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Abstract 

Space and time are the fundamental parameters of complexity theory. The 

thesis of this paper is that randomness is of equal importance. We introduce 

a notion of randomness (based on Kolomogorov-Chaitin-Randomness), which we 

suspect will contribute to the understanding of some of the central problems in 

complexity theory. The purpose of this paper is primarily conceptual, though 

several easy theorems are given which clarify the relationship of this notion of 

randomness to the NP= P question, the complexity of integer factoring, and the 

sets computable in random polynomial time. Finally, using factoring as an example, 

we raise the possibility of performing experiments on functions of unknown 

complexity to indicate the extent of their tractability. 

KEY WORDS: Computational complexity 
Information theory 
NP = p 
Factoring 
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I. Motivation - An analogy with chemistry 

At a philosophical level there is a similarity between chemistry 

and number theory. Both fall into the (rather large) class of disciplines 

where the main topic of concern (matter, numbers) can be understood in 

terms of simple combinations of special elements (atoms, primes) . For 

the purpose of motivation we will pursue this similarity further. 

The following is a familiar equation in chemistry: 

It indicates a reversible reaction; oxidation to produce water and reduction 

to produce elemental hydrogen and oxygen. The analogous equation in number 

theory might be: 

p X q = pq 

where multiplication results in a composite number and factoring produces 

primes. As anyone familiar with chemistry knows, the oxidation process in 

the first equation is quite rapid; however, the reverse reaction, carried 

out by the method of electrolysis, is quite slow. Of course, here too the 

analogy holds since multiplication is fast and factoring by known methods 

is slow. It is reasonable to wonder if the chemists have an NP= P- type 

question of their own: Are there faster methods for reduction than 

electrolysis, or are there reasons in principle why all methods mu st be 

slow? Fortunately for the chemist there are reasons in principle. They 
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concern the idea of potential energy. Elemental hydrogen and oxygen 

have relatively large amounts of potential energy compared with water. 

While little energy (of activation) is needed to convert the elements 

to water, any process which does the reverse must pump large amounts 

of energy back. This manifests itself as fast and slow reactions. 

It is natural to wonder if the analogy still holds. Is there a 

notion of storing potential in numbers with the result that high potential 

primes sometimes have relatively low potential products which are hard to 

factor by any means because all methods must take the time to pump the 

potential back? In the next section we will define such a notion of 

potential and prove that if factoring is not in P then this is the 

reason why. 

II. Potent Numbers 

Kolomogorov [7 J and Chaitin [5] have established an excellent theory 

of the information content of strings. Intuitively, the amount of informa-
' 

tion in a string is the size of the smallest program which, starting on a 

blank input tape, outputs the string and halts. Thus ln contains little 

information because a program of size about lnl will output it. t On the 

other hand, so-called Chaitin-random strings of length n require programs 

tFor our theory the choice of programming systems is not critical; most 

natural programming systems will suffice. In this abstract we will not 

bother specifying the particular one we have chosen. 
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of size about n (i.e. large enough to have the string stored in a table). 

Our notion of potential is related to concepts studied by Kolomogorov and 

Levin [8 ]; and Meyer and Mccreight [10] and involves a refinement 

of the ideas of Kolomogorov and Chaitin to take into account the amount of 

time required to generate the string in question. The idea can be illus

trated with 3 examples. 

a 1 = 100000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000 

00000000000000001 

a2 = 100110110000100111111100010111100001001000100000100010111010 

0000001 

a3 = 101000011101100110011010011111100100011110111001010010110110 

001100001 

a1 is the binary representation of 2136 +1. There is a small program 

(of size about iia1 II) which generates it, and runs in about la1 I steps. 

Figure 1 (on the next page) is a graph of the time-space tradeoff associated 

with a1, where the value at i is the number of steps required by the fastest 

program of size i which generates a1 (undefined if no such program exists). 

a2 was generated by flipping coins and is therefore Chaitin-random 

with high probability. Its time-space graph should look like the one 

shown in Figure 2. (Notice for any string of size n there is always a 

program of size about n which outputs the string i~ about n steps.) 

a3 looks as random as a2; however, it is very likely that i n the 

Kolomogorov-Chaitin measure i t is more closely related to a1. It is the 

largest prime factor of 2136 + 1 and so has a small description . However, 
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in another sense it is likely to be much different from a1, since it took 

approximately 242 steps! on a special purpose device (the Lehmer Sieve 

[ 3 ] to find this factor. So the time-space graph for, a3 may be as 

shown in Figure 3. 

