
MIT /LCS/TM-131

TIME, SPACE AND RANDOMNESS

Leonard M. Adelman

March 1979

MIT/LCS/ TM-131

TIME, SPACE AND RANDOMNESS

LEONARD M. ADLEMAN

DEPARTMENT OF MATHEMATICS
AND

LABORATORY FOR COMPUTER SCIENCE

MARCH 1979

This report was prepared with the support of the
National Science Foundation Grant No. MCS- 78 - 04343.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

Abstract

Space and time are the fundamental parameters of complexity theory. The

thesis of this paper is that randomness is of equal importance. We introduce

a notion of randomness (based on Kolomogorov-Chaitin-Randomness), which we

suspect will contribute to the understanding of some of the central problems in

complexity theory. The purpose of this paper is primarily conceptual, though

several easy theorems are given which clarify the relationship of this notion of

randomness to the NP= P question, the complexity of integer factoring, and the

sets computable in random polynomial time. Finally, using factoring as an example,

we raise the possibility of performing experiments on functions of unknown

complexity to indicate the extent of their tractability.

KEY WORDS: Computational complexity
Information theory
NP = p
Factoring

-1-

I. Motivation - An analogy with chemistry

At a philosophical level there is a similarity between chemistry

and number theory. Both fall into the (rather large) class of disciplines

where the main topic of concern (matter, numbers) can be understood in

terms of simple combinations of special elements (atoms, primes) . For

the purpose of motivation we will pursue this similarity further.

The following is a familiar equation in chemistry:

It indicates a reversible reaction; oxidation to produce water and reduction

to produce elemental hydrogen and oxygen. The analogous equation in number

theory might be:

p X q = pq

where multiplication results in a composite number and factoring produces

primes. As anyone familiar with chemistry knows, the oxidation process in

the first equation is quite rapid; however, the reverse reaction, carried

out by the method of electrolysis, is quite slow. Of course, here too the

analogy holds since multiplication is fast and factoring by known methods

is slow. It is reasonable to wonder if the chemists have an NP= P- type

question of their own: Are there faster methods for reduction than

electrolysis, or are there reasons in principle why all methods mu st be

slow? Fortunately for the chemist there are reasons in principle. They

- 2-

concern the idea of potential energy. Elemental hydrogen and oxygen

have relatively large amounts of potential energy compared with water.

While little energy (of activation) is needed to convert the elements

to water, any process which does the reverse must pump large amounts

of energy back. This manifests itself as fast and slow reactions.

It is natural to wonder if the analogy still holds. Is there a

notion of storing potential in numbers with the result that high potential

primes sometimes have relatively low potential products which are hard to

factor by any means because all methods must take the time to pump the

potential back? In the next section we will define such a notion of

potential and prove that if factoring is not in P then this is the

reason why.

II. Potent Numbers

Kolomogorov [7 J and Chaitin [5] have established an excellent theory

of the information content of strings. Intuitively, the amount of informa-
'

tion in a string is the size of the smallest program which, starting on a

blank input tape, outputs the string and halts. Thus ln contains little

information because a program of size about lnl will output it. t On the

other hand, so-called Chaitin-random strings of length n require programs

tFor our theory the choice of programming systems is not critical; most

natural programming systems will suffice. In this abstract we will not

bother specifying the particular one we have chosen.

-3-

of size about n (i.e. large enough to have the string stored in a table).

Our notion of potential is related to concepts studied by Kolomogorov and

Levin [8]; and Meyer and Mccreight [10] and involves a refinement

of the ideas of Kolomogorov and Chaitin to take into account the amount of

time required to generate the string in question. The idea can be illus

trated with 3 examples.

a 1 = 1000

00

00000000000000001

a2 = 100110110000100111111100010111100001001000100000100010111010

0000001

a3 = 101000011101100110011010011111100100011110111001010010110110

001100001

a1 is the binary representation of 2136 +1. There is a small program

(of size about iia1 II) which generates it, and runs in about la1 I steps.

