
MIT/lCS/'JM;...136

'REPORT ON THE SEO)N!) OORKSOOP

00 DATA FLOW COIPUTER h'ID PR03'RA-M O~IZATION

oavid P. Misunas

June 1979

R'eport. on the

Second Workshop on Data Flow Computer and Program Organi~ation

David P. Misunas
M.I.T. laboratc,ry for Compu:t,e Science

The foUowing repod compr"ses an edited transcriplion1 of presentations
made at the Second Workshop c Data Flow Computer and Program Organization, held
at M.tT. on July 9-13, 1978, and ,co-sponsored by the Lawrenc,e liv,ermore laboratory
(LLL) and · he Department of Energy, Mathemalic,a Scienc:,es Branch. These ·ntorma
transcriptions are only 1intended to pro,vide a g,e eral picture o,f ongoing work in the
area, and to that end~ have been heavily edUed and often sumrnBrized

The eff orls ,at a number of people greatly aided the generaU on o,f this
report. '" particul,ar, the originall version ,of the bibliogirap y was compiled by Dean
Brock and d afts of the report were read and criticiz1ed by Dean Stock, Jack Dennis,
and Ken Weng.

Any opinions expressed in the transcriptions ar,e those of the speakers and
n,ot necessarily thos,e of their institutions or of the sponsaring insti'tutions. T e
speakers have not had a chance t.o revi1ew the report and to correct any
imistrenscriptions whi:ch may have OQcurred. We hope that the contribuUans of the
participants ha.ve been repre.sented aocuralel:y and fairly ..

KEY WORDS: Computer Architecture
Computer Syste_ms
Programm'ng Language
Data Flow Computation

2

TABLE or CONTENTS

Se-Ssion 0. Wefcome

Sessi,on 1. Research Status and 1G0als

'Session 2. Lan.guage Issues

Session 3. Applications

Session 4. Translation

Session 5,. Arch·tecture

Sess,on 6. Implementation

Session, 7. Performan.ce and Simulation

Session 8. Specification and VeriHcation

BWBLIOGRAPHY

LIST OF PARTICIPANTS

Page

3

4

14

24

29

34

43

50

54

57

69

Session 0. Welcome
Jack Dennis, M.I.T.

3

Welcome to, the second Workshop o,n I0ata Flow Comput,er and Pr,ogr,am
Organization. The first workshop in July 1977 s,erved t,0 acquaint workers in data flow
wi · h each other and with the extent o re·search in this exc~ting f i e1d, both in t he
United States and in Europe. This year we have 48 parUcipants representing 18
1inslitutions -- a s1zab e growth from l,ast year. It is good to see the in"UaUon of new
projects ait several un versities in England and a the University of U ah. The next
several years wiU be, fascinating to witness as our concepts are refined and rea'lized in
practical mac:h'nes. In the present workshop I expect to see a constructive comparison
of the great variety of architectural app oaches proposed by diffe·rent research groups,
a d there shou:ld be many opportunities fo discussion and debate of critical t echnjcal
issues. Let us proceedl

Session 1. Research Status end Goals
Chairperson: Jack Dennts, M.I.T.

I. Ja.ck Oennist MJT.

4

he M.I. . research group has bee,n fu ded for the year 1978 by the
Lawrence ivermore Laboratory (lll) fe the purpose af seeing how the concepts, of
data flow computers and programming lan,guages will mesh with their needs f,or high
perf or1mance machines.

We are interested in tcur forms of data How machine. The Form I machine
supports the language co:ncepts of scalar variab1es, conditionals, and iteration, and is
,appUcable to signal processing prob1ems. Such prob1emis are ch,aract,ertzed by
relatively smaU programs and the presence of on\y a smaJI amount of data al any point
in lime.

Fer tne lll appUcaUons, we are interested in studying an extensron of the
Form l machine to support data structures. Hence, I.he main focus ,at our proposed
effort is to demonstrate the fea,sibi tty af this Ferm 2 data How mach'ne and aiso lo
deveiopi a corresi:ionding level of user programming anguage.

The Form 3 machine is intended l.o overcome the program size limi tations of
Forms I and 2 To build such a machine to hold large programs, we need to incorporate
some concept sim iar to a cache memory for the instructions of a program. We wouid
Uke to arrange the machine so the acrve instr ctions of a program are held in the
cache and the remain"ng instructions are in some kind of backup memary.

The Form 4 machine rs our dream of the uHima,e general purpose data How
computer. We would like this machiine to stand alone, compile its own pro,grams, run a
time-sharing service far many users, and so on. But th:al~s someth·ng ccnsiderabty f.ar
in the future.

