MIT/LCS/TM-128

MINIMUM REGISTER ALLOCATION
IS COMPLETE IN
POLYNOMIAL SPACE

Michael C. Loui

March 1979

- m.._.au.._.___._“._..? .ﬂ...h e .__..r-._..._“ ._.._.. L.F ._....1 el

e | =

l B lll:"lll"

MINIMUM REGISTER ALLOCATION]IS COMPLETE IN POLYNOMIAL SPACE

Michael C. Loui

February 1979

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE : MASSACHUSETTS 02139

Minimum Register Allocation is Complete in Polynomial Space
Michael C. Loui®

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract. The Minimum Register Allocation Problem is to determine the minimum number
of registers required to evaluate an arithmetic expression. A pebble game on directed acyclic graphs
is used to prove that this problem is complete in polynomial space.

Key Words: register allocation, pebble game, directed acyclic graph, polynomial spai:e
complete, computational complexity. ‘

TSupported by the Fannie and John Hertz Foundation.

1. Introduction

The Minimum Register Allocation Problem is a basic problem of computer science [cf. Sethi
(1975)} on a machine with the standard arithmetic operations, how many registers are required to
evaluate an arithmetic expression? In this paper we prove that this problem is complete in
polynomial space.

We can represent an arithmetic expression E by a directed acyclic graph I'. The nodes of
the graph correspond to subexpressions of E. There are arcs from nodes & and 8 te node ¥ when
7 is the result of an arithmetic operation applied to & and 8. We define a game on I' to model the
evaluation of E with k storage registers. Given k pebbles, one places pebbles on the nodes of T in
steps according to the following rules:

Pebble Game
(1) A step consists of either
(a) a placement of a pebble on an empty node, or
(b) a removal of a pebble from a node, or
(c) a shift of a pebble to an empty node from one of its immediate
predecessors.
(2) A pebble may be placed on or shifted to a node only if there are pebbles on all
immediate predecessors of the node. {Thus, a node with no predecessors can be pebbled)
(3) There are always at most & pebbies on the graph.
The object of the game is to start with no pebbles on I' and to find a sequence of steps that
eventually places a pebble on a designated node of T', using at most & pebbles.
Each pebble represents a storage register. Pebbling a node corresponds to storing a value in
a register, removing a pebble from a node to releasing a register, and pebbling the designated node
to computing the value of the arithmetic expression E. The Minimum Register Allocation Problem
is to determine the number of registers required to evaluate E, equivalently, the minimum number
of pebbles necessary to pebble the designated node of I'. This Pebble Game has also been

employed to compare flowcharts and recursion schemata [Paterson and Hewitt (1970)] and to study

the Turing machine resources time and space [Hopcroft et. al. (1977)].

We can recast the Minimum Register Allocation Problem as a decision problem:

Pebbling Problem. Given a directed acyclic graph I' and an integer k, can one
advance a pebble to a designated node of T', starting from an empty configuration, such that
at most & pebbles ever appear on I'?

Sethi [1975] proved that the Pebbling Problem is NP-hard, but the exact complexity of the
problem has not been assessed until recently.T Gilbert and Tarjan [1978] and Lingas [1978] showed
that more general pebbling problems ~ for a pebble game on and-or graphs — are polynomial space
complete. Earlier, Redziejowski [1969] essentially demonstrated that the Pebbling Problem for trees

I can be solved in polynomial time.

Theorem. The Pebbling Problem for directed acyclic graphs with indegree 2 is cbmplete in

polynomial space under logarithmic space reduction.

To establish this Theorem, we reduce quantified boolean formulas to the Pebbling Problem
in Sections 2 and 3. In Section 4 we modify the construction so that the nodes of the resulting

graph have indegree at most 2.

Tour proof uses several ideas of J.R. Gilbert, T. Lengauer, and R.E. Tarjan [personal
communication], who first obtained the complexity. Nonetheless, this exposition may also be of
interest.

