bt;J+ ... +b~).

Using lh@ exprn.ssion for bf in terms ,of bi and using the fact that

bi+ .. . tbq= l. one obtains an q-ua,tion for b 1. Solving tM.s equation and

com . uttng 1+(1/b 1) gives a bound on the algorithm. This cakU!.laU.on was done

17

on. thla! MACSYMA system w'hJch generated he expressions to solve and also, solved

them. The ind ·calion of this smal1 sample or data is that -./m + O(log m) migh

in fact be an accut"'.lte bound. The value f(m), for the range of values

considered seel!l s to be bounded y -./m +- .z tUog2 m:) + 1. In. fact . not on y is

/(ml bound d h}' his expression On the range we considered). but H seems to

grow slower. The results are given. in Table , together w1th other key

,quantltites for the sake of compatiso,nc.

m j(m) ✓m ✓m .. rn:114 1+2,-Jm < ..J m-+ .2tlog,2 m

2 2. 2 1.41 2.50 3.82 2.62

3 3 .06 1.73 3 .05 4.46 3.06

4 3.41 2 3.41 5 3.42

5 3.7 J 2.24 3.74 5.48 3.73

6 3.98 2.45 4.02 5.90 3.99

7 4.22 2.65~ 4.28 6.30 4.24

8 4.44 2.83 4 .51 6.66 4.46

9 4.64 3 4.73 7 4.67

10 4.83 3 . 6 4.94 7.32 4 .86

5 9.14 7.07 9.73 15.14 9 .2 ·6

too 12.24 10 13.16 21 12.40

500 24 .98 22-.36 27.091 45.72. 25.24

1000 34.-1 l 31.62 37.25 64.25 3,4.71

5000 73.88 70.71 79.12 142.42 74.29

10000 103.3,'3 100 110 2.01 103.79

Ta le l.

+ u

18

ote tl\al (m)' does seem to b: grnwing raster than ✓m + O(1) although

thi ,c~m not be pro,ren by such numerical studjes.

The above results were obtained using the bound of equation (2). An

importan l -purpose o these r,esults: ils to sh,ow how j(m) behaves. An additional

.reason for this calculational exercise, tho,ugh, s to get as good a bound as

po5Sihle on. the heurist·c for smaU values of m. foT the purpose or getting .a

tight bound on th~ algorithm for small values of m. a better bound is obtained

if th a}gort hm 1-<;e.s th~ slightly more complkated bound given by equaUon

(3). In our anah tic stud es lhe b 1 /Bi term was ignoied shice it does no·l

improvP th asymptotic resuHs On particular it is always less han ·1).

NeverthPlP~s. for smaU v, lues of m it is a significant porUon of he bound ..

The Ill xt tabl gives a. bound o:n the al~orithm . n terms o.f this better bound.

(lnciden t 11 y, h•e same technique was used for generating Table Z as was used
.

for gener~"ting Table 1. To use this technique. it must first be sllown that "

bound on the algori hm is obtained by analyzing the vector b•EB which has the

property that E.,,. (f,), is the same for each valu·e of l. This is a simple
I

exercise if one jn.st copies the techn que used for the simpler bound in the

p:coof of Thc,orc-m Z.)

Notice that using th.is better bound gives a result which is about .7 or

.8 better than the olher bound for small values ,of m - a substanUal saving for

sman 111. For la ge values of m the improv men,t is slightly smal et. and less

signif cant due to lhe large value of the bound.

19

q bound on the algori hm

2 1.76

:l 2.2.5

1 2.65

5 2.97

6 3.2.5

7 3.50

8 3.73

9 3.94

0 4.14

Table 2

]"Qtu · t ·vely it seems q ite wasteful never to use processors - 110 matter

how slow they m.ay be. It is an open question to ,determine how to use the slow

proc ssors n order to provide a quantitaUvely better performaace ratio.

There are -er ain simp]e safe echniques that one may use which do not harm the

perform. nee ra ·o. For example, one may first determine a Ust schedule on the

fast~.st. i processors. Then. if a s1ow proc ssor is f:ree at a par icular time.

and ail PxecutaMe ask is not being executed,. ,and furthermore the finishing

time of th~ task will bP- 1ater (w-ith the isl schedule) than the lime, that our

slm.'\i' proc(.>ssor cou d finish it • . hen it is safe to assign the tas to the stow

processor Cand possibly to make other improvements based on the ear ier

fin sll.ing time of this task).

Th facl that this rocedme is not narmrul may be easily seen. Since

the fi ishing time of the chos n t sk 1 earlier n the new schedule than in

the original schedule. TIO task. is finished later than in the original' sche.d ule.