Thus it appears that we may distinguish a1 and a3 by the amount of 

time small programs use to create them. We think of strings as storing 

this time. This mot i vates the following definition: 

* * Definition For all KE: N, For all a E: {O,l} (For all TE: {O,l} ), 

a is K- potent (with respect to T) iff there is a program p of size l ess 

than or equal to K 11011 , which with blanks (T ) as input halts with output 

a in less than or equal to la lK steps. 

Example For almost all n, ln is 2-potent. 

Example For all K, for almost all Chaitin- random a, a is not K-potent. 

Example Let a2 = a2 ffl l 66 ( ~ is exclusive or) then a2 is Chaitin

random (assuming a2 was) and 1-potent with respect to a2. 

The following is a useful fact about potent numbers. 

Thrm. I For all K, the function 
/ fK (o ,ln) = {al !al ~ n & a is K-potent wrt a} 

is computable in polynomial time . 

.Pf There are at most 2K lnl ~ nK programs of length Kin i . By 

simulating them on input a for nK steps the res ult is obtained . 

The Kolomogorov Chaitin theory says that no computable function can 

map non-Chaitin-random stri ngs into Chaitin - random stri ngs except f ini tely 
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often. However, computable functions which infinitely often produce 
/ 

outputs of highe\ potential than the inputs do exist (a straightforward 

diagonal argument suffices). We call such functions 11 inflating" and give 

a precise definition below. 

Definition For all functions f: {0,l}*+{O,l}*, f is an inflating function 

iff for all Ks N there are infinitely many o s {0,1}* such that 

f(o) is not K-potent with respect too. 

Example f(cp) = {
l if <P is a true sentence in th (<w,+>)} 
O otherwise 

is not inflating since f(o) is never very potent. If Range (f) 

is finite then f is not inflating. 

Example f(o) = oR (o reversed) is not inflating (though Range (f) = N 

since f(o) is always of low potency with respect to o. 

Intuitively, algorithms computing inflating functions must infinitely 

often "scramble 11 inputs in order to get outputs - a syntactical process 

which could be expected to take time independent of the underlying semantics 

off (i.e. whether f is number theoretic, graph theoretic, etc.). 

Thrm II Let IF denote the integer factoring function. Then 

IF t.. P <~ IF is inflating . 

£f (i) IF s P ==!}IF is not inflating 

Assume there is an algorithm of size S which factors in time nK 

for some K. Let a be any input of size 2S/K or greater, then IF(a) 

is produced by a program of size S ~ Kl jf(a) II (since llF(a)I ~ laj) , 
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starting on input a, and halting within lf(a)IK steps. Thus W(a ) 

is K-potent with respect to a and IF is not i nfl at i ng. 

(ii) lF not inflating ~f £ P. 

Assume Wis not inflating, then there is a K such that for almost 

all a, F(a) is K-potent with respect to a. But l!F(a) I .s._ 2la l. 

By Theorem I, fK( a ,1Zlal ) is computable in polynomial time. Since 

all prime factors of a are in fK( a ,1 21al ) we can in polynomial 

time arive at f(a) by taking GCD 1 s. 

Thus factoring is difficult iff multiplication has infinitely often 

taken highly potent numbers and produced relatively low potency products, 

which are hard to factor because the potential must be pumped back. In 

fact searching for factors of a number by enumerating candidates in order 

of potency makes sense. Many other search procedures, for example exhaustive 

search, waste time on inputs like ln (so-called Mersenne numbers) by 

mostly checking Chaitin-random strings which could not possibly be factors 

(similar reasoning holds for searches on combinatorial problems) . In fact 

search by increasing potency gives a polynomial time factoring algorithm 

if any polynomial time algorithm exists. 

An important consequence of Thrm II is that it shows that the difficulty 

of factoring is not a global phenomenon but rather is a local one which 

we might hope to see in particular inputs and outputs. In [ l J it was 

shown that the analogous .statement for deciding sets in R is false. In 

section V we will pursue this further. 
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III. Potential Numbers and the NP= P Question 

What makes logical theories like Presburger Arithmetic [6] and 

WSIS [ 9 J intractible? One answer is their "expressive power". The 

theories have very short formulas (say of length n) which encode very long 

(of length at least 2n) computational !D's. Unfortunately, it seems 

unlikely that such long sequences of !D's could be encoded in proposi 

tional formulas. Cook [ 4 J has shown how to encode ID's of length n in 

propositional formulas of about length n, but it does not appear possible 

that !D's of length 2n could be so encoded. Accordingly, it seems 

unlikely that "expressive power" as used above is the reason SAT i P. 

Below we will show that SAT¢ P iff there are formulas which are satisfi

able but only by truth assignments with high relative potential . That is 

the "expressive power" of propositional formulas is not in their ability 

to encode very long sequences, but rather to encode very potent ones. 