Figure 1 (on the next page) is a graph of the time-space tradeoff associated

with a1, where the value at i is the number of steps required by the fastest

program of size i which generates a1 (undefined if no such program exists).

a2 was generated by flipping coins and is therefore Chaitin-random

with high probability. Its time-space graph should look like the one

shown in Figure 2. (Notice for any string of size n there is always a

program of size about n which outputs the string i~ about n steps.)

a3 looks as random as a2; however, it is very likely that i n the

Kolomogorov-Chaitin measure i t is more closely related to a1. It is the

largest prime factor of 2136 + 1 and so has a small description . However,

t
L.u
'.'E
f-

i
L.u
~
f-

i
L.u
:::e::
f-

ja.3'8 ' '
la.3'7 ,
I a.316

la.3'5
la.3'4
la.3'3
la.f
I a~

....
....

-4-

PROGRAM SIZE -

FIG. 1

PROGRAM SIZE -

FIG. 2

....
....

.....

PROGRAM SIZE~

FIG. 3

-5-

in another sense it is likely to be much different from a1, since it took

approximately 242 steps! on a special purpose device (the Lehmer Sieve

[3] to find this factor. So the time-space graph for, a3 may be as

shown in Figure 3.

Thus it appears that we may distinguish a1 and a3 by the amount of

time small programs use to create them. We think of strings as storing

this time. This mot i vates the following definition:

* * Definition For all KE: N, For all a E: {O,l} (For all TE: {O,l}),

a is K- potent (with respect to T) iff there is a program p of size l ess

than or equal to K 11011 , which with blanks (T) as input halts with output

a in less than or equal to la lK steps.

Example For almost all n, ln is 2-potent.

Example For all K, for almost all Chaitin- random a, a is not K-potent.

Example Let a2 = a2 ffl l 66 (~ is exclusive or) then a2 is Chaitin

random (assuming a2 was) and 1-potent with respect to a2.

The following is a useful fact about potent numbers.

Thrm. I For all K, the function
/ fK (o ,ln) = {al !al ~ n & a is K-potent wrt a}

is computable in polynomial time .

.Pf There are at most 2K lnl ~ nK programs of length Kin i . By

simulating them on input a for nK steps the res ult is obtained .

The Kolomogorov Chaitin theory says that no computable function can

map non-Chaitin-random stri ngs into Chaitin - random stri ngs except f ini tely

-6-

often. However, computable functions which infinitely often produce
/

outputs of highe\ potential than the inputs do exist (a straightforward

diagonal argument suffices). We call such functions 11 inflating" and give

a precise definition below.

Definition For all functions f: {0,l}*+{O,l}*, f is an inflating function

iff for all Ks N there are infinitely many o s {0,1}* such that

f(o) is not K-potent with respect too.

Example f(cp) = {
l if <P is a true sentence in th (<w,+>)}
O otherwise

is not inflating since f(o) is never very potent. If Range (f)

is finite then f is not inflating.

Example f(o) = oR (o reversed) is not inflating (though Range (f) = N

since f(o) is always of low potency with respect to o.

Intuitively, algorithms computing inflating functions must infinitely

often "scramble 11 inputs in order to get outputs - a syntactical process

which could be expected to take time independent of the underlying semantics

off (i.e. whether f is number theoretic, graph theoretic, etc.).

Thrm II Let IF denote the integer factoring function. Then

IF t.. P <~ IF is inflating .

£f (i) IF s P ==!}IF is not inflating

Assume there is an algorithm of size S which factors in time nK

for some K. Let a be any input of size 2S/K or greater, then IF(a)

is produced by a program of size S ~ Kl jf(a) II (since llF(a)I ~ laj) ,

-7-

starting on input a, and halting within lf(a)IK steps. Thus W(a)

is K-potent with respect to a and IF is not i nfl at i ng.

(ii) lF not inflating ~f £ P.

Assume Wis not inflating, then there is a K such that for almost

all a, F(a) is K-potent with respect to a. But l!F(a) I .s._ 2la l.

By Theorem I, fK(a ,1Zlal) is computable in polynomial time. Since

all prime factors of a are in fK(a ,1 21al) we can in polynomial

time arive at f(a) by taking GCD 1 s.

