MIT/LCS/TM-127

A NETWORK TRAFFIC GENERATOR FOR DECHET

Richard J. Strazdas

March 1979

MIT/LCS/TM-127

A NETWORK TRAFFIC GENERATOR FOR DECNET

by
Richard J. Strazdas

January 19, 1979

(:) Massachusetts Institute of Technology

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

CAMERIDGE MASSACHUSETTS 02139

A Network Traffic Generator for DECnet
by

Richard James Strazdas

Submitted to the Department of Electrical Engineering and
Computer Science on 1979 January 19 in partial fulfillment
of the requirements for the Degrees of

Bachelor of Science and Master of Science

ABSTRACT

Computer network traffic generators provide a means for
supplying benchmark results and for measuring computer network
performance at all levels. Eventually they will also aid in
fault diagnosis. The network traffic generator described in
this thesis allows flexible yet convenient control over a
number of parameters useful for generating Lloads owver both
test and real networks based on DEC's PDP-11 minicomputer,
Implementation on a test network provides sample results. A
discussion of design <compromises, and recommendations for

further study and design point to various open issues.

Thesis Supervisor: Prof. Liba Svobodova

page 2

ACKNOWLEDGEMENTS

Many people deserve much thanks for their involvement in this
paper. My hat is off to Mr, Ralph DeMent and Mr., James Hirni
for providing me with the time, spaces, and equipment at DEC to
perform this research. I Ddow to Professor Liba Svobodova
whose patience and helpful criticism were a constant guiding
Light. A hearty salute goes to Mr. Christopher Hume who
(almost) never tired of helping solve my implementation
problems., And a round of applause 1is dedicated to my
coworkers, cohorts, and companions for making the work Light.
Finally, 1 reserve my deepest gratitude for my parents who are
my greatest source of inspiration. It is for them more than

anyone else that this is written.

page 3

TABLE OF CONTENTS

- - -

ABS}'R“CT - w - = & - & = = % @ a
ACKNOHLEDGE”ENTS - - - - - a B -

TABLE OF CONTENTS o o« o @ = = 2 =

I. PROBLEM STATEMENT AND MOTIVATIO
I1. RELEVANT WORK DONE <« =« « « =«

III. bESIGN - - - - - - - - - - -

N

A, PARAMETERS FOR DESCRIPTION OF TEST

B. MEASUREMENTS OF TEST TRAFFIC

C. PROGRAM MODULARIZATION AND EXPERIMENT CONTROL

IV. IMPLEMENTATION AND RECOMMENDATIONS

A. SUMMARY . 4 o ¢« = = o« = a =
B. SOME DIFFICULTIES ENCOJNTERED
Ce ENHANCEMENT o o« 2 ¢ o« « = =
Do USAGE & o« =« ¢« o = « = s = =

Ve REFERENCES 4 = 2 4 o o o = o =

APPENDIX A: SAMPLE EXPERIMENT . .
APPENDIX B: TABLE DESCRIPTIONS .
APPENDIX C: COMMAND DESCRIPTIONS

APPENDIX D: PROGRAM LISTINGS . «

page 4

-

TRAFFIC

-

-

PAGE

11
12
16
26
40
40
43
L6
49

52

54
62
68

72

I. Problem Statement and Motivation

An important issue in the development of any servicer and in

this case the development of a computer networkes is
performance: How well does it work under certain conditions?
Will it meet the wuser's requirements., the designer's

specifications? Consequentlys, much effort has been put into
defining performance criteria and performance measurement, and
into developing tools that facilitate the gathering and
reduction of wuseful ameasures from the massive amount of data

flowing through a computer network,

A key concept that has emerged is the network control center.
a centralized network host where monitorings, measurement., and
control of the network take place. (The measurement function
can be performed at a separate specialized host, as is done in
the ARPANET, but the network configuration on which this
research has been developed conglomerates all three functions

in one host for efficiency in hardware and personnel,)

One of the primary responsibilities of the control center is

to ensure performance standards, as protocols, routing or flow

page 5

control are modifieds Oor new hardware introduced. Benchmark
results are the most direct means of answering the questions

posed in the beginning paragraph.

The way to accurately obtain these results is to monitor
"live" data flowing through the network. One would think at
first that the data should also be "real™, but two problems
come Upa. Firstly, wuser generation of data is haphazard.,
varying enormously from minute to minute, so overall perfora-
ance loses meaning as it bears little relationship to indi-
vidual use of the network facility. Secondlys wunder condi-
tions of network development, there is no user community and
therefore no real data. The solution is., of courses, to
emulate real traffic oy generating it according to a number of

parameters specified by the experimenter,

In its simplest forms, that is precisely the goal of this
study: to design and build a flexible generator of network
traffic in order to ease such tasks as testing routing soft-
ware and load capacitys and establishing basic performance
ratings such as throughput » delays efficiencys and

reliabilitya.

page &

I1l- Relevant Work Done

The Lliterature specifically concerning artificial message
generators is understandably rather sparse., Details are Lleft
to internal documentations WJhile it is typically lLeft to pa-
pers dealing with network measurement, performance, or testing
to mention generator functions and how they relate to the rest
of the performance/measurement software or hardware, This is
not a serious drawbacks. however, since the programming of the
generators while far from trivials, is hardly state-of=-the-art.
The functions to be supported and the network interface and
user interface designs are the really <crutial decisions
affecting the traffic generator's incorporation into the net-
work. Thuss my initial study of this subject led me to de-
scriptions of network measurement centerss, monitoring

machiness, and the Llike,

As may be expecteds my reading began with the ARPANET. ARPA's
Network Control Center, situated at the Bolt Beranek and
Newman node., is wused to "operate, maintaine and modify the
communications subnetwork”, which includes statistics

gathering. The Network Measurement Centers, located at the

page 7

UCLA node, uses measurements from real traffic, and from tests
using artifically generated traffics, primarily to wverify and
improve analytic models of network behavior. Each node (IMP)
is capable of sending messages to a single destination over a
single Llink with the following parameters: Llength (fixed).,
interdeparture time (fixed or driven by return message), trace
on or off, and the ability to send to a nonexistant host = a
bit bucket. (Tracings when enableds, causes timing information
to be sent from each node through which the message passes,)
Additionally, some hosts have multiple pairs of generators and
acceptorss and there are programs at UCLA to format the mes-

sages which will initiate experiments.

The National Bureau of Standards has a Network Measurement
Machine (NMM) which is essentially a minicomputer-based probe
with mass storage. A hardware character generator with a few
inter-character and baud rate settings will send a specific
character or entire character set in sequence to the NMM, As
it standss howevers it cannot fulfill the requirements of a

message generator.

Much work has been done on network monitoring at the
University of Waterloo in Oatario. The software for their
Network Monitor Center is highly modularizeds, resulting in
clLearly defined functions for each of the manager routines,
0f particular importance is its communications manager which

is responsible for coordinating communications between remote

page 8

monitor centerss the lLoad generators. moniotring softwarer, and
data analysis. The load generator emulates up to sixteen
terminal wuserss, and will soon also generate higher speed

(host) traffic. In addition, it transmits prepared scripts.

General Electric has alspo been a pioneer in this field with
work on its Network Moni tor System, Its monitoring strategy
is roughly similar to that of ARPANET. while its strongest
point is its ability to disalay timely status and statistical
figures in a wvariety of wuseful summary formats. Thises in
conjunction with automated alarms, can significantly advance
the time when approaching problems are recognized. [could

find no references, howevers, to a traffic generator.

Relevant work on Load generation at Digital Equipment
Corporation (DEC) began approximately three years ago. In
order to test DECNET on the PDP-8, a "dynamic exerciser
program" was written, It serviced up to ten logical links (to
receivers) where the receiving task mirrored the random data
sent. Parameters used were destination nodes, message lengths
delay between messages, and connect periodes which is
essentially how many messages are sent before the Logical Link
is broken and another one established. Another interesting
feature was noise generation; this can be extremely useful in

a test environment where all the nodes are in the same build-

ing or rooms, for simulatiang more wunreliable communication

lines.

page 9

A preliminary performance evaluation project Later wrote a
message generator that specified destination node and program,
and number of messages and their length. This was wused pri-

marily for CPU usage and throughput measures on PDP-8's,

A specification for a more detailed DECNET performance evalu-
ation calls for a message generator that will produce messages
of fixed or exponentially distributed lengths and interarrival
times to up to eight tasks at various nodes. Mesages may be
sent independently of previous replies or even as fast as the
protocols will allow. Control will be from an "experiment

control point"” at a designated node.

There are other systems that transparently monitor a network®s
traffic wvia probes, but these do not inject messages into the

network and so are not considered here.

page 10

IIl. Design

This chapter describes the ingredients of a general-purpose
computer network traffic generator: the characteristics of the
possible traffic patterns, the information to be collected and
recorded during an experiment., and the modular construction of

the generator that provides the needed flexibility.

No attempt has been made to pin down the features of the com-
plete do-it-all traffic generator. Indeed, not all the func-
tionality described hers is included in the present
implementation. (This is due primarily to time <constraints.
Omissions and recommendations are discussed in the following
chapter.) However, it is felt that no important feature has
been Lleft out of the design, and that it should suit all but

the truly esoteric needs of performance analysts.

The components of the traffic generator system are described
in detail 1in section C, but a few words here about the
system®'s structure will help keep the intervening discussions
in the proper perspective., Instructions flow from the control

node to individual nodes, and thence to the generators and

sage 11

other programs in those nodes, Each generator establishes a
logical Llinkes or connections to the receiver in the traffic
destination node specified for that generators, and passes
trafic over this Llink. The generatorss. the receiver, and
other programs record information pertaining to that link and
to the node 1in general. Section A describes the parameters
that define the traffic pattern of each Links, and section B

describes the data that is recorded.

A. Parameters for Description of Test Traffic

Apart from the ability ¢to perform its stated functions the
power of the traffic generator Lies in its flexibility. The
experimenter, in order to aid his understanding of a network's
behavior, must be able to monitor the network's performance in
several modes of opesration, including diverse traffic condi-

tions and various configurations,

The following are the parameters essential to accurately de-
scribe a traffic pattern on a network (one set for each

emulated network user):

source node

destination node

message length: average value, exponential parameter
intermessage time: average, exponent

time base: send next message immediately, after acknowl~-
edgement, or after reply

page 12

passive or active receiver

messages between connects <(number of messages per
session): averager, exponent

In this section, I shall explain the reasoning behind each

choice of experiment description parameter,

Most importants, of course, are the source and destination
nodes for the traffic paths., When describing the experiment.,
each generator is associated with a source noder, and a corre-
sponding receiver 1is associated with a destination node.
These node names are stored in each record of the experiment
description table. This table is preprocesseds using these
two fields as keyss, to determine which records should be sent

tc individual network nodes for Local processing.

The second important parameter is the lLength of the messages
sent, There are two ways in which to approach thiss and this
project provides for both. The first option is to have all
messages of the same length, This is trivial to implement.
The second option is to allow variable Length messages. There
are naturally many ways to do thise but the one that stands
out clearly 1is a message Llength with an exponentially
distributed probability mass function, There are several
reasons for this choicez it is easy to implement, it provides
a great deal of variability, and most importantly., it ideally

suits modeling and simulation studies since it represents a

page 13

Poisson service time distribution, the second *M"' in the M/M/n

queue which is the mainstay of network modeling.

Deriving an exponentially distributed random variable from a
uniformly distributed random variable is not difficult. The
probability mass function is described by:
-aX
y = p (X) = ae (1)
X

Using the classical inversion method for deriving the new

distribution, we obtain:

X = =Lni{yl)/a (2)
Finally, wusing the user-soecified parameters AVE for average
value of the random wvariable, and EX for the exponent (a, 1in
the above eqguations), and noting the fact that the expected
value of the Length L is 1/a, we arrive at:

L = AVE + (ln{1/random) - 1)/JEX {3)
This yields the desired distribution, with a minimum value at
AVE - 1/EX. By rounding to the nearest integer, the message

Length is obtained.

The next parameter is the intermessage time, This is the real

page 14

time between sending successive messages, and 1is wused to
emulate processing time between intertask communication. This
was approached in the same way as the message lLengths with the
user-defined average and 2xponential parameters, except that

no rounding is necessary as time is real=-valued,

The generator task issues an executive call to mark the
passage of the intermessage time span, and then goes to
"sleep'. In this way the generator is awakened just 1in time

to send the next message.

An important factor in traffic definition is whether the
receiving task talks back to the message generators Or acts as
a bit buckets absorbing all messages. This of course may make
a difference of up to a factor of two in the traffic between
the nodes, In talk back mode, the receiver will act as a
mirrors, sending back the sane message. (There 1is Little to
gain by defining a different return pattern,) This parameter
is used in conjunction with the following one to fine-tune the

traffic to the desired properties.

The base on which the intermessage time is to be measured is
offered in three options. One can have the generator begin
waiting the allotted time after it receives a reply from the
destination task (which means that the talk back parameter

must be set). The generator can also wait beginning with the

page 15

acknowledgement of its previous send command. Finallys, it can
simply not wait at all, The first option characterizes a
dialogue between the two communicating taskss, the second
characterizes bulk information transfer, and the Last enables
one to test the capacity of the network path between the two

nodes.

Traffic 1in a network is further constituted by the durations
of the dialogues themselves. To this end, the experimenter
may specify the number of messages to be sent in each sessions
in a manner entirely analogous to the message length. This
can be used for tailoring the experiment if the intended
application(s) <characteristics are knownes or for making the
communications as diverse as deemed necessary. In either
caser, this is important because there is much overhead assc-
ciated with connecting (establishing) the Llogical links
(network paths) and disconnecting them, and the network's
behavior is obviously affected by the extent to which this

takes place,

B. Measurements of Test Traffic

Just as the experiment description parameters were chosen to
provide flexible but concise control of the traffic genera-
tion, so equal care must be given ¢to the choice of data

available after an experiment and to the presentation of this

page 16

data. The keywords here are "performance measures”™ and "user

interface".

It is noteworthy that this research specifically avoided the
Latter issue, Output presentation is aimed at data interpre-
tation and this is highly dependent on the nature of the
analysis taking place. For example, periodically conducted
experiments yield data that, when combined with previously
archived results, can clarify trends due to software
enhancementss, sunspot interferences or almost anything else.
Or statistics can be combined with those of an experiment with
slightly perturbed inputs to gain insight into performance
degradation, etc. Since it became clear that the needs for
formatting results were as diverse as the experiments that
could be performed, my data presentation 1is simply a
structured dump of the data collected. (An example can be
found in Appendix A,) Consequently, this chapter will be

concerned only with the choice and description of those data,.

The data collected and recorded can be divided into three
classes., The first deals with administrative information, and
can range from the time of the experiment to the state of the
network to statistics on the values that were assigned by the
probabilistic experiment parameters. This c¢class might be
divided further into two areas: one documents the circum-
stances of the experiment and the other verifies that the

probabilistic variables behaved as prescribed.

page 17

The second class provides summary information. This includes
countss, averagess, and second moments, and describes the
behavior of certain logical and physical wunits on a gross

level.

The final class is concerned with detailed information on in-
dividual entities, This can be the shortests, the Longest, the
firsts the last, every fifth one, etc. In this wayr, extreme

cases as well as typical ones can be examined in detail.

For completeness, one might Like to include a fourth classe
derived data. But these data are really implicitly contained

in the other classes.
1. Administrative Information

Because very few experiments will be performed ip wagcuges and
data may be analyzed months after it 15 collecteds, several
pieces of information must be recorded simply to ensure that
the circumstances argund the experiment are not forgotten.

These "measurements' are:

date and time of the experiment
experiment parameter values

network configuration for the nodes involved

The Last piece of information is not necessary unless the
network is very dynamics one can always check the configura-

tion from records kept by the network's administrateor. In

page 18

additions, the principal experimenter's name and a field for

commenting on the experiment's purpose can be maintained.

Also of interest is whether the probabilistic parameters cited
in section A lived up to their prescribed behavior. After a
Long experiment this will be nearly certainly trues but under
other circumstances it would be reassuring to be able to
confirm this. Therefores, the following statistics are

gathered:

message lengths: number of, sum of, and sum of squares of

intermessage times at sender: number of, sum of, sum of
squares of

messages per connect: number o0fs sum of, sum of squares
of

The three statistics of each item are sufficient to calculate

the mean and variance.

2e Summary Information

Ideallys, one would Like to collect every detail about every
message sent in the network., Unfortunately, computer memories
were not made to be used so frivolouslys and transferring this
information would about double the Load on the network., so a
more reasonable approach must be designed. (Besidess the data
would still have to be processed for human consumption Later

in order to be studied effectively.)

page 19

There are two main solutions to this problem, One involves
gathering histogram data: the frequency of an event or any
other wvalue that may fall within any of a specified set of
boundaries is recorded. From this one may draw a bar graph or
make statements about the statistical conduct of what was
measured, The second solution requires only a few statistics
to summarize the behavior of the measure of concern: a count,
a sum of wvaluess, and a sum of squares of values, One could
also implement both solutions since the data collected are not

totally redundant.

Wwhile a histogram retains a Lot of the information in a
relatively compact forms the Level of detail is still too
great for most applications. This is partially manifested 1n
the fact that choosing the boundaries is a problem that must
be solved interactively and not without difficulty. The
approach that was chosen was the simpler one of gathering just
enough data to be able to calculate the first two moments’
this and the information described in section 3 below allow
many important statements to be made about the network's per-

formance.

The major tool that is being sacrificed here is the ability to
produce a distribution curve. Howevers this would require a
histogram of very fine resolution and should be relegated to a

special-purpose program,

page 20

The data that falls into the summary category all relates to
timing. For each message, the following variables are used to

update a counts, a sumes and a sum of squares.

intermessage time at receiver
one-way delay

round=trip delay., if appropriate

The first measure must of course have an average egual to that
of the intermessage time at the sender; comparing the wvari-
ances will yield useful understanding of such network opera-
tions as buffering and queuesing. The latter two measures are
probably the most important ones that can be mader, for they
are the values that are of greatest importance to the |user,
This of course assumes adequate network availability and ac~-

curacys.
3. Detailed Information

This class of information concerns individual message details.,

transport errors and extreme casess, as well as miscellaneous

items.

Let wus first discuss what is meant by 'message details'. It
is very desirable to be able to follow a message through its
entire Lifes, recording where it was, how lLong it took to get
there, and how long it stayed there. This should take place

not only at the node level (useful for routing verification

page 21

and statistics) but also within the node (for details on queue
delayrs retransmissions etc.). This capability is called
tracing and generates the following data at each node and for

each message:

message header (identifier)

time of arrival at network software

time ready for output

time transmitted

time acknowledged or put on retransmission gueue

output Line number

An intermediate node (one that is neither the source nor the
destination) would record all this information. An endpoint
node would of course gather only the input or the output

statistics as appropriate.