2. Construction

Before describing our construction, we adopt a few definitions. A configuration specifies the
nodes of a pebbled graph that hold pebbles. (The careful reader may define a configuration to be
the set of nodes that hold pebbles; he may then express the following definitions in the terminology
of sets.) A step on a configuration is legal if it satisfies restrictions (2) and (3) in the definition in
Section I. A éomgutation that starts from configuration Cy and ends at cbnﬁguration Cpisa
sequence of configurations (Cy, C, .., C,,) such that for each ¢, either C, ; is transformed into C; by
a legal step or C,j = C,. This computation uses k pebbles if in each configuration C, thére at most
k pebbles and in some configuration there are k. A computation pebbles a node 8 at time ¢ (relative
to the start of the computation) if the th step of the computation places or shifts a pebble onto 8.
The notation [#;,/5] denotes the interval of times ¢ such that t; <t < to.

IfS = (CO, sy Cn) is a computation on I'and I isa subgraph of T, then the restriction of S
to I during [t],r2] is the sequence of configurations of pebbles on in Ctl’ iy sz' QOne can
confirm routinely that the restriction of a computation to I" is itself a computation on I".

Write II(6) for the set of immediate predecessors of a node 6. |

A node @) is a Ereregu‘isite for a node 8y if there is a path from 8 to 8,. If 6 isa
prerequisite for 92, and § is a computation that pebbles 92 at a time ¢, and S starts from a
configuration in which some path from 01 to 02 holds no pebbles, then S pebbles 81 at some time
before 1.

Evidently, ﬁhe Pebbling Problem can be solved in polynomial space: a nondeterministic
Turing machine can guess the correct computation, if it exists. To establish completeness, we reduce
c.;uantified boolean formulas to this problem. (Stockmeyer [1977] proved that the language of true
quantified boolean formulas is complete in pﬁiyn‘omial space.) For each quantified booléan formula

F we can efficiently generate an acyclic graph such that pebbling a designated node of this graph is

tantamount to proving that F is true.

Our construction proceeds inductively on the structure of F. We assume that F has no free

rvariables and has the form
Q,v, .. Qv (G), S
where each Q is either V (a universal quantifier) or 3 (an existential quantifier), the variables Y;

are distinct, and G is a boolean formula that is a conjunction of s clauses with 3 distinct literals per

clause:
G=H AN.NH,
where H; =x; Vy; V 2,
X;, ¥; 2; are literals, i.e, each is a variable or its negation.
As usual, ¥ = x for every literal x.
For each subformula f of F with m free variables that contains G as a subformula, we shall

construct an acyclic graph I'(f) and define a positive integer k(). The nodes of I'(f) are divided

into two sets 2(f), the set of free variable nodes, and B(f), the other nodes. For each free variable w

in f there are four nodes {& . a-, 8, , 87} in B(f). Among the nodes of O(f) is the output node wp

A configuration C on I'(f) is an a-8 configuration for a variable w if in C either a, and ﬂw

or ez and B7 hold pebbles, but either &, or e is empty. A configuration is an a-a configuration

for w if both @, and a;; hold pebbles. By deﬁniﬁon. if C is a-a or a-B for w, then there is a
pebble on either o, or ﬂz?} (or both) and on either @z or ﬁw.

A configuration on I'(f) is initial if it is @-& or a-f for each free variable and there are no
pebbles on B{f). A configuration is strictly initial if it is an initial configuration and for each free
variable it is an a-8 configuration with just 2 pebbles on {aw. az, ﬂw, ﬂﬁ}‘ on &, and Bw, or on

a- and 51-5.