Thus factoring is difficult iff multiplication has infinitely often

taken highly potent numbers and produced relatively low potency products,

which are hard to factor because the potential must be pumped back. In

fact searching for factors of a number by enumerating candidates in order

of potency makes sense. Many other search procedures, for example exhaustive

search, waste time on inputs like ln (so-called Mersenne numbers) by

mostly checking Chaitin-random strings which could not possibly be factors

(similar reasoning holds for searches on combinatorial problems) . In fact

search by increasing potency gives a polynomial time factoring algorithm

if any polynomial time algorithm exists.

An important consequence of Thrm II is that it shows that the difficulty

of factoring is not a global phenomenon but rather is a local one which

we might hope to see in particular inputs and outputs. In [l J it was

shown that the analogous .statement for deciding sets in R is false. In

section V we will pursue this further.

-8-

III. Potential Numbers and the NP= P Question

What makes logical theories like Presburger Arithmetic [6] and

WSIS [9 J intractible? One answer is their "expressive power". The

theories have very short formulas (say of length n) which encode very long

(of length at least 2n) computational !D's. Unfortunately, it seems

unlikely that such long sequences of !D's could be encoded in proposi

tional formulas. Cook [4 J has shown how to encode ID's of length n in

propositional formulas of about length n, but it does not appear possible

that !D's of length 2n could be so encoded. Accordingly, it seems

unlikely that "expressive power" as used above is the reason SAT i P.

Below we will show that SAT¢ P iff there are formulas which are satisfi

able but only by truth assignments with high relative potential . That is

the "expressive power" of propositional formulas is not in their ability

to encode very long sequences, but rather to encode very potent ones.

Thrm III SAT i P~('1'K)(;<P ESAT) [('uT)[T is a

¢ ==> T is not K-potent with respect

truth assignment satisfying

to <P J] .

2f_

(l) SAT E P

=> f (¢) = {O if ¢ f/. SAT
SAT the least T st T satisfies <P if ¢ E SAT

is in p. (by binary searching truth assignments)

=> f SAT is not inflating

➔ (3K) [(V¢ s SAT)(3T) [T is a truth assignment satisfying <P and T

is K-potent with respect to ¢)] .

- 9-

(2) (3K) [(Vcp E SAT)(3T) [T is a truth assignment satisfying ¢> and T is

K-potent with respect to cp JJ
~ SATE: P since using the technique described in the proof of Thrm II

we could enumerate all of the T which are K-potent in ¢> and

confirm if one satisfies¢> in polynomial time.

IV . Potent Numbers and Random Polynomial Time

Intuitively we have been thinking of numbers as storing potential

time. Below we give an illustration of how some highly potent numbers store

time which can actually be "tapped" to speed up computation. In [l] we

showed how for any set A E: R (random polynomial time) it was possible

to find tables which could be used to construct small fast programs (or

small circuits) for deciding long initial segments of A. Let T~ denote

the table constructed according to [l]t which suffices for inputs of size

nor less. Notice that the rules given in [l] show how to construct T~

from input n. It follows that the T~ are not in general Chaitin-random,

but rather have very small descriptions; however, the next theorem shows

that they have high potential:

00

Definition For all S .::_ {O,l}*, Sis inflating iff ('o'K)(3aE:S) [a is not

K-potent].

Thrm IV Let A€ R - P then

{T~ I n E: N } i s i n fl at i n g

twith the additional rule that at stage i, w. is the least witness with the
1

desired property.

-10-

pf If (3K)(~)[T~ is K-potent]

then A may be decided in polynomial time by, on input o generating all

K-potent numbers of appropriate length, and outputing 11yes 11 if one

11witnesses 11 o and "no" otherwise.

So for any K there are many T~ of potential greater than Kand these

T~ store time in a very tangible way. Without such a T~ the computation

of a finite function (the characteristic function of A for inputs of size n

or less) is slow (for small programs). With it, the same function can be

computed quickly (in the chemistry analogy such a string would be a

catalyst). Notice that this is precisely the property which a decryption

key in an effective cryptographic system is supposed to have. Notice also

that by being highly potent such a key is difficult to discover by any

general means. We will not pursue the cryptographic aspects of these

notions any further in this abstract, except to point out that in a discip

line like cryptography which is shifting from an information theoretic

base to a complexity theoretic one, a notion like potency is a possible

bridge.