It should be clear that this ability requires modification to
the network software itself; the rest of the traffic generator
is designed purely as a network application and has no access
to the internal message processing, This function also
revives the problem of the extent to which one is willing to
commit resources to collect all this information, And final-
lys the experimenter must be able to select which messages
should be traced. (This would have been discussed in section
A but for the fact that tracing was more properly introduced

here.?

page 22

To begins there must be a mechanism for the network user to
specify whether a given message is to be traced. This first
modification is easily accomplished by a special argument to
the SEND call which would cause a trace bit to be set in the
header of the message. This feature could however be abused
since it may be utilized by any user. A network control com=-
mand to enable tracing at specified nodes will alleviate this
problem. Turning on tracing just before an experiments, and
only at those nodes where it is useful to do so, will elimi-
nate a mass of useless overhead. As a message 1is processed
within a node's netwdrk softwarer, a small buffer is temporar-
ily attached to it and updated as the message moves from one
stage to another. As soon as the node can dispose of the
message (after it has been transmitted and acknowledged or
passed to the end user), this buffer is transferred to a pro-
gram (the data updater, described in section () which appends

it to an area reserved for such information,

The size of that area is one of the parameters that the ex-
perimenter must specify, as well as which nodes should be
trace-enabled. This is important because trace data can
quickly fill a Lot of space ands, rather than transfer this
data online to the experiment control node (from where the
experiment is being conducted) and risk perturbing the wvery
traffic being measured, the threshold of a full trace area

will trigger a trace disable at that node,

page 23

The last topic on tracing is describing which messages sould
be traced. The experimenter can specify, on a per-record
basis in the experiment description table, the frequency or
relative position of the messages to be traced. For example,
one may trace the first message after each connectiones or one
may trace every tenth message. Dynamically arranging tracing
(e.ge tracing a message that has had to be retransmitted more
than once) appears to be another useful feature but this has

not been researched here,

The rest of the detailed information will follow quickly since
it is simpler to describe than tracing. The number of
connects and disconnects for each wuser path (source=-
~destination pair) are collected here; these wvalues reflect
communication overhead. For each paths, maximum and minimum
values are recorded for each of the three timing measures 1in
the summary classs these indicate extremes of performance,
The CPU utilization at each node is measured by running a
lowest=-priority program that Loops forever, incrementing a
counter., Knowing the counter's rate of incrementation and the
duration of the experiment makes calculating the fraction of

idle time a simple matter,

Another area of useful information is status information that
can be gotten for "free", with an existing command to the
network software, In this caser, one can retrieve the active-

/finactive status of all nodes, error counts for all nodes and

sage 24

for all links, and a few other goodies that are uninteresting
for our purposes. This commnand can be executed periodically
at the experiment control node where storage should not be a
problem., If experience shows that high-frequency use of this
command causes data overflow on Llong experiments, then a
threshold mechanism similar to that for tracing can be imple=

mented,

The final desirable feature of traffic measurement complements
the preceding one: other status information can be retrieved
via a programmatic inter face to the network data structures.
This <can take the form of either additional user commands or
special interfaces which can be accessed directly by the
application program, The periodicity and storage arguments
here are the same except that, since the data will be
tollected Llocally, a threshold will certainly be needed,

These data are:

free buffer Length

each modem's output gqueue lLength
sent gueue (waiting for ACK) Llength
retransmission queue length
conversion gueue Length

store and forward gqueue length

It should be mentioned at this point that at the end of an

experiment, all the data collected at every node is sent to

sage 25

the experiment control node for storage and analysis.

C. Program Modularization and Experiment Control

As with any complex, distributed software projects proper
program modularization is the key to nirvana (or at least to
its closest approximation in a computer environment). This
section will detail the division of function among the on=Line
modules as well as their control structures., Various other
separate (off-line) but necessary programs will also be dis-

cussed here.

The reader should be aware that a few parts of the following
discussion deal with software features specific to the RSX=11
environment, Where possibler, all such references have been
relegated to the appendices, but discussion of the realization

of certain design goals requires that they be mentioned here,

Before describing the traffic generator's organization, it
would be useful to define the assumptions that have been made

and the philosophy of its use.

The first point to note is that the whole system runs as an
application, on top of the network. This naturally has its
disadvantages as well as its advantages. Although the integ-
rity of the performance measures obtained will be compromised
if other network traffic is present., it is more significant

that the network need not be devoted to the generator. The

page 26

reasons are many. Reloading the system with specialized net-
work software in a coordinated fashion over a moderate-sized
network is a monstrouse time-consuming problem.
(Sophisticated cross—-net operations are not yet a reality.)
Alternatively, applications can be run during off-peak times
with Little degradation of results, or small segments of a
network can be temporarily isolated to thoroughly test speci-
fied Links. This feature basically takes account of the fact
that any network, commercial or developmental, is enormously
expensive to operatesr, and it is hardly acceptable to expect
all these resources to be devoted to a single task for any

length of time,

Another characteristic is the single control point. Although
many nodes would be involved in each experiment, it wWwas es-
sential that one person could control it. Any other approach
would involve massive communication and coordination

difficulties overshadowing any problems in remote control.

One further point must be made before Launching into the
details. The interactive philosophy was chosen over the
static one. What this means is that the experimenter, once he
has defined the lLimits of the experiment, is free to work
within them: activating certain paths, retrieving data, ena-
bling tracings reinitializing statistics, deactivating or ac~-
tivating other pathss, and in shorts reacting to the results

and achieving much more effective use of his and the network's

page 27

time.

Module Description

The first module is a stand-alone program that defines the
Limits mentioned in the preceding paragraphs, using the para-
meters described in section A as well as the tracing option,
It 1is a conversational program that builds the experiment de-
scription table (see Appendix B) with one record for each path
(generator-receiver pair), Parameters are verified as they
are entered to check for proper data type and range, The
program has an edit mode in addition to a <create mode, and
stores the table in the file system, where it can be called up
by the experiment control program, Finally., if a file is
available describing the network configuration (node <charac-
teristics and connectionss etc.)s then this program should
verify that everything described is possible. Some node may
not support tracings, or a node name may not existy, and much
wailing and gnashing of teeth could be prevented by
discovering these mistakes pefore the experiment. To summa=
rizes, any "administrative set=-up” associated with the
experiment should be siphoned off to an off-line program: to

do otherwise would encourage an inefficient use of resources.

ALL other support programs deal with analyzing the collected
datars perhaps in conjunction with previous experimental

results, As noted near the beginning of section B, these will

page 28

be conveniently but justifiably omitted from this study. A
simple program that provides a formatted view of the data is

sufficient in lieu of more sophisticated analysis.

The rest of the modules are all part of the on-Line experiment
environments, and are therefore closely meshed. Figure 1
depicts the control structure at the control node. Figure 2

details the data flow between modules and between nodes.

page 29

GENERATOR |

N

-+

CENTRAL
CONTROL
ROUTINE

LOCAL
CONTROL
ROUTINE

AST

GENERATOR

S

Sk

EXPERIMENT
CONSOLE

* Only at the control node

+ Optional

RECEIVER

-

IDLE
TIMER

o+
STATUS
MONITOR

TRACE

page 30

DATA
UPDATER

. o

DATA
BASE

FIGURE 1 CONTROL STRUCTURE AT AN EXPERIMENT NODE

—_— — — — — — — _— — —_—

— — — — s . —— e — —

_— m—— — —— — — — — —

FIGURE 2

—_— e ———

—— SUBPROGRAM

COMMON DATA

S NETWORK COMMUNICATION

DATA FLOW BETWEEN MODULES AND BETWEEN TYPICAL NODES

| CENTRAL 1 T -— LOCAL
CONTROL | l CONTROL
| /] o i
| : ! |
| GENERATOR .| LocAL o | I | « | GENERATOR GENERATOR
S|L ! CONTROL e] ek |‘ 1 2 : \
| : [} 2 |
I ' | BERE IDLE i e
| FULE | . TIMER ||
DATA TIMER | &
| UPDATER] | =)
; |
| STATUS ‘ | STATUS '
| MONITOR |] MONITOR |
|
| | | §oEB _
| TRACE
[KEY

At the center of activity is the central experiment control
routine, This program commnunicates with the experimenteres

parses the commandses and conveys his instructions to the ap-

propriate local experiment control routines which are
distributeds one per node. These programs are the
Lieutenantss, obeying the higher central authorityes and

delegating the chore of message transmission to the generators
and receivers within the Local node. The generators and re-
ceivers in turn utilize the data base updater to maintain a
single area in each node where the data described in section B
are stored. A monitor program periodically wakes ups, gathers
some status information, and passes it to the data wupdater,
And finally, an idle time counter Lleisurely keeps track of
time whenever it gets the chance. Detailed descriptions fol-

lows

Control of the experiment is divided into two levels. It is
clear that the experimenter must run the show through a single
entry points yet communications requirements would get out of
hand 1if direct connections had to be maintained with every
module involwed in the experiment. There fore the tuwo=level
hierarchy of central experiment control routine (one per
experiment == its Llocation defines the experiment control
node) and Llocal experiment control routines (one per node =--
including the control node) was developed. It is necessary

now to discuss the functions of the central control routine

page 32

before the other modules can be brought into focuse.

Central control is the experimenter®s gateway to the traffic
generator system, Its primary functions are to initialize and
carry out the experiment, all under operator instructions., (I
will switch to the less formal name of "operator"™ now that it
will be wused much more frequently.) Initialization is a far
from trivial process, and is automated almost completely to
avoid human error. A Lot of information must be assembled and
then sent off to the proper places if any coordination is to
be achieved, The very first step is to retriever, at the
operator's request, the experiment description table that was
prepared previously. This table must be broken down into
experiment control tables, one for each node. Each of these
tables will contain all the information needed for a Llocal
control routine to direct the traffic generator functions at
its nodes it is essentially a partitioning of the &experiment

description table by nodes,

The first actual use of the network takes place when the cen=-
tral control establishes communication with the local
controls. The next act is critical for networks without a
common time base: all the nodes must be synchronized or delay
measurements, trace datar, etc. Wwill be considerably less use-
ful. The method proposed for achieving this makes few
assumptionss and 1is simple to implement. Prowvided that the

level of other network traffic is lLows the synchronization s

sage 33

accurate at Lleast to 1/60 seconds the resolution of the test
computers' clocks. Central control will play the generator-
=receiver game with each local controls one at a time. Short
messages will be exchanged with a Local time stamp on each.
From these valuess the average one-way delay in each direction
can be calculated ands, assuming that these delays must be
equales half their difference must be the correction to be
applied to the "Local time". {Control=-node time 1is
arbitrarily made the standard.) This Llocal adjustment s
stored at each local node and is made to all time values that

are recorded there.

Now the weight of the initialization is thrown onto the
shoulders of the Llocal control programs. Each receives its
respective experiment control table and sets its house in or=
der accordingly. Generator and receiver modules are prepared
for executions the data updater is started and instructed to
initialize its data bases, the monitor and idle time counter
commence operationss and trace capability is set if reguested.
Any deviations from intended operation must of course be re=-
ported to the control nodes, as well as reassuring "AOK" mes-
sages if all went well. At last the operator is ready to

experiment.

Certain commands are necessary if several experiments are to
be made in succession without shutting down the entire traffic

generator system between runs. Other steps are reguired to

page 34

coordinate the collection of data from several nodes. And
some commands are needed just to make Llife simpler for the
operator. A core set of these commands will be sketched here,
Details on those that have been implemented can be found in

the appendices,

To change the environment of the experimentes the gperator may
activate or deactivate specific Links. These correspond to
the records of the experiment description table, Tracing at
specific nodes «can alsoc be enabled or disabled. The charac-
teristics of each link (such as message lLength}) should not be
allowed to changer, however, This destroys the integrity of
the experiment description table and allows toco much freedom
to trifle with details. Both encourage poor experiment de-

sign. If it is desirable to have links of slightly wvarying

characteristicse then several entries can be made at
experiment description time, and they can be activated
individually. It may seem somewhat disdainful to make this

restrictions, but discipline must be instilled in a tool's user

as well as in its developer,

An operator must alsoc be allowed to retrieve results and
reinitialize data bases in order to make more than one
experiment. These two functions reintroduce the need for
synchronization, For 1if data from different nodes are not
initialized at the same time or collected at the same time,

then they really span different time periods and do not accu=-

page 35

rately reflect the same set of events. Agains central control
will make it perform properly. When it made its first
synchronization, maximum outgoing delays to each node were
noted. These are now used to calculate a time stamp which is
post-dated by several times the maximum delay in the network.
This will not amount to more than a few seconds for a small
networks. When each Local control receives one of these
instructionss it waits until the designated moment to flip a
bit that enables/disables the data updater. Thus all data
bases are reinitialized or retrieved simultaneocusly, If due
to extremely wunfortunate circumstances one or more of the
commands arrives later. then the operator is notified and may

try again.

Other convenient commands might involve running an experiment
from a command file or invoking simple analyzers for on-Line
aid 1in formulating the next experiment. There is no end to
the elaborations one can make in this area, Needless to says

that will not be done here.

The parameters that Local control received from central con-
trol are stored in an area shared with the generator and re-
ceiver programs. Each node will support several generators
but only one reentrant copy is necessary; this saves space and
the parameter area goes a Long way to helping achieve
reentrancy. The generator is run when the local control rou-

tine activates it at the operator's reguest., It halts when it

page 36

sees its abort flag set after a deactivate command. This
cooperative abort provides a much cleaner and quicker inter-
face than an executive abort which would pull the generator
out of memory kicking and screaming. In between the activa-
tion and deactivation is where the interesting things happen.
The generator wuses all the parameters of section A to con-
struct messages and t> time their departures. The only re=
striction on size is that every message must oe long enough to
carry 1its time stamps., After each connection is established,
or each message sents or each reply receiveds the generator
calls the data updater program with the appropriate parameters

tc keep the data base current,

Under typical traffic conditions, the generator will spend
most of its time dormant., Once it has determined when the
next message 18 to oe sente it waits on a clock for the nec-
essary amount of time. It is awakened just in time to send
the message. Another matter worth mentioning is the reception
of return messages. Since delay measurements are a primary
goal of this projects, it 1is absolutely required that the
returning messages be intercepted precisely when they are
received., This necessitates an asynchronous task that is
activated by the generator each time a two-way message is sent
and which shares the generator's parameters. The Asynchronous
System Trap mechanism 1in RSX=-11M satisfies this requirement

and has been used here to properly set up a simple program

page 37

which waits for a messager, <calls the data updater and

terminates. This module is called AST in figures 1 and 2.

The receiver module is conceptually much simpler than a gen-
erator. Since the only decision it is ever required to make
is whether or not to send a message back (againe instructed by
Llocal control)s there need be only one receiver (logically., as
well as physically) per node. This program simply sits around
waiting for a message on any active connection. Then it calls
the data updater and possibly adds its own time stamp to the

message and sends it whence it came.

The monitor module is oblivious to all traffic passing through
the node. Its sole function is to periodically read the net~-
work status tables via commands or programmatic interfaces and
extract error countss, queue lengths, etc. as outlined in sec-
tion B. It passes this information to the data updater.
Since this data does not accumulate as quickly as individual
statistics on messagess, it is relatively safe to include it in
raw form (not summarizeds as the other statistics). A
threshold must be maintaineds howevers, and if the allotted
space becomes filled with this type of informations the data
updater will return with a status indicating that the monitor
should shut itself off, It can be reactivated the next time

that the node's data base 15 initialized,

Finally we come to the much-mentioned data wupdater. This

page 38

program is essentially everybody's subroutine for Wwrite access
to the node's data base. There are several reasons for this
strategy. Mainly., a shared data base is easiest to initial-
ize, retrieve and control. A simple instruction from local
control is sufficient to prevent or allow further updates. A
fortunate side-effect s the ease with which changes to the
data base format can be accomplished (particulary useful dur-
ing development!). The data base contains data on message
statisticss, monitor statistics, and tracing. The Llatter two
require threshold mechanisms as outlined above. This also is

the responsibility of the data updater.

The Last module can be quickly summarized. The Low=priority
idle time counter Lloops a number of times that has been
calculated to require a known time period and then calls the
data wupdater (of course) to increment a counter, Subtracting
this time from the duration of the experiment yields the

processor time consumed by the experiment.

It would be fitting at this point to reiterate the utility of
the overall control structure by looking at it from another
angle, ALL intra-node communications take place via common
data areas. All inter-node communications, with the exception
of generated messages, take place only between the central and
respective Local experiment control routines. This latter
restriction eliminates potential chaos by establishing a

strict but natural hierarchy for control apd data transfer.

page 39

e e

iV. Implementation and Recommendations

A design for a general-purpose network traffic generator has
been presented, It emphasizes ease in experiment preparation
and flexibility in controls as well as useful statistics col-
Lection, It is now time to discuss an implementation of this
design. This discussion will focus on the functions performed
by the implementation, difficulties encountered, recommenda-
tions for simple enhancements and added features, and recom-

mendations for its efficient use,

A. Summary

The traffic generator system that was actually implemented can
be most briefly summarized by pointing out that it contains
every major feature described in the preceding chapter with
the exceptions of tracing and status monitoringe. It was
Wwritten for DECnet under the RSX-11M operating system in the
summer and fall of 1977. At that time, the network software
Was not released and was still wundergoing development;
consequentlys any unilateral tinkering with it would have had

extremely short=Lived supporte. This is the main reason why

page 40

tracing and monitoring were forsaken in this implementation,
0f all the functions describeds, only these must be able to
examine the internal network data structures, More will be

said on this later.

The following programs were written:

experiment description file formatter and editor

central experiment control routine

local experiment control routine

traffic generator

traffic receiver

data updater

idle timer
The first program essentially Lleads one by the hand in
developing an experiment description file. For each path de-
scription, each parameter is asked for by name and validated
as it is entered, The entire file can be displayeds and each
field can be individually edited by specifying the path number
and the field name, The fields are all described in Appendix
Bs including some that were Lleft out of chapter III for
clarity. For examples this program assigns numbers to gener-
ators on a per node basis for administrative purposess, but the

user will never need to see these numbers. lLet alone be re-

quested to define them,

The central control routine performs all its designed
functions, It reads the experiment description files
partitions it into experiment control tables (also described

in Appendix B) for each node, synchronizes each local control

sage 41

routines, and executes the operator's commands, The imple-
mented commands are: activate specified pathss deactivate
specified paths, exit from the experiments initialize speci-
fied data basess, and retrieve specified data bases. When
performance data 1is retrieveds the central control routine
performs an integrity check to ensure that the environment of
the experiment was stable while each retrieved data base was
active. This is accomplished by incrementing a centrally-
-stored series number whenever a command is issued to alter
the traffic patterns The local series number is updated only
when the local data base is reinitialized. [f these two num-
bers matches then the data is stored away in a wuser-specified
file, along with a field describing the duration of this

experiment series.

The Local c¢ontrol routine carries out all instructions
received from the central routine, No other program
communicates with the central control routine. The other Lo-
cal control duties are initializations which is done top=down
in the control hierarchy, and experiment terminations, which is

performed bottom=-up.

Generators and receivers were built to perform all the de-
signed functions except for the ability to add a special
header flag marking a message for tracing. Messages can be
sent one-way or round trips. may wait for acknowledgement or

note can vary in Length., etc.

page 42

The data updater updates the data base on request from the
receivers the generatorss ar the idle timer. It also formats
the data for the Llocal control routine during retrieval,
However, it need not bother this time with monitor status or

trace data. The data base is detailed in Appendix B,

The idle timer was tested as the sole running application
program to determine the number of loops it must execute to
consume one second of CPU time. This value was incorporated
into the final versions and the timer calls the data updater

after every accumulated idle second to increment a counter.

ALl coding was done in Fortranes except for a single subroutine
to set up the asynchronous trap routine to capture a returning
message as it arrived from the traffic receiver, The Macro=-11

assembly language was necessary to accomplish that, while the

use of Fortran speeded up the bulk of the program preparation.