20

While it is easy to determine such safe uses for the slow processors. we• have

been unable lo dietermine any proofs that guarantee faster behav'iur.

It is sjgnifican1 to note that the techniques used here are .applicable

to the preemptive case studied elsewhere. A result ,of the methods or this

section are hat the class of schedules studied in [3] (the m ximal usag,e

schedules) are never worse than ../m + O(m 114) times worse than opU.mal.

This rnsuU is not as good as the one in [3], but it demonstrates the same

asymptotic b~h 1..rior for very itt ,e e:r-.tra wo,rk. This connection wUl be

elaborated and exploi• ed in Section 6 where the pre~mptiv,e :scheduling of typed

task .systc-ms i.s diisc u;sed.

3.3. Achievability of the performan,ce boun 1d

ln thi.s section it is demonstrated that the results of Secti:on 3.2 are

asy111pt0Ucally correct. This is s·hown. by demonstrating that ror a certain set

of processor speeds and a !.pecific task .system, the performance ratio of a Hsl

schedule on the fastest i proc~ssors 1(for 1rny j'.:: 1 •...• m) may be as large as

✓ m- 1 ~ The far:t that this example shows that any choice of i has the

po n U al of hei ng ✓ m:-1 ti mes worse than optimal is significant. It tells

us lha ' no sophistic~tcd w;iy of choosing l provides ~Uer than ✓m

behav·or if one i is chosen a Ust schedule is the only added featt.ue of the heuristic.

Con:i;idPr the ~ituation 1. here b 1 =✓ rit- 1 and bi=l for i) 1.

Consider the iask system of Zn tasks as diagrammed. h1l Figure 1. A node

reprc,sents a task and an arrow represents a 11recedence dependence. The time

:requirement of each of Hie n tasks in the long chain is ./m~ 1. The time

r_equirem. nt of th oth r n tasks is m- 1. An asymptoticaHy optimal schedule

21

0

Figure 1

2Z

.Ptoce ds as follows. P 1 executes every task in the -ong chain. Eaich task. in

the long charn requires- unit Uma on P 1. M~anwhile. P 2, ... ,P rn execute the

tasks that are no\ in the long chain. Each o,f these P·rocessors requires time

m-1 for one of the tasks. If n=m-1 then the long chain ,requires time m-1 but

P will not. finish Hs task unHl Zm-Z units of time have passed since its task
'P'll,

i:s not executable until m- 1. units of Ume elapse. Yor any value of n the

finishing time is simila ly bounded by n+m-1 _

To discuss the fact that this task system may 'be executed

lneffici. ntly, no m.atter how many processors are used consider two .situations.

The f'rst is he case that one .attempts to schedule 1he system on the :fastest

p·rocessor . Th'! second is the sHuaUon that "the pr,ocessin,g is done on t

processor:. for any i > 1.

If onlr the first processor is used, then there is not enough

processing power to e:XPC u, this task system effi.ciently. Specifically. the

to,ta amo nH of time requhemen of this task sys\em is n(m-1+-lm-t). Wiith

only ✓ m-1 NOc~sing power available, the Hnishin,g time rnus,t be at least

n·(1 +✓ 1 i-1). For large values of n. this p.rovides a performance ratio of

approxi 11 ateJ)~ ✓ m-1 Umes worse han optimal.

Consid~r the scheduling of this system on i proces,-;ors for i.) 1. A

"bad." list sched 1le Hrst tdl?s to use P 1l on the "non-long chatn'' tasks. and

P z on thi.> chnin asks. After 1ime ,/m-1. P 1 fiaishes thll! first non-chain

el,em nt. and P 2 fi.nishes th, _ first chain glement. Repeating th1s .strategy for

e·ach pair of ta::;ks requires time v'm-J for each piafr. Thus the total time fof the

bad schedule is about n ✓ m-1 and the ratio between the finiishh1g t·mes of the

"bad"' schedule and the optimal schedule ap_proac'hes ./rn-1 f,or large n. Mote t.hat

no man r how many processors one attempts to use. a bad list sched.tde only

23

allO'v,,s two procr-ssots to he used. □

Recall Lhat the upper bound on the algorithm was ../m + O(m 114).

It ha.~ 110 ber.n shown that a set or processor speeds, b• exist that have

g(b)= 1 ~ O(m 114). since that is only an upper bound. However.