We now consider a refinement of the notion of an inflating set and

relate it to the question of almost everywhere hard (nonpolynomial) sets

in NP.

Definition For all S ~ {O,l}*, Sis almost everywhere inflating
<Xl

i ff ('u'K) ('u'o E: S)[o is not K-potent]

How hard is it to decide almost everywhere inflating sets? Intuitively

it seems to demand non-polynomial time. However, the existence of almost

- 11-

everywhere hard to compute sets in NP would imply that this intuition is

wrong.

Thrm V If there is an almost everywhere hard to compute set A in NP then

there is an almost everywhere inflating set in NP with an infinite almost

everywhere inflating subset in P .

.Ef. Let As NP then there is a polynomial time predicate Q and a constant c

such that

x s A ~ (3y)[I y I .s_ I x I c & Q (x ,y)]

wlog we may add a slight refinement

x s A~ (3y}[lxl .s_ IYI ~ lxlc & Q(x,y)]

then let WA= {yl(3x)[lxl ~ IYI ~ lxlc & Q(x,y)]}

WA is the set of witnesses for A.

claim WA s NP.

By the definition of WA this follows.

claim WA is almost everywhere inflating.

If not then for some K there are infinitely many y s WA which are

K-potent. Suchy (of appropriate length) could be generated in

polynomial time on all inputs and infinitely often witness elements

of A, implying A is not almost everywhere hard.

claim 3 infinite set V ~ WA which is almost everywhere inflating and

which is in P.

-12-

Since A is almost everywhere hard it follows that there are

infinitely many n for which ,n EA.

then V ~ WA, Vis clearly decidable in polynomial time, and Vis

almost everywhere inflating (since WA was).

It is particularly hard as a result of the above theorem to imagine

a set in R which is almost everywhere hard since in this case Vis a huge
vn

set [i.e. lim sup - > 1/2 where V is the number of elements of length n
n~ 2n n

in V]. In the next section we will be concerned with the amount of compu-

tation required to distinguish highly potent numbers from low potency ones.

V. An Experiment

Below the reader will find 15 strings which he is asked to spend a

few minutes examining in order to list them in order of randomness. The

less enghusiastic reader is asked to pick the six strings which appear

least random. An explanation follows the strings.

- 13-

E01:•100011001110110,110101110100000,0000101000000001110000101101,100000110
010100111110111101,0100011011110000010110100100,011000101100110

E02: =01,0001011001110,00001001110111001000,00111011111110001111110001,11011
001010110010111010101110,000000000010001011000100101101

E03: •ll, 1011, 11111011, 11111100011, 1101101100000111010110011011, 100101011001
1011000111111010110000111110101100010110010001110100010010011

E04:•ll,1016101010101010101010101
011

E05:-11,ll,11,11,11,11,11,ll,100111001,10011100l,100111001,100111001,100111
001,100111001,100111001,100111001,111010111,111010111,111010111,111010
111,111010111,111010111,111010111,111010111

E06:-11,1011,1101,1011011100011010101,1010101100011101101,10110000100111011
11,1101011010000000111.1110000000101101011,1111011108100001101,1111111
111111111111

E07:-ll,llllllllllllllllllllll111
11

E08: -1 l, 10000011001, 10010000110010001101001, 1001001101001001001100011001010
01101100101000111010011100111010010ij100110101111100l000100111101011

E09:•ll,101011.101010101010101011,1000110101011.101011001000011010011010000
0110001100001011111100101001111100010110010001100001111101111010001001

El0:-100000001.1011101101000100001,1000100111011000101000001100101100100000
· 01 ·,1010000111011001100110100111111001000111101110010100101101100011000
01

Ell:ml,lll,11110,11101111,01010001110,10000001100110001,110000000010001011,
1001001101100001001111111,0001011110000100100010000,010001011101000000
01001100

El2:all,10000011,10001001,1000llll,10010001,10011101,10100111,10101011,1011
10~L,10111111,ll00000i,11001011,11Dl00ll.11810101,111001~1.111Jllll,11
110001,11110111,11111101 . .