B. Some Difficulties Encountered

Other than the problems encountered with initial: unfamiliarity
with the operating system details, there were few serious
problems that had to be overcome. Most problems that did crop
up had to do with the wuse of Fortran. Unfortunatelys the
system that was available was wused primarily for assembly
program development and therefore was not configured for

Fortran wuse, Needless to say., experience indicates that this

page 43

circumstance should be avoided or at least properly adjusted
as early as possible. Problems persisted after Fortran was
installeds but their severity decreased exponentially over
time. Another difficulty has been previously explained. The
need for an asynchronous receiver of returned messagesrs which
could communicate with the generators, had to be resolved by
using features found only in the assembly l{anguage. The
Linkage of the compiled and assembled code was easily accom-
plished by following the Fortran control and parameter passing

conventions,

The greatest disadvantage of the use of the available Fortran
installation was its relatively inefficient use of memory.
This was apparent both in the greater amount of space consumed
by equivalent coder, and in the extra burden of the Llanguage-
~-dependent processors. To come to the point, these forces
conspired to devour memory so that, quite early in testinges
overlays became necessary. Keep in mind that the generator
system was the only application running at the time, (To be
fair to the computer, it should be noted that the poor machine
was without memory manage2ment.) Fortunately this dilemma
occured only at the control node which is distinguished by the
presence of the central control routine. This is by far the
largest program, The solution turned out to be trivial since
the design of both the central and Llocal control routines

could each be neatly packaged into an initialization section

page 44

and an interactive experiment control section. These run not
only independently, but also serially., so overlay overhead is

practically nonexistent,

One further problem was the cause of much consternation, The
immediate reconnection of a path after its disconnection would
sporadically cause the generator to quit because the previous
connection was "still in effect™. Introducing a significant
delayr, such as printing a message after a disconnectiones
eliminated the enigma, but at the cost of annoying extra out-
put and a far from elegant generator. The disconnect software
was naturally highly suspect. This suspicion was reinforced
by the repeated failures of every reasonable effort (and quite
a few unreasonable ones) to modify the generator and receiver
on the assumption that they were the culprits. The inelegant

solution remainss although the system bug has presumably been

corrected. An alternate solution would involve building an-
other disconnect mechanisms independent of the network
disconnecta. This basically assumes greater synchronization.s

whereby the generator would send a special message telling the
receiver to "disconnect when finished with all
communications.,” Since the generator will not send this mes~-

sage until jts communications are complete there <c¢an be no

problem of timing.

page 45

C. Enhancement

It should be clear by this point that much can be done to make
the traffic generator a more powerful tool and a3 more com-

fortable one to use.

Several features would be guite simple to implement. These
include expanding the command setes decoding error messagesy
and rewriting the whole tning in assembly Llanguage. The
Latter can be called simpler even though it is guite time-

=-consuming.

The present command set s a bare minimum necessary for
running a series of experiments. A help command to summarize
the commands and their syntax would be useful to the novice.
An atfile command to transfer the input stream from a terminal
to a file would relieve the operator of the burden of dealing
with the details of repetitive experiments. It would also
help eliminate errors. With such a command file, special
commands would be needed to specify a delay between commands
and to transfer control back to the operator. Lastly. a
display_measurement command would be useful to allow the op-
erator to examine experimznt results, This would permit in-
teractive experiment designs, and need be no more complicated
than the simple offline program that currently dumps results

onto the terminal,

page 46

Another convenience would be clarification of error messages.
As a matter of expediencys, many error statuses are reported as
numbers or in some cryptic abbreviation. ASs the generator
maturess this will no longer be acceptable. Error texts can

be stored in a file separate from the central control routine,

Of the straightforward enhancements, the one with the greatest
impact 1is rewriting the entire generator system in assembly
Language. This would make the object modules smaller, and the
code faster, It would eliminate the Fortran network interface
and the other language-dependent overhead. In shorts, it would

greatly increase the performance of this performance tool.

The improvements mentioned thus far deal with convenience and
speed. Implementation of the following more sophisticated
features is aimed more at increasing the generator's wutility.
The need for some of these is obvious. Others would be useful

in special cases.

The status monitor and tracing have been discussed at length
in chapter [II. The addition of these two features would make
a fairly complete traffic generator. One aspect that deserves
more mentions. however, is dynamic tracing. Since one may be
interested 1in messages that are transmitted in errors, a dy-
namic trace option would be handy. (Omigosh = another
parameter!) This would selectively enable tracing for the

messages that encounter specified error conditions. Note that

page 47

care should be taken in its design because this option can
become very complicated to use. It is possible to bring it to
the Lowest protocol levels to select error conditions partic-

ular to the Line protocols.

Incidentally, the considerable effort expended on development
of the trace capability does not have to be for the exclusive
benefit of the performance experiments. It can and should be
used as part of a full-time monitoring facility, and switched
on or off as needed., Indeeds in the lLong runs, it can be in-

tegrated into a self-diagnosing network.

This is a good place to be reminded that the whole area of
data analysis has not been addressed in this paper. This
might be called the other half of statistics measurement and

cannot be wished away in a full implementation.

Another desirable feature is remote operation of the central
control routine, Because it is a large programes it may not be
feasable for the experimenter's local node to support it. It
seems logical then to invoke the principle that brought net-
works into being in the first place, and bring the power of
the lLarger computer to the user without bringing the whole
computers The wvirtual control node would only need a small
program to pass commands and responses verbatim to the actual

control program at the powerful remote node.

oage 48

Remote operation is also needed for setting up the programs in
individual nodes before the experiment can begin. Under
DECnet-11M, when a coanection is made to a correspondent pro-
gram, that program must have been in an "installed" state.
ready to run, This poses no problem if the network is all in
one room (as was the case during testing) or if every node is
attended by an operator, But otherwise, there is no one to
type all the commands. A general-purpose facility similar to

down-Line loading would fill this need admirably.

The lLlast enhancement concerns diagnosis of the generator
itself, Many programs are scattered over many nodes, and the
failure of any one of them has an impact on the experiment.
But wunless the failure occurs in the experimenter's node and
the system operator®s terminal is nearbyr, the failure will
typically go wundetected until the experiment is terminated.
Each local control routine should have the ability to confirm
the functioning of its local group of modules, and to inform

the central control routine of any abnormalities. This can be

most naturally done after each command.

D. Usage

Finallys let us discuss under what circumstances the traffic
generator should be useds, and how it might be used in the fu-
ture. For an example of how to use the present

implementation, see Appendix A,

page 49

First of alls, the generator system is not limited to any type
of configuration, If a node name and a program name are
sufficient to get a message to its destinations then the gen-
erator will function. This is really another advantage of
writing the package as an application. As long as the inter-
face remains constantes then it does not matter whether the
network 1is Llocals globale stare. rings hierarchicals or what
have you. Only the tracing and status monitoring modules have

to be specialized.

Although the system has been tested only on a two-node net-
workes it 1is capable of being used in its present form on a
network of any size or shape. Each node can cperate as many
generators as it can supporte to a maximum of eight, There

are no other logical constraints.

The types of experiments that can be performed are quite wvar-
ied because of the general nature of the generator. They ba-
sically fall into two categories: performance measurement and

fault diagnosis.

Performance measurement comes 1into play as soon as an inte-
grated network can be testeds, and stays with it through the
rest of its Life cycle., In the beginnings activity with the
generator will be confined to benchmarks and wverification of
message transfer, These are mainly measurements of a gross

level. As the network matures and its insides stabilizes the

page 50

programmatic interfaces to the network software can be imple-
mented. This window will allow more detailed statistics about
states and events. As the network becomes more of a tool and
less of a development projects, the generator will evolve into
a monitoring device, Some functions will be used
sporadically, such as Lloading a new Lline to measure its
capacity in a new environment. Other features will be wused
periodically to moni tor traffic Llevels, memory wusages

congestion trends, etc.

This naturally Lleads inta the second categorys fault
diagnosisa. Ideally, appropriate tests will be automatically
initiated when key indicators approach dangerous Levels, or
when a component failure is reported. The resulting
measurements will then be used to trigger perhaps even more
sophisticated routines, or some super-operator will act on
them. The generator system would clearly play only a small.,
although important, part of such a system., Less ideally.
failures, threshold violations, and user complaints will be
reported to the nearest operator or to some central authority.
From there, a test will be performed to verify that two nodes
are connected or to check that a certain Line remains capable
of operating near its stated capacity. In this waye both hard
and soft failures may be diagnosed., and one can get better

clues as to which component may be at fault,

page 51

A.

Vo References

Qutside References

1.

2.

3.

8.

9.

10.

"A Computer Network Monitoring System"., David E.
Morgans et_al.r, IEEE Transactions on Software Engi-
neering, September 1975,

“The Network Control Center Program”, Bolt Beranek and
Newman, Inc.sr, February 1973, distributed by NTIS, wo=-
date edition of September 1974,

"The Network Control Center for the APRA Network", A,
A. McKenzier gt_al.r IEEE 1972 International Conf. on
Computer Communications, pp. 185-191.

"The ARPA Network Control Center™, Alexander A
McKenzier, Bolt Beranek and Newmans Inc.r, Fourth Data
Communication Symposiums October 1975,

"ARPANET: Designe Operationes Management, and
Performance”, Network Analysis Corp.r, April 1973,

"Performance Criteria for Digital Data Networks™, U.S.
Department of Commercer, Office of Telecommunications.
January 1975, distributed by NTIS.

“"Dynamic Management of Data Networks", Marino F.

Saksidar Jelecommypicationses vole. 11, no. 2, February
1977+ ppe. 39=42,

Queueging_Systems, Vol. 2: Computer Applications.
Leonard Kleinrockes John Wiley and Sons., 1976,

"The General Electric Network Monitoring System”,
George H., Wedberg and Louis W. Hauschild, Proceedings
of IFIP Congress 74. pp. 24-28

“"The Network ¥Measurement Machine - A Data Collection
bevice for Measuring the Per formance and Utilization
of Computer Networks™, NBS Technical Note 912, U.S.
Government Printing Office, 1976,

page 52

DEC

11,

12-

13.

1"'.

DEC

Project Descriptions and Reports

"Digital Equipment Corporation Network Proposal and
Project Plan, Final Report"s, Network Analysis (COrpasr
April 1977.

"Preliminary Project Plan for DECNET/8 Performance
Evaluation, J. Gannon, August 1975.

"DECNET Performance Evaluation Task Force Final
Report™, Nicholas Jchnsons, June 1977.

"Preliminary Tool Functional Specifications for
DECNET Performance Evaluation", Peter fF. Stokely and
Pavid M. Johnson, August 1977.

Manuals and Brochures
“"Introduction to Minicomputer Networks", 1974,
"DECNET", 1976 (Overview and Technical Summary).

“PDP11/34 Processor Handbook™, 1976.

"RSX~11 DECNET-11 Programmer's Guide and Reference
Manual®”, L976.

“"Specification for: RSX=-11 Fortran User Intertask
Communication Interface to DECNET. version 2", 1977.

A multitude of RSX-11M manuals.

page 53

APPENDIX A

SAMPLE EXPERIMENT

To help concretize the preceeding discussions, an annotated

example would be extremely helpful.

For this appendixs, one of the simplest possible examples was
chosen. A single logical Llink is established between a gen-
erator and receiver at the same node. ALl parameters are
non-probabilistic and the generator waits for a reply from the
receiver before sending another message. The configuration is
similar to node A in figure 2 of chapter IIl», except that the

generator and receiver are communicating with each other,

The example will be easiest to describe in chronological or-
der. Therefore the experiment output will be presented first.,
and then it will be discussed point by point. Please note

that user input is underlined,

>RUN_CENCIL

EXPERIMENT DESCRIPTION FILE:LESI1.GEN

page 54

10

1M

NEXPER= 1 NSERIE= 42 NUMBER LINKS= 1
TGNODE= TELA
LENAVE= 100. LENEXP= 0.00
TIMAVE= 1.00 TIMEXP= 0.00
TIMBAS= R
TGFUNC= R
CONAVE= ba CONEXP= 0.00

1 1 1 0 0 0 0 D 0 0

1 1 0 0 0 0 0 0 0

IF ALL IS OKs TYPE *Y' TO CONTINUE:Y
LOCCTL: NEXPER= 1 NSERIE= 42 NUMGEN= 1 NUMMIR= 1
LOCCTL: EXPERIMENT CONTROL TABLE RECEIVED.
CENCTLz: ALL EXPERIMENT CONTROL TABLES SENT.
CENCTL: NODE 1: DELAY= 0.0241 CLOCK CORR= 0.0098 SECONDS.
LOCCTL: CORRECTED LOCAL TIME = LOCAL TIME + 0.009766 SECONDS.
CENCTL:z ALL CLOCKS SYNCHRONIZED.
GEN>AC_ALL
LOCCTL: 0 FAILURES ON INITIALIZING LINKS 1
0K.

GEN>IN_IELA

LOCCTL:
OK.

GEN>REI.

TT0 ==
NO SUCH
FCS =26+

INITIALLZED.

03297842 IELA
ERROR 29
FILE
0 032978 4

IN "CEN2 " at 271

FROM "

+MAIN." at &

PLEASE IGNORE THE 2REVIOUS FCS MESSAGE,

CENCTL:
LOCCTL:
LOCCTL:

GEN>EX
LOCCTL:

CENCTL:

RETRIEVED NODE TELA.

DATA -AREA RETRIEVED.
INITEALIZED,

EXITING

EXITING.

>BUN_BETIREY

page 55

12
ENTER FILENAME: (032778.2

13
TIME OF EXPERIMENT = 3/29/78 16:40:01
NEXPER= 1 NSERIE= &4
DURATION OF EXPERIMENT = 50.90 SECONDS.

1 ACTIVE LINKS: 1
1 RETRIEVED NODES: TELA

14
TELA

MSGLEN SIGML SIG2ML MSGTIM SIGMT SIGZMT NCON SIGCHM
69 7.E+03 7.E+0D5 69 1.6+00 2.€-02 17 7.E+01

S51G2CM NDISCO NRNDEL SIGRD SIGZRD RDMIN RDMAX
3.E+02 17 59 1.E+0) 3.E+00 1.E-01 4.E-0)

NDELAY SIGD SIGZD DELMIN DELMAX
70 7.E+00 1,E+DD 2.E-02 2.E-01

NARTIM SIGAT SIGZAT ATMIN ATMAX TIMER

1t The greater-than sign is the system prompt character. The
experiment is initiated with the RUN CENCTL command which

starts the central control routine.

2: Central control immediately asks for the name of the

experiment description file which is TEST1.GEN.

Xa Central control orints the contents of the experiment de-
scription file, The first Line summarizes the experiment with

its main numbers, series number (see Appendix B) and the maxi-

page 56

mum number or generator-receiver pPairse. To speed
implementations, the constraint was imposed that all generators
be in the control node; therefore the source node is not
specified here, In this case, it is the same as the target

nodes, TELA.

The message lengths (in bytes) are characterized by their
average length and exponential parameter: 100 and 0 respec-
tively. Recall that 3 zero exp means a constant value. The
intermessage time and messages per connection are similarly
defined at 1 second and 4 messages/connect. The time base is
"wait for reply" and the target task (receiver) function is to
return messages, The Llast six lLines would be repeated for

each additional Link to be tested,

4: Central control presents an extremely concise tabular
summary of the experiment. The first column represents the
node number, in the order encountered in the experiment de-
scription file. The second column shows the number of gener-
ator links and receiver links to this node. The rest of the
table gives the Link numbers associated with this node. Ffor
example, if the sixth experiment node generates traffic on the
sixth, seventh and eighth Links, and receives traffic on the
second and eighth links, then its part of the table would look

like:

YR
%]
oo
o
o
o
o
o
(=)

Finally. central control asks for confirmation on the

experiment identification before proceeding.

S: AlLL messages from lLocal control will appear on a terminal
at the Llocal node. Since in this case the Local and central
nodes are identicals, messages will be intersperseds, showing

the interplay of the two programs.,

Local control begins 2y printing the experiment number, series
numbers and the number of generator and receiver links. This
is the local version of the first line of (3) and the second
column of (4), Local control then declares that it has
received its control table, while central control similarly
declares that it has successfully sent all such tables (only

one in this case).

6: After synchronizations, each control routine reports on
message delay and clock differential. The differential here
must be zero because both routines wuse the same clock,
Happilyr, the value reported is below one time unit, which for

this computer is 1/60 second.

7: Finally we arrive at the first command. AlLL Llinks are to
be activated, Local control reports that it activated Link 1
without error, Central control says "0K's» meaning that the

command was performed.

8: Since the state of the network was just changed by acti-

page 58

vating a links we must reinitialize any node whose data base
will be retrieved. Otherwise that node's data will not be
consistent with a single traffic pattern, and the node®s se-
ries number will not match the central number when the data is
retrieved. (See the discussion of series_number on page 63.)
So the next command is INitialize node TELA. Againes no

problems are reported.

This Last step could be automated if every node is initialized

after defactivating links.

9 After a while, it is time to collect the data. The re-
trieve command specifies a filename, 032978.2, and the nodes
to be retrieveds, TELA. To prevent file overwritings, the
file's existence is checked first, Unfortunatelys, this re-
sults 1in an undesirable file system message, but that can be
ignored. Note that local control also automatically does an
initialize after a retrieve since that would normally have to

be done anyway.

To perform another experiment nows one would delfactivate ap-
propriate Llinks, initialize all nodes whose data will be re-

trieveds and then after a while retrieve the data bases.

10: No more experiments will be performed here, so we EXit,

Link deactivation is automatically performed.

11t A simple file dump program called RETREV will exhibit the

page 59

data just collected.

12: The filename is the one given to the retrieve command.

13: Administrative 1information is presented first. The
experiment number and the List of active Links are sufficient

to define the experiment,

14: At LlLast we see the data itself, Since this project was
not involved in data analysiss the data is presented in wvery

crude forms just as it was collected,

bata field names beginning with SIG and 5162 are sums and sums
of sguares of the preceeding count field. For examples the
number of lengths measured 4as 69, and the sum of message
lengths was 7000, and the sum of squares was 700 000. ALl
messages were 100 bytes in length so this is in agreement with
the experiment description file. Data field names with MIN
and MAX are minimum and maximum values of the preceeding

MEASUres .

The first two lines are generator measures concerning message
lengths. intermessage timess, connections and round trip
delays. The third Line concerns the one-way delay to the re-
ceiver, and is measured there, These three lines are repeated
for each generator at the node, The last lLine concerns the
interarrival times of messages at the receiver in this node.