A truth assignment is a function from free variables to {0,1} (which are interpreted as

boolean values for false and true). A truth assignment w ~ ¢, to the free variables of f is consistent
with a configuration C on I'(f) if in C for each free variable w,

1if ﬂw holds a pebble and a; does not,

0 if 87 holds a pebble and e, does not,
It is possible for a configuration to have no consistent truth assignment. If C is an a-a
configuration for w, then for consistency ¢, can be either O or 1. If C is - or a-B for every free
variable and in C node az is empty, then for consistency e,, must be 1. If C is a strictly initial
configun;a.tion, then there is only one truth assignment consistent with C.
‘Call a computation § = (Cy, .., C,)) on T'(f) dutiful if:
(1) every configuration of S is an a.-a or an a-8 conﬁgﬁration for each free variable;
(2) the final step of § is a placement or shift onto @p and for all ¢ < n, node 0fis
empty in Cj;
(3) S uses at most 2m + k(f) pebbles; and
(4) for each literal #, if node a,, is empty in 'conﬁguration C,, then it is empty in
every C, for ¢ > u.
By definition, if (CO. o~ Cn) is a dutiful computation, then so is (Ct' - Cn) for each t. Moreover, by
conditions (1) and (4), every truth assignment consistent with Ct is consistent with Ct-l‘ thus, every
truth assignment consistent with C,, is consistent with.C,. Consequently, if Cy is a strictly initial
configuration, then the sole truth assignment consistent with C, is also the only one consistent with
C,,. Condition (1) implies that in every configuration of a dutiful computafion there are at least 2m
pebbles on ®(f), hence by condition (3), there are at most k(f) pebbles on 6(f).
Subformula f with free variables wy, .., w,, defines in the usual way a boolean function that

we write flw), .., w,). We shall establish the following fundamental relationship between f, k(f), and

I'(f):

Lemma A. Let F have the form (x). Let fequal G or be a subformula of F of the form
quq - Qv (G), 1<g<r. Let f have free variables wy, .., w,, (where m =7 -). Let C(y be a strictly
initial configuration on I'(f) and w = e, be the truth assignment consistent with Cy. There is a

dutiful computation that starts from C if and only ifﬂewl, v €y) =L
m

(The free variables wy, .., w,, are necessarily v

m ?*I’ aiig; Ur.)

The final graph I'(F) is acyclic; one may verify that it can be computed in logarithmic space
from F. Since F has no free variables, ®(F) = . Lemma A thus asserts in the case f = F that o g
can be pebbled by a computation that uses k(F) pebbles on I'(F) if and only if F is true. Thus,
together with the construction below, Lemma A implies the Theorem in Section L.

We present the construction of I'(f) in two stages. At first, we permit nodes with many
immediate predecessors. In Section ¢ we ensure that each node has indegree at most 2. We

sometimes represent a node 8 with p immediate predecessors by

Free Variable Nodes:

In each graph I'(f) there are four nodes @, az, ﬂw, ﬁa and edges (“w'pﬁ) and (aﬁ'ﬂw) for

each free variable w in . The set ®(f) consists of these free variable nodes.

Basic Formula: f=G.

Set &(G) = 2 and T'(G) to be the graph in Figure I: in addition to the free variable nodes,
there is a node 7, and for each clause H; =x;, Vy; V % thgre is a node 9, with edges (Bxi"’i)'

(Byisﬂi)- (ﬁzi'"i)' (ni-lyﬂi)- Set WG " ﬂs-

Figure I. The graph I'(G). |

=

a--

az
=l

G__

O M

@,

Be,
a§2 O
63’2
aa,-é O >0 3(1112
322
7y © :
a;s O
ai‘ O On; =wg
ﬂzs
az O

Universal Quantification: f =Y (g
The free variable nodes $(f) are all the free variable nodes ®(g) except a, az B, B which
become nodes in ©(). Set k(f) = k(g) + 3. The graph I'(f) is defined in Figure 2. In addition to the
nodes and edges of I'(¢g) there are 3k(f) new nodes: ¥, 8, ©p
k(f) immediate predecessors of @,
k(£)-1 immediate predecessors of 7,
k(f)-2 immediate predecessors of oz
and additional edges:
(ex,,8), (B,,8), (v.8), (.9,

(agwp). Bwp), G0, (@ Paria

Existential Quantification: f=3v(g.

