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1. Introduction 

The Minimum Register Allocation Problem is a basic problem of computer science [cf. Sethi 

(1975)): on a machine with the standard arithmetic operations, how many registers are required to 

evaluate an arithmetic expression? In this paper we prove that this problem is complete in 

polynomial space. 

We can represent an arithmetic expression E by a directed acyclic graph r. The nodes of 

the graph correspond to subexpressions of E. There are arcs from nodes a and fJ ton.ode "f when 

"f is the result of an arithmetic operation applied to a and {J. We define a game on r to model the 

evaluation of E with k storage registers. Given k pebbles, one places pebbles on the nodes of r in 

steps according to the following rules: 

Pebble Game 
(1) A step consists of either 

(a) a placement of a pebble on an empty node, or 
(b) a removal of a pebble from a node, or 
(c) a shift of a pebble to an empty node from one of its immediate 

predecessors. 
(2) A pebble may be placed on or shifted to a node. only if there are pebbles on all 

immediate predecessors of the node. (Thus, a node with no predecessors can be pebbled.) 
(3) There are always at most k pebbles on the graph. 

The object of the game is to start with no pebbles on r and to find a sequence of steps that 

eventually places a pebble on a designated node of r, using at most k pebbles. 

Each pebble represents a storage register. Pebbling a node corresponds to storing a value in 

a register, removing a pebble from a node .to releasing a register, and pebbling the designated node 

to computing the value of the arithmetic expression E. The Minimum Register Allocation Problem 

is to determine the number of registers required to evaluate E, equivalently, the minimum number 

of pebbles necessary to pebble the designated node of r. This Pebble Game has also been 

employed to compare flowcharts and recursion schemata (Paterson and Hewitt (1970)] and to study 

the Turing machine resources time and space (Hopcroft et. al. (1977)). 
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We can recast the Minimum Register Allocation Problem as a decision problem: 

Pebbling Problem. Given a directed acyclic graph rand an integer k, can one 
advance a pebble to a designated node of r, starting from an empty configuration, such that 
at most k pebbles ever appear on r? 
Sethi [1975) proved that the Pebbling Problem is NP-hard, but the exact complexity of the 

problem has not been assessed until recently.t Gilbert and Tarjan [1978) and Lingas (1978) showed 

that more general pebbling problems.,.. for a pebble game on and-or graphs - are polynomial space 

complete. Earlier, Redziejowski (1969) essentially demonstrated that the Pebbling Problem for trees 

r can be solved in polynomial time. 

. 
Theorem. The Pebbling Problem for directed acyclic graphs with indegree 2 is complete in 

polynomial space under logarithmic space reduction. 

To establish this Theorem, we reduce quantified boolean formulas to the Pebbling Problem 

in Sections 2 and 3. In Section 4 we modify the construction so that the nodes of the resulting 

graph have indegree at most 2. 

t Our proof uses several ideas of J.R. Gilbert, T. Lengauer, and R.E. Tarjan [personal 
communication], who first obtained the complexity. Nonetheless, this exposition may also be of 
interest. 
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2. Construction 

Before describing our construction, we adopt a few definitions. A configuration specifies the 

nodes of a pebbled graph that hold pebbles. (The careful reader may define a configuration to be 

the set of nodes that hold pebbles; he may then express the following definitions in the terminology 

of sets.) A step on a configuration is lega 1 if it satisfies restrictions (2) and (3) in the definition in 

Section 1. A computation that starts from configuration c0 and ends at configuration Cn is a 

sequence of configurations (C0, c1, ... , Cn) such that for each t, either Ct-I is transformed ~nto Ct by 

a legal step or Ct-I = Ct. This computation uses k pebbles if in each configuration Ct there at most 

k pebbles and in some configuration there are k. A computation pebbles a node 8 at time t (relative 

to the start of the computation) if the tth step of the computation places or shifts a pebble onto 8. 

The notation [t1,t2] denotes the interval of times t such that t1 st s t2. 

If S = (C0, ... , Cn) is a computation on r and r• is a subgraph of r, then the restriction of S 

tor• c:luring [t1,t2] is the sequence of configurations of pebbles on r• in Ct, ... , Ct . One can 
1 2 

confirm routinely that the restriction of a computation to r• is itself a computation on r•. 

Write I1(8) for the set of immediate predecessors of a node 8. 