The idle time counte TIMER, 15 also included on this Line,

page 60

Two thousand idle clock
seconds elapsed at node

time was the time spent

tickss or about thirty-three idle
TELA during this experiment. The idle

in the generator waiting for the right

moment to send the next message.

page 61

APPENDIX B

; TABLE DESCRIPTIONS

This section will attempt to give a concise recapitulation of
Chapter 111, but in a rather more prosaic manner, It is
noteworthy that the tables described here are wuseful in
exactly the form presented. Experiment descriptions, node
controls, and statistics gathering will each require one of the

following data structures,

Experiment Description Table

The experiment description table is built off-lLine and stored
in the file system at the experiment control node. It de-
scribes the traffic paths that may be activated during an
experiment and which nodes may trace messages, The «central
experiment control routine reads this file as its first action
and creates the experiment control tables from it. Each field
is briefly described below. Those that were not mentioned in
section A are purely administrative in nature and are assigned
either by the routine that builds the table or during the

experiment.

page 62

PER TABLE
experiment_number: for cataloguing
experiment_description: free format field

monitor_interval: wused by the status monitor routine as
the sampling rate for certain system parameters such as
error countses up/down status., and gqueue lengths

series_number: identifies the number of the sub-
-experiment. This is the only field that is changed when
the experiment description table is put away after the
experiment. It is idincremented after each defactivate
paths command anid after each initialize/retrieve data
bases command. The Local copy of this number is updated
only when the local data base is initialized. When the
operator retrieves a data bases the central series number
is compared with the Local series number, If they do not
matche then the operator knows that the experiment envi-
ronment was changsd since this data base was Last ini=-
tializeds 1in which case the wutility of that data is
gquestionable,

PER PATH

path_number: an index to the table's path entries that
uniquely identifies each generator-receiver pair

source_node: the node of the generator

source_task: the generator's task name (GENT1, GEN2s <eer
GENB, assigned sequentially for each node) . This
identifies which copy of the generator is used for this
path and which section of the data base is used for that
generator.

target_node: the node of the receiver task. Since there
is only one receiver per nodes no task name is needed.

message_Llength_mean_value: number of bytes
message_Llength_exponential_parameter: with the precedings
this identifies the exponential probability distribution
of the message lengths. 1If it is zeros, then the Length
is fi!ed'

inter_message_time_mean_value: number of clock ticks
inter_message_time_exponential_parameter: exponential

probability distribution for time between sending mes-
sages

sage &3

inter_message_time_base: inter-messge time may be based
on either the time the previous message was acknowledged.,

of the time the reply from the previous message was
received

connect_period_mean_value: average number of messages
sent during each established path connection

connect _period_exponential_parameter: geometric proba-
bility density for the connect period., Since the connect
period is measured in number of messages, it cannot
assume non-integral values. C(onnections are immediately
reestablished after disconnection.

target_function: describes whether or not the receiver
task is to send back the messages it receives,
Obviouslys, if the time_base assumes a reply, then this
parameter is already ca0sen,

trace_flag: signals whether tracing may be enabled

Experiment Control Table

The experiment control table is the Llocal node's subset of the
experiment description table. The Local control routine
receives it from the central control and uses it to control
its generators, receivers, status monitor, and data updater.
Entries with no descriptions are identical to those in the
experiment description table,

experiment_number;

series_number: updated at each initialize command. See
the description above for how this is used.

monitor_interval:
trace_flag: informs the local experiment control routine
that an extended data base for recording tracing infor-

mation must be installed

data_update_enable_flag: used during data base initialize
and retreive sequences to synchronize statistics
recording

page 64

PER SOURCE PATH
path_number:

active_status: identifies a path as activated or
deactivated

source_data_base_entry: assigned by the central
experiment control routine when assembling this table.
Each generator has its own area 1in the data base for
recording its information.

target_node:

message_Llength_mean_value:
message_Llength_exponential_parameter:
inter_message_time_mean_value:
inter_message_time_exponential_parameter:
inter_message_time_base:

connect _period_mean_value:

connect _period_exponential_parameter:

target_function:

PER TARGET PATH

Link_number:

active_status: identifies the path as activated or
deactivated

target_function:

Data Base

The data base is divided into three sectionse. One section
absorbs all the data that the status monitor routine
generates, another does the same for the tracing data., and the

third section contains the statistics gathered by the

page 65

generatorses the receiver and the idle timer, The first two

sections require threshold mechanisms,

The data base itself is accessible only to the data wupdater
and the Llocal control routine. The Latter never writes into
it and reads from it only to retrieve the data on operator
command.,

timer: number of ticks (usually 1/60 second) that a low-

-priority program has been running. This 1is wused to

calculate CPU utilization,

MONITOR DATA

node_status: activefinactive status of neighboring nodes

error_counts: errors per Link

free_buffer_Length: a measure of the <congestion in the
node

output_queue_Length: the backlog of each modem

sent_queue_Llength: number of messages waiting for ac-
knowledgement

retransmission_gueue_Llength: number of messages waiting
for error recovery

conversion_queue_length: number of messages waiting for
protocol translation

store_and_forward_queue_Llength: number of messages in
transit waiting for routing

TRACE DATA

message_header; a unigue identifier for correlation with
trace data from ather nodes

arrival_times time stanmp of arrival at the node's network
software

output_queue_time: time stamp of entry to output Qqueue
(Logical transmission)

page 66

time_transmitted: time stamp of physical transmission

acknowledge_time: time stamp of aknowledgement or
placement on retransmission queue

output_Line: number of the output line for routing veri-
fication

MESSAGE STATISTICS

interarrival_time: intervals between arrivals at the re-
ceiver task., The number of messagess, the sum of times,
and the sum of squares of the times are recorded, as well
as the maximum and minimum times,

N.Ba. The remaining six categories of data are recorded
separately for each link.

message_Length: number of messages, sum and sum of
squares of message Llengths. These three values yield
mean value and standard deviation.

inter_message_time: number of timess, sum and sum of
sgquares of times

messages_per_connect: number of connectss, sum and sum of
squares of messages per connect

disconnects: number of disconnects

round_trip_delay: number of round tripss, sum and sum of
squares of delayss minimum and maximum delays

one_way_delay: number of tripss, sum and sum of squares of
delays, mimimum and maximum delays

sage 67

APPENDIX C

COMMAND DESCRIPTIONS

This command set for the traffic generator system emphasizes
both flexible experiment control and ease of use, Please note
that not all of these commands have been implemented; see
Chapter IV, For an example of the use of those that have been

implemented, see Appendix A.

Activate <links>

The specified Link numbers are Looked up in the descrip=-
tion tables, and the command is routed to the appropriate
Local control routines, There the generators responsible
for those links are activated. Then a return message is
sent to central controls and the experimenter is

informed.

Atfile <filename>

The specified file is used for command input in the place
of the terminal., Commands and messages still appear on

the terminal.

page 68

Deactivate <links>

This undoes an activate,

Exit
This causes all Links to be deactivateds, and the
experiment to be ended. No data bases are retrieved or
saved,

Help

This prints a short description of all the commands.

Initialize <data_bases>

This is meant to be done after the desired Llinks
activated, so that the message generators are in

swing (steady state) when data collection begins.

are

full

If

more than one data base is specifieds then they will be

initialized synchronously as follows. A post-dated

time

is included 1in the initialization messages. Each Llocal

control routine immediately initializes the data base and

goes to sleep until the specified time, when it

-enables updating.

Measure <arguments>

re=

This will compute and display performance measures from a

previously saved data base or bases, Arguments are as

sage 69

yet undefineds and the only measures to be initially

implemented are throughput and delay,
Retrieve <data_bases>

This will cause the specified data bases to be sent to
the control node and saved for Llater processing. Like
the initialize commands this command will be executed
synchronouslys, in order that the data 1in several nodes
can be correlated. Otherwises covering different time
spans, the data can only be considered independently. In
addition to the data itself, the current state of message
generation (i.e.r, the activated Links and their
descriptions) will be saved. Also saved will be the Llast
initialize timer, and the present time, crucial for
throughput calculation, Note thats. after changing con-
ditions of the experiments, such as de/activating Links.,
the experimenter is responsible for initializing those
data bases to be Llater retrieved.s By failing to ini-
tializes, the data pDases contain information relating to
more than one type of Load on the networks and any re-

sults will be misleading.
Notrace <nodes | Links>

Disables tracing (see Trace)

page 70

Terminal

This command at the end of a command file puts the con-
trol of the experiment back at the terminal. If the file
does not end 1in either an Exit or a Terminal, Exit 1s

assumed,

Trace <nodes | links> <freg>

Tracing a Llink causes messages generated on that link to
have their trace bit turned on. This is nots howevers,
sufficient to get tracing information about them
recorded, Tracing a node causes that node to record in=
formation about every trace-enabled message which passes
through it. Frequency applies only to tracing Links and

specifies that every nth message is to be traced.

page 71

APPENDIX D

PROGRAM LISTINGS

The following Listings are the implementation of the DECnet
traffic generator described primarily in Chapter [I1. Chapter
IV details which parts of the design were included and which
Wwere not. The previous appendices further clarify the

external and internal operation of the generator system,

For ease of wuses, the program task names in the Listings are

matched here with the names used throughout this report:

CENCTL - Central Experiment Control Routine
CENT1 - initialization phase
CEN2 - operational phase
LOCCTL - Local Experiment Control Routine
GEN1 - Generator
RMAC - Asynchronous System Trap (AST)
MIRROR - Receiver
DATUP = Data Updater
CPU - Ildle Timer (CPU utilization)
KOMMON - System Common Area (Data Base)

page 72

MO OO OO A OO OO AN OO DO OO OO OO0

PROGRAM CENCTL - CENTRAL EXPERIMENT CONTROL ROUTINE.
WRITTEN BY R. STRAZDAS,

THIS PROGRAM ASSEMBLES A USER-SPECIFIED EXPERIMENT DESCRIPTION
FILE INTO APPROPRIATE EXPERIMENT CONTROL TABLES, AND SENDS THEM

OFF

TO LOCAL EXPERIMENT CONTROL ROUTINES AT THE RESPECTIVE

NODES.
IT PERFORMS CLOCK SYNCHRONIZATION

AND

OTHER SETUP TASKS, INFORMS OF NETWORK STATUSs, AND ACCEPTS

INTERACTIVE COMMANDS FROM A TERMINAL OR FILE.

SUBROUTINE CEN1 PERFORMS ALL SETUP TASKS.
SUBROUTINE CENZ2 ACCEPTS COMMANDS.

DATA DEFINITIONS:

BAREA
CLOCK
CMDLIN
CONAVE

CONEXP
DELAY

DELMAX
FNAME
FNODE
IAREA
IARG
I1DS

10S8_
L
LENAVE

LENEXP
LENTBL
LENTMP
L INK

LINKNZ
LINKSW
LNKGEN
LNKMIR

LNODE

BYTE ARRAY USED FJR SENDING AND RECEIVING NETWORK DATA
USED FOR RECORDING THE TIME OF DAY IN A RETRIEVE FILE
80-CHAR COMMAND LINE FROM THE TERMINAL OR aFILE

GENERATOR MESSAGES/CONNECT MEAN VALUE. AS READ FROM

THE EXPERIMENT DESCRIPTION FILE

GENERATOR MESSAGES/CONNECT GEOMETRIC PROBABILITY PARAMETER.
AS READ FROM THE EXPERIMENT DESCRIPTION FILE

ARRAY OF ONE-WAY TIMES TO EACH NODE, AS DETERMINED DURING
SYNCHRONIZATION

MAXIMUM DELAY TO THE NODES IN A PARTICULAR COMMAND

USED FOR ACCEPTING AND ASSIGNING FILE NAMES

USED FOR RECORDING NODE NAMES IN THE RETRIEVE FILE

ARRAY USED FOR SENDING AND RECEIVING NETWORK DATA

IS 0 WHEN THE CURRENT ARGUMENT OF CMDLIN IS THE LAST
STATUS INDICATOR FOR EXECUTIVE DIRECTIVE CALLSs ALSO USED
IN DE/ACTIVATE COMMANDS TO DETERMINE WHETHER A GIVEN NODE
IS INVOLVED

STATUS BLOCKS FOR NETWORK CALLS

INDEX FOR CMDLIN; ALSO SOMETIMES A DO LOOP PARAMETER
GENERATOR MESSAGE LENGTH MEAN VALUE., AS READ FROM THE
EXPERIMENT DESCRIPTION FILE

GENERATOR MESSAGE LENGTH EXPONENTIAL PROBABILITY PARAMETER.,
AS READ FROM THE EXPERIMENT DESCRIPTION FILE

LENGTH OF THE EXPERIMENT DESCRIPTION TABLE (NUMBER OF LINKS)
THE LENGTH IN CHARACTERS OF TEMP

A LINK NUMBER DECODED FROM TEMP

USED TO RECORD THE ACTIVE LINKS FOR THE RETRIEVE FILE

IS %Y IF THE LINK IS ACTIVE, "'/ " IF INACTIVEs *L" IF

IN LIMBO (STATUS 3EING CHANGED)

ARRAY OF LINK NUMBERS ASSOCIATED WITH GENERATORS.

INDEXED BY NODE

ARRAY OF LINK NUMBERS ASSOCIATED WITH MIRROR TASKS.,
INDEXED BY NODE

USED BY SUBROUTINE BFMT1 TO BUILD THE DESTINATION
DESCRIPTOR AREA

page 73

Ao AN OO A NAanN a0 DO DD OO DN oo ma oD DD

LocC
LTASK
i
Lg—-ﬁ-w-—
MNODE
MSTAT

NEXPER
NGEN
NMIR
NODE
NODESW

NREC
NSERIE

OQUTMSG
RAREA
SIGCL
SIGLC
SWITCH

TEMP
TGFUNC

TGNODE
TGTBLK
TIMAVE
TIMBAS
TIMEXP

T1
Te

LUN

00 =4 On W £~ Y

RETURN MARKER FOR THE INTERNAL SUBROUTINE °*DELAY®
CHARACTER ARRAY CINSTANT FOR TASKNAME °*LOCCTL®
CHARACTER CONSTANT FOR CHARACTER __
COMMAND NAME CHARACTER ARRAY FOR COMMAND
INDEX FOR NODE NAMES IN RETRIEVE COMMAND
STATUS OF THIS TASK'S NETWORK DATA QUEUE
EXPERIMENT NUMBER, AS READ FROM THE EXPERIMENT
DESCRIPTION FILE

ARRAY OF NUMBER OF GENERATORS AT EACH NODE

ARRAY OF NUMBER OF LINKS TO MIRROR TASK AT EACH NODE
ARRAY OF NODE NAMES INVOLVED IN THIS EXPERIMENT

USED TO KEEP TRACK OF WHICH NODES ARE INVOLVED IN

A COMMAND

INDEX FOR RETRIEVE FILE

EXPERIMENT SERIES NUMBER, AS READ FROM THE EXPERIMENT
DESCRIPTION FILE, AND UPDATED DURING THE EXPERIMENT

BYTE ARRAY FOR EXTRA INFORMATION IN CONNECT MESSAGES
REAL ARRAY USED FIR SENDING AND RECEIVING NETWORK DATA
RUNNING TOTAL OF TIMES FROM CENCTL TO LOCCTL, DURING
SYNCHRONIZATION

RUNNING TOTAL OF TIMES FROM LOCCTL TO CENCTL, DURING
SYNCHRONIZATION

IS *v* IF IN 3FILE MODE; ALSO USED AS STATUS FOR
SUBROUTINES BACC AND BFMT1

CHARACTER ARRAY FOR THE CURRENT ARGUMENT FIELD IN CMOLIN
TARGET FUNCTION (FOR MIRROR ROUTINE), AS READ FROM THE
EXPERIMENT DESCRIPTION FILE

TARGET NODES, AS READ FROM THE EXPERIMENT DESCRIPTION
FILE

ACCESS CONTROL INFORMATION AND DESTINATION DESCRIPTOR
AREA BUILT 3Y SUBROUTINES BACC AND BFMT1

GENERATOR INTERMESSAGE TIME MEAN VALUE, AS READ FROM THE
EXPERIMENT DESCRIPTION FILE

TIMING BASE FOR GENERATOR, AS READ FROM THE

EXPERIMENT DESCRIPTION FILE

GENERATOR INTERMESSAGE TIME EXPONENTIAL PROBABILITY
PARAMETER, AS READ FROM THE EXPERIMENT DESCRIPTION FILE
ARRAY OF TIMES USED FOR SYNCHRONIZATION

ARRAY OF TIMES USED FOR SYNCHRONIZATION

-

DEVICE

NS (NETWORK DATA QUEUE}

SY

EXPERIMENT DESCRIPTION FILE
RETRIEVE FILE

TI

cL

afFILE

NS C(LINK TO LOCCTL AT NODE 1)

page 74

(p Nl e Balle

[l o]

[W e

50

100
200

9 NS C(LINK TO LOCCTL AT NODE 2)

LOGICAL*1 LINKS4(10), NODE (6.5)

NODE TABLES FOR UP TO 5 NODES (NODE NAME, LINK NUMBERS TO
GENERATORS, LINK NUMBERS TO MIRRORS)

COMMON /CEN/ LNKGEN(B,5), NGEN(5), DELAY(5),

X LINKSW, NODE, NNODE, NEXPER, NSERIE» LENTBL

CALL CENT
CALL CENZ
END

SUBROUTINE STUFF

SUBPROGRAM TO PJT (CMDLINCJ)#d=Lsess) INTO BYTE ARRAY TEMP.
UNTIL CMDLINCJ) IS BLANK OR A COMMA, L, THE CMDLIN INDEXe
IS UPDATED.

BYTE CMDLINCBO)» TEMP(13), L1COM, L1SP

COMMON CMDLINs L, IARGs, LENTMP, TEMP

DATA L1COM, LISP/*,',Y v/

DO 50 J=1,13

TEMP(J) = L1SP

po 100 J=1.,13

IF (CMDLINCL+J) . EQ LTCOM_OR.CMDLINCL+J) . EQ.LT15P) GO TO 200
TEMP(J) = CMDLINC(L+J)

L = L % J

LENTMP = J - 1

IF (CMDLINCL).EQ.L1S5P) IARG =0

RETURN

END

page 75

SUBROUTINE CEN1.
THIS PERFORMS THE SETUP TASKS FOR CENCTL.

aNalalslal

SUBROUTINE CEM
BYTE TGTBLK(72)s LNODE(B)s LTASK(6), OUTMSG{8)
LOGICAL=1 BAREAC200)
LOGICAL*T1 L1Ys SWITCHs, LISP
LOGICAL*1 LINKSAC(TID), NODE(&,5)
[EXPERIMENT DESCRIPTION TABLE (3 LINES)
LOGICAL*1T TGNODE(&,10), TIMBASCIO), TGFUNCCI1D)
REAL LENAVE(10), LENEXPC(10)
DIMENSION TIMAVEC(TIO) . TIMEXPC(10) -, CONAVECTID) LCONEXPL10)
DIMENSION FNAME(3), T1(11)., T2C10)
DIMENSION IOSB1(2) ., IAREAC100)., RAREAC(S50), MSTAT(3)
C NODE TABLES FOR UP TO 5 NODES (NODE NAME., LINK
c NUMBERS TO GENERATORS-, LINK NUMBERS TO MIRRORS)
DIMENSION LNKMIR(B,5), NMIR{S)
COMMON /fCEN/ LNKGEN(8,5)s NGEN(S)s, DELAY(S5).
X LINKSW, NODE, NNODE, NEXPER, NSERIE, LENTBL
EQUIVALENCE C(QUTMSG(1), NEXPE)+{OUTYMSGL(3),NSERI)
X (OUTMSGL5) +NUMGEN},(OUTMSG(T7) +»NUMMIR) »
X (BAREA-IAREA), (RAREA,IAREA), (T2,1AREA)
DATA LIY.LISP/ 'Y, v}
DATA NODE/ T s "E 2 "L "4 A%, 1,0 Vv, 2L4atyy
DATA LTASK/ 'L 20" 2"C'2"C 0"'T " LYY

GET THE EXPERIMENT DESCRIPTION FILE.

TYPE 10

0 FORMAT ('SEXPERIMENT DESCRIPTION FILE:z")
ACCEPT 20, FNAME

20 FORMAT (3A4)

CALL ASSIGN (3,FNAME,12)

DEFINE FILE 3 (11,16,U,NXXXXX)

b =& V3 Y

SET UP THE EXPERIMENT DESCRIPTION TABLE.
(10 ENTRIES MAX)

INITIALIZE THE NUMBER OF GENERATORS AND MIRROR LINKS AT
EACH NODE.
Do 25 [=1.5
NGENCKI) 0
25 NMIRCI) = 0
NNODE = 1
READ (3'1) NEXPER+, NSERIEs, LENTEBL
TYPE 26+, NEXPER, NSERIEs. LENTBL
26 FORMAT (//" NEXPER= ",15+,5X+"NSERIE= ",15,5%,
X "NHUMBER LINKSE= '",13)
IF (LENTBL.EQ.O) GO TO 9999
NEXPE = NEXPER

(e e e]

1}

page 76

1160

37
36

40

403

50

NSERI = NSERIE

DO 35 J=1,LENTBL

READ (3"J+1)(TGNODE(K#J) #K=1,6),LENAVE(J),LENEXP(J)»
X TIMAVECJ),»TIMEXP(J),TIMBAS(J)TGFUNC(J),CONAVECJ)I,CONEXPLJ)

LINKSW(J) = L1SP

TYPE 1160, (TGNODE(K,J)K=1,6)+LENAVECJ),LENEXP(J) ,TIMAVE(J),
X TIMEXP(J)»TIMBAS(J)»TGFUNC(J)»CONAVECJ),CONEXP(J)

FORMAT (' TGNODE= ‘',56A1/

X " LENAVE= ",F6.0+,6Xs
X ' LENEXP= ',Fé6.2/

X " TIMAVE= ',Fb6.2+6X»
X ' TIMEXP= ',F6.2/

X ' TIMBAS= ",al1/

X ' TGFUNC= *,A1/

X ' CONAVE= ",F6.0.,6X,
X * CONEXP= ',F6.2/1)

CALCULATE NUMBER OF GENERATORS AND MIRROR AT EACH NODE.
NGEN(1) = NGENC12) + 1

LNKGENINGENC1221) =

CHECK WHETHER THE TARGET NODE HAS BEEN NOTED YET.
DO 30 I=1,NNODE

DO 28 K=1,6

IF (NODE(K»I) .NE.TGNODE(K#J)) GO TO 30

CONTINUE

NODE HAS BEEN NOTED BEFORE

60 TO 32

CONTINUE

NEW NODE

NNODE = NNODE + 1

DO 31 K=1,6

NODE(K NNODE) = TGNODE(K.,J)

NMIR(NNODE) = NMIRC(NNODE) + 1
LNKMIRCNMIRC(NNODE) »NNODE) = J

CONTINUE

PRINT TABLES TO CHECK THAT IT WORKS.