-what ver /(m)=max {g,(la)l js. a bound on the heuriishc of Section 3.1 m.ay be
{,

obtainPr1 in terms of f(m). Consider a set of m unordered tasks, the i th

having in e requir m nt bi . The ,optimal schedule requires unit time. Using

only l ~ fa.stP.s proces or (a valid choice with the a1gorithm as presented.)

requires Ume !Irr Butj(n)-l=Hb1, Thus/(z) is almost achievabe (whatever

ff.ml is). Thi:-:. mPans th I .m exact bollnd on the algorithm miay be obtained by

solving the malhPmatkil . problem of determi ing j{), without any need to llook.

at more task S) stems.

Con.sidf!r t hP r lated heuri.:.tic of trying to minimize

E/ (I,•)=-,(] /lJ i)+(b 1 lf,1)-(Ii 1/ !Ji). In that ca.se E 1 "(b~)= lib i · Reca I that at tbe

vector t, that ma.•imizes min E/(b). E/0 is the .same for every i, and using
I

only th f.~$\Pst proce:c:sor is a valid choice. In hat case. llbj for this

vector la• is an exact upper and Iower bound.

4. Typed Task Systems

This section contai:n.s additional definitions needed to discuss the case

tha · processors and tasks are of dP.signatr-d "types", and a task or a certain

type maJ, b only l)tocessed by a rocessor of the same type.

A k t·/•e ffHk sy.U<m o-,<.~,r.r) is a. task system (7,<,,..) together wilh

a t"l/1~ funrrinn 11:T ~(1 •... . , ·}. In uitively,' if v(T)i=i then. T must be executed

a processor of type L

The- processors of a typed 'lask system are the same as in Section 2

24

except that . .ach processor has a designat d type_ Processor P lj is the

/h faste~ :proce..<;.snr of type i (with rate b:J'· Similarly. a schedule is

defined in he same manner except tha in ad.di.tion ·r S(T)={t,P). then P must

be of LY-PE' v(T).

Th d finihons of bri'ng eruuud ,u time l, finislaln.g timt or a

scheduh~. opti m(lf u!mfulr. and pa/C1nnrrn,e rario gene1aUze in a

straigh tf or ward mau ner and are omit ed.

A /iJt sen dulr differs in that ther is a d·rrere:nt Hst devised for

each t pe, anti the processor of a given ·type chooses tasks based on the lis t o f

its type.

In this situation mi denotes the umber of proce:s-sors of type i and

,:a .. t e total n um l:, r of steps required for type i tasks.
r

T.he rl?.'levant hound for list schedules is approximately ilt+m~x (bi1tb,m}[4J.
l I

5. List schedules on the fastest ij processors of type j , (j= 1'" ... k)

The npproach nsed in tMs s1ection wni clo~ely parane,1 the ap·pr,oach o·f

SecUon 3. Th~ on major difference hF.:re is that in order to obtain the proper

bound. 1he concept of heigh, of a. m;k mt st be modif"ed to take into account

both the tJ,~pe or the task and the speeds of the proc ssors of that type.

Section 5.2 d('riv~s a speed independent bound on the heurist ct but the

situation j~ com plicat(l>d lly the fact that there are more parameters to be

considered . Section 5.3 again :shows that the bounds are fairly c .o.se to being

achievabl although tho bound is no as tight as that of Section 3.

5.1 Performance bound

The ~ch c.:,rlu1Ps consid red wm operate a follows. A priority list of

25

tasks fll be prepared for each type. Each type will have certain of Hs

fasl s proc~ssors d _signated as th "ones to be used", and the others will not

be _Sf'd at aH. 11 is se.ction obtains a oun:d on these schedules n terms of

the f1 /s.

Define fJ j,-Z.
11

~ 1l'jn· Bji is the total processing power of

the· f< s est i processors of type J.

Il remains 10 discuss the notion of height fo.r these yped task

systems. It t , 1 rn:-. ou that i is convenient to have a different def'nition o.f

heig t rl@pendine; on which processors are being used. The fonowing is the

definition of height if t.he fast st ij processors or type j are used

(j= , ...• k). (VI. h-le reading the definiUon consider the fol owing m,otiva.lii.on.

W , would like to 1i~ ble to say hat he total amount of Ume spent on height

reducing i,ntl"'n•.ill::. is a mrn;t the hPigh of \he grap,h, Thus it is convenient

to hav the height T due ,1 at lea-st one unit of height per unU time d.u.rln,g

heigl l re, uci n(! in tcrvals.)

(Thus

T, it

a ch

Th . lutgM lrngtl, ,of a task. T (of type j) is given by l'{T)tb
11

•
j

ir P -· (the slow st prncessor of type j tha will be used) processes
i'j

executes one unit of lhe b.eigM length of T per unU time.) The le.JJ,gth ,of

C. the height or a task r I and the height of c:r,<,µ,;v) are denned as

in S clion 3, exec~ t. Lha stm1m;;itions a:re taken of height lengths instead or time

requirr.n1rmti- of tasks.