We: have divided cur work for the immediate future into six projects. The
most important one at the moment is to develop a comp ele description of a user ievel
programming language. We need ·this descripUon to allow the L'vermore people to,
apply the I anguage to expressing their computet.' ons. This wU I be a first step in
determining how fast our proposed data flow machine will perform tn pracUca1
applications.

The, second project is to bui 1ld an engineeri g model. Such a mode\ wou1d be
a smal I - seal e F orn'll 1 machine.. The purpose of Ms proJect wou1d be to check ,out
concepts and to gain expe ience in the construction c,f large asynchronous sys.terns.

5

Project three is the study of data now machine languages and the prob1ems
of trainslating a Mgh level source anguag·e into the machine language. So far, we have
only scratched the surface of these tn:mslatlonJ optimization, andl ,code generation
problems.

Project four i·s the extension of the Form l machine to a Form 2 machine.
The issues concern the design of repre,senlar ons for structured data and the
mechani~ms for the structure processor of fhe mac ·ne.

Project five is th.e devel cpmenl of an approach lo arc:hi tect.ure description
for use in the design of farge async ranous computer systemsJ including methodoiogy
for formal specification and verification.

Projec six is to deve,op a specification for a fui -scal.,e Form 2 mach'ne.

We hope during the ·next year to have a reterence manual o,n our
programming language. Project two, the en ineering model, is a project we hope to
complete durrng the next two ye.ars. The rest will follaw as it fits in p1ace.

II. Dominique Comt,e, C.E.R.T. - Toulouse, France

The. LAU project beg.an in 1973 at C.E.R. T.t Toulouse, Fram::e, Department of
Com"uter Science. The project wa,s inspired by the Tesler and Enea paper on single
assignment.

In l '973 74, we studied sin2ie assignment in a formal way, examining sln,:le
assignment program schemata a , d the degree of paraUeUsm achievable in single
ass,gnmenl programs. We :also studied different levels of singl'e assigr,ment: the lask
level, the block level, and the statement level.

In 1975-78, we designed the LAU system which is currently under
construction. First, we designed a high level programming language based on single
a.ssignment. The goals were that rt be easy lo use by non-specia1islst that it naturally
expose the parallelism in an algor'thm. and that U be readable and debuggable. We
then designed a single assignment machine based on data driven mechanrsms. There ts
no program counter in the machine, an instruction is ready to execute as soon as data
is available. We· built a simulator in order to evaluate the performance ,of the LAU
multi-processor arch~tecture a d have performed significant simulation work on the
performance of the machine.

From 1977 to the present we have been building the prot,otype machine.
Today, some parts .of th,e machine are separately 0perat1ional. The control unit
(approximately 400 ICs), one bock of memory (approximately 250 ICs)1 and one

6

execuUon proces.sor based on the AMO 2900 series bit slice processor ,(approximately
280 I Cs) are worki , g. We are in the process oi increasing the number of memory
blocks t,o e·ght and the number of processors to len.

Machine instructions are three-address instructions, speci fyi1ng two input
operand addresses and one result address. A tag bit field c·ontrols the execution, of
each instructiont specifyi g the availebirty of t,he operands. and if the instruction i:s in
an env·ronment which aUows its execution. An ins.truclion is executable when au lag
bits are set.

The data driven sequencing of the LAU arch''t,ecture can exploit paraHe, ism
.at several leve s; among jobs ·{multipr,ogramming), among tasks (concurrency), amon,g
insttucUo,ns in a task •(paraUellsm), and within an instruction (pipelining).

The elementary paraHel processor which we are currently bui ding in
Toulouse is com.posed o,f three b 0cks: the control memory b'lock, the execution block,
and the control unit block. The contr,ol memory is divided into eight independent bani s
managed by a memory confrol unit The execution block is a1 se of elementary
processors which ,execute instructions ot the single assignment machine language. The
process,ors are independent a·nd identical. and ·their number is limited only by the
bandwidth of the central memory.

The high lev,e language ncorporales five statement types: assignment
statemients. CASE statements, LOOP staitements, EXPAND statements ,(equiva1ent to a
parallel 00), and CALL and R1ETURN procedure staitements. In p,arallel with the buillding
of this mach·ne 1 we are e·xtending the high teve,1 l anguage to i nicorporate
synchronizaUon expressions 8'nd type defiinition facHmes.

Ill. All DavisJ University of Utah

Our proj,ect has been relocated frcm ;a Burroughs l1 ocation in San Diego to
the University of UtahJ where the work i·s being conlinued with Burroughs support.

We have constructed a machine, DOM lJ which is an e ement, caU ed a
processor-store el,ementJ of a ·1arg,er architecture. The fundamental characteristic of
our architecture is that il Is a, recursiv,e arch tecl.u e and, if viewed non-recursively,
looks like a tree, the nodes of· which are processor-store eleme1nts.