The free variable nodes $(f) are all the free variable nodes B(g) except a,, a, B, B which
become nodes in 6(f). Set k(f) = k(g) + 3. The graph I'(f) is defined in Figure 3; in addition to the
nodes and edges of I'(g) there are 3k(f) new nodes: #, 8, ©p

k(f) immediate predecessors of a,,

k(f)-] immediate predecessors of ¥,

k(f)-2 immediate predecessors of as;
and additional edges:

(8,8, (0,9), (.9),

(agwp), (65.«7). (5.0ﬁ.

(Q‘v'aﬁ)'

Figure 2. The graph I'(f) for f = Vo (g).

H(av)

H(a;)

10

Figure 3. The graph I'(f) for £ = 3v (g).

II(y) » O
7

€ 0

1l

3. Proof of Lemma A

In the proof of Lemma B, we describe a dutiful computation on T'(f) and thereby prove

Lemma A in the “if” direction. In Lemma C, we establish the “only if” direction.

Lemma B. Let f have free variables wy, .y Wy, Let Cq be a strictly initial configuration on

T'(Hand w » e,, be the truth assignment consistent wnth Co- If fle

wp ewm) = |, then there is a

dutiful computation that starts from Co-
Proof. We specify the steps for a dutiful computation by induction on the structure of I'(f).

Case . Basic Formula: f = G. Refer to Figure |. Place a pebble on Ny Foreachi=1,..,s5,

inductivel assume that there is a pebble on %,_;. Since G(e o€ I, H (e
Y P i-l

%, €y ez.) = 1, hence
i

-) =
wl wm

exi. eyi. or ezz_ isl,ie, ﬂxi' ﬂyi' or Szi holds a pebble. Place pebbles on the two other predecessors
of ;, as necessary, and shift the pebble on 7;.; to ;. Remove the zero, one, or two pebbles just
placed on ﬁxi, B)'i’ and ﬁzi. Finally, a pebble reaches 9, = w .

Case 2. Universal Quantification: ﬂwl, - wm) = Yo (glo, L wm)). Refer to Figure 2.

Smcef(ew sigiey wm =1, g(l, Cwp = g(0, Cup = € m) =1

21 Place all k(f) pebbles on H(av) to pebble a,. Employ the other k(f) - 1 pebbles to pebble 7.
Leaving pebbles on &, and 7, use k(f) - 2 pebbles to place a pebble on az, and shift it to 8,
Nodes &, 8,, and 4 now hold pebbles.

2.2 Use the remaining k(f) - 3 = k(g) pebbles to advance a pebble to @, via a dutiful computation

4

on I'(g). Nodes a,, B, ¥, and @, now hold pebbles.

4
2.3 Shift the pebble on v to 6.

2.4 Remove all pebbles except those on o, and §; use these (f) - 2 pebbles to pebble o

2.5 Shift the pebble on a, to ﬂ;.

12

26 Leaving pebbles on &z, 87, and 8, use the other (f) - 3 = k(g) pebbles on ©(g) to pebble'wg

again.
2.7 Shift the pebble on § to wp

Case 3. Existential Quantification: ﬂwl, - wm) = v (g(v, Wy, o wm)). Refer to Figure 2.

)=1

Put ¢ = 0 or I so that gle, ewl, - ewm

3.1 Use all k(f) pebbles to pebble &, Use the other k(f) - | pebbles to pebble 7. Leaving pebbles
on &, and v, pebble a; with k(f) - 2 pebbles.

32 If e = 0, shift the pebble on &, to §;. Otherwise, if ¢ = 1, leave the pebble on &, and shift the
pebble on a to SU.

3.3 Leaving a pebble on ¥ and pebbles either on «, and Bv or on & and ﬁg. use the other k(f) - 3

pebbles to pebble w, via a dutiful computation.