Thrm III SAT i P~('1'K)(;<P ESAT) [('uT)[T is a 

¢ ==> T is not K-potent with respect 

truth assignment satisfying 

to <P J] . 

2f_ 

(l) SAT E P 

=> f (¢) = {O if ¢ f/. SAT 
SAT the least T st T satisfies <P if ¢ E SAT 

is in p. (by binary searching truth assignments) 

=> f SAT is not inflating 

➔ (3K) [(V¢ s SAT)(3T) [T is a truth assignment satisfying <P and T 

is K-potent with respect to ¢)] . 
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(2) (3K) [(Vcp E SAT)(3T) [T is a truth assignment satisfying ¢> and T is 

K-potent with respect to cp JJ 
~ SATE: P since using the technique described in the proof of Thrm II 

we could enumerate all of the T which are K-potent in ¢> and 

confirm if one satisfies¢> in polynomial time. 

IV . Potent Numbers and Random Polynomial Time 

Intuitively we have been thinking of numbers as storing potential 

time. Below we give an illustration of how some highly potent numbers store 

time which can actually be "tapped" to speed up computation. In [ l ] we 

showed how for any set A E: R (random polynomial time) it was possible 

to find tables which could be used to construct small fast programs (or 

small circuits) for deciding long initial segments of A. Let T~ denote 

the table constructed according to [ l ]t which suffices for inputs of size 

nor less. Notice that the rules given in [l] show how to construct T~ 

from input n. It follows that the T~ are not in general Chaitin-random, 

but rather have very small descriptions; however, the next theorem shows 

that they have high potential: 

00 

Definition For all S .::_ {O,l}*, Sis inflating iff ('o'K)(3aE:S) [a is not 

K-potent]. 

Thrm IV Let A€ R - P then 

{T~ I n E: N } i s i n fl at i n g 

twith the additional rule that at stage i, w. is the least witness with the 
1 

desired property. 
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pf If (3K)(~)[T~ is K-potent] 

then A may be decided in polynomial time by, on input o generating all 

K-potent numbers of appropriate length, and outputing 11yes 11 if one 

11witnesses 11 o and "no" otherwise. 

So for any K there are many T~ of potential greater than Kand these 

T~ store time in a very tangible way. Without such a T~ the computation 

of a finite function (the characteristic function of A for inputs of size n 

or less) is slow (for small programs). With it, the same function can be 

computed quickly (in the chemistry analogy such a string would be a 

catalyst). Notice that this is precisely the property which a decryption 

key in an effective cryptographic system is supposed to have. Notice also 

that by being highly potent such a key is difficult to discover by any 

general means. We will not pursue the cryptographic aspects of these 

notions any further in this abstract, except to point out that in a discip

line like cryptography which is shifting from an information theoretic 

base to a complexity theoretic one, a notion like potency is a possible 

bridge. 

We now consider a refinement of the notion of an inflating set and 

relate it to the question of almost everywhere hard (nonpolynomial) sets 

in NP. 

Definition For all S ~ {O,l}*, Sis almost everywhere inflating 
<Xl 

i ff ('u'K) ( 'u'o E: S )[o is not K-potent] 

How hard is it to decide almost everywhere inflating sets? Intuitively 

it seems to demand non-polynomial time. However, the existence of almost 
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everywhere hard to compute sets in NP would imply that this intuition is 

wrong. 

Thrm V If there is an almost everywhere hard to compute set A in NP then 

there is an almost everywhere inflating set in NP with an infinite almost 

everywhere inflating subset in P . 

.Ef. Let As NP then there is a polynomial time predicate Q and a constant c 

such that 

x s A ~ ( 3y )[ I y I .s_ I x I c & Q ( x ,y) ] 

wlog we may add a slight refinement 

x s A~ (3y}[ lxl .s_ IYI ~ lxlc & Q(x,y)] 

then let WA= {yl(3x)[ lxl ~ IYI ~ lxlc & Q(x,y)]} 

WA is the set of witnesses for A. 

claim WA s NP. 

By the definition of WA this follows. 

claim WA is almost everywhere inflating. 

If not then for some K there are infinitely many y s WA which are 

K-potent. Suchy (of appropriate length) could be generated in 

polynomial time on all inputs and infinitely often witness elements 

of A, implying A is not almost everywhere hard. 

claim 3 infinite set V ~ WA which is almost everywhere inflating and 

which is in P. 
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Since A is almost everywhere hard it follows that there are 

infinitely many n for which ,n EA. 

then V ~ WA, Vis clearly decidable in polynomial time, and Vis 

almost everywhere inflating (since WA was). 