One of the fundamental differe,nces between our architectural approach and
some of the other efforts. is that we~re very int.erested in being extensible physically.
We hope to organize the machine so that some smaH performance gain w· I always be
made as more money is spent on the machine, but.,. we d1on t want any electronic tuning
to be required as more and more hardware modules are added. Hence, eve,ry·thrng in

7

□□Ml is self-Umed to the ca-rd level.

The stone:?: of the machine is a file sys.tem which manages its own free space
n hardware. The pr,ocessor communicates with the memory system through such

commands as deliete, append,, create, assign, and insert, rather than physical addresses.
In, access·.ng a parUc:utar target in the s or,et there are two p0ssibiliUes. One is that
the file structure at some evel can1 be either ordered or unordered. lf it is ordered,
then the target can be reached through a node index vedor. There's absolutely no
correlation with any absolute addresses. f the file is unordered, then the item is found
by using either associ.ative techniques or some form of scanning.

The main change that has occurred in Utah is that we have connected DOM 1
to a DEC Sys , .em 20·. This allows us to do, program manipulation1 microcode
developmentJ and so forth on the 20. We now have a symbol:ic B$Sembler for two
versions of the micrac,ode and can dow1nl1oad DDMl from t 1s machine.

We are using the 20 to ob ain a f,eet for how many processors can exploit
paral I e ism and al so ta, allow the use of larger and larger programs, both f o,r
programming experiments and execution experience. Our approach is o develop some
software tools on the 20 which allow us to do C•om,p1ex experiments on □□Ml. When
we g,o to the physical mull -processor system, we intend to do it by custom integration
and are currently cooperating wit peo

1
p!,e .at Cal Tech on inte,graticm studies.

we~re also performing some architectural studies. The fixed wired tre,e
a chHecture has some limitatilons. One is that it's possible to have a process not use a
who e subtre,e when somelh'ng else may drastically need those resour,ces. A pool of
resources idea where one could mod f y the physical a1nd I ogical structure of the
network wil give users l.wo degrees of f , eedom, although we don,t current y know
how to do the a locat.ion.

We are also working in the language area. Data driven nets ,are a low-level
machine representation, nobody in their riight mind would want to program in them.
Other people are taking steps in the direction of high level data•driven languages -
the LAU system,, ID at lrvi1ne, Luc·d at the University o,f Waterloo. Our approach at
Utah is to develop a high l,evel dala~driven graphi,cai language a-nd to deve ·op the tao.ls
to make it easy to use.

V. Kim Goste ow UC - l'rvine

Our goal ha1s always been lo design a general-purpose computer composed
of a large number of sma'II process.ors and; in so, dotn.g, to achieve increased capabilities
i reliable compulaUon a d t,o realize smaller sys, em c:ost due to semant,ic cleanliness
and regularized mterco,nneeron of similar components.

B

Raw speed ·s not exp icitly a goa, nor do we believe that it sho Id be a
goal at this early point in ou1r work~ but we do expect speed lo be a natural
consequence (ev,entuaUy), of a well-balanced design. ntuiUvely1 we expect the
machine tc behave as a bo.x of ,(processor) reso . r~es, such that as mor · processors
ar,e thrown int,0 the box, the computafon rate increases. In effect, we want a high'ly
a,synchr,onous language. and data How (2-1 /2 year.s ago) looked like a very attractive
starting point, after observing how impossible ·,1 was lo achl1eve decent results with
van Neumann languages.

We have devised a data low base language that generates large numbers
of tasks, to be executed, caUed activities. An activity is a named insfance of execution
of a data flow operator. As an ,exampie, consider a recursive pr,ocedure in which scme
operator x at recursion level i is independent 0,f that same operator x at leve1 j ,of the
recursion. Our system allows t ese two executio!ls lo be as indepe dent as possible
and to be executed an the same· ,or different processors in the mach"ne. The I,ogica1
entity of computation is independent of the physical processor the executes it -- just
Wike a "task .. ,on a standard comput,er.1, but smaller.

Arguments aga~nst data flow 'n the past have ,included the problem that.
there is no way lo handle resources and databa·se probl,ems (operati g system needs),
that there is a lack of a higher-level laneuage (for ccdi g operating systems, as we'll),
that pro,gramming in data flow is difticult (both for applications programs as wen as
operating systems), and that there exists no m,achine to run these programs.