The rest of th s disc ssion assun1.es a fixed ta.sk system (T <,,w,v)

exc>cu ted on a fixed :set of processors (P. Also. he discussion fixes whic'h

processors are a be used, and thus n ·es a notion of the height of a ta.sk or

of (T.<,µ.v). As t1-?fore It wlH. •denote the height or the system. If Ii is

the h i~h t tha ·1 here is some chain or tasks whose height equals h. Let c.
l

2.6

denote the sum of the time requirements of all type t tasks along this chain.

Lemma 5.1. Let (:i.<,il',·") .as abo\re. Let "'opt be the finishing

time of an optimal ~chedule. Then

P'roof. The first k bounds follow from he fact that at most BJ
1111

units of the time requilren1ent of type J tasks can be executed in unit time.

To get the la:-t bound, consider a chain of h ight Ii· as above. Then all the type

j tasks in the chain require a total of at least t/bji unns of time to be

proc ssed. and aU tasks must 1:i processed separately. The bound follows

immediately. 0

Lemma 5.3. Liet o-.<.1i1.v) as above. ~et w({fi) be the fin,ishing

time or a tst schedule on the fastes'l ij proc,e.ssors of type j (J=l.,, •• ,k).

Then w((ij))~(µ t !B Ii /+ ... +(µ1/Bk;/+((c J lb U /•···+(cl/bkl/).

Proof. As in Section 3 consider height reducing intervals and ,const,ant

height intervals. Any constant hei.gM interval must have all of the fastest

ij proces.sors of type j 'fn use for some j. The reason is tha.t otherwi.se the

u.nexecut~ti task i h the greatest heigh'L 1s being executed redud:n,g the height

or the task systein. The total time s,pent ill a constant height inte1val when

a l i . proces.,;ors of type 1· are in \Jsr? is p ./ B .. • Thus the total time
J . J .Pj

spent on constant height in te:rvals may be at most (µ 1 /Bu
1

)+ •. . +(i!'J/ B kt/·
Consider height redudng inter-vals. The greatest heig,ht task. being

J

27

executed is being executed at the rate of (at least) 1 u.n t or height per unit

'time. Thus the t j me spent oD height reducing levels can be at most

(8)

Leuuuas 5 .. 1 and 5.2 i mp]y:

w({i.))
J

wopt

One way to choose the set {ij) js to compute the .tight h.and s.ide o.f

equ.:ilion (8) for each possible choice of processor speeds. Again. since this

depends on th task system., this can be quite tedious. Note tha·t this

expression depends on which notion of height is used.. sinc-e the ir:i "s :refer to a

maximal chain, but maximal chains may e different with th.e different

s:tefl n i lion~ of height. It is thus even more desirable in. this case to obtain a

task systPn 1ndependent choice of which pr,ooessors to use. Using techniques

similar to those in Section 3 equation (9) follows from equation (8).

ttii{i}) Bl ml
8 km k

(, 1 lb Ii 1 }+ ... -+(ck. lbkik

(9) ~ + ... + + --------------MM~ -
nropt D 1 •

l 1
B

ik
(c i lb 11)f. •.• +fr1/b11 l

,et q=m ,ix((b l l lb 1i
1

).(bz 1 lb 2i
2

) (bk 1 Jbldk))_ The value q is the

analog of the lo~ fl, .. t ·· rm in the ordinary task system ca.se. Note that
~ r

)

za

lhe :right h nd si.de of this ineq,uality for , ./b .. in the last of the .l+ 1
J l'j - •

summands gives a bound on the last ten or 'I· Thus a ta5k. system independent

way of choosing which processors to use would be to minimi~e;

(IO) + ... +

The heuristic is then to compute equation (10) fol each p-0sstb , e set of

proc: ssor sp eds to determine a set of ind1.ces lj (still a somewhat lengthy

procedure. bnt l.OmetMng hat maeds be don,e only once)', and then use only the

fastest i . of type j. The .results of Section 5.2 will .indicate that such a
J

. choice gua1"a.ntees performance that is no worse than k+Zv mj Um} times wor.se than

optimal. n fact the proof technique is such tha\ it .suggests one simplie way

of choosing the i. so that the bound. is reached. and as such even one· J .

c,alculaHon of equation (7) for each possibl,e assignment to tj is unnecessary.