DO 36 J=1.,NNODE

TYPE 37,JsNGENCJ) » (LNKGENC(K,J) #K=1,8)sNMIRCJ) »
X (LNKMIR(KsJ)» K=1,8)

FORMAT (2X»I12+3X,12,3%08C2X012)/70s]l2,3%2802%,12))
CONTINUE

VERIFY THAT THIS IS THE DESIRED EXPERIMENT.

TYPE 40

FORMAT ('SIF ALL IS OXK», TYPE "*Y** TO CONTINUE:")
ACCEPT 403, SWITCH

FORMAT (1A1)

IF (SWITCH.EQ.L1Y) GO TO S0

CALL CLOSEC(3)

GO TO 1

I =0

CALL ASNLUN (1,'*NS',0.1D58)

IF (IDS.NE.1) GO TO 9208

CALL OPNNTW (1,I05B1,MSTAT,NNODE)

page 77

(s W =]

101

=

105

110

™

-

20

200
100

IF (10SB1(1).NE.1) GO TO 9000
SEND THE EXPERIMENT CONTROL TABLES TO THE NODES.

DO 100 I=1,NNODE

FIRST CREATE THE LOGICAL LINK TO THE NODE.
CALL BACC (SWITCH,TGTBLKsssvree)

IF (SWITCH.EQ.,FALSE,) GO TO 9014

DO 101 J=1.6

LNODECJ) = NODE(J,I)

CALL BFMT1 (SWITCH#TGTBLK#6,LNODE+»6,LTASK)
IF (SWITCH.EQ..FALSE.) GO TO 9016

NUMGEN = NGENC(I)

NUMMIR = NMIR{(I)

CALL ASNLUN (I+7,"NS'.,D.IDS)

IF (IDS.NE.1) GO TO 9008

CALL CONNTW (I+7,I05B1+,TGTBLK+8+,0UTMSG,0)
IF (I0SB1(1).NE.1) GO TO 2002

SEND GENERATOR INFORMATION.

IF (NUMGEN.EQR.0) GO T2 120

PO 110 J=1,NUMGEN

LINK NUMBER

IAREA(1) = LNKGENCJ.I)

TARGET NODE., ETC.

DO 105 K=1.4

BAREA(K+2) = TGNODE(K,IAREA(1))

RAREA{3) = LENAVECIAREAC1))
RAREA(4) = LENEXP(IAREA(1))
RAREA(S5) = TIMAVE(IAREA(1))
RAREA(&) = TIMEXP(IAREA(T))
RAREA(T7) = CONAVECIAREAC1))
RAREA(8) = CONEXP{IAREAC(C1))

BAREA(33) = TIMBAS(IAREA(1))
BAREA(34) = TGFUNC (IAREA(1))
CALL SNDNTW (I+7,10531,34,1AREA)
IF (I05B1(1).NE.1) GO TO 9004
CONTINUE

SEND MIRROR INFORMATION

IF (NUMMIR.EQ.DQ) GO TO 100

D0 200 J=1,NUMMIR

LINK NUMBER

IAREACT) = LNKMIRCJ,.I)

TARGET FUNCTION

BAREA(3) = TGFUNCCIAREACT))
CALL SNDNTW(I+7,10581,3,1AREA)
IF (I0SB1(1).NE.1) GO TO 9006

CONTINUE

CONTINUE

page 78

My

201

310

L]

320

325

301

302
300

305

el e N NNl

99
2000
2001

9002
9003

SYNCHRONIZE CLOCKS.

TYPE 201

FORMAT (' CENCTL: ALL EXPERIMENT CONTROL TABLES SENT.")

b0 300 I=1.NNODE

T1(1) = SECNDS(D.)

Do 310 J=1.10

CALL SNDNTW (I+7,.100.,1AREA)D

CALL RECNTW (I+7,.100,IAREA)

T1¢J+1) = SECNDS(D,)

sIGCL = D.

SIGLC = 0.

IN CALCULATING DELAY AND CLOCK CORRECTIONs, I1GNORE THE

FIRST TIME VALUES SINCE THE TARGET TASK WAS LIKELY

CHECKPOINTED BEFORE THE FIRST SEND.

DO 320 J4=2.10

SIGCL = SIGCL + T2{J) - T1(J)

SIGLEC = SIGLC + T1(J+1) = T2(J)

DELAY AND CLOCK CORRECTION FOLLOW.

DELAY{CI) = (SIGLC/9. + SIGCL/9.)/2.

RAREACT1) = DELAY(I) - SIGCL/9.

TYPE 325, 1, DELAY (L), RAREAC(I)

FORMAT (* CEMCTL: NODE",12,": DELAY="»F10.4+5X,
X "CLOCK CORR=",F10.4," SECONDS.")

CALL SHNONTW (I+7+.,4-,1AREA)

CHECK WHETHER TASKS CPU AND DATUP WERE INVOKED,

CALL RECNTW (I+7,,4,1AREA)

IF (IAREACI).NE.D) TYPE 301, (NODECKSIL)2sK=146)

FORMAT ("' CENCTL: TASK CPU AT NODE "+6A%1," COULD NOT'.
X ' BE INVOKED.")

IF (IAREA({2).NE.O) TY2E 302, (NODE(L,I)sK=2146)

FORMAT (' CENCTL: TASK DATUP AT NODE *,6A1.' COULD ‘.
X "NOT BE INVOKED.')

CONTINUE

TYPE 305

FORMAT (* CENCTL: ALL CLOCKS SYNCHRONIZED.')

RETURN

COPY THE LATEST SERIES NUMBER TO THE EXPERIMENT
DESCRIPTION FILE-, AND EXIT.

WRITE (3"1) NEXPER,» NSERIEs, LENTBL

CALL CLOSE (3)

CALL EXIT

TYPE 9001, I0SB1(1)

FORMAT (' OPNNT UNSUCCESSFUL ON CENCTL, 10SB1(1)= ',I3)
GO TO 9999

TYPE 9003, 10581+, LNODE, LTASK

FORMAT (' CONNTW UNSUCCESSFUL ON CENCTL, 105B1= ',13,',',
X [3/BXs"NODE= '",6A1,5%X,"TASK= ', 6A1)

page 79

GO TO 9999

9004 TYPE 9005, I, Jer 105B1C1)

9005 FORMAT (1X,13,'TH LINKs, '»,12,"TH GEN SNDW FAILED ON ',
X "CENCTL. 10SB1(1)=',13)
GO TO 9999

9006 TYPE 9007, 1. 125B1(1)

9007 FORMAT (1X,I3,'TH LINK MIR SNDW FAILED ON CENCTL. ‘&
X '10SB1(1)=',13)
GO TO 9999

9008 TYPE 9009, 1. IDS

9009 FORMAT (' ASNLUN FAILED ON CENCTL., I=',12,5X,'IDS=",13)
GO TO 9999

9014 TYPE 9015

9015 FORMAT (' BACC FAILED ON CENCTL. ")
GO TO 9999

9016 TYPE 9017

9017 FORMAT (* BFMT1 FAILED ON CENCTL.')
GO TO 9999
END

page B0

SUBROUTINE CEN2.
THIS PERFORMS THE INTERACTIVE COMMANDS FOR CENCTL.

(a Nl slel

SUBROUTINE CENZ2
LOGICAL#*#1 CMDLINCB8O) TEMP(13)
LOGICAL*T L1Y,SWITCHsLT1SPoL1ALLIL,NODESWL(S),FNODE(S,5)
LOGICAL*1 LINKSW(10), NODE(6.5)
C COMMAND NAMES
LOGICAL*1 LACTIV(9),LATFILC7)»LDEACTCI1)#LEXITC(S5) »LHELP(S5)»
X LINITIC11)-,LMEASUC8),LRETRI(9),LNOTRA(B),LTERMI(I)LTRACE(S)
DIMENSION I0SB1(2), 10SB2(2), IAREA(I100), RAREA(S50).,
X CLOCK(C2), LINKNZ2C10), FNAME(3)
NODE TABLES FQOR UP TO S NODES (NODE NAME., LINK NUMBERS
c TO GENERATORS, LINK NUMBERS TO MIRRORS)
COMMON /CEN/ LNKGEN(B,5), NGEN(S5), DELAY(S).
X LINKSW, NODE, NNODE, NEXPER, NSERIE., LENTBL
COMMON CMDLIN, Les IARG, LENTMP, TEMP
EQUIVALENCE (RAREA, IAREA)
DATA LIYLLISPALTALLIL/ Y """ "L, A, LYY
DATA LACTIV.LATFIL oLDEACT,LEXIT,LHELP,LINITI-LMEASU,

(g

X LRETRI+» LNOTRA., LTERMI., LTRACE

x Ilgl'lcl‘lTl'l[I'lvl‘!hl'ITU'IEi’l I'

X .A".T.I.F'I.I.I.L."Ell. I’

X lDI'IEI’OAI’lcl'lrl'lli‘.Vl'IAl’ITI'IEI’I l’

X iEl'lxl'iI.’.Tl'l "

% IHI'IE"CLI'IPI‘I .

4 'I'I'N'I'I'llT.I.I.r‘A.f.L.J.I'f'z.l.E'J. i'

X .M‘;‘E'"A.;'S"'U'p'ﬂl}'E"' !'

X 'R".E'p'T"'R'p'l';'E';'V‘p'E.;' t'

X .N."D".T'!.R‘!.A"'C".E.l. l’

X lTl’lel’lRl’UMI’OIC’Inl'OAI'ILO,l i‘

X ITI'IRQ'Iﬂl’lCI'IEO'I lf
L
c
= THE SWITCH IS ON (= 'Y*) IF IN ATFILE MODE.

SWITCH = L15P

c
C ACCEPT A COMMAND, VALIDATE IT, AND PERFORM IT.
o
C EACH COMMAND MUST BE GIVEN WITH TWO OR MORE CHARACTERS
C FOLLOWED BY A SPACE. ARGUMENTS ARE DELIMITED BY A COMMA,
C IF AN ERROR IS DETECTED THEN THE LINE IS RETYPED TO THE
c POINT WHERE THE ERROR WAS DETECTED.

400 TYPE 401
401 FORMAT ('"SGEN>')
DO 402 1=1,80
402 CMDLINCT) = L1SP
C IARG IS ZERO WHEN THERE ARE NO MORE ARGUMENTS.
IARG = 1
IF (SWITCH.EQ.L1Y) GO TO 450
ACCEPT 403, CMDLIN

page 81

403
450

500

510
520
c

530
540

(el el el Nalalalelel

000

2001

2010

2015

2020

2029

FORMAT (80A1)

GO TO 500

READ (7,403,END=2298) CMDLIN
TYPE 403+ CMOLIN

L = 2

IF (CMDLINCT) JEQ.LACTIV(T1) AND.CMDLINC2).EQ.LACTIV(2)) GO TO
IF (CMDLINCT1) L EQ.LATFILC1) .AND.CMDLINC2) EQ.LATFILC(2)) GO TO 2100
[F (CMDLINC1) .EQ.LDEACT(1).AND.CMDLIN(2).EQ.LDEACT(2)) GO TOD 2200
IF CCMDLIN(1) EQ. LEXIT(1).AND.CMDLINC(2).EQ.LEXIT(2)) GO TO 2300
[F C(CMOLINCT) JEQ.LHELP(1) AND.CMDLINC(2) .EQ.LHELP(2)) GO TO 2400

IF CCMDLINCT) dEQ.LINITIC1) .AND.CMDLINC2) JEQ.LINITIC2))

IF (CMDLINCT1) .EQ.LMEASUCY) .AND.CMDLINC2) . EQ.LMEASUC2))

IF (CMDLINCT) .EQ.LNOTRACT).AND.CMDLIN(2).EQ.LNOTRA(Z))

IF CCMDLINC?) JEQ.LRETRIC1) .AND.CMDLINCZ) EQ.LRETRIC2)])

IF (CMDLINCT) .EQ.LTERMICT1) . AND.CMDLIN(2).EQ.LTERMIC2))

IF (CMDLINC1) EQLLTRACECT) .AND.CMDLINC2) . EQ.LTRACECZ2))
TYPE 520

FORMAT (' NO SUCH COMMAND.')

ERROR IN THE COMMAND LINE

TYPE 540, C(CMODLINCJ), J=14L)

FORMAT (1X,B0A1/)

GO TO 400

ACTIVATE COMMAND

GET THE LINK NUMBERS. IF THE FIRST ONE IS 'ALL'» THEN
ACTIVATE ALL LINKS.

GO
GO
G0
GO
GO
GO

TO
TO
TO
TO
TO
TO

TO ACTIVATE, SEND A MESSAGE TO THE ASSOCIATED LOCAL CONTROL

ROUTINE WITH THE LINK NUMBERS TO ACTIVATE., IT WILL

CONFIRM BY SENDING BACK AN INTEGER STATUS VALUE., AS WELL

A5 LINK NUMBERS FOR THOSE THAT FAILED TD BE ACTIVATED.
D0 2001 L=3.9

IF (CMDLINCL) .EQ.L1S5P) GO TO 2010

IF CCMDLIN(L) NE.LACTIVI(L)) GO TO 510

CONTINUE

THE FIRST INTEGER IN IAREA IDENTIFIES THE COMMAND.
IAREA(TY = 1

CODE FROM HERE TO 2096 15 ALSO USED BY THE DEACTIVATE
COMMAND

CALL STUFF

IF (TEMP(1).EQ.LTA_AND,.TEMP(2) EQ. LTL,AND,TEMP(3) ,EQ.LTIL

K <ANDL.TEMP{4).EQ.L15P) GO TO 2040

FIND WHICH LINKS TO ACTIVATE.

IF CLENTMP.GT.2) G0 TO 2090

DECODE C(LENTMP-2020,TEMP,ERR=2090) LINK

FORMAT (I2)

IF (LINK.,LE.DO.OR.LINK.GTLLENTBL) GO TO 2090

IF (LINKSW(LIMNK).EQ.LISP.AND.IAREACT) EQR.2Z) GO TO 2029
IF (LINKSWCLINK) EQ.L1Y.AND.IAREACT1) EG.1) GO TO 2031
LINKSWCLINKY = L1L

GO TO 2035

TYPE 2030, LINK

page &2

2000

2500
25600
2700
2800
23200
3000

2030 FORMAT (' LINK ',I13," IS ALREADY INACTIVE...")
GO TOo 2035
2031 TYPE 2032, LINK
2032 FORMAT (' LINK ', 13',' IS ALREADY ACTIVEe..")
2035 IF (IARG.NE.D) 50 TO 2015
GO TO 2050
c ACTIVATE ALL LINKS.
2040 00 2045 J=1,LENTBL
IF C(LINKSW(J).EQ.L1SP.AND.IAREACT).EQ.1.0R.

X LINKSW(J) . EQ.LTY ,AND.IAREAC1).EQ.2) LINKSW(J) = LIL
2045 CONTINUE
c DO THE ACTIVATING.

2050 NSERIE = NSERIE + 1
DO 2060 J=1,NNODE
C CHECK IF THE CURRENT NODE HAS ANY GENERATORS.
[F (NGENCJ).EQ.0) GO TO 2040
I10s = 0
DO 2070 K=1.,NGEN(J)
IAREA(K+2) = (
L COPY LINK NUMBERS TO 3E ACTIVATED.
IF (LINKSWC(LNKGEN(KsJ)) NE.LIL) GO TO 2070
IAREA(K+2) = 1
IDS = 1
2070 CONTINUE
IF (IDS.EQ.D0) GO TO 2060
CALL SNONT (J+7,108B1,20,1AREA)
CALL RECNTW (J+7,10SB2,20+.1AREA)
IF (I0SB1{1).NE.1) GO TO 2075
IF (10SB82C(1).NE.T1) GO TO 2077
IF (IAREA(2).EG.1) GO TO 2058
C AT LEAST ONE LINK WAS NOT ACTIVATED.
DO 2072 K=1,NGENC(J)
IF (IAREA(X+2).G6E.0) GO TO 2072
TYPE 2071, 0 = IAREA(K+2)
C RESTORE LINK STATUS, SINCE THIS LINK WAS NOT DE/ACTIVATED.
IF (IAREA(1).EQ.1) LINKSW(LNKGEN(K,J)) = LI1SP
IF (IAREAC1).EQ.2) LINKSWC(LNKGEN(K,J)) = L1Y
2071 FORMAT (' CENCTL: LINK ',13," WAS NOT DE/ACTIVATEDee."')
2072 CONTINUE
GO TO 2058
2074 FORMAT (' CENCTL: COMMAND FAILED AT NODE ',6A1,
X '. STATUS= 'aI3¢5Jh'..-'1
2075 TYPE 2076+ (NODEC(L+Jd)e L=1,6)s 105B1(1)
2076 FORMAT (' CENCTL: SND TO NODE *,6A1,' FAILED.',
X - STATUS= 'rIStSXr'...')
GO TO 2055
2077 TYPE 2078+ (NODE(L,J)s L=1,6), 105B2(1)
2078 FORMAT (' CENCTL: RECW FROM NODE ',6A1.,' FAILED.'.,
X ¥ STATUI®R "518555%¢%:60")
£ RESTORE LINK STATUS. SINCE THE COMMAND MAY NOT HAVE
C BEEN CARRLED OUT,
2055 0O 2056 K=1,NGENCJ)

page 83

IF (LINKSWCLNKGEN(KsJ))NELLIL) GO TO 2056
I1F (IAREA(1).EQ.1) LINKSWC(LNKGEN(K,J)) = L1SP
IF (IAREAC1).EQ.2) LINKSW(LNKGEN(K,J)) = L1Y
2056 CONTIMNUE
GO TO 2060
C UPDATE LINK STATUS. SINCE THE COMMAND WORKED AT THIS NODE.
2058 DO 2059 K=1.,NGEN(J)
IF (LINKSW(LNKGEN(KsJ)) NELLIL) GO TO 2059
IF (IAREA(C1).EQ@.1) LINKSWC(LNKGEN(K,J)) = L1Y
IF (IAREACT).EQ.2) LINKSWCOLMNEKGEN(K,J)) = L15P
2059 CONTINUE
2060 CONTINUE
2079 TyYPE 2080
2080 FORMAT (' OK."')
GO TO 400
2090 TYPE 2095
2095 FORMAT (' BAD LINK NUMBER.')
C RESTORE LINK STATUS, SINCE THE COMMAND IS INVALID.
DO 2096 J=1,LENTBL
IF (LINKSWCJ).NE.LIL) GO TO 2096
IF (IAREA(1).EQ.1) LINKSW(J) = L1SP
IF (IAREA(T).EQR.2) LINKSW(J) = LY
2096 CONTINUE
GO TO 530

ATFILE COMMAND

100 D00 2101 L=3.7

IF (CMDLINCL).EQ.L1SP) GO TO 2110

IF CCMDLINCL) .NELLATFIL{(L)) GO TO 510
2101 CONTINUE
2110 CALL STUFF

TYPE BB&B

8888 FORMAT (' LCNOT SUPPORTED]")
GO TO 530

DEACTIVATE COMMAND

OPPOSITE OF ACTIVATE COMMAND, SEE DESCRIPTION THERE.
200 0O 2201 L=3.,11
IF (CMDLINC(L).EQ.L1SP) GO TO 2210
IF (CMDLINCL) .NEL.LDEACT(L)) 60 TO 510
2201 CONTINUE
2210 IAREA(1) = 2
G0 TO 2015

P 3 O O

2298 TYPE 2299
2299 FORMAT (' [END OF FILE, EXIT ASSUMED,]')
GO TO 2310

EXIT COMMAND

Ln e B]

page 84

300

23l
2310

2320

2325
2330

2340

2401

~n
F
-
(=]

NGO OO OO D

500

2501
2510

TAKES NO ARGUMENTS, A MESSAGE IS SENT TO ALL NODES.
AND A CONFIRMATION STATUS IS RECEIVED. THE LOCAL
CONTROL ROUTINE IS SOLELY RESPONSIBLE FOR SHUTTING
OFF GENERATORS., ETC(C.