4
3.4 If e = 0, then place a pebble on ﬁv'

35 There are now pebbles on 8,, v, and @, Shift the pebble on # to é.

&
36 If e =1, then remove all pebbles except those on &, and 8, and use these k(f) - 2 pebbles to
pebble a; then shift the pebble on a,to ﬁz-r

3.7 Nodes az b and 6 now hold pebbles. Shift one of these to "’f‘ 0

Lemma C. Let f have free variables wy, .., w,. Let Cy be an initial configuration on T'(f).
Let w » e, be a truth assignment consistent with a configuration C,, that is a-a or a-8 for every
free variable of £. If there exists a dutiful computation on I'(f) that starts from C, and ends at C,,

then fle,, ¢,) =1

IU]' m
If C is a strictly initial configuration and a dutiful computation starts from Cy and ends at

configuration C,, then there is only one truth assignment consistent with C,, and this is the sole

assignment consistent with Cg. Thus, Lemma B and Lemma C together imply Lemma A.

13

Proof of Lemma C. We proceed by induction on the structure of f.

Case 1. Basic Formula: f =G. Refer to Figure 1. Suppose § = (C, .., C) is a dutiful

. computation on I'(G). Since § pebbles w4, it must pebble every ;. Recall that the literals x;, ¥;,
and z; are distinct. For each i, pebbles must appear simultaneously on the four nodes a"i' B)’t' ﬂzi
;.1 at some time t; before 9, is pebbled. We claim that one of a;i, a;i, and a}-‘ is empty in Cti. If,

to the contrary, ez, az and o> all hold pebbles in this configuration, then there are at least 2m «
i

Y %

4 pebbles on the graph: on a;, a;_, az, B, ﬂy-' ﬂz_, 7;.» and at least one on {a,, B3} for each
A

literal x that does not appear in H ; (because C, isa-aor a-f§ for every variable). Since § is
; i

dutifui, it uses at most 2m + 3 pebbles, and consequéntly, either @z or 'a-);i or a;i is empty in Cti;
: ¥ 4

moreover, this node is empty in every C, for t > t;. Therefore, in C,, for every i, either a;i or a;i

w) =1

or = is empt .- It follows that every H{e.,e ,e.)=1 and Gle_,, .. ¢€
o ied y Hi N z.i) (wy m

Case 2. Universal Quantification: ﬂwl, s W) = VO (glo, wy, - .wm)). Refer to Figure 2. Let

§ = (Cyp, .. C,)) be a dutiful computation on I'(f). We shall find times ¢; < to < t5 and possibly t{ at
which k(f) pebbles appear on e(f):
‘ .Ctl: All k(f) pebbles on Il{e,).
Ct2: A pebble on a,, and A{f) - 1 pebbles on VI'[('y).
Qtsi Pebbles on a,, and v, and k(f) - 2 pebbles on Il(a;).
; Cr-i: Pebble; on &, or B, 8, and (f) - 2 pebbles on ﬂ(a;}.
Since $ is dutiful, it uses at most k(f) pebbles on B(f), and only the last (nth) step pebbles wp

Since &, is a pferequisife for @p § must pebble av at some time. Let Ctl be the last configuration
in which all k{f) pebbles are on II{et,). There must be a pebble on &, or B in C, for all ¢ in
[tl+ll,n'-l]; otherwise, all k(f)' pebbles would be required on H(av) at some time after ¢, to repebble a,.
Let u; be the last time alfter t; that § pebbles §; for all ¢ in [uyn-1), there is a pebble on & in C,

because § is a prerequisite for Op Because &, is an immediate predecessor of 8and #; + L is the last

14

time that S pebbles a,, for all 2 in [j+1,u;-1] there is a pebble on a,, in C,

Node % is also a prefequisite for 8. Computation S must pebble 4 at some time between 4
and u;. Let {5 be the last timé in [r3,u] such that there are k(f) - I pebbles on II(y) in configuration
Cp Foralltin [to+Lu;-1] node ¥ holds a pebble in C,