5. 2 Spe,ed independent bound

Tbeorem 3. Cansider a set of m processors of different speeds with

m j of type / (j:; 1 , .. . ,k). Then some set of indices {tj 1 ~~m} have the

property that for anj• task system o-.<.~.v) (wi h optima finishing tiru.e wopt)• and

any list. schedule on '\he fastast lj processors of type J for that task system

Proof. Let r=./ max [km .). Choose i . such that rb .. >bjl and
j } J]Lj-

rb1 . <l• .1. (Let f .=m. if the second inequality fails for each
'J+ 1 J J J

value o:r

29

b ii') Then (B . . I B ..)= 14((b .. + ... +b .
111

)Ill ..). Each of the m .-l . terms in
r Jmj Jlj Jtj +l J J Jtj J J
the n umerntor of th~ [raction is at most bjl Ir. The denominator is at least

Thus B ·m I B .. is at most t +(m
1
-lr), Now r~./ krn

1
. for each j.

J j l ' j

Thus B . /B .. < l+(✓ m ./ k-).
Jm.j jlj- J

By tne choice of i
1
., r>l> .1 /b .. for each value of J.

- J ·Jl .
J

r>max (b .1 / b.,). Using this~ the bound on lJ ~ !B r; and
- j J]• j 1m j J~j

equ.alion (10) provides:

Thus

lncrP;iising ./m~ to ..; max (m .) in the above exp:res:sio yields ' .) }

(12)

From O 2) H is immediate that w(Oj))/rD
0
pt S k.+21 for t:his choice of

i . irr .sr,ective of the task s:;,·stems used or list schedule used.. □
J

The bound of Theorem 3 is the bound that one would use if each of the "'J

wel"e almost qnal. Fot diHenmt .siluationS", though, it mtght be beneficial to

use a different choice of which processors to use. A sample of this is

contained in the foHowi.ng theorem.

Theo1·em. 4. Consider a set of m processors or dtff.etent speeds with

m1 of typo j (j = 1,-. .,lt). Then some set or indices {if 19:$:m} have th~

property that for any task sy.slem {,.< µ,Y) (with optnnal finisMng Ume w
0

P1)~ and.

30 ·

any lis ~ch edule on the ·fastes if pr,ocessors ,of ty-pe J for tha·t task syste~

{with finishing tim,e w({i .})), that n1({i .})/w . 1<k,.✓ rn-1 + -Jm2. •+ •.• + .J11h + max✓ni":
J 1 op - I(. j J

Proof. L t ·l✓rnr Choose ij such that rl1\~b11 andl '/Ji1-+-t<b11· Then

(B. .IB ..)i< +·-11111. Also, m
1
a · r1=mJa_x✓ m.1. exceeds the l+1 st sun.unand in the

j1ttj Jlj -

bou d of equation (l 0). The theorem fo.Uows im.mediately. D

The choice of which bound is beUet depends ,on the values of th.e mf lf

aU are P-qua], the first bound .1s better by a factor of about (l /2)✓ 4. Ir all

the m
1

equal l except for one which h.as a large number of prooesso,rs. then the

latter bound beats the former by a factor of ../k.

6.3 Achievability of the performance bound

Three achievabi Uy results ,,._."ill he presented. The first two discuss

the situatjon where k is quite sman relative to the number of processors, and

thus he first summand in the bounds of Theorems 3 and 4 may be ignored. One·

approach is lo sho1,\r that for a nxed value or k. and a Ry values of m 1 ••.•• mk

thew are spci,=,ds for wMch the bounds of Se,ction 5.2 are achievable within a

const.ant Jae or. This i.s quite easy. Let j oo the t}rpe tha.t has the most

processors. Then the same constn1cUon used ·n Section 3.3. using only

processors of type j gives an :i.mmedia e achievabUity r ·esult of ✓m.[1. While

this is a factor of about 2 . ./kdmes worse than the bound ,of Theorem 3, and

about k+ times worse than th•e bound of Thoorem 4, for a rixed value or k it

is only a cons tant factor worse than the bound. D

A. diff rent problem is to show that a,s k ts. varied a11d as the values

m 1, ... ,mk. are va ed. there is a set of processors speeds. a task system. and

31

a l tst sch .d ul such that the a]gprithm is as bad as the bound of Theorem 3.

This is in fc ct not true in g neral. Neithe Theorem 3 nor Theorem 4 is tight

for all values of the m. since el.th r may be as much as a factor of
l

0(✓k)1 limes more than the true bound (as discu.ssed above). Instead it will be

shovvn 1hat for any values of m a d k. where m:t .~ 1 m,, here are values for m
1
.