DO 2301 L=3,5

IF (CMDLINCL).EQ.L1SP) GO TO 2310

IF (CMDLINCL).NE.LEXIT(L)) GO TO 510

CONTINUE

IAREACT) = 3

SEND EXIT MESSAGES TO ALL NODES.

DO 2330 J=1.,NNODE

CALL SNDNT (J+7,10SB1,2,IAREA)

CALL RECNTW (J+7,105B2.,2,1AREA)

IF (10581C¢1).NE.1) GO TO 2320

IF (I0SB2C(1).NE.1) GO TO 2325

IF (IAREAC1).NE.1) TYPE 2074,(NODECL#J)osL=1,6)»IAREACT)
GO TO 2330

TYPE 2076+ (NODE(L,J)s L=1,6), 10SB1(1)

GO TO 2330

TYPE 2078+ (NODE(LAJ)» L=1,6), 105B2(1)

CONTINUE

TYPE 2340

FORMAT (/' CENCTL: EXITING.'//))

NSERIE = NSERIE + 1

CALL CLSNTW(IOS531)

IF (I0SB1(1).NE.1) GO TO 9018

GO TO 999%

HELP COMMAND

PO 2401 L=3,5

IF (CMODLINCL).EQ.LT1SP) GO TO 2410

IF (CMDLINCL) .NEL.LHELPCL)) GO TO 510
CONTINUE

TYPE 8838

GO TO 530

INITIALIZE COMMAND

GET THE NODE NAYMES. [IF THE FIRST ONE IS *ALL'»,» THEN
INITIALIZE ALL NODES. COMPUTE THE MAXIMUM DELAY TO THE
NODES, USING DELAY VALUES OBTAINED DURING SYNCHRONIZATION,
ADD 3 TIMES THIS DELAY TO THE PRESENT TIME, AND SEND THIS
TO THE NODES. THE LOCAL CONTROL ROUTINES WILL INITIALIZE
THEIR DATA AREAS AND SYNCHRONQUSLY REENABLE THEIR DATA
UPDATING AT THE PRESCRIBED TIME.

DO 2501 L=3,11

IF C(CMDLINCL).E2.L1SP) GO TO 2510

IF (CMDLINCL) JNELLINITI(L)) GO TO 510

CONTINUE

TAREA(T1) = 4

Loc = 1

page 85

2590

2592
2595

NhOe

600

2601
2610

2811
2812

GO TO 4000

DO 2595 J=1,NNODE

IF (NODESW(J) .NE.L1Y) GO TO 2595
CALL RECNTW (J+7,10SB1.,2,1AREA)
IF (I0SB1(1).NE.1) GO TO 2592

IF (IAREACI).NE.1) TY2E 2074, (NODECLsJ)oL=1,6).,1AREA(T)
GO TO 2595

TYPE 2078, (NODECL,J)» L=1,6)
CONTINUE

SAVE THE INITIALIZE TIME.

T1 = RAREA(2)

GO TO 2079

MEASURE COMMAND

00 2601 L=3,8

IF (CMDLINCL).EQ.L1SP) GO TO 2610

IF (CMDLINCL) .NE.LMEASUCL)) GO TO 510
CONTINUE

CALL STUFF

TYPE 8888

GO TOo 530

NOTRACE COMMAND

DO 2701 L=3,8

IF (CMDLINCL).EQ.L1SP) GO TO 2710

IF (CMDLINCL) .NE.LNOTRACL)) GO TO 510
CONTINUE

IAREACT) = 5

CALL STUFF

TYPE 8888

GO TO 530

RETRIEVE COMMAND

Do 2801 L=3.,9

IF (CMDLINCL) .E3.L1SP) GO TO 2810

IF (CHMDLINCL) .NEL.LRETRICL)) GO TO 510

CONTINUE

IAREA(1) = 6

CALL STUFF

GET THE NAME OF THE FILE IN WHICH THE INFORMATION WILL
BE STORED.

DECODE (12,20,TEMP) FNAME

FORMAT (3A4)

CALL ASSIGN (4,FNAME.12)

DEFINE FILE & (45,38,UsNREC)

READ (4"1,ERR=2811) I

GO TO 2890

TYPE 2812

FORMAT (' PLEASE I GNORE THE PREVIOUS FCS MESSAGE.'/)

page 86

2820

2830

2832

2835
2821

2838

2839
2840

2850

2890
2895

LocC = 2

GO TO 4000

GET THE INFORMATION AND STORE IT.

NREC = 2

MNODE = 0

DO 2840 J=1,NNODE

IF (NODESW(J).NE.L1Y) GO TO 2840

DO 2830 I=1.9

CALL RECNTW (J+7,10581,72+1AREN)

IF CIOSB1(1).NE.1) GO TO 2838

WRITE (4*NREC) (IAREA(K), K=3,36)

CHECK THE STATUS AND THE EXPERIMENT DESCRIPTION NUMBER.

IF (IAREAC1).NE.T1) TYPE 2074, (NODE(LsJ)» L=1,86)s, IAREA(T)
IF (IAREA(2).NE.NSERIE) TYPE 2832, (NODE(L+J) s L=1,6),
X IAREA(2)s NSERIE

FORMAT (' SERIES NUMBER AT NODE ',6A1,"' (',I4,") DOES NOT?*,
X ' MATCH THAT IN CENTAL CONTROL ('s14,%")."/
X ' DATA FROM THIS NODE SHOULD BE USED WITH EXTREME CAUTION.")
GET THE NODE NAMES AS THE DATA AREAS ARE RECEIVED.

MNODE = MNODE + 1

D0 2835 I=1.,6

FNODECI,»MNODE) = NODEC(I,J)}

TYPE 2821, (NODECIL»d)sI=1,6)

FORMAT (" CENCTL: RETRIEVED NODE *,5A1,'.%)

GO TO 2840

RECEIVE ERROR =- THIS NODE WILL NOT BE INCLUDED IN THE FILE.
NREC = NREC - I + 1

TYPE 2078+ (NODE(L»J)s L=1,6), 10581(C1)

TYPE 2839

FORMAT (' CENCTL: SO THIS NODE IS NOT INCLUDED IN THE FILE.")
CONTINUE

RECORD THE ACTIVE LINKS, DATE, TIME, AND ELAPSED TIME
SINCE THE LAST INITIALIZE.

K =0

DO 2850 I=1.10

IF C(LINKSW(I).NE.L1Y) GO TO 2850

K = K + 1

LINKN2(K) = 1

CONTINUE

CALL IDATE(L-,JesL)

CALL TIMECCLOCK)

WRITE (4"1) 14JsLsCLOCKANEXPERSNSERIESTT1,K,C(LINKNZ2C(J) 2d=12K)»
X MNODE, ((FNODE(I»J)s I=1-,6)s J=1,MNODE)

CALL CLOSE(4)

NSERIE = NSERIE + 1

NOW INITIALIZE ALL NODES.

IAREACT) = &

LOC = 1

GO TO 4070

CALL CLOSE(4)

TYPE 2895

FORMAT ("' CENCTL: THIS FILE IS ALREADY IN USE.')

page 87

GO TO 530
TERMINAL COMMAND

900 0O 2901 L=3,9
IF (CMODLINCL).EQ.LISP) GO TO 2910
IF C(CMDLINCL) .NE.LTERMICL)) GO TO 510
2901 CONTINUE
2910 TYPE B888
60 TO 530

TRACE COMMAND

000 ©0O 3001 L=3,6
IF (CMDLINCL).EQ.L1SP) GO TO 3010
IF (CMDLINCL) .NE.LTRACE(L)) GO TO 510
3001 CONTINUE
3010 IAREA(1) = 7
CALL STUFF
TYPE 8888
GO0 TO 530

c

INTERNAL SUBROUTINE FOR GETTING NODE NAMES AND
c CALCULATING MAXIMUM DELAY.
C
4

000 DELMAX =0
CALL STUFF
FIND WHICH NODES TO MANIPULATE.
DO 4010 1=1-,NNODE
4010 NODESW(I) = LI1SP
IF (TEMP (1) EQ.LIAAND.TEMP(2) EQ.LT1L.AND.TEMP(3) EQ.LIL
X LAND.TEMP(4) .EQ.L1SP) GO TO 4070
C FIRST, CHECK IF THE NODE EXISTS.
4020 DO 4040, J=1,NNODE
DO 4030 I=1.,6
IF (TEMP(I).NE.NODE(I,J)) GO TO 4040
4030 CONTINUE
IF (DELMAX.LTLDELAY(J)) DELMAX = DELAYCJ)
NODESW(J) = L1Y

(]

60 TO 4060
4040 CONTINUE
C NO MATCH.
TYPE 4050

4050 FORMAT (' NO SUCH NODE.')
IF (LOC.EQ.2) CALL CLOSE (&)

GO TO 530
C GET ANOTHER ARGUMENT.
4060 1IF (IARG.EQ.0) GO TO 4090
CALL STUFF
GO TO 4020
C ALL NODES.

4070 0O 4080 J=1.,NNODE

page 8B

4080

4090

4091

4100

DO OA D

999

9018
9019

IF (DELAMX.LT.DELAY(J)) DELMAX = DELAY(J)
NODESW(J) = LY

SEND THE MESSAGES.

RAREA(2) = SECNDS(0.) + DELMAX#*3,

RECORD THE TIME OF, OR THE TIME SINCE INITIALIZATION.
T1= RAREA(2) - T1

IF (IAREA(1).EQ.6) GO TO 4091

T1 = RAREA(2)

NSERIE = NSERIE + 1

[AREA(2) = NSERIE

DO 4100 J=1,NNODE

IF (NODESW(J).EQ.L1Y) CALL SNDNT (J+7,,8,1AREA)
CONTINUE

GO TO (2590,2820) LoOC

COPY THE LATEST SERIES NUMBER TO THE EXPERIMENT DESCRIPTION
FILE, AND EXIT.

WRITE (3'1) NEXPER», NSERIE, LENTBL

CALL CLOSE (3)

CALL EXIT

TYPE 9019, 10SB1(C1)

FORMAT (' CLSNT FAILED ON CENCTL, 10SB1(1)=',13)

GO TO 9999

END

page 89

el e N e N e NN NNl Nel sl

= o]

(o]

X

X

OB I M M M M M M M M XK

X
X

X

PROGRAM LOCCTL - LOCAL EXPERIMENT CONTROL ROUTINE,
WRITTEN BY R. STRAZDAS.

THIS PROGRAM COOPERATES WITH THE CENTRAL EXPERIMENT
CONTROL ROUTINE IN RUNNING THE EXPERIMENT, ALL
COMMUNICATIONS BETWEEN THIS NODE AND THE CONTROL NODE GO
THROUGH THIS PROGRAM., IT ACCEPTS THE EXPERIMENT CONTROL
TABLE, SYNCHRONIZES THE NODE CLOCK, SETS APPROPRIATE
ACCESS/CONTROL BITSs, ACTIVATES GENERATORS AND TRACING.,
AND COORDINATES DATA BASE RETRIEVAL.

INTEGER UPDATE (13)

REAL LENAVE(8), LENEXP(8)

VARIABLE X IS USED ONLY TO WORD ALIGH THE DATBLK COMMON

AREA. GENST IS GENERATOR STATUS: "R' WHEN ACTIVE,

*N' WHEN INACTIVE, °*D' WHEN BEING DEACTIVATED.

BYTE MAIL(106).BAREA(200)+GENST(B),MIRST(8),TIMBAS(8),
TGFUNCCB) #TFUNCCB),TGNODE (6,8) »ENABLD»L1D#LIN#X

DIMENSION I0SB1(2),IAREACI00),MSTAT(3),RAREA(SD),T2C10),
GENC(8)

COMMON /GENBLK/IRAN1,IRAN2,LINKNO(B) ,GENST.TGNODE 4LENAVE,
LENEXP+TIMAVE(B) p TIMEXP(B),TIMBAS,CONAVECB) » CONEXP(8)»
TGFUNC
JTGTBLK/LINKNIC(B) oMIRST»TFUNC
/TIMCOR/TIMCOR
/DATBLK/ENABLD+Xs TIMER.NEXPER,NSERIE,
MSGLEN(B),SIGMLLB),SIG2ML (8).,
MSGTIM(B)»SIGMT{(B),SIG2MT (8).,

NCONCB) »SIGCM(B)»SIG2CM(B).»

NRNDELCB) »SIGRD(B),SIGZ2RD(B),ROMINCB) »ROMAX(B) »
NDISCO(8).,

NDELAY(B8),SIGD(B) »S1G2D(8),DELMIN(B),DELMAX(8),»
NARTIM,SIGAT,SIGZAT,ATMIN,ATMAX

EQUIVALENCE (MAIL(99),NEXPE)(MAILCT101),NSERI),(MAIL(C103),
MUMGEND) o (MAILC105)sNUMMIR) . (BAREA,IAREA).
(RAREA-IAREA) (T2 ,IAREA)

DATA LI1DALIRALIN /'D*,"R",'N"Y/

DATA GEN/G6RGENOD?Y»6RGENODZ » 6RGENOD3, 6RGENDD4L, 6RGENDOS »
S6RGENDD&6,S6RGENDD? ,6RGENDD 8/

DATA DATUP,CPU /SRDATUP,3RCPU/

CONNECT TO CENTRAL CONTROL

CALL ASNLUN (2,'NS'.,0,1DS5)

I =0

IF (IDS.NE.1)Y GO TO 908

CALL OPNNTW (2,I0SB1.,MSTAT.,2)

IF (105B1(1).MNELT) GO TO 200

CALL GNONTW (I0S31,ITYPEL106+sMALILsvre)
IF (I0SB1(1).NE.1) GO TO 902

IF CITYPELNEL.T1) GO TO 914

page 90

CALL ASNLUN (1.°NS',0.1D8)

I =1

IF (IDS.NE.1) GO TO 908

CALL ACCNTW (1,105B1,MAILs»)

IF (IOSB1C¢1).NE.1) GO TO 9204

TYPE 10, NEXPE, NSERIE, NUMGEN, NUMMIR

10 FORMAT (" LOCCTL: NEXPER="215s5X +#"'NSERIE=",15,5X+»

X "NUMGEN=",13,5X, "NUMMIR=",13)

L |

RECEIVE GENERATOR INFORMATION

IF (NUMGEN.EQ.D) GO0 TO 120
DO 110 J=1,NUMGEN
CALL RECNTW (1,105B1,34,IAREA)
IF (I0SB1(1).NE.1) GO TO 910
= EXTRACT PARAMETERS.
LINKNOCJ) = IAREA(T)
GENST(J) = LIN
DO 105 K=1,6
105 TGNODE(K,J) = BAREA(K+2)
LENAVE(J) = RAREA(3)

LENEXP(J) = RAREA(4)
TIMAVE(J) = RAREA(S)
TIMEXP(J) = RAREAC(S)
TIMBAS(J) = BAREA(33)
CONAVE(J) = RAREA(7)
CONEXP(J) = RAREA(S8)
110 TGFUNC(J) = BAREA(34)
IRANT = O
IRANZ = 0

RECEIVE MIRROR INFORMATION

- O

20 IF (NUMMIR.E@G.0) GO TO 200
DO 130 J=1,NUMMIR
CALL RECNTW (1,10581,3,IAREA)
IF (I0SB1(1).NE.T1) GO TO 912
LINKNT1(J) = IAREA(1)
MIRST(J) = LIN

130 TFUNCCJ) = BAREA(3)

C SYNCHRONIZE THE CLOCK WITH CENTRAL CONTROL.

200 TYPE 201
201 FORMAT (' LOCCTL: EXPERIMENT CONTROL TABLE RECEIVED.')
b0 310 J=1.,10
CALL RECNTW (1,,100,IAREA)
T2(J) = SECNDS(D.)
310 CALL SNDNTW (1,,100-,IAREA)
C RECEIVE THE CLOCK CORRECTION.
CALL RECNTW (1,,4,1AREA)
TIMCOR = RAREA(1)

page 91

311

[zR =l o]

Wi s 5, MY 03

™ 5

=i 3 ™ &

1110

1115

1120

1130

1140

L

TYPE 311, TIMCOR
FORMAT (" LOCCTL: COR
X "+ "LF13.6+" SECOND

RECTED LOCAL TIME = LOCAL TIME '
5.")

INITIALIZE THE DATA BLOCK.

IAREA{Y) = 0
NEXPER = NEXPE
NSERIE = NSERI
GO TO 1400

RECEIVE INSTRUCTIONS.

THE INSTRUCTION TYPE
STATUS IS5 RETURNED IN
A MESSAGE IS TYPED ON
COMMAND COMPLETES.

CALL RECNTW (1,I0SB1.

IS RECEIVED IN IAREA(1),
IAREA(1) .
THE LOCAL TERMINAL AFTER EACH

20, 1AREA)

IF (I0SB1C1).NE.1) GO TO 9215

DECODE THE INSTRUCTID

Vo

GO TO (1100.,1200,1300,1400,1500,1600,1700) IAREAC1)

ACTIVATE COM»AND

IAREACZ2) = 1

b0 1120 J=1,NUMGEN

IF (IAREACJ+2),.Ea.0)
ACTIVATE GENERATOR Jdes

G0 TO 1120
UNLESS IT IS ALREADY ACTIVE.

IF GENST(J).NE.LTR) CALL REQUES (GENC(J),.I1DS)

IF (IDS.NE.T1) GO TO 1
IAREACJ+2) = LINKNOCJ
GENST(J4} = LR

GO TO 1120

110
)

REQUEST FAILED., RETURN THE LINK NUMBER TO0 CENCTL

AND TYPE STATUS.
IAREACJ+2) = 0 = LINK

NOCJ)

IAREA(2) = IAREA(Z2) + 1

TYPE 17115, LINKNDCJ).
FORMAT (" LOCCTL: RE@Q
X ' FAILED, 1IDS=",13)
CONTINUE

CALL SNDNT (1,I08B1.2
TYPE 1130, IAREA(2)-1
FORMAT (' LOCCTL: ‘oI
X 8(I3,1X))

CALL WAITNT (.,105B1)

IDS
UEST TO ACTIVATE LINK ',12.

D.IAREA)
¢ IAREACJ)» J=3,NUMGEN+2)
3," FAILURES ON ACTIVATING LINKS

IF (I0SB1(1).NE,1) GO TO 918

GO TO 500

DEACTIVATE COMMAND

page 92

L

1200

N el el

1210

1230

1250

Az EzE el

300

1310

1320

1324

(e B o |

1326

1330

IAREA(2) = 1

TURN OFF STATUS FOR THE GENERATORS. THEY WILL SHUT DOWN
WHEN THEY NOTICE THIS, AND RESET A GLOBAL EVENT FLAG TO
SHOW THIS.

DO 1210 J=1.NUMGEN

IF (IAREA(J+2).EQ.D.OR.GENSTC(J),.EQ.LIN) GO TO 1210

CALL CLREF (J+&40)

GENST(J) = L1D

CONTINUE

DO 1230 J=1,NUMGEN

IF (GENST(J).NE.LT1D) GO TO 1230

CALL WAILTFR (J+40)

GENST{CJ) = LIN

IAREA(J+2) = LINKNOCJ)

CONTINUE

CALL SNDNT (1,10581,20,IAREA)

TYPE 1250, (IAREAC(J), J=3,NUMGEN+2)

FORMAT (' LOCCTL: DEACTIVATED LINKS ',8(I3,1X))

GO TO 1140

EXIT COMMAND

DEACTIVATE ALL LINKS AND EXIT,
DO 1310, J=1,NUMGEN

IF (GENST(J).EQ.LIN) GO0 TO 1310
CALL CLREF (J+40)

GENST(J) = L1D

CONTINUE

DO 1320 J=1,NUMGEN

IF (GENST(J).NE.L1D) GO TO 1320
CALL WAITFR (J+40)

CONTINUE

TELL DATUP TO QUIT.