It is particularly hard as a result of the above theorem to imagine 

a set in R which is almost everywhere hard since in this case Vis a huge 
vn 

set [i.e. lim sup - > 1/2 where V is the number of elements of length n 
n~ 2n n 

in V]. In the next section we will be concerned with the amount of compu-

tation required to distinguish highly potent numbers from low potency ones. 

V. An Experiment 

Below the reader will find 15 strings which he is asked to spend a 

few minutes examining in order to list them in order of randomness. The 

less enghusiastic reader is asked to pick the six strings which appear 

least random. An explanation follows the strings. 
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E01:•100011001110110,110101110100000,0000101000000001110000101101,100000110 
010100111110111101,0100011011110000010110100100,011000101100110 

E02: =01,0001011001110,00001001110111001000,00111011111110001111110001,11011 
001010110010111010101110,000000000010001011000100101101 

E03: •ll, 1011, 11111011, 11111100011, 1101101100000111010110011011, 100101011001 
1011000111111010110000111110101100010110010001110100010010011 

E04:•ll,1010101010101010101010101010101010101010101016101010101010101010101 
01010101010101010101010101010101010101010101010101010101011 

E05:-11,ll,11,11,11,11,11,ll,100111001,10011100l,100111001,100111001,100111 
001,100111001,100111001,100111001,111010111,111010111,111010111,111010 
111,111010111,111010111,111010111,111010111 

E06:-11,1011,1101,1011011100011010101,1010101100011101101,10110000100111011 
11,1101011010000000111.1110000000101101011,1111011108100001101,1111111 
111111111111 

E07:-ll,llllllllllllllllllllll111111111111111111111111111111111111111111111 
1111111111111111111111111111111111111111111111111111111111111111 

E08: -1 l, 10000011001, 10010000110010001101001, 1001001101001001001100011001010 
01101100101000111010011100111010010ij100110101111100l000100111101011 

E09:•ll,101011.101010101010101011,1000110101011.101011001000011010011010000 
0110001100001011111100101001111100010110010001100001111101111010001001 

El0:-100000001.1011101101000100001,1000100111011000101000001100101100100000 
· 01 ·,1010000111011001100110100111111001000111101110010100101101100011000 
01 

Ell:ml,lll,11110,11101111,01010001110,10000001100110001,110000000010001011, 
1001001101100001001111111,0001011110000100100010000,010001011101000000 
01001100 

El2:all,10000011,10001001,1000llll,10010001,10011101,10100111,10101011,1011 
10~L,10111111,ll00000i,11001011,11Dl00ll.11810101,111001~1.111Jllll,11 
110001,11110111,11111101 . . 

El3: =ll.11111.100001000010000100001,100000000000000000000000010000000000000 
00000000000100000000000000000000000010000000000000000000000001 

E14:-1001,100100.110101,000001100110111,00001110101001110011101.00010111000 
0110101000000,10001000010111011010100111011,10110111001111011000100111 
110 · 

ElS:-10101,1110011.1111001,0011011,101111000,1118101011101,0001110010110111 
,0011111011100011001110111100,010001101010111100101000100111 



- 14-

In section II it was shown that the integer factoring function Fis 

in P iff it is inflating, and it was mentioned that this showed that the 

difficulty of F (if in fact it is difficult) is not a global property but 

rather can be found in particular elements <a,F(a)> of the graph of IF. 

This is true of any function G for which it can be shown that Gs P <=-:;. 

G inflating. In the case that such a Gs P (especially if G is computable 

in n2 or n3 time) then for "simple" (i.e. low potency) a, G(a) must also 

be simple. In the case that G i P then for simple a, G(a) might be 

"intricate" (i.e. highly potent). Thus, given a function G of unknown 

complexity, it might be possible to compute G{a) for a few simple a by 

brute force, and then try to detect whether or not Gs P by testing the 

simplicity of G(a). The 15 strings given above are part of an informal 

experiment to test the feasibility of such an approach. The following 

table contains some of the results. 

E07 

E05 

El3 

E06 

El2 
E04 

E08 

E09 

El0 
E03 
E02 

E0l 
El5 
E14 

Ell 

Source 

G(x13l+l) 
G(xl36+1) 
G{x125+1) 

G( X 133+ 1) 

G(xl27+1) 

1F{2127+1) 

IF(2131+l) 
IF ( 2133 + 1 ) 

fF(2136+l) 
IF(2125+1) 

R 

R 

R 

R 

R 

Plemp 

4 

12 
11 

28 

43 

6 

35 
37 
40 

39 

37 

41 

43 

46 

49 

Normalized 

.09 

.23 

.26 

.60 

.88 

.14 

.81 

.84 

.90 

.92 

.88 

. 96 

1.02 

1.03 

1.07 

Times 

less t han 2 min 
less than 2 min 
less than 2 min 

less than 2 min 
less than 2 min 
less than 2 min 
unknown 

unknown 
approx. 156,000 min 

unknown 
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plemp In an attempt to get a subjective idea of the randomness of the 

strings, a modification of an algorithm due to A. Lempel was used. 