1- J .
and speeds for the processors such that the bound of Theorem. 3 is achieved and ·

va ues for mj and speeds for the processors such that the b~und of

Theorem 4 is achi ve:d.

To ach -ev . Theorem 4 is easy. Use m 1 =m-.k+ I and m,= 1 for

i> 1 .. Tl 11 the co struction used ·n Section 3.3 provides an achievability

teS11d of a constan l factor. ID

To achi~ve Th orem 3. consider dlstribu ion.s or processors S',lch that

m.1=mlk for , a,c:J value of J (if m:;i!O(mod It) then some of he m/s are

appropriaLPly rounded off}.

Th pr~c d.enc structure of thA graph 's the same as the graph of

Figure 1 (:;;pp figt re 2). A nod~ labeHed with the integer j i dicates that tb.e

task rnpresen tPd y h node is of type J. ln this case, there are 11 block.st

each mad up of m- k pairs of tasks. The tasks of the first m 1 -1 . pai:rs al'e of

type 1 = he t<'l,sks of the next n
2

- t pafrs are of type 2, etc. The time

:requiremP.nt of each task :i.n the long chain is .,/m-k. The time requireme.n.t of the

other n (m-) tasks is m-k. Type J has 011 · processo:r with rate ,/m"r and m1 1 with

rate 1.

An asy·mptoticaHy optima sch dule proceeds a.s follows. At each point

in time, the, rastest processor of some type is e ecu .ing some task on the long

chai11. Th1 s the c,. ·c-culion of each task on the long chain requires :unit time.

To finish ail t.tsks on the long chain r,equtres time n(m-k). Meawwht e~ the

m -1
1

m -1
2

j

repeated

n

times

Figure 2

33

rest of the pr,ocessors execute the tasks ·that are :not on the, lon.g chain. Once

a processor begin~ executing one of these tasks. U akes m-k un. ts af time

until it is comp1@ted. At that ilne the processor begins execuUng the task

that is in the same position in the next block. Thus. after the chain i.s

com pletPd. at most an additional m-k units of time ate needed for a fin.ishing

ime of al most (11+ 1)(m-k).

A · ad 1 st sch du.he on th fastest i . processors of type j
J

(j= 1 ... ,k) mjgh proce d as follows. n fact, only the two fastest processors

of each tJ•pe 11 ould he used (unle-ss l .= for some J in wh ch case mdy the .,
fastest processor of that type would be used). While executing type J tasks

the schedule assigns the chain task to processor P
12

and the non, chain task to

proc .ssor P j 1. H takes times ../ 11-k. o finisb both of them

(sinn 1 a11eo J. ly). Tf only one processor of type j is to be us:-ed., then it first

proces~l?-s the non chain task, and then the chain task. again requiring a least

✓ m-J; t · me un Hs to f Rjsh eaich pair of tasks. Tilus the total time requil;red

is al 1 ast n(~1-k)(✓ m-k). TMs is ✓m~k=,,/ k(m .-1) times worse than optimal.
J

Since m is substantially larger than k. Theorem 3, is essentially achieved to

wi tllin a fac or of 2. □

Tl ere is a large spectnnn of resu . ts between the wo ex remes that have

just b!l!-en consM.erf:'d. It can be s own that Theorem 4 is achieved. for a class

uf proc~ssor diMribuho. s that have m1 ;;;an for so,me c<t. i'mllarly. Theorem 3

is , achieved by a class of procPsso:r dist1(butions ha\ have mjx ~=cmlk for a

fixed r> 1. l'he-se added construe Jons are tr·vial extensions of the above and

are omit ed.

The thud type of resuH involves the situation tha the mi are

:relaUv1-1ly small (compared. to It). n this case we will show that k t·mes worse

34

than optimal is achiev.abl~.

Consider figure 3. There are mi columns that iJlformaUy speaking,

'"correspond to type i''. Each of these m. columns contains a chain of n+k-1 ' -

tasks. Th . /h task. in each of these columns has. »(T):;j (for J~r-1) and

v(T)=i (!,or r9). The notation ,ii=i means that the time required by th,e

· ndicatt:!d task is the vaI ue i (no,te that the only values that appear ar:e the

integer 1 or th~ rate of a processor}. An asymptotically optimal schedu e

first execu t · s he. firs k-1 tasks of each column using an .arbitrary schedule.

Then on y n uni s of time are requt.red, The f h remaining task in every

column is executed i units or time .later.