A node 81 is a prerequisite for a node 82 if there is a path from 81 to 82. If 81 is a 

prerequisite for 82, and S is a computation that pebbles 82 at a time t, and S starts from a 

configuration in which some path from 81 to 82 holds no pebbles, then S pebbles 81 at some time 

before t. 

Evidently, the Pebbling Problem can be solved in polynomial space: a nondeterministic 

Turing machine can guess the correct computation, if it exists. To establish completeness, we reduce 

quantified boolean formulas to this problem. (Stockmeyer [1977) proved that the language of true 

quantified boolean formulas is complete in polynomial space.) For each quantified boolean formula 

F we can efficiently generate an acyclic graph such that pebbling a designated node of this graph is 
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tantamount to proving that F is true. 

Our construction proceeds inductively on the structure of F. We assume that F has no free 

variables and has the form 

where. each 0--i is either 't/ (a universal quantifier) or 3 (an existential quantifier), the variables vi 

are distinct, and C is a boolean formula that is a conjunction of s clauses with 3 distinct literals per 

clause: 

G = H l I\ ... I\ H s• 

where Hi= xi V Yi V zi, 

xi, Yi• zi are literals, i.e., each is a variable or its negation. 

As usual, x = x for every litera 1 x. 

For each subformulaj of F with m free variables that contains Gas a subformula, we shall 

constrµct an acyclic graph r(/) and define a positive integer k(f). The nodes of r(/) are divided 

into two sets ~(f). the set of free variable nodes, and 8(/), the other nodes. For each free variable w 

inf there a re four nodes {cxw, cxiij, {Jw, {Jw} in ~(/). Among the nodes of 8(/) is the output node "'f 

A configuration C on r(/) is an cx-f) configuration for a variable w if in C either aw and flu, 

or aru and {Jru hold pebbles, but either aw or aw is empty. A configuration is an a-a configuration 

for w if both aw and aw hold pebbles. By definition, if C is a-a or a-/J for w, th.en there is a 

pebble on either aw or f3w (or both) and on either "w or {Jw. 

A configuration on r(/) is initial if it is a-a or a-{J for each free variable and there are no 

pebbles on 6(f). A configuration is strictly initial if it is an initial configuration and for each free 

variable it is an a -{J configuration with just 2 pebbles on {aw, au;, {Jw, fJu;}: on aw and /Jw, or on 

aw and {JlU' 

A truth assiirnment is a function from free variables to {0,1} (which are interpreted as 
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boolean values for false and true). A truth assignment w >+ tw to the free variables off is consistent 

with a configuration C on r(f) if in C for each free variable w, 

t
i if fjw holds a pebble and aw does not, 

ew .. 

0 if fjw holds a pebble and aw does not, 

It is possible for a configuration to have·no consistent truth assignment. If C is an a-a 

configuration for w, then for consistency ew can be either O or l. If C is a-a or ti-{J for every free 

variable and in C node aw is empty, then for consistency ew must be l. If C is a strictly initial 

configuration, then there is only one truth assignment consistent with C. 

Call a computation S = (C0, ... , Cn) on r(/) dutiful if: 

(I) every configuration of S is an a-a or an a-fJ configuration for each free variable; · 

(2) the final step of S is a placement or shift onto "'f and for alt t < n, node "'J is 

empty in Ct; 

(3) S uses at most 2m + k(/) pebbles; and 

(4) for each literal x, if node ax is empty in configuration Cu, then it is empty in 

every Ct for t ~ u. 

By definition, if (C0, ... , Cn) is a dutiful computation, then so is (Cr, ... , Cn) for each t. Moreover, by 

conditions (1) and (4), every truth assignment consistent with Ct is consistent with Ct-I; thus, every 

truth assignment consistent with en is consistent with c0. Consequently, if c0 is a strictly initial 

configuration, then the sole truth assignment consistent with c0 is also the only one consistent with 

Cn. Condition (I) implies that in every configuration of a dutiful computation there are at least 2m 

pebbles on ~(f). hence by condition (3), there are at most k(/) pebbles on 0(/). 