UPDATE(C1) = &

CALL SEND (DATUP.UPDATE,»IDS)
IF CIDS.NE.1) GO TO 906

CALL RESUME (DATUP.IDS)

IF (IDS.NE.1) GO TO 1326

IF (IDS.NE.=8) GO TO 924

DATUP HAD NOT SUSPENDED ITSELF; IT IS HANDLING
ANOTHER REQUEST.

CALL WFSNE

GO TO 1324

TELL CPU TO0 QUIT.

X = L1D

IAREACT) = 1

CALL SNODNT (1,,2.,1ARERA)

TYPE 1330

FORMAT (' LOCCTL: EXITING.')
CALL CLSNTW (10S531)

IF (10SB1(1).NE.1) GO TO 922

page 93

G0 To 1000
c
C INITITALIZE COMMAND
c
1

400 ENABLD = L1D
TIMER = 0.
DO 1410 I=1.8
MSGLENCI) = D
SIGMLC(I) = 0.
SIGEZMLCI) = D.
MSGTIM(I) = 0O
SIGMT(I) = 0.
SIGZ2MT(I) = 0.
NCONCI) = 0
SIGCM(I) = Q.
SIG2cM(I) = 0.
NRNDELCI) = D
SIGRD(I) = D.
SIGZRD(I) = 0.
NDISCOC(L) = 0
NDELAYCL)Y = 0
sSIGD(I) = 0.
SIG20(1) = 0D.
ROMINCI) = 1.Eé
ROMAX(I) = 0
DELMINLI) = 1.Eb

1410 DELMAX(I) = 0,
NARTIM = 0
SIGAT = 0.
SIG2AT = 0,
ATMIN = 1.E6
ATMAX = 0,

c CHECK IF THIS WAS THE INITIAL INITIALIZE.
IF (IAREA(1).NE.D) GO TO 1415

c REGQUEST "CPU', THE EXPERIMENT TIMER TASK,
X = L1IR

CALL REQUES (CPU»,»IDS)
IF (l1D0S.E@.1) GO TO 1412

C 'CPU" WAS NOT INSTALLED, INFORM CENCTL.
TYPE 1411, IDS

1411 FORMAT (' LOCCTL: REQUEST TO RUN TASK *"CPU"* FAILED.'s

X ' IDS=',13)
[AREA(1) = 1
1412 IAREACZ) = 0
c REQUEST DATUP, THE DATA AREA UPDATER.
CALL REGUES (DATUP,,IDS)
IF (IDSLEQ.1) GO TO 1414
C DATUP WAS NOT INSTALLED. INFORM CENCTL.
TYPE 1413, IDS
1413 FORMAT (' LOCCTL:z REQUEST TO RUN DATUP FAILED.'.
X ' IDS=',13)
IAREA(Z) = 1

cage 94

1414 CALL SNONTW (71,4, 1AREA)
GO TO 500
1415 NSERIE = [AREA(2)
1420 NTICKS = IFIX ((RAREA(2)-SECNDS(0.)-TIMCOR)*60.)
IF (NTICKS.LT,0) GO TO 1430
CALL MARK (9,NTICKS,1,1D08)
IF CIDS.NE.1) GO TO 1440
CALL WAITFR(9)
C DATA AREA READY FOR UPDATING.
1430 ENABLD = L1IR
IAREACT) = 1
IF (NTICKS.LT.0) IAREA(1) = 1-NTICKS

GO TO 1460
C CHECK FOR INSUFFICIENT DYNAMIC STORAGE.
1440 IF C(IDS.NE.=1) GO TO 1450

CALL WFSNE

GO TO 1420

1450 ENABLD = L1R
[IAREAC1) = D
1460 CALL SNDNT (1,105B1,2,IAREA)
IF (IAREA(1).EQ.0) GO TO 920
TYPE 1470
1470 FORMAT (* LOCCTL: INITIALIZED.®)
IF (NTICKS.LT.0) TYPE 1480, O-NTICKS
1480 FORMAT (* LOCCTL:z BUT LATE BY *,I5.,'/60 SECONDS.")
GO TO 1140

NOTRACE COMMAND

wi
(=]
=]

GO TO 500

RETRIEVE COMMAND

= ™y M M -,y 0O

o
=]
o

IAREA(Z2) = NSERIE
NTICKS = IFIX((RAREA(2)-SECNDS(0.)=TIMCOR)=*40.)
IF (NTICKS.LT.0) GO TO 1605
CALL MARK (9,NTICKS,1,1DS)
IF (IDS.NE.1) GO TO 1607
CALL WAITFR(9)
IAREA(CT) = 1
G0 TO 1610
1605 IAREA(1) = 1=-NTICKS
GO T0 15610
1607 IAREA(1) = 0O
o DISABLE UPDATING AND SEND DATA TO CENTRAL CONTROL.
1610 ENABLD = L1D
DO 1620 I=1.,8

IAREA(3) = MSGLENC(I)
IAREA(CSL) = MSGTIM(CI)
TAREAC(S) = NCONC(I)
IAREA(S) = NRNDELC(I)
[AREA(7) = NDISCO(I)

page 95

1620

1630

o= 0n
|
o
o

1000
200
201

902
903

904
905

906
907

908
909

IAREA(B) = NDELAY(I)
RAREA(S) = SIGMLC(L)
RAREAC(S) = SIG2ML(I)
RAREA(7) = SIGMT(I)
RAREA(8) = SIG2vT(1)
RAREA(9) = SIGCM(I)
RAREACI0) = SIG2CM(I)
RAREA(11) = SIGRD(I)
RAREA(12) = SIGZRD(I)
RAREA(13) = RDMINCI)
RAREAC14) = RDMAXC(I)
RAREA(15) = SIGD(I)
RAREAC16) = 51G2D(1)
RAREAC1?7) = DELMINCI)
RAREA(C18) = DELMAX(I)
CALL SNDONTW (1,.72,1AREA)
IAREAC3) = NARTIM
RAREA(3) = SIGAT
RAREA(4) = SIG2AT
RAREA(S5) = ATMIN
RAREA(S) = ATMAX

RAREA(?) = TIMER

CALL SNONTW (1,108SB1,72,IAREA)

IF (105B1¢(1).NE.1) GO TO 918

TYPE 1630

FORMAT (" LOCCTL: DATA AREA RETRIEVED.")
IF (NTICKS.,LT.0) TYPE 1480+ 0O=-NTICKS

GO TO 500

TRACE COMMAND

GO TO 500

CALL EXIT

TYPE 901, 10SB1(1)

FORMAT (' OPNNT UNSUCCESSFUL ON LOCCTL., 1I0SB1C1)= *,13)
G0 TO 1000

TYPpE 903, 10s81

FORMAT (' GNDNTW UNSUCCESSFUL ON LOCCTL. [0SBi1= ',

X I3, '",13)

GO TO 1000
TYPE 905, 1, 10881(1)
FORMAT ("' ACCNTAC',I2,") UNSUCCESSFUL ON LOCCTL.'.
'O I05B1(C1)= ',13)
GO TO 1000
TYPE 907, IDS
FORMAT (' SEND TO DATUP FAILED ON LOCCTL. IDS=',13)
GO TO 1000
TYPE 909, I, 1DS

FORMAT (' ASNLUN FAILED ON LOCCTL. I='",I2,5X%X,"IDS=',13)

page 96

918
919

220
921

922
923

924
925

G0 TO 1000

TYPE 911+ Jo 10531(1)

FORMAT (1%,12,'TH GEN RECW FAILED OV LOCCTL. I05B1¢1)=",13)
GO TO 1000

TYPE %13, 105B1¢(1)}

FORMAT (' MIR RECW FAILED ON LOCCTL, [05B1(1)=7',13)
GO TO 1000

TYPE 915, ITYPE

FORMAT (" LOCCTL GNONTW: ITYPE=',I3)

GO TO 1000

TYPE 917, I05B1(1)

FORMAT (* RECW INSTRUCTION ON LOCCTL FAILED. [0SBT1C1)=',13)
GO TO 1000

TYPE 919, 105B1<(1)

FORMAT (' SND STATUS DN LOCCTL FAILED, 105871(1)=°',13)
GO TO 1000

TYPE 921, 10§

FORMAT (' CALL MARK FAILED ON LOCCTL, IDS=',13)

GO TO 1000

TYPE 923, I05B1(1)

FORMAT (" CLSNTW FAILED ON LOCCTL. IOSB1C1)=',13)

GO TO 1000

TYPE 925, IDS

FORMAT (' RESUME DATUP ON LOCCTL FAILED. IDS=',I3)

GO TO 1000

END

sage 97

OO D oOn

(el el el

Wi oy Y

10

PROGRAM GEN1
WRITTEN BY R. STRAZDAS,

THIS PROGRAM READS TRAFFIC GENERATOR PARAMETERS FROM A
COMMON DATA AREA AND USES THEM TO DECIDE HOW MUCH TRAFFIC.
WHEN, WHERE, ETC. TO SEND THROUGH THE NETWORK. IT
REQUIRES A MIRROR TASX AT THE OTHER END OF THE NETWORK
LINK. DATA COLLECTED IS STORED IN A COMMON AREA.

LOGICAL+*1 LOG
INTEGER UPDATE(13)
BYTE TGTBLK(72)NODECSH) + NAME(S)» TSKNAMC(E) » TSKNMHL,OUTMSG(4)
LOGICAL*T LINALIRALIWALID.RBUFF(1000)
REAL LENAVE(B), LENEXP(8), RAREA(250), RUPDAT(4)
BYTE GENST(8), TIMBAS(8), TGFUNC(B), TFUNC., TGNODE(4.8)
DIMENSION I0SB1(2), 10SB2(2), IAREACS00).
X GETBUF(8)s, MSTAT(3)
COMMON /GENBLK/IRONT,IRONZ2,LINKNOCS) »GENST ,TGNODE »LENAVE»
X LENEXP,TIMAVE(B)»TIMEXP(B),TIMBAS,CONAVE(8),
X CONEXP(8),TGFUNC
X /TIMCOR/TIMCOR
X JRECEIV/ME,NRECNT »RBUFF
EQUIVALENCE (TSKNMO,(TSKNAM(S))s (OUTMSGCT) »LINKN)I»
X (OUTMSG(3),r"5G), (RAREA,IAREA)., (RUPDAT.UPDATE(6))
DATA NAME/'M*,"I'+'R"+'R"2'0',"'R"/
DATA LINALIRALTAALID/"N"2"R',"W'2"D*/
DATA DATUP /SRDATUP/

GET THE TASK NAME SO THIS GENERATOR WILL KNOW WHICH
PART OF THE DATA AREA IT SHOULD ACCESS.

CALL GETTSK (GETBUF)

CALL RS50ASC (6+,GETBUF,TSKNAM)
DECODE (1,2,TSKNM6,ERR=920) ME
FORMAT (I1)

UPDATEC(2) = ME

CALL ASNLUN (2+,*NS'.0.,1DS)

IF (IDS.NE.1) GO TO 908

CALL OPNNTW (2,10S5B1,MSTAT.1)
IF (I0OSB1(1).NE.T) GO TO 200
CALL ASNLUN (1.'NS',0.,1IDS)

IF (IDS.NE.1) GO TO 908

SET UP THE TARGET BLOCK FOR THE CONNECT CALL.

CALL BACC (LOG,TGTBLKzssrsse)

IF (LOG.EQ..FALSE.,) GO TO 914

DO 10 I=1.6

NODECI) = TGNODE(I »ME)

CALL BFMTT (LOG-TGTBLK+6+sNODEs#+5+,NAME)
IF (LOG.EQ..FALSE.) GO TO 916

page 98

20

‘s s

s M e W e I

INITIALIZE THE NUMBER OF PENDING RECEIVES.
NRECNT = 0

IF TIMING DEPENDS ON WAITING FOR REPLIES FROM THE

MIRROR TASK, THEN USE EVENT FLAG 10 TO COORDINATE IT.

IF (TIMBAS(ME) . EQ.LTR) CALL SETEF (10)
INITIALIZE EVENT FLAG 9.

IF (TIMBAS(ME).EQ.L1W) CALL SETEF (9)

GET THE NUMBER OF MESSAGES PER CONNECT,
NMSG = IFIX (EXPON (CONAVE(ME).,CONEXP(ME) +
LINKN = LINKNO(ME)

«99999)

NMSG AND LINKN ARE INCLUDED IN THE CONNECT MESSAGE.

CALL CONNTW (1,I0SB1,TGTBLK,4,0UTMSG,»)

IF (I0SB1(1).NE.-7.0R.I0OSB1(1).NE.33) GO TO 19

TYPE 7888

FORMAT (' RETRY CONNECTeae')
GO TO 15

IF (10SB1(1).NE.T1) GO TO 902
RECORD INFO.

UPDATE(1) = 1

UPDATE(3) = NMSG

CALL SEND (DATUP,UPDATE.,.IDS)
IF (IDS.NE.1) GO TO 926

CALL RESUME (DATUP.IDS)

IF (IDS.EQ.1) GO TO 40

IF (IDS.NE.-8) GO TO 922

DATUP HAS NOT SUSPENDED ITSELFs IT IS HANDLING

ANOTHER REQUEST.
CALL WFSNE

GO 70 20

T = SECNDS(D.)

GENERATE AND SEND THE MESSAGES.

0O 500 N=1,NMSG

CHECK FOR DEACTIVATE.

IF (GENST(ME) .EQ,.L1D) GO TO 550

GET THE MESSAGE LENGTH.

MSGLEN = IFIX (EXPON (LENAVE(ME) -LENEXP(ME))
IF (MSGLEN.LT.8) MSGLEN = 6

IF (MSGLEN.GT.1000) MSGLEN = 1000

CONSTRUCT THE MESSAGE.

RAREA(1) = SECNDS(OD.) + TIMCOR

BRANCH DEPENDING ON THE VALUE OF TIMBAS,
IF (TIMBAS(ME).EQ.L14) GO TO 100

IF (TIMBAS(ME).EQ.L1R) GO TO 200

TIMBAS=N (NO WAITING., SEND IMMEDIATELY.)
CALL SNODNT (1,,MSGLEN,IAREA)

T = SECNDS (T)

page 99

«5)

- o0 D

aN i "HaNalaNs!

-

300

310

ITIME = IFIX (T ¢ ,5)
GO TO 300

TIMBAS=W (WAIT FOR ACKNOWLEDGE OF PREVIOUS MESSAGE)

WAIT UNTIL THE MESSAGE SHOULD BE SENT,

CALL WAITFR (9

CALL SNDNTW (1,10SB1,MSGLEN,IAREA)

IF (IOSB1(1).NE.T) GO TO 904

GET THE INTERMESSAGE TIME.

ITIME = MAXOCIFIXCEXPONCTIMAVE(ME) »TIMEXP(ME))+.5),0)
CALL MARK (9,ITIME.1)

GO TO 300

TIMBAS=R (WAIT FOR REPLY OF PREVIOUS MESSAGE)

GET THE INTERMESSAGE TIME,

ITIME = MAXO(IFIXCEXPONC(TIMAVE(ME) »TIMEXP(ME)) +.5).0)
FIRST WAIT FOR THE REPLY TO THE PREVIOUS MESSAGE.
CALL WAITFR (10)

NOW WAIT THE REQUIRED AMOUNT OF TIME.

CALL MARK (9,ITIME.1)

CALL CLREF (10)

CALL WAITFR (9)

CALL SNDNT (',,MSGLEN-,IAREA)

NRECNT = NRECNT + 1

IF WAITING FOR REPLIES FROM THE MIRROR TASK, MAKE SURE
WE DON'T MISS THE LAST ONE.

IF (NJEQ.NMSG.AND. TGFUNC(ME).EQ.LTR) CALL CLREF (11)
RECORD INFO.

UPDATEC(1) = 2
UPDATE(3) = ITIME
UPDATE(4) = MSGLEN

CALL SEND (DATUP,UPDATE+»»1DS)

IF (IDS.NE.1) GO TO 904

CALL RESUME (DATUP.IDS)

IF (IDS.EQ@.,1) GO TO 330

IF (IDS.NE.=8) GO TO 922

CALL WFSNE

GO0 TO 310

IF (TGFUNC(ME).EQ.LTIR) CALL RMAC
CONTINUE

IF THE MIRROR TASK REPLIUES, THEN WAIT FOR THE LAST
RECEIVE.

IF (TGFUNC(ME).EQ.LIR) CALL WAITFR (11)

DISCONNECT AND RECORD [INFO.

CALL DSCNTW €(1,105B1,4,0UTMSG)

IF (I0SB1¢1).,NE.1) GO TO 912

IF (GENST(ME) . EQ.L1D) GO TO 600

UPDATECT1) = 4

CALL SEND (DATUP,UPDATE,+IDS)

page 100

560

1000
900
901

902
903

904
905

906
907

908
909

912
913

F14
915

916
21T

918
919

920
921

922
923

IF (IDS.NE.1) GO TO 906

CALL RESUME (DATUP.,IDS)

IF (IDS.EQ@.1) GO TO S50

IF (IDS.NE.=8) GO TO 922

CALL WFSNE

GO TO 560

TELL LOCCTL THAT THE LINK IS DISCONNECTED, AND EXIT.
CALL SETEF (ME+40)

CALL CLSNTW (IO0S31)

IF (I0SB1(1).NE.1) GO TO 918

CALL EXIT

TYPE 901, TSKNAM, 1I0S5B81(1)

FORMAT (' OPNNT UNSUCCESSFUL ON ',6A1,', 10SB1(1)="',13)
GO TO 1000

TYPE 903, TSKNAW, 10531

FORMAT (' CONNTW UNSUCCESSFUL ON ',6A1,"', 10s8B1= ',
X 132 2" 013}

GO TO 1000

TYPE 905, TSKNAM, 10531(1), TIMBAS(ME)

FORMAT (" SNDNT UNSUCCESSFUL ON ",6A%.,"'. 10SB81(1)=",
X 13,'. TIMBAS=',A1)

GO TO 1000

TYPE 907, TSKNAM, 1IDS

FORMAT ("' SEND TO DATUP FAILED ON ",6A1," IDS=',13)
GO TO 1000

TYPE 909, TSKNAM, IDS

FORMAT (' ASNLUN FAILED ON ',6A1.,°, IDS=",13)

GO TO 1000

TYPE 913, TSKNAM, 10SB1(1)

FORMAT (' DSCNTW UNSUCCESSFUL ON ",6A1.,'. 105B1¢1)=*,13)
GO TO 1000

TYPE 915, TSKNAM

FORMAT (* BACC FAILED ON '",6A1,",.%)

GO TO 1000

TYPE 917, TSKNAY

FORMAT (' BFMT1 FAILED ON ',6A1.°'."%)

GO TO 1000

TYPE 919, TSKNAM, 1I0S581(1)

FORMAT (' CLSNTW UNSUCCESSFUL ON '",5A1,'. 10SB1(1)=',13)
GO TO 1000

TYPE 921, TSKNAM

FORMAT ("' *"ME'®' DECODE FAILED ON ',6A1,'.")

GO TO 1000

TYPE 923, TSKNAM, 1IDS

FORMAT (* RESUME DATUP FAILED ON ',6A1,'. 1IDS=',13)
GO TO 1000

END

page 101

A OO 0D

900

FUNCTION EXPON (AVE-,EXP)

THIS FUNCTION COMPUTES AN EXPONENTIALLY OISTRIBUTED
RANDOM VARIABLE WITH AVERAGE VALUE "AVE' AND EXPONENTIAL
PARAMETER "EXP', I.E. F(X) ='"EXP'*(E**x(=-"EXP'2X))

COMMON /GENBLK/ IRAN1,IRANZ

IF "EXP" IS ZERO, A CONSTANT VALUE WILL BE RETURNED.
IF (EXP.EQ.0) GO TO %920

GET AN EXPONENTIALLY DISTRIBUTED RANDOM NUMBER,

T = RAN (IRANT,IRANT)

T = ALOG (1./T)/EXP

ADJUST T SO THAT IT HAS THE PROPER AVERAGE VALUE.
EXPON = T + AVE = 1./EXP

RETURN

EXPON = AVE

RETURN

END

page 102

sRMAC DOES A NETWORK RECEIVE, SETTING UP '"RAST', AN AST
sWHICH IS INVOKED AT THE COMPLETION OF THE RECEIVE.
[
«MCALL RECSE,RECS,ASTX3S.,QI0WSC,EXITSS
«PSECT RECEIV,GBL,OVR,D
ME : «BLKW 1
NRECNT : .BLKW 1
RBUFF: «BLKB 1000.