This algorithm runs in linear time and is sensitive primarily to 

repetition and palidromes. Low plemp values indicate little 

randomness. We have no particular reason to believe this algorithm 

is good in any rigorous sense at detecting non-randomness of numbers of 

this 1 ength. 

Normalized Since the amount of information in a string is dependent on 

its length, the plemp values were normalized to reflect this . 

Roughly, the normalized value is (plemp value)/(expected plemp value 

for · a random string of the same length). 

Times Where available, the actual amount of CPU time used in computing 

the strings is given for comparison with the randomness of the 

string (see the corrment on El2 below). There is the suggestion here 

that the amount of time taken to produce El0 was related to its 

intrinsic potency rather than the particular program used to 

produce it. 

G G is the function which maps polynomials into their factorizations 

over GF(2). It i s easy to show that G i P4:=► G is inflating. 

Since all polynomials over GF(2) have 0,1 coefficients, a polynomial 

like x136+1 is encoded as 1*0135*1 and its factorization (E05) is 

presented using the same encoding. G has an interesting history. 

Kronecker gave an exponential time algorithm in the 19th century . 

Until 1968 no better algorithm had emerged (even for polynomials 

of the form x11 +1). In l968,t3erlekamp[2 J gave an al gorithm 
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which computes G quickly (there is a subtle point here, since 

Berlekamp's algorithm runs in random polynomial time not polynomial 

time -we will ignore this). That a fast algorithm existed was 

not widely expected, and even recent journal publications [11 J 

suggest G's use in cryptographic schemes, mistakenly thinking it 

is intractible. In our experiment we chose 5 simple inputs 

(l*On*l for n=l25,127,131,133,136) and computed G on them (we did 

not use Kronecker's algorithm). All 5 outputs were clearly non

random. The fact that El2 has a nonnalized value of .88 shows the 

inadequacy of the plemp algorithm for this task (though in general 

it worked quite well). El2 is non-random since 1) the commas are 

evenly spaced, 2) it is a form of palidrome; if for 2 < i < 10 we 

add the ; th group of O's and l's to the (21 - i) th group we always 

get 28. This behavior is consistent with a polynomial time non

inflating function. If Berlekamp's algorithm had not been discovered, 

would such evidence have been useful in directing research toward 

faster algorithms? If the integer factoring function W showed the 

same behavior would this be grounds to suspect it was tractable? 

Below we see the results of exactly the same test for f. 

IF E04, E08, E09, El 0, E03 are the prime factorizations of 2n + 1 

( i . e. , l *On*l ) for n = 125, 127, 131 , 133,136. We are indebted to 

J. Brillhart, D. H. Lehmer, and J. L. Selfridge who produced these 

factorizations in [3 ]. There is no known polynomial time algorithm 

for factoring in genera·1, or for numbers of the form 2n + l. With 

the exception of E04 all of these strings appear to be highly 
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randomt. Since in the Kolomogorov-Chaitin sense they all have 

small descriptions this apparent randomness is a reflection of 

potency. It is interesting that E04 was produced in less than 2 

minutes since the factorization of 2127 +l turned out to be 3·prime. 

This pattern of results is much different than that for G, and is 

consistent with (and gives evidence that?) Wis inflating and 

therefore not in P. 

R Strings E02, EOl, E'l5, El4 and El3 were obtained by flipping coins 

and are therefore likely to be Chaitin- random. They were correctly 

given high plemp values. 

The experiment above was informal, but the results are suggestive. 

Statistical analysis of these results, new tests, and a rigorous investiga

tion of the underlying principles would be helpful. Better algorithms 

than plemp can easily be found (e.g. checking strings against a master list 

of actual 3-potent numbers). If further investigations show the feasibility 

of such experiments, then they could prove to be a powerful tool in 

directing research. 

VI. Conclusion 

We think that perceiving time and space as attributes of strings as 

well as of functions will be useful in complexity theory and cryptography. 

This paper was inteneded to indicate the breadth of possibilities associated 

tThis is a subjective opinion and the author would appreciate the opinions 

of readers. 
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with this concept. 
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