El3: =ll.11111.100001000010000100001,100000000000000000000000010000000000000
00000000000100000000000000000000000010000000000000000000000001

E14:-1001,100100.110101,000001100110111,00001110101001110011101.00010111000
0110101000000,10001000010111011010100111011,10110111001111011000100111
110 ·

ElS:-10101,1110011.1111001,0011011,101111000,1118101011101,0001110010110111
,0011111011100011001110111100,010001101010111100101000100111

- 14-

In section II it was shown that the integer factoring function Fis

in P iff it is inflating, and it was mentioned that this showed that the

difficulty of F (if in fact it is difficult) is not a global property but

rather can be found in particular elements <a,F(a)> of the graph of IF.

This is true of any function G for which it can be shown that Gs P <=-:;.

G inflating. In the case that such a Gs P (especially if G is computable

in n2 or n3 time) then for "simple" (i.e. low potency) a, G(a) must also

be simple. In the case that G i P then for simple a, G(a) might be

"intricate" (i.e. highly potent). Thus, given a function G of unknown

complexity, it might be possible to compute G{a) for a few simple a by

brute force, and then try to detect whether or not Gs P by testing the

simplicity of G(a). The 15 strings given above are part of an informal

experiment to test the feasibility of such an approach. The following

table contains some of the results.

E07

E05

El3

E06

El2
E04

E08

E09

El0
E03
E02

E0l
El5
E14

Ell

Source

G(x13l+l)
G(xl36+1)
G{x125+1)

G(X 133+ 1)

G(xl27+1)

1F{2127+1)

IF(2131+l)
IF (2133 + 1)

fF(2136+l)
IF(2125+1)

R

R

R

R

R

Plemp

4

12
11

28

43

6

35
37
40

39

37

41

43

46

49

Normalized

.09

.23

.26

.60

.88

.14

.81

.84

.90

.92

.88

. 96

1.02

1.03

1.07

Times

less t han 2 min
less than 2 min
less than 2 min

less than 2 min
less than 2 min
less than 2 min
unknown

unknown
approx. 156,000 min

unknown

-15-

plemp In an attempt to get a subjective idea of the randomness of the

strings, a modification of an algorithm due to A. Lempel was used.

This algorithm runs in linear time and is sensitive primarily to

repetition and palidromes. Low plemp values indicate little

randomness. We have no particular reason to believe this algorithm

is good in any rigorous sense at detecting non-randomness of numbers of

this 1 ength.

Normalized Since the amount of information in a string is dependent on

its length, the plemp values were normalized to reflect this .

Roughly, the normalized value is (plemp value)/(expected plemp value

for · a random string of the same length).

Times Where available, the actual amount of CPU time used in computing

the strings is given for comparison with the randomness of the

string (see the corrment on El2 below). There is the suggestion here

that the amount of time taken to produce El0 was related to its

intrinsic potency rather than the particular program used to

produce it.

G G is the function which maps polynomials into their factorizations

over GF(2). It i s easy to show that G i P4:=► G is inflating.

Since all polynomials over GF(2) have 0,1 coefficients, a polynomial

like x136+1 is encoded as 1*0135*1 and its factorization (E05) is

presented using the same encoding. G has an interesting history.

Kronecker gave an exponential time algorithm in the 19th century .

Until 1968 no better algorithm had emerged (even for polynomials

of the form x11 +1). In l968,t3erlekamp[2 J gave an al gorithm

- 16-

which computes G quickly (there is a subtle point here, since

Berlekamp's algorithm runs in random polynomial time not polynomial

time -we will ignore this). That a fast algorithm existed was

not widely expected, and even recent journal publications [11 J

suggest G's use in cryptographic schemes, mistakenly thinking it

is intractible. In our experiment we chose 5 simple inputs

(l*On*l for n=l25,127,131,133,136) and computed G on them (we did

not use Kronecker's algorithm). All 5 outputs were clearly non

random. The fact that El2 has a nonnalized value of .88 shows the

inadequacy of the plemp algorithm for this task (though in general

it worked quite well). El2 is non-random since 1) the commas are

evenly spaced, 2) it is a form of palidrome; if for 2 < i < 10 we

add the ; th group of O's and l's to the (21 - i) th group we always

get 28. This behavior is consistent with a polynomial time non

inflating function. If Berlekamp's algorithm had not been discovered,

would such evidence have been useful in directing research toward

faster algorithms? If the integer factoring function W showed the

same behavior would this be grounds to suspect it was tractable?