Subformula f with free variables w1, ... , wm defines in the usual way a boolean function that 

we writef(w1, ... , wm>· We shall establish the following fundamental relationship between/, kif>, and _ 

r(J): 
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Lemma A. Let F have the form (,:,). Let f equal G or be a subformula of F of the form 

<l.qv q ... Qiv1 (G), l~q~r. Let f have free variables w1, ... , wm (where m .. r - q). Let c0 be a strictly 

initial configuration on r(f) and w ~ ew be the truth assignment consistent with c0. There is a 

dutiful computation that starts from c0 if and only if fiew, ... , ew ) .. 1. 
l m 

(The free variables w1, ... , wm are necessarily vq+l' ... , vr.) 

The final graph r(F) is acyclic; one may verify that it can be computed in logarithmic space 

from F. Since F has no free variables,.~(F) .. ¢ . Lemma A thus asserts in the case/ .. F that "'F 

can be pebbled by a computation that uses k(F) pebbles on r(F) if and only if F is true. Thus, 

together with the construction below, Lemma A implies the Theorem in Section l. 

We present the construction of r(f) in two stages. At first, we permit nodes with many 

immediate predecessors. In Section 4 we ensure that each node has indegree at most 2. We 

sometimes represent a node 8 with p immediate predecessors by 

Free Variable Nodes: 

In each graph r(f) there are four nodes «w, «w, {Jw, {Jw and edges (tllw,fJw) and (aiii,fjw) for 

each free variable w inf The set ~(f) consists of these free variable nodes. 

Basic Formula: f = G. 

Set k(G) "' 3 and r(G) to be the graph in Figure I: in addition to the free variable nodes, 

there is a node '1o, and for each clause Ht• x, V Yt V z, there is a node 'It with edges (fjx ,'fl,), 
. l 
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Figure I. The graph r(G). , 
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Untvers~l Quantification: J"' 'Vv (g). 

The free variable nodes~(/) are all the free variable nodes ~(g) except av, azi, /3v, /3ij, which 

become nodes in 9 (/). Set k(f> = k(g) + 3. The graph r(f> is defined in Figure 2. In addition to the 

nodes and edges of r(g) there are 3k(f> new nodes: 'Y, o, "'f' 

k(f> immediate predecessors of av, 

k(f>-1 immediate predecessors of 'Y, 

k(/)-2 immediate predecessors of air 

and additiona I edges: 

(o:v,o}, ({j v,o), ("/ ,o), (w g'o), 

<av·"'i· <13v·"'i· <0,"'i· <"'g'"'l 

Existential Ouantification: f = 3v (g). 

The free variable nodes~(/) are all the free variable nodes ~(g) except av, av, f3v, /3;, which 

become nodes in 9(/). Set k(/) = k(g) + 3. The graph r(f> is defined in Figure 3; in addition to the 

nodes and edges of r(g) there are 3k(f> new nodes: 'Y, o, "'f 

k(/) immediate predecessors of o:v, 

k(/)-1 immediate predecessors of 'Y, 

k(/)-2 immediate predecessors of o:ir 

and additional edges: 

<13 v·o>. <<-> g'o>. < -r ,o), 

(av·"'}· <f3v•"i· (0,6'i, 

<av,o:v>· 
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Figure 2. The graph r(f) for f-= Vv (g). 
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Figure 3. The graph r(/) for/.,. 3v (g). 
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3. Proof of Lemma A 

In the proof of Lemm::1 B, we describe a dutiful computa~ion on r(/) and thereby prove 

Lemma A in the "if" direction. In Lemma C, we establish the "only if" direction. 

Lemma B. Let/ have free variables w1, ... , wm. Let c0 be a strictly initial configuration on 

r(f) and w .~ ew be the truth assignment consistent with c0. If fiew , ... , ew ) = 1, then there is a 
1 m 

dutiful computation that starts from c0. 

Proof. We specify the steps for a dutiful computation by induction on the structure of r(f). 

Case 1. Basic Formula: f = G. Refer to Figure I. Place a pebble on 110. For each t = I, ... , s, 

inductively assume that there is a pebble on "i-J• Since G(ew, ... , ew ) = I, H/ex.• e'II.' ez) = I, hence 
. I m i ii i 

ex.• e'II.' or ez_ is I, i.e., f1x.• f1'11.' or {1 2 _ holds a pebble. Place pebbles on the two 0th.er predecessors 
t 1 l l l 1 l l 

of '1i, as necessary, and shih the pebble on "H to fli' Remove the zero, one, or two pebbles just 

placed on f1x.• fJ'II.' and {Jz: Finally, a pebble reaches '1s = 6'0 . 
l 1 l l 

Case 2. Universal Quantification: J(w1, ... , wm) = Vv (g(.v, w1, ... , wm)). Refer to Figure ·2. 