«-FSECT
RMAC:: RECSE RECBLK
RETURN
STATUS: .BLKW 2
RECBLK: RECS TeeSTATUS,RASTA<RBUFF,1000,>
RAST: CMPB HIS.SUC,STATUS /7WAS IT SUCCESSFUL?
BNE 108
CALL RFTN
CMP (SP)+,5P +CLEAN THE STACK
ASTXES
10%: MOV HSTATUS.R2
MoV FIOBUF,R1
MOV AI0BUF,RO
CALL SEDMSG
QIOWSC I0.WLB,5+,200s+s<10BUFsR1,40>
ASTXSS
I0OBUF: «ASCIZ /JERROR IN RECSE IN RMAC: XP/
«END

SUBROUTINE RFTN
C SUBPROGRAM CALLED BY RMAC TO COORDINATE INFORMATION
C FLOW AND TIMING AFTER A GENERATOR RECEIVES A MESSAGE.
INTEGER UPDATE(13)
DIMENSION RUPDAT(4)
COMMON /RECEIV/ME,NRECNT,RBUFF(250)
X /TIMCOR/TIMCOR
EQUIVALENCE (RUPDAT,UPDATE(6))
DATA DATUP /S5RDATUP/

C
C RECORD INFO.
c
T = SECNDS(0.) ¢ TIMCOR
UPDATE(1) = 3
UPDATE(2) = ME
RUPDAT(1) = T = RBUFF(1)

CALL SEND (DATUP,UPDATE,-,L1DS)
IF (IDS.NE.1) GO TO 98
10 CALL RESUME {DATUP.,IDS)
IF (IDS.EQ.1) GO TO 20
IF (IDS.NE.=B) GO TO 96

page 103

™

20

(g

-

96
97

98
99

100

DATUP HAS NOT SUSPENDED ITSELFs IT IS HANDLING
ANOTHER REQUEST.

CALL WFSNE

GO TO 10

NRECNT = NRECNT = 1

IF (NRECNT.LT.0) TYPE 100, ME, NRECNT

EVENT FLAG 10 INFORMS THE GENERATOR THAT THE MESSAGE
HAS BEEN RECEIVED.

CALL SETEF (10)

EVENT FLAG 11 INFORMS THE GENERATOR THAT THE LAST
MESSAGE HAS BEEN RECEIVED.

IF (NRECNT.EG.0) CALL SETEF (11)

RETURN

TYPE 97, IDS

FORMAT (' RESUME DATUP FAILED ON RFTN. IDS=',I3)
RETURN

TYPE 99, IDS

FORMAT (" SEND TO DATUP FAILED ON RFTN. 1IDS=',.13)
RETURN

FORMAT (' RFTN: ',12,"TH RECEIVE COUNT IS *,13)
END

page 104

MO AOON AR D

50
60

=

PROGRAM MIRROR
WRITTEN BY R. STRAZIDAS,

THIS PROGRAM COMPLEMENTS THE TRAFFIC GENERATOR BY
PROVIDING A TARGET TASK WHICH CAN RETURN THE DATA IT
RECEIVES. NO MORE THAN ONE OF THIS TASK WILL RESIDE
IN EACH NODE, AND IT WILL ACCEPT ALL CONNECT REQUESTS
FROM GENERATORS.

INTEGER UPDATE{(13)

BYTE MAIL(102)+LTR#LIN

BYTE TGFUNC(B).TGSTAT(B)

DIMENSION IAREA(CSOO) MSTAT(3),NMSG(B),RAREACZ250),
X RUPDAT(4),I1058B1(2),105B2(2),1058B3(2),105B4(2),105B5(2).
X 10s5B6(2), 105B7(2), 10SBB(2), 10SB9(2), 10SB(2,.9)
COMMON /TGTBLK/LINKND(B)»TGSTAT,TGFUNC
X JTIMCOR/TIMCOR

EQUIVALENCE (LINKC-,MAILC99)), (NMESS,MAILCI1D01)).,
X (LINKD,MAILC1)), (RAREA,IAREA)

EQUIVALENCE (I0SB1,105B(1,1)), (I0SB2.,105B8(1,2)).
X (I0SB3,10SB8(C1.,3)), (10SB4,I0SB(1,4)), (I0SBS,I0SB(1,5)),
X (I0SB6,105SBC1.,6)), (10SB7,10SBC1,7)), (I0SBB,I0SB(1,8)),»
X (I0SB9,10SB(1.,9)), (RUPDAT,UPDATE(S))

DATA LIRALIN/"R*,"N"/

DATA DATUP /[/SRDATUP/

CALL ASNLUN (2.'NS'",0.,1DS)

IF (IDS.NE.1) GO TO 910

DETERMINE HOW MANY LINKS THERE MAY BE.

DO 50 I=1.,10

IF CLINKNOCI).EQ.O0) GO TO 60

CONTINUE

CALL OPNNTW (2,I0SB1,MSTAT,I1-1)

IF (I0SB1(1).NE.T1) GO TO 900

UPDATEC(1) = 5

NLINKS = D

T2 = SECNDS(0.)

INITIALIZE 10581 SINCE IT WAS USED WITH OPNNT.

10581¢1) = 0

CALL GNDNT (I0SB9+1TYPE,102,MAIL #ees)

WAIT FOR SOMETHING TO HAPPEN.

CALL WAITNT (INDEX,I105B1,10582,10SB3,105B4,105B5+
X 105B6,105B7,105B8,108B9)

T = SECNDS(0.) + TIMCOR

T1 = SECNDS(T2Z)

T2 = SECNDS(D.)

IF (INDEX.EQ.9) GO TO 500

A RECEIVE HAS COMPLETED.

page 105

IF (10SB(1,INDEX).EQ.1) GO TO 250
> THE RECEIVE WAS UNSUCCESSFUL. EITHER A DISCONNECT WAS
C RECEIVED OF A PROBLEM EXISTS.
IF (IOSB(1,INDEX).NE.=3) GO TO 904
IF (10589(1).E@.0) GO TO 912
G0 TO 500
c RETURN THE MESSAGE?
250 IF (TGFUNCCINDEX) .NE.LI1R) GO TO 300
CALL SNDNT (INDEX+7,,10SB(2,INDEX),IAREA)
300 NMSGCINDEX) = NMSG(INDEX) - 1

C

X RECORD INFO

C
UPDATE(2) = INDEX
RUPDAT(1) = T - RAREA(1)
RUPDAT(2) = T1

CALL SEND (DATUP,UPDATE.,1DS)
IF (IDS.NE.1) GO TO 908
301 CALL RESUME (DATUP.IDS)
IF (IDS.EQ.1) GO TO 335
IF (IDS.NE.-8) GO TO 916

C DATUP HAS NOT SUSPENDED ITSELF; IT IS HANDLING
C ANOTHER REQUEST.

CALL WFSNE

GO TO 301

305 I0SB(1,INDEX) = 0

IF (NMSG(INDEX).EQ.O0) GO TO 200

GO TO (310,320,330,340,350,360,370,380), INDEX
310 CALL RECNT (INDEX+7,105B1,1000.,1I AREA)

GO TO 200

320 CALL RECNT (INDEX+7,10582,1000,1AREA)
GO TO 200

330 CALL RECNT (INDEX+7,105B83,1000.,IAREA)
60 TO 200

340 CALL RECNT (INDEX+7,10SB4,1000.,1AREA)
GO TO 200

350 CALL RECNT (INDEX+7,105B5,1000.I AREA)
GO TO 200

360 CALL RECNT (INDEX+7.,105B6,1000.1AREA)
GO T0 200

370 CALL RECNT (INDEX+7,I10SB7.,1000.,IAREA)
GO0 TO 200

380 CALL RECNT (INDEX+7.,105B88,1000,1IAREA)
GO TO 200

C

C A GET NETWORK DATA COMPLETED.

”

500 IF (I0SB9(1).NE,1) GO TO 902

C CHECK THE TYPE OF DATA.
IF (ITYPE.EQ.1) GO TO 600
IF (ITYPE.EQ.3) GO TD 700

C UNEXPECTED DATA TYPE

page 106

510

[+ e Nela]

650
660

~N ™D

760

=N ol

1000
900
901

902
903

904
905

TYPE 510, ITYPE, 10589

FORMAT (' UNEXPECTED GND IN MIRROR. ITYPE=',I13,
Yo STATUSE'",13,',",13)

GO TO 100

CONNECT MESSAGE RECEIVED

INDEX = NLINK(LINKC)

IF (INDEX.EQ.0) 60 7O 450
NMSGC(INDEX) = NMESS

CALL ASNLUN C(INDEX+7,'*NS*',0.,IDS)

IF (IDS.NE.1) GO TO 910

CALL ACCNTW (INDEX+7,I0S5B9,MAIL,»)
IF (I0SB9(1).NE.1) GO TO 914

STATUS IS 'READY',

TGSTAT(INDEX) = L1R

NLINKS = NLINKS + 1

CALL GNONT (IOSB9,ITYPE,102,MAIL#es»)
ISSUE THE FIRST RECEIVE.

GO TO 305

TYPE 660, (MAILCGJ)» J=25,44)

FORMAT (' UNAUTHORIZED CONNECT RECEIVED BY MIRROR FROM ',

X 20Aa1)

CALL REJNT (.,MAIL..)
GO TO 100

DISCONNECT MESSAGE RECEIVED

INDEX = NLINK(LINKDJ

TGSTATCINDEX) = L1IN

NLINKS = NLINKS - 1

IF (NMSG(INDEX).,NE.D) TYPE 760,LINKNOCINDEX),NMSGCINDEX)
FORMAT (' LINK'+13," DISCONNECTED FROM MIRROR WITH ',

X I3,"' MESSAGES DJUTSTANDING."')

IF (NLINKS.NE.O) GO TO 100
EX1T,

CALL CLSNTW (I0581)

IF (I0SB1(1).NE.1) GO TO 906

CALL EXIT

TYPE 901, 10§B1(1)

FORMAT (' OPNNT UNSUCCESSFUL ON MIRROR. 1I0SB1(1)=',13)
GO TO 1000

TYPE 903, 10SB9 :

FORMAT (' GNDNT UNSUCCESSFUL ON MIRROR. 105B9=',

X I132%s *,13)

GO TO 1000

TYPE 905+ LINKNOCINDEX), IOSB(1,INDEX), NMSGCINDEX)

FORMAT (' RECNT ON LINK',I3," UNSUCCESSFUL ON MIRROR.',
' I0SB1(1)="',13/5X,"0QUTSTANDING MESSAGES =',13)

60 TO 1000

page 107

906
907

908
909

910
211

912
913

914
215

L]

100

200

TYPE 907, IOSB1(1)

FORMAT (' CLSNTW UNSUCCESSFUL ON MIRROR. I0S5B1{1)=',13)

G0 TO 1000

TYPE 909, IDS

FORMAT (' SEND TO DATUP FAILED ON MIRROR. IDS=',13)

GO TO 1000

TYPE 911, 105

FORMAT ("' CALL ASNLUN FAILED ON MIRROR. 1IDS=',13)

GO TO 1000

TYPE 913+ 105B9(1), NMSGC(INDEX)

FORMAT (' RECNT FAILED, WITHOUT DISCONNECT, ON MIRROR.":»
' I0SB9=",I3/5%X."OUTSTANDING MESSAGES =',13)

GO TO 1000

TYPE 915, 105B9(1)

FORMAT ("' ACCNTW FAILED ON MIRROR., 10SB9(1)=',I3)

G0 TO 1000

TYPE 917+ 1DS

FORMAT (* RESUME DATUP FAILED ON MIRROR. [IDS=',I3)

GO TO 1000

END

FUNCTION NLINK (LINK)

THIS SUBPROGRAM RETURNS THE INDEX OF THE ARRAY LINKNO
WHERE A GIVEN LINK NUMBER IS5 FOUND, IF IT IS NOT FOUND.
0 IS RETURNED.

COMMON /TGTBLK/LINKNOD(B)

00 100 1=1,8

IF (LINKNO(I).EQ.LINK) GO TO 200

CONTINUE

NLINK = 0

RETURN

NLINK = 1

RETURN

END

page 108

=Bl RaleNaNaRalalals

vios Oy Oy Oy

60

100

200

M 3 3 M XK XX

PROGRAM DATUP - DATA BASE UPDATER.
WRITTEN BY R. STRAZDAS.

THIS PROGRAM WILL RESIDE IN EACH NODE AND IS SOLELY
RESPONSIBLE FOR UPDATING THE DATA BASE. THE LOCAL
EXPERIMENT CONTROL ROUTINE WILL CALL IT TO INITIALIZE

THE DATA BASE, AND IT ALWAYS CHECKS ITS ENABLE BIT BEFORE
WRITINGe IT IS ALSO USED BY THE GENERATOR(S)., THE

MIRROR TASK, AND THE MONITOR TASK.

BYTE ENABLD, L1D, X
INTEGER UPDATE(1S5)
DIMENSION RUPDAT(4)
VARIABLE X IS USED ONLY TO PRESERVE WORD ALIGNMENT.
COMMON /JOATBLK/ENABLD, X+ TIMER, NEXPE, NSERI.
MSGLEN(B)», SIGML(8), SIG2ML{(B),
MSGTIM(B)., SIGMT(B), SIG2MT(8),
NCONCB)» SIGCM(B)» SIG2CM(8),
NRNDEL(8), SIGRD(8), SIG2RD(B)s RDMINC(8), RDMAX(B).
NDISCO(8).,
NDELAY(8), SIGD(8), SIG2D(8), DELMIN(B), DELMAX(8),
NARTIM, SIGAT, SIG2AT, ATMIN, ATMAX
EQUIVALENCE (RUPDAT,UPDATEC(S))
DATA L1D /*D*/
GET SOME DATA.

SUSPEND MYSELF, AND WAIT FOR SOMEONE TO SEND TO AND
RESUME ME.

CALL SUSPND

CALL RECEIV (+,UPDATEs»IDS)

IF (IDS.EQ.1) GO TO 99

IF (IDS.NE.=8) TYPE 60, IDS

FORMAT (' DATUP: CALL RECEIV FAILED. IDS=',I3)

GO T0 50

CHECK IF DATA UPDATE IS5 DISABLED.

IF (UPDATE(3).EQ.6) CALL EXIT

IF (ENABLD.EQ.L1D) GO0 TO 50

N = UPDATE{(4)

IF (UPDATE(3) .LE.O.OR.UPDATE(3).GE.6) GO TO 998

GO T0 €(100,200,300,400,500)+ UPDATE(3)

CONNECT MESSAGE SENT BY GENERATOR N.

NCONCN) = NCONCN) + 1

SIGCMIN) = SIGCM(N) + FLOATCUPDATE(S5))

SIG2CM(N) = SIG2CM(N) + FLOAT(UPDATE(S5)*=2)

G0 TO 50

MESSAGE SENT BY GENERATOR N.

T = FLOAT (UPDATE(5))/60.

MSGTIMIN) = MSGTIM(N) + 1

SIGMT(N) = SIGMT(N) + T
SIGZMT(N) = SIG2MT (N) + T&T
MSGLEN(N) = MSGLEN(N) + 1

page 109

SIGML(N) = SIGML(N) + UPDATE(S)
SIGZML(N) = SIGZML(N) + UPDATE(6)*UPDATE(S)
G0 TO 50
C MESSAGE RECEIVED BY GENERATOR N.
300 NRNDELC(N) = NRNDEL(N) + 1
SIGRD(N) = SIGRD(N) + RUPDAT(1)
SIG2RD(N) = SIG2RO(N) + RUPDAT(1)*RUPDAT(1)
IF (RDMIN(N).GT.RUPDATC1)) RODMININ) = RUPDAT(1)
IF (RDMAX(N).LT.RUPDAT(1)) RDMAX{(N) = RUPDAT(1)

GO TO 50
C DISCONNECT SENT BY GENERATOR N.
400 NDISCO(N) = NDISCO(N) + 1
GO To 50
C MESSAGE RECEIVED BY MIRROR ON ITS NTH LINK,

500 NDELAY(N) = NDELAY(N) + 1
SIGD(N) = SIGD(N) + RUPDAT(1)
SIG2D(N) = SIGZD(N) + RUPDAT(1)*RUPDAT(1)
IF (DELMINCN) .GT.RUPDAT(1)) DELMIN(N) = RUPDAT(1)
IF (DELMAX(N).LT.RUPDAT{1)) DELMAXI(N) = RUPDAT(1)
NARTIM = NARTIM + 1
SIGAT = SIGAT + RUPDAT(2)
SIG2AT = SIG2AT + RUPDAT(2)+RUPDAT(2)
IF (ATMIN.GT.RUPDAT(2)) ATMIN = RUPDAT(2)
IF (ATMAX,LT.RPUPDAT(2)) ATHMAX = RUPDAT(Z2)
GO 10 50
798 TYPE 999+, UPDATE(3)
399 FORMAT (" DATUP:z INVALID INDEX: *».12)
GO TO 50
END

page 110

OO DO D

10
20

PROGRAM (CPU.
WRITTEN BY R. STRAZDAS.

THIS PROGRAM MONITORS CPU USAGE BY INCREMENTING A
COUNTER IN THE DATA BASE. PROPORTIONAL TO THE TIME
THIS LOW-PROIORITY PROGRAM RUNS,

BYTE ENABLD, X, L1D

COMMON /DATBLK/ ENABLD, X» TIMER
DATA L1D /J'D*/

DO 20, J=1,320

K = J

CONTINUE

IF (ENABLD.NE.L1D) TIMER = TIMER + 1
IF (X EQ.L1D) CALL EXIT

GO TO0 10

END

page 111

aslasBEasNaNalee e

™

X

X O3 M M M M M M M M M M

BYTE GENST(B),MIRST(B),

PROGRAM KOMMON.
WRITTEN BY R. STRAZDAS,

THIS ROUTINE DEFINES A SYSTEM COMMON AREA FOR USE IN

THE NETWORK TRAFFIC GENERATOR PROGRAMS CENCTL., LOCCTL.
GEN1», MIRROR., AND DATUP.

BLOCK DATA
REAL LENAVE(B), LENEXP(B)

TIMBAS(8),TGFUNCC(8) »TFUNC(8).,
TGNODE(5,8), ENABLD, X

VARIABLE X [S USED ONLY TO WORD ALIGN COMMON BLOCK

DATELK.

COMMON /GENBLK/IRAN1,IRANZ,LINKNO(8B) »GENST,TGNODE »LENAVE,

LENEXP,TIMAVE(B)» TIMEXP(B) »TIMBAS,CONAVE(B) »
CONEXP{(8), TGFUNC

JTGTBLKS LINKNT1C(8), MIRST, TFUNC

/TIMCOR/ TIMCOR

/DATBLK/ ENABLDs, X, TIMERs, NEXPE, NSERI.

MSGLENCB)» SIGML(B)s SIGZ2ML(8).,

MSGTIM(8), SIGMT(8B), SIGZ2MT(B).,

NCON(B), SIGCMC(B),» SIGZ2CM(8B),

NRNDEL(8)» S:GRD(B)» SIG2RD(B), RDMINC(B), RDMAX(8).
NDISCO(8).,

NDELAY(B)s SIGD(8), S1G2D(B)s DELMINC(B), DELMAX(B).,
NARTIM, SIGAT, SIG2AT., ATMIN, ATMAX

END

page 112