Node B, is another prerequisite for 8. It must be pebbled at some last time uq between to
and u;. For all ¢ in [ug,ui-1] node B, holds a pebble in C,. Thus, S must pebble the prerequisite a;
at some time between to and uy. Let 25 be the last time in [t5,u5] at which k(f) - 2 pebbles appear
on I[(al—,)'. ;For all ¢ in [t3+l,ul-l] there is a pebble on either az or ﬁv in C,.

Node @ g is the final prerequlisite for 8. It must be pebbled at some first time uy between ¢4

and Uy

We claim that the restriction $ ¢ of S to T'(g) during [t5+1,u,] is a dutiful computation that

“starts from an initial configuration on I'(g). Every configuration of the restriction S _ is a-a or a-8

4

for evéry free variable of I'(g) because there is a pebble on e, and one on ay or B, during [t5+,u,],

and every configuration of § is a-a or a-8 for e'v.ery free variable of f. Computation S, starts from

g
aﬁ initial configuration since no pebbles are on ©(g) in Ct3+i (the (t3+.l)th step of S pebbles “5); it

ends with a pebble on @ g Subformula g has m + | free variables; since there is a pebble on %
during [tq+l,u3], § g lses at most 2m + k(f)-1= 2(m +1) + k() - 3 = 2(m + 1) + k(g) pebbles oﬁ T(g).
Finally, if S femo;;es the pebble on a3 during this interval, then_ it cannot repebble a;; because

k(f) - 2 pebb'les. would be required on Il(e;); it follows that if & is empty at some time during §

g

then it remains empty throughout the rest of § e

At time u,, if there are pebbles on both &, and o, then by the inductive hypothesis,
g, Eapyp ewm) = g(0, Cwp ewm) =1, and f(ew!, - ewm) =1

Otherwise, there is a pebble on a,, but not on a5 By induction,

g1, Cwp - ewm) =1

15

Node e is a prerequisite for @p Let i4 be the last time (after t3)‘ at which k(f) - 2 pebbles

-appear on H(a;) in Ct,}; by definition, 74 > ug. Forall?in [t4+1,n-1], node & holds a pebble jn C,
I‘n'Cté, since S uses only A(f) pebbles on ©(f) and there is a pebble on either a,, or B, there cannot
be pebbles on both 8, and . It follows that t4 2 up. There are no pebbles on ©(g) in Ct4 because
there is a pebble on § and one on o, or B

- At some first time uy after 74, node ©pa prerequisite of @ must be pebbled. As before, the
restriction of S to I"(g) during {t&+1,u4] is a dutiful computation that starts from an initial
configuration: there are pebbles on a, 6, and one on a, or 55 during this interval. By induction
agaiﬁ. &0, €wp ewm) = 1. We conclude thatﬂewl, i ewm) = Yo (gly, ewl, il N=1,

m
Case 3. Existential Quantification: flwy, .., w,) = v (g, wy, .., wm)). Refer to Figure 3. Let

S =(Cq - C,) be a dutiful computation on I'(f). We shall find times #; < t5 < t5 at which k(f)
pebbles appear on 6(f):
Crl: All k(f) pebbles on Tl(a,).
Ct2: A pebble on e, and k(f) - | pebbles on II(y).
Crg: Pebbles on a, and v, and k{f) - 2 pebbles on H(a;}.
Since § is dutiful, it uses at most k(f) pebbles on B(f), and only the last (nth) step of S
pebbles @ |
Since a,, is a prerequisite for wp S must pebble a,. Let #; be the last time at which all k{f)
pebbles appear on Il(a,). For all ¢ in [¢;+1,n-1], either a, or B holds a pebble in C; otherwise, all
k{f) pebbles would be required on H(av) at some time after ¢; to pebble e, Also, note that § cannot
remove the pebble on a, until it pebbles a. Let %, be the first time after #; at which S pebbles §,
which is a prerequisité for g
~ Node v is a prerequisite for 8, hence S must pebble at some time between ¢; and u;. Let

to be the last time between #; and u; such that k{f) - | pebbles appear on II(y). For all in

16

[eo+luy-1] nogle v holds a pebble in C,.