Below we see the results of exactly the same test for f.

IF E04, E08, E09, El 0, E03 are the prime factorizations of 2n + 1

(i . e. , l *On*l) for n = 125, 127, 131 , 133,136. We are indebted to

J. Brillhart, D. H. Lehmer, and J. L. Selfridge who produced these

factorizations in [3]. There is no known polynomial time algorithm

for factoring in genera·1, or for numbers of the form 2n + l. With

the exception of E04 all of these strings appear to be highly

- 17-

randomt. Since in the Kolomogorov-Chaitin sense they all have

small descriptions this apparent randomness is a reflection of

potency. It is interesting that E04 was produced in less than 2

minutes since the factorization of 2127 +l turned out to be 3·prime.

This pattern of results is much different than that for G, and is

consistent with (and gives evidence that?) Wis inflating and

therefore not in P.

R Strings E02, EOl, E'l5, El4 and El3 were obtained by flipping coins

and are therefore likely to be Chaitin- random. They were correctly

given high plemp values.

The experiment above was informal, but the results are suggestive.

Statistical analysis of these results, new tests, and a rigorous investiga

tion of the underlying principles would be helpful. Better algorithms

than plemp can easily be found (e.g. checking strings against a master list

of actual 3-potent numbers). If further investigations show the feasibility

of such experiments, then they could prove to be a powerful tool in

directing research.

VI. Conclusion

We think that perceiving time and space as attributes of strings as

well as of functions will be useful in complexity theory and cryptography.

This paper was inteneded to indicate the breadth of possibilities associated

tThis is a subjective opinion and the author would appreciate the opinions

of readers.

-18-

with this concept.

Acknowledgement

The author wishes to thank Ron Fagin, Abraham Lempel, Effrem Lipkin,

Gary Miller, Vaughn Pratt, Ron Rivest, Adi Shamir, and Rich Zippel for

many contributions both conceptual and technical.

-19-

1. Adleman, L., 11 Two Theorems on Random Polynomial Time 11
, Proceedings

19
th

Annual Conference on Foundations of Computer Science (1978).

2. Berlekamp, E., "Factoring Polynomials Over Large Finite Fields 11
,

Mathematics of Computation 24 (1970), 713- 735.

3. Brillhart, J., Lehmer, D., Selfridge, J., "New Primality Criteria &

Factorizations of 2m± 111
, Mathematics of Computation 29 (1975),

620-647.

4. Cook, S., "The Complexity of Theorem Proving Procedures 11
, Conf . Records

3rd Annual ACM Symposium on Theory of Computing (1971).

5. Chaitin, G., 11 0n the Length of Programs for Computing Finite Binary

Sequences 11
, JACM (13), 1966, 547- 569.

6. Fischer, M., Rabin, M., 11 Super Exponential Complexity of Pressburger

Arithmetic 11
, Complexity of Computations, Edited by R. Karp, SIAM-AMS

Proc., Vol. 7, Amer. Math. Soc . 1974, 27-41.

7. Kolomogorov, A., 11Three Approaches to the Quantitative Definition of

I nfonna ti on 11
, PROB. INFO. TRANSMISSION, Vo 1. 1 , No. 1 , Jan. 1 65, 1-7.

8. Levin, A., private conmunication.

9. Meyer, A., 11 Weak Monadic Second Order Theory of Successor Is Not

Elementary-Recursive11
, Bost. Univ. Logic Colloq. Proc. 1975.

10. Meyer, A., Mccreight, E., "Computationally Complex and Pseudo-Random

0-1 Valued Functions 11

11. JACM, exact reference unavailable.