A bad .schedule first executes only tbose tasks in the first m 1i

columns. The best that could be done tn that case (assuming a.J processors or

type 1 rQ in t1se) s that these colu.mns wil be finished in time n. In a

similar manner, it takes a minimum of time kn to finish the entire tasks

system. Thus this schedule is at least k times worse than optimal. Thus for

the class of proce.,;sors considered. th•e example illustrates achievab~ltty up to

a constant factor. D

6. Preemptive scheduling of typed task. systems

This sec ion discusses p eemptive scheduling or typed task :systems.

Wh. n one pc rnits preempUv scheduling. one permits the temporary .suspension of

the execution of a task. When the task is continued, only the unexecuted

portion n e-ds to be finished, an,d there is no penalty for the tempo,1ary

suspension. Fonnally:

A prun1ptiue 1chtdult fol' {'.r.<,JJ,P) on a set of processors (P is a total

funcHon S that maps each task TeT to a finite set o(interval. processor

l

µ.,.bl2

...;

.:a::

+
~

JJ "'b12

35

1 l.J 1
""~ml

-b lm1
µ -b

21

l.l -b21

1
l.J = l

JJ-b 2m2

1

Figure 3

-b
kl

36

pairs. rr s (T)={([i .J 1].Q 1),([i2 ,j2] Q,2) •... ,(:[,
11

Jn].Q
11
)) then

(1) irJpelP. for p=t ,n.

(2) i ;SJp for p=l , .••• n and ft,Sip+ 1 for p= , ... ,n-1

(,3) Qp£fP for p=- t,• 11.

For ip9<.ip T i.s b(ing txecutrd cm proa:Hor QP at limt t .. The time ., 1

is ·the mn-ting ti r o,f T, and the time fn is the fini!.h ng time of T.

A t' lid preemptiv,e schedule for o -,<.µ,v)1 ,maser of proctw;rrs

(P is a preempliv·e schedule for (i,< ~.v) with the proper ties::

(1) For al rE • if two asks ate both being executed at time r. then

they- a e being executed on different processors at. time t.

(2) Whenever T <U. the star-ting time of U is no,t smaller than the

finishlng time of T.

(3) Fot TeT (with S(T)1 as above). µ(T)=f(J1-t 1)fr(Q 1))+ .•• +((jn-tn)/r(Qn))

where r(O .) is the rate of Q'. (i.e. if Q.=P "} then · ~Q· .)=b., .).
~i ~.z "l " r ,. J

(4) If T is executed on processo•r P. th,en T and P must be of the same

type.

Condition htee asserts that each task. :tis processed exacUy long enough

to comp ete its time requirement.

Th performance of t e maximal rmrge heu.r s ic is discussed. A maximal

usag(prumJ11it1r sd1tdult is a valid preempUve schedul,e satisfying the

following two requirements ..

(1) '\iVhcneve ij ta!;ks of type J are executable. then min(trt_;-.il

tasks or t;;,-pe _i are being executed, {A task is executable if all its

predecessors h.ave treen finished. but he task itself has 0:ot been finished.)

(Z) Whenev, t 1j pr,ocessors of ype J if e eing used. the fastest 'i

processors of t pe j are in use.

37

It is easy to see how to transform any schedule S into a maximal usage

schedule that has a f'n.ishing time at least as sma1 l as that of S.

Maximal usage preempUve schedules were studied in [3] for ordinary tas.k.

systems. I w;is shown that any nrnximal ysage schedule is :not worse than

(l / ,2)+ ✓T" Umes wors,e han optima]. The method. used. tber,e was to obtain

two perform,mce onnds in terms of a parameter r, which wete ' nversely related.

as a f1 nctio of r. A hound on the m.in~mum of the two outtds was (1/Z)+✓m.

This method did not genetalize to typed task systems for the followlD& :r-easo n.

Wh n each ound was gell rnlized to the typed task sys em case. they were no

longf;!r in er.sely fP,]a ed.

il:n this secUon a performance bound on maximal usage schedules is

obtainrd by nppr.aling dir,ectly to the results of Section 5. Fix a set of

PTOCP~so s -with sp· eects b. '• , I] Consider equation (t 0) in SecHon 5. . It

suffic s lo show that equation (10) (when u erpreted as a bound on the

perfotniauce of any maxilnal usage schedule) applie to any task sy.ste·m, and any

maximal age sch~clule for the ask system., and any set of choices of indices

{i .). From lhi.s. one may conclude that for any task system and any maximal usage
J

schedule fo:r lhe Lask syslem (Wilh finishing ime rti) whoopt~k.f.2✓ mj (km} •

Similar. y, crne ma:,r co c t1de hat for any task s:yste and any maximal usage

sch~dule t1•/w OP S:k + ✓~ + ..• + -1,nk + mjx✓m1 This proof foUows by applying

the ho nd of @quation (10) for he set of i.,.s thal minim"ze equa ion (10).
)

For this set or i/s· equation (0) s bounded by lhe above quant'ties (as

' shown ~:n Section 5 .. 2.). Note that -n this con.text w
0

.Pt represents the fin1shim,g

time of the optimal firumptiuc sch dule.