Node a3 is another prerequisite for 8. Let ¢, be the last time between t5 and u; such that
k(f) - 2 pebbles appear on Il(az). For all ¢ in [t5+1u-1], either a5 or B, holds a pebble; otherwise,
k(f) - 2 pebbles would appear on H(a;}-) at some time after 't3 to repebble a;.

Between 74 and % computation § must pebble w g which is a prerequisite for 8. Let uq be
the first time after 75 at which § pebbles O

As in Case 2, we can deduce that the restriction of § to I'(g) during [t4+l,us] is a dutiful
computation that starts from an initial conﬁgﬁration on I'(g). Nodes a, and & cannot both
become empty during this interval; otherwise, § would eventually be forced to place all k(f) pebbles

on Il{a,) to repebble &, and ag, which are prerequisites for op By the inductive hypothesis,

gle, Cwp ewm) = 1 for some e. Ergo, f(ewl, - ewm) =10

4. Modification of Construction

We modify the constru‘ction of Section 2 to ensure that every node has indegree at most 2.
The proofs of Section 2 can be altered in a straightforward fashion to prove that the new I'(f) and
the new k(f) satisfy Lemmas B and C.

Figure 4 exhibits a 5-pyramid. A p-pyramid has an apex and p leaves. Cook [1974] showed
that pebbling the root of a p-pyramid requires exactly p pebbles. We replace some nodes and their
p immediate predecessors with p-pyramids. The new graphs I'(f) for f = G, f = Vv (g),

and f = Jv (g) are given in Figures 5, 6, and 7. Each new I'(f) has a node wp of indegree 1

Figure 4. A 5-pyramid.

&)

(@]

(@]
o

leaves apex

Q

Q

represents

E>

VAN
WA

18

Basic Formula: f=G.
Set k(G) = 3 and I'(G) to be the graph in Figure 5: in addition to the free variable nodes,
there are two nodes 7, @, and for each clause H; =x; V y; V z; there is a 4-pyrafnid with apex #;

and leaves ﬁx.’ ﬂ?_, 6;:.' ;). There is also'an edge ("s""c)'
L i]

Universal Quantification: f = Vo (g).

The free variable nodes $(f) are all the free variable nodes $(g) except a,, &z, Bv, ﬂ;. which
become noc.ies in ©(f). Set k{f) = k(g) + 4. The graph I'() is defined in Figure 6. In addition to the -
nodes and edges of I'(g) there are new nodes: 61, 62, 63, €, e2,7 €, “’f'

a k(f)-pyramid with apex a,,
a (k(f)-l)-pyramid' with apex ¥,
a (k{f)-2)-pyramid with apex a3,
a (k(f)-3)-pyramid with apex o;
and additional edges:
(7o),
(8,81, (@), (1.89), (8139, (a,,89), Body)
(g8, (@ g8), (B38), (€0l (B78). (ea8),
(€0

With the new edge (a,wg}. node w , has indegree 2.

§

Existential Quantification: f = 3v (g).

The free variable nodes ®(f) are all the free variable nodes ®(g) except o, oz ﬁv, 65, which
become nodes in ©(f). Set i(f) = k(g) + 4. The graph I'(f) is defined in Figure 7. In addition to the
nodes and edges of I'(g) there are new nodes: 8, &, ¢, &, Op

a k(f)-pyramid with apex a,,

19

a (k(/)-D-pyramid with apex %,
a (k(f)-Z)-pyrémicl with apex pz,
a (k(f)-3)-pyramid with apex o;
* ‘and adélli‘t.idna'l edges:

(a,az), (ppaz),

(0.0 g)’

(8,8, (@ g*al)’ (7.85), (8,.95),
(a5, (3o.8)), (B50), (€6),

(62,(0 f)

Throughout Sections 2 and 3, any explicit or implicit condition “pebble on & should be
replaced by “pebble on py or a;” whenever v is existentially quantified.