Since j(er~ ..... ew ) = I, g(I, ew , ... , ew ) = g(O, ew .... , ew ) = 1. 
I m I m I m 

2.1 Place all k(fJ pebbles on II(av) to pebble av. Employ the other k(/) - I pebbles to pebble "'f. 

Leaving pebbles on av and 'Y, use kif) - 2 pebbles to place a pebble on aij, and shift it.to fJ,r 

Nodes cxv, {Jv· and 'Y now hold pebbles. 

2.2 Use the remaining k(/) - 3 = k(g) pebbles to advance a pebble to "'g via a dutiful computation 

on r(g). Nodes cxv· fJv. 'Y, and "'g now hold pebbles. 

2.3 Shift the pebble on 'Y to 8. 

2.4 Remove a 11 pebbles except those on av and ~; use these kif> - 2 pebbles to pebble "v· 
2.5 ,Shift the pebble on av to f3v· 



12 

2.6 Leaving pebbles onav, {Jv, and 8, use the other k(f)- 3 • k(g) pebbles. on 8(g) to pebble <a>g 

again. 

2.7 Shift the pebble on 8 to 6>/ 

Case 3. Existential Quantification: f(w1, ... , wm) • 3v (g(v, w1, ... , wm)). Refer to Figure 2. 

Put e .. 0 or I so that g(e, ew , ... , ew ) = I. 
I m 

3.1 Use all k(f) pebbles to pebble "v· Use the other k(f) - l pebbles to pebble"(. Leaving pebbles 

on «v and 'Y, pebble «v with k(f) - 2 pebbles. 

3.2 If e - 0, shift the pebble on «v to fJv· Otherwise, if e • l, leave the pebble on «v and shift the 

pebble on «v to {Jv· 

3.3 Leaving a pebble on 'Y and pebbles either on av and fJv or on av and fJv, use the other kV, - 3 

pebbles to pebble 6>g via a dutiful computation. 

3.4 If e - 0, then place a pebble on fJv· 

3.5 There are now pebbles on fJv, 'Y, and <A>g- Shift the pebble on 'Y too. 

3.6 If e "' 1, then remove all pebbles except those on «v and 8, and use these k(f) - 2 pebbles to 

pebble aV' then shift the pebble on «v to flv· 

3.7 Nodes "v• {Jv, and cS now hold pebbles. Shift one of these to "'f D 

Lemma C. Let/ have free variables w1, ... , wm. Let c0 be an initial configuration on rv,. 

Let w ._. ew be a truth assignment consistent with a configuration Cn that is a-a or a-fJ for every 

free variable off If there exists a dutiful computation on r(f) that starts from c0 and ends at Cn• 

then fiew , ... , ew ) = 1. 
1 m 

If c0 is a strictly initial configuration and a dutiful computation starts from c0 and ends at 

configuration Cn, then there is only one truth assignment consistent with Cn, and this is the sole 

assignment consistent with c0. Thus, Lemma B and Lemma C together imply Lemma A. 
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Proof of Lemma C. We proceed by induction on the structure off 

Case 1. Basic Formula: f = G. Refer to Figure 1. Suppose S = (Co, ... , Cn) is a dutiful 

computation on r(G). Since S pebbles (l.)c, .it must pebble every f)i. Recall that the literals xi, 'It• 

and zi are distinct. For each t, pebbles must appear simultaneously on the four nodes f3x , fJ.., , fJz , 
. i ,t l 

'1t-1 at some time ti before '1t is pebbled. We claim that one of «x, a;, and «z is empty in Ct. If, 
i ,t i l 

to the contrary, "xi' a1l and a¾ alt hold pebbles in this configuration, then there are at least 2m • 

4 pebbles on the graph: on ax.• a;_, "z.• f3x:• 13..,_, ~;:.• '1t-1, and at least one on {aX' fJxl for each 
l .ft l t .fl l 

literal x that does not appear in Hi (because Ct. is a-a or a-fj for every variable). Since S is 
i 

dutiful, it uses at most 2m + 3 pebbles, and consequently, either "i. or a; or «z. is empty in c, ; 
. l .1t l t 

moreover, this node is empty in every Ct fort ~ ti' Therefore, in Cn, for every t, either «x, or «11 
or az. is empty. It follows that every H ieX-' e..,_, e

2
) • 1, and G(ew , ... , ew ) • 1 

l t .fl l J m 

Case 2. Universal Quantification: j(w1, ... , wm) = Vv (g(v, w1, ... , wm)). Refer to Figure 2. Let 

S • (C0, ... Cn) be a dutiful computation on r{/). We shall find times t1 < t2 < t3 and possibly t4 at 

which k(j) pebbles appear on 8lf>: 

ct
1
: All k(f) pebbles on Il(av>· 

ct
2
: A pebble on av and k{/) - I pebbles on Il(,y). 