It sufr1c s to show that u,opt satlsHes he lower bound of Lemm.a 5. t

and u1 sat is fies hP npp?.t bound of Lemma 5.2 fusing the deH.ni tion or height

38

relevant to the set of ,chosen l/s). The former is hnIDediate, s.iince the lower

1:JbUnd did not con.sid,er lhe fact that non preemptive schedules: were used.

To get the upper bound an w Jfven in Lemma 6~2, bteak up aU intervals

of any max· mal usage schedule into two types or intervals. One type of

interval is when ij processors of type J .are being used for some j, a11d the

second type is when ii processo,:rs of type J are not being used for any j.

Cl,early, one n1ay use

pJB .. units of time.
JlJ

at least ij processors of type j for at most a total of

Also, the intervals during which t
1

processors of type J

are not used for any j must be hei£h reducing intervals. These height

reducing in te:rvals decrease the .hetght by- a rate of at. lea:s:t one per unit time~

Lemma 5.2 follows and thus one maiy conclude:

Theoren1. 5. Let o-.<,µ:,v) as above. Let w be the finishing time of

any pre,empti e maximal usage schedule. and]e wopt be the finishing time

of an optimal preemptive :schedule. Then.

Achievability may similarh~ be obtained by appealing ot the

constructions of Section 5.3. The •· ad'' list schedules on the if fastest

processor~ of type j are also bad maximal usage preemptive sch-edule.s.

Conclusion

The algorithms presented :in this paper are examples of scheduling

algorithms that violate the na·ve "greedy" henr.istic of trying to schedule as

many tasks as possible at ,each point in Ume·. In this context methods have

been riev lop(!.d for deciding when to be greedy and how greedy to, be. 1t would

39

be in erP.sting o ohtain simi ar algorithms for other s ·tuatians. for example

wh re the proc s.sors are identical.

AcknoVvledgemen ts

The author wishes to e ·press his grat·tude to E. Davis and M. Rabin for

helpfu ' discussions ,f!J"ld i pa,rticula1 for iheir suggest· ,ons on how to approach

the proof of Theorem 2. Also to A. Meyer for several helpfu comments.

Finally, to D. K€>s~ler for programming the MACSYMA calculations.

References

1. R. L .. Graham. Bounds on Mi; lhproc::essing Timing Anomalies. SIAM J. Appl.

Marl, .• 17 (1969) 263-269,

2. E. C. J;iorvath, 5. Lam, and R. Sethi.. A Level Algorithm for Preempt vie

Scheclu Ung, j ACM 24, 1, (1977} 32-43,

a. .. J. M. Jaff An Analysis of Preemptive Multiprocessor Job Sch,ed.uling.

MIT, Labo.ratorv for Co1!1puter Science, Technical Mem·o No. 1 to, Septembe:r 1978.

Also. submit Led to Mn.!litmatiH of Opaarions Restart~.

4. J. M. J .affe. Bounds on th.e Scheduling of Typed Task Systems, MIT,

Labo•ratory for Comput :r Science Technical M ,emo o. 111, September 1978. · Also.

submitt d to SI AM J<mrnal on Computing.

5. J, W. S. Liu and C. L. Lu. Bounds on Scheduling Algorithms for

Het .rog nr-ou.,; Computing Systems, Tfl No. UJUCDCS-R-74-632 Dept. of Comp. Sci.

Un.iv. of Il1inoi s . l.lne 1974.

6. J. S. Liu and. C. L. Liu, Bound.s on Scheduling Algorithms for

Heteros,enem s Compuling Systems, IFIP74, (North Holland Pub. Co.),. 349-353.

7. J. W. S. L·u and C .. L. Liu, Perfon ance Analysis of Multiprocessor Systems

40

Containing Functionally D dkated Processors. Acta Informatica. JO, 1 1 (1978)

95-104.

8,, R. R. Muntz and E. G. Coffman Jr., Optimal preemptive scheduling on

two-p:rocessor system.~. IEEE Trn111_ Ccimptn, C-18. 11 09691
) 10 4-1020.

9. R. R Muntz and E .. G. Coffruan Jr., Preemptive s-chedultng of l"eal time tasks

on mu Uprocessor systems J ACM 17. 2 0 970) 324-338.