Suppose f = Vv (g). Let § be a dutiful computation on I"(f) that starts from an initial
configuration, and let u; be the Jast time that § pebbles §;. One can show that at some time £ < u
there are pebbles on a,, on & or 8,, on 7, and 4(f) - 3 pebbles on the pyramid whose apex is &.
Let S pebble W at some first time uq after to: there is a pebble on the pyramid at o for all 7 in
legus-1]. The restr-iction of S to I'(g) during [tg:us] is a dutiful computation on I'(g) that starts

from an initial configuration. In essence, the pyramid preceding ¢ forces § into an a-a or a-f

configuration for ». .

Acknowledgments. Albert Meyer’s suggestibns improved the precision of the definitions

and the clarity of the proofs. Harold Abelson and Jeffrey Jaffe provided valuable comments on a
previous draft of the paper. Finally, Robert Tarjan discovered a minor flaw in an earlier version .

of the modified construction.

Figure 5. The new graph I'(G).

az O

4

o

a—

a-=

O

O

N =9g

Figure 6. The new graph I'(f) for f = Vo (g).

2l

53 O)f
SO———30
3
>0 €

Figure 7. The new graph I'(f) for f = 3v (g).

a, 6:7

k(f) >0O-

22

f

23

References

S.A. Cook, “An observation of a time-storage trade-off.” J. Comp. Sys. Sci. 9 (1974) 308-316.
J. Hopcroft, W. Paul, and L. Valiant, “On time versus space.” J. ACM 24 (1977) 332-337.

J.R. Gilbert and R.E. Tarjan, “Variations of a pebble game on graphs.” Res. Rep. C$78-66l, Dept.
Comp. Sci., Stanford Univ., Sep. 1978.

A. Lingas, “A PSPACE complete problem related to a pebble game.” In Automata, Languages and
Programming (Fifth Intern. Colloquium, Udine, Italy, July 1978), Lecture Notes in Computer
Science vol. 62, ed. G. Ausiello and C. Béhm, Springer-Verlag, Berlin, 1978, pp. 300-32l.

M.S. Paterson and C.E. Hewitt, “Comparative schematology.”" Rec. Project M AC Conf. on
Concurrent Systems and Parallel Computation, 1970, pp. 119-128.

R.R. Redziiejowski, “On arithmetic expressions and trees.” Comm. ACM 12 (1969) 81-84.
R. Sethi, “Complete register allocation problems.” SIAM . Comp. 4 (1975) 226-248.

L.J. Stockmeyer, “The polynomial-time hierarchy.” Theoret. Comp. Sci. 3 (1977) 1-22.

N .
]

]
: |
i . “ :
! '|-|."1 N TP
F .

S s 1R .
1|' g

=y

CFE. Sl

o E.-. -‘H-E.v' ql_ --.Il‘_“‘_’. 'I'I‘K;!! ST E_'_‘ of [. II- m ﬁ.,a

|*$‘ i ‘1.' |""" ""_H"}'._';Lqu . i s kN lﬂ'l. F

“gay e e W ™ - e F
L el

D Tmen e et me i el i T asgmil A
S AR R ol s pa PR
Cueed e W B G W e il 5 - Y e

kA TR efcsnee Y e = TR A

£ Ry Ailpses 2 R e Yo (OAN
L T R e PR T X
‘L-i LR K] ‘. b-Ek T '-LEI:'!I'I.J Ih"-lm- i 'l:r_hqﬂﬂ 'u

et e

P e Pt

gy 121

RS