Ct
3
: Pebbles on "v and 'Y, and k{/) - 2 pebbles on Il(a;;). 

Ct : Pebbles on av or fJ;;, &, and k{/) - 2 pebbles on Il(a;;). 
4 

Since S is dutiful, it uses at most k{/) pebbles on 8{/), and only the last (nth) step pebbles ~f 

Since "'v is a prerequisite for (l,)'f S must pebble av at some time. Let Ct be the last configuration 
. l 

in which a11 k<.f) pebbles are on II(a:v>· There must be a pebble on av or fJv in Ct for a11 t in 

[t1•l,n-lJ; otherwise, all kif> pebbles would be required on Il(av) at some time after t1 to repebble au 

Let u1 be the last time after t1 that S pebbles &; for all t in [u1,n-l], there is a pebble on 8 in c, 

because cl is a prerequisite for O>l Because "v is an immediate predecessor of 3 and t1 + 1 is the last 
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time that S pebbles "v• for all t in [t1+t,url] there is a pebble on av in Ct. 

Node "Y is also a prerequisite for 8. Computation S must pebble ,y at some time between t
1 

and u 1. Let t2 be the last time in [t1,u1J such that there are k(f) - l pebbles on Il(,y) in configuraUon 

ct
2

· For all t in [t2+1,url] node 'Y holds a pebble in Ct. 

Node fJv is another prerequisite for 6. It must be pebbled at some last time u
2 

between· t
2 

and ul. For all t in [u2,url] node fJv holds a pebble in Ct. Thus, S must pebble the prerequisite «;; 

at some time between t2 and u2. Let t3 be the last time in [r2,~] at which k(f) - 2 pebbles appear 

on Il(av). ,for all t in [t3+1,url] there is a pebble on either "v or {Jv in Ct. 

Node w g is the final prerequisite for 8. It must be pebbled at some first time u3 between t
3 

We claim that the restriction S g of S to r(g) during [t3+I,u3] is a dutiful computation that 

starts from an initial configuration on r(g). Every configuration of the restriction S g is a-a or a-/J 

for every free variable of r(g) because there is a pebble on "v and one on av or fJv during [t3+1,~l 

and every configuration of S is a-a or a-{J for every free variable off. Computation S g starts from 

an initial configuration since no pebbles are on 8(g) in Ct +I (the (t3+1)th step of S pebbles av); it 
3 

ends with a pebble on w g- Subformula g has· m + I free variables; since there is a pebble on ")' 

during [t3+J,u3), S g mes at most 2m .. k(f) - 1 = 2(m + 1) + kl/) - 3 -= 2(m + 1) + k(g) pebbles on r(g). 

Finally, if S removes .the pebble on av during this interval, then it cannot repebble «v because 

kif> - 2 pebbles would be required on Il(av); it follows that if av is empty at some time during S g' 

then it remains empty throughout the rest of S [ 

At time u3, if there are pebbles on both "v and "v• then t;,y the inductive hypothesis, 

g(l, ew , ... , ew ) -= g(O, ew , ... , ew ) = 1, and flew , ... , ew ) • I. 
l m I m l m 

Otherwise, there is a pebble on "v• but not on "v· By induction, 

g(l, ew , ... , ew ) "' 1. 
l m 
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Node cxv is a prerequisite for wf Let i4 be the last time (after t3) at which k(f) - 2 pebbles 

· appear on II(cxv) in Ct ; by definition, t4 > u2. For all t in [t4+I,n-l), node cxv holds a pebble in Ct. 
4 . 

In Ct , since S uses only k{f) pebbles on 0(/) and there is a pebble on either cxv or f3v, there cannot 
4 

be pebbles on both {Jv and -y. It follows that t4 2. u1. There are no pebbles on 8(g) in Ct because 
4 

there is a pebble on o and one on cxv or {Jv· 

At some first time u.4 after t4, node w g' a prerequisite of w1, must be pebbled. As before, the 

restriction of S to r(g) during [t4+1,u4J is a dutiful computation that starts from an initial 

configuration: there are pebbles on cxv, o, and one on "v or {Jv during this interval. By induction 

again, g<o, ew, ... , etv ) = I. We conclude thatj(ew, ... , ew ) = Vv (g(v, ew , ... , ew )) .. I . 
. I m Im l m 

Ca~e 3. Existential Quantification: j(w1, ... , wm) = 3v (g(v, w1, ... , wm)). Refer to Figure 3. Let 

S -= (C0, ... , Cn) be a dutiful computation on r{f). We shall find times t1 < t2 < t3 at which k(/) 

pebbles appear on 8(/): 

ct
1
: All k{f) pebbles on Il(cxv). 

C t
2

: A pebble on "v and k{f) - I pebbles on II(")'). 

Ct : Pebbles on cxv and "Y, and k{f) - 2 pebbles on Il(cxv). 
3 

Since S is dutiful, it uses at most k(f) pebbles on 0(/), and only the last (nth) step of S 

pebbles ""f 

Since cxv is a prerequisite for wf' S must pebble av. Let t1 be the last time at which all k(f) 

pebbles appear on fl(cx) For all tin [t1+1,n-l]. either cxv or {Jv holds a pebble in c,; otherwise, all 

k(f) pebbles would be required on Il(cxv) at some time after t1 to pebble "v· Also, note that S cannot 

remove the pebble on cxv until it pebbles cxv. Let u1 be the first time after t1 at which S pebbles 6, 

which is a prerequisite for wf 

Node 'Y is a prerequisite for o, hence S must pebble 'Y a.t some time between t1 and u1. Let 

t2 be the last time between t1 and u1 such that k{f) - l pebbles appear on Il(")'). For all tin 
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[t2 +1,url] node 'Y holds a pebble in Cf 

Node av is another prerequisite for 8. Let t3 be the last time between t2 and u1 such that 

k(f) - 2 pebbles appear on Il(av). For alt t in [t3+l,urlJ, either av or fjv holds a pebble; otherwise, 

k(f) - 2 pebbles would appear on Il(o:v) at some time after t3 to repebble "v· 

Between t3 and u1 computation S must pebble w g' which is a prerequisite for 6. Let u 2 be 

the first time after t 3 at which S pebbles wg-

As in Case 2, we can deduce that the restriction of S to r(g) during [t3+t,u2] is a dutiful 

computation that starts from an initial configuration on r(g). Nodes av and "v cannot both 

become empty during this i~terval; otherwise, S would eventua11y be forced to place all k(f) pebbles 

on II(av) to repebble "v and "v• which are prerequisites for wf By the inductive hypothesis, 

g(.e, ew , ... , ew ) = l for some e. Ergo,fiew, ... , ew ) .. I. D 
1 m l m 



17 

4. Modification of Construction 

We modify the construction of Section 2 to ensure that every node has indegree at most 2. 

The proofs of Section 3 can be altered in a straightforward fashion to prove that the new r(f) and 

the new k.(f) satisfy Lemmas B and C. 

Figme 4 exhibits a 5-pyramid. A p-pyramid has an apex and p leaves. Cook [1974) showed 

that pebbling the root of a p-pyramid requires exactly p pebbles. We replace some nodes and their 

p immediate predecessors with p-pyramids. The new graphs r{f) for f"' G,f .. Vv (g), 

and/= 3v (g) are given in Figures 5, 6, and 7. Each new r(f) has a node"'/ of indegree. 1. 

Figure 4. A 5-pyramid. 

leaves apex 

represents 
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Basic Formula: f = G. 

Set k(G) = 3 and r(G) to be the graph in Figure 5: in addition to the free variable nodes, 

there _are two nodes '7o, "'G and for each clause Hi = xi V Yi V zi there is a 4-pyramid with apex 'IJt 

and leaves fJx.• fJy.• {JZ-' "i-l• There is also an edge <"s•"'o>-
i l l 

Universal Quantification: f = Vv (g). 

The free variable nodes <P(j) are all the free variable nodes 4'(g) except aV' azi, f1v, f1v, which 

become nodes in 0(/). Set k(j) = k(g) + 4. The graph r(j) is defined in Figure 6. In addition to the 

nodes and edges of r(g) there are new nodes: o1, o2, o3, e1, e2, e3, "'f 

a k(j)-pyramid with apex av, 

a (k(j)-1)-pyramid with apex 'Y, 

a (k(j)-2)-pyramid with apex azi, 

a (k(j)-3)-pyramid with apex O'; 

and additional edges: 

(17,wg), 

(fjv,ol), (wg-01), ('Y,02), (01,02), (cxv,03), (02,03)'. 

(azi,e1), (w g-e1), (o3,e2), (e1,e2), (Pzj,e3), (e2,e3), 

(e3,Wi. 

With the new edge (o-,CA>g), node "'g has indegree 2. 

Existential Quantification: f .. 3v (g). 

The free variable nodes cp(j) are all the free variable nodes cli(g) except av, azi, flv, flv, which 

become nodes in 0(/). Set k(j) = k(g) + 4. The graph r(j) is defined in Figure 7. In addition to the 

nodes and edges of r(g) there are new nodes: o1, o2, e1, e2, wf 

a k(f)-pyramid with apex av, 



a (k(f)-1)-pyramid with apex 'Y, 

a (k(/)-2)-pyramid with apex Pv, 

a (k(/)-3)-pyramid with apex <r; 

and ad?iticinal edges: 

(av.av), (Pij,aij), 

('1,W g)• 

<f1v.01), (wg-01), ('Y,02), (01,82), 

(av,'1), <02,'1}, <fJv•'2}, (e1,e2), 

(f.2,Wi. 
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Throughout Sections 2 and 3, any .explicit or implicit condition "pebble on «ij'' should be 

replaced by "pebble on Pv or aif' whenever v is existentially quantified. 

Suppose/= 'Vv (g). Let S be a dutiful computation on rif) that starts from an initial 

configuration, and let u1 be the last time that S pebbles 81. One can show that at some time t0 < u1 

there are pebbles on av, on av or {Jv, on 'Y, and kif) - 3 pebbles on the pyramid whose apex is tr. 

Let S pebble w g at some first time u2 after· t0; there is a pebble on the pyramid at tr for all t in 

[to,u2-l]. The restriction of S to r(g) during [to,u2] is a dutiful computation on r(g) that starts 

from an initial configuration. In essence, the pyramid preceding tr forces S into an «-« or «-fJ 

configuration for v. 

Acknowledgments. Albert Meyer's suggestions improved the precision of the definitions 

and the clarity of the proofs. Harold Abelson and Jeffrey Jaffe provided valuable comments on a 

previous draft of the paper. Finally, Robert Tarjan discovered a minor flaw in an earlier version . 

of the modified construction. 



Figure 5. The new graph r(G}. 
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Figure 6. The new graph r(f) for f = 'Vv (g). 

03 
1-----I J---- 0>----lJ 
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Figure 7. The new graph r</) for f .. 3v (g). 



23 

References 

S.A. Cook, "An observation of a time-storage trade-off." j. Comp. Sys. Sci. 9 (1974) 308-316. 

J. Hopcroft, W. Paul, and L. Valiant, "On time versus space." J. ACM 24 (1977) 332-337. 

J.R. Gilbert and R.E. Tarjan, "Variations of a pebble game on graphs." Res. Rep. CS78-661, Dept. 
Comp. Sci., Stanford Univ., Sep. 1978. 

A. Lingas; "A PSPACE complete problem related to a pebble game." In Automata, Languages and 
Programming (Fifth Intern. Colloquium, Udine, Italy, July 1978), Lecture Notes in Computer 
Science vol. 62, ed. G. Ausiello and C. Bohm, Springer-Verlag, Berlin, 1978, pp. 300-321. 

M .S. Paterson and C.E. Hewitt, "Comparative schematology." Rec. Project MAC Conj. on 
Concurrent Systems and Parallel Computation, 1970, pp. 119-128. 

R .R. Redziejowski, "On arithmetic expressions and trees." Comm. ACM 12 (1969) 81-84. 

R. Sethi, "Complete register allocation problems." SIAM J. Comp. 4 (1975) 226-248. 

L.J. Stockmeyer, "The polynomial-time hierarchy." Theoret. Comp. Sci. 3 (1977) 1-22. 