Over the I asl two years we ha,ve so ved for ourse ves the first two
problems through the deveropment of our high-level data flow language Id (Irvine data
flow). The third point wiU take a. lon,g Ume to prove to ,others, although we ar,e
convinced that it is n,o harder to write programs in Id that in, say, Fortran; and that
better programs result. A:11s0 we can surpass the capabilities ,of Fortrao, PL/ 1, etc. in
ld • n m.any areas - e.g.,, in abs ract data types and error recovery and reliability
capab"lities1 and in operating systems programm'ng (resource managers and protection).
On his latter point, Lubomir Bic w,U be discussing · e work he has recent y completed
which aUows a programmer to deHne the 1prol,eclion po icies he wishes to have by
utilizing mechanisms devised for Id. Bic7s work clearly demon·str ates another area in
wh·ch d ta flow can be shown to be superior lo von Ne'IJmann languages and machines.
The mechanisms he has incorporated into Id are very simple (four operators and a data
tag), yet a programmer can imple.ment protection policies in his programs more complex
than those possible o Multics, Hydra, etc. Id is now capable of being used to write
operating systems (file syst,ems, databases, resource managers,), and our machine
design, is capable of running them.

On the fourth p,oint1 we hav,e been working on and off for about a year and
a half, but in just the last six months we have made significant progr,ess (measured
according to our understand'ng of our e1rch.ile<::ture, program behavio,r, a d performance

'9

improvements). In t ' e session o architecture, I w·u describe our machine, which has
changed from ·s,ome of our earHer 'dea·s.

We intend t,o pursue work in the areas of language design and architecture.
Our goal in developing Id was simply t,o have a complete higher-leve'I language; we
exprcit 1y did ot want to develop, any new concepts or facilit'i.es over and above what
was necessary or easy. Now that the basic goal has been met, it is clear that the
restriction to convenUonal programming is debilitating·. A new a,pproach cs called for,
and we ·ntend to investigate the rece ~t work of Backus on FFP Systems. Also, we wm
complete other work on error recovery and handling 'n Id with potentially significant.
influence on reliab·uty .and tSoftware ,construction.

We wi II further develop the architecture and 1remove bot lenec:ks in the
design; expanding lhe design to areas not yet understood (interconnection of physical
doma·ns). Also, we ane waiting on some theoretical work 1now ·n progress on time
compl exity aking machi·ne c,ommunicaUon into account; $landard Ume complexity
measures are expliciUy von Neuman1n1 based and ar,e inappropriat,e to data fl,ow.
Further studies w·11 be directed toward the deve.lopment of a prototype system which
will provide performance analys·., of he various design alternatives. Ftnailly we intend
to, investigate the topic of fault tcleranee in the context of our architecture.

V. Arch 01dehoeft, Iowa State University

We have bee·n in the data now business for a year and a ha1f now and the
last year has been one of i tensive ,activity In devel,oping same software packages that
aUow us to s udy the concepts ,of data f ow and to look at some translations of high
level languages into data, fllow.

The project has concentrated on perf,armance ,evaluation, simulating the
execution of a data flow machine. We are not on y interest,ed in s'mulating its
execution, bu also in· providin,g packages to report certain statistics. To da1le we have
loo'ked at 28 p o,grams drawn from, textbooks from projects around campus, and from
three of the Livermore programs.

There were sorne difficulties, w~lh such simulat" 01111 work. First of an,,
simu'lation is a very expe ,si,ve proc·ess) not 0111,y in processor Ume.J but a1so in terms 10f
the demands for memory space of he machine on which you're simulaiting. W,e found
that we couldn,t handle recursion to any s11g1niffcanl dep,th without runntng out of
memory.

That I ed us to take an al e•rnative approach wM,ch is a ,program graph
analysis approach borrowing fr,om so e of the existing ideas in the· ·ter -ture. It turns
out that we can get at the same information we would have obtained from a simulation

10

within the limited context of the processor we're simulating,

We'v,e co sidered a data f ow machine language ·nch.1d·ng recursive
p acedure calls and a structure mernory. We assume a feedback constraint which
requires that bo,th the op,erands. be ready and an acknowledge signal be received from
the successor instructions far an operation to execute, entorcing the singl,e tok,e·n per
arc concept

In the 28 programs rut'l to da ,e, we've found pa1ral1,elism al awing speedup
factors of 1.5 to 7.5. We s,ee the possibility of imme,nse speedup in some of th,e
programs if we add a s ream or vector capability to the language and simulator. Other
programs may exp oit a stream capability, but only aft,er a c,omplete restructuring of
the program.

We begin, with a program ~n language X a d do a and conversion to our o,wn
high level language. This 1involves primari y · eUing rid of the GOTO's, handling
COMMON (passing COMMON references as arguments a a procedure), and eliminaHng
any EQUIVALENCE statements. W,e hand the resulting program to our compil ,er which
per forms pr,ogram anal.ys· s and code generation, producing a symbolic assemb1ly
language p,rogram which is used as lnput to the simulata.r and is assembled into machine
code.

The simulator accepts machine parameters, spedfytng th,e numbe·r of
functional units of each type and their timing, Tne resul • ~s ar stati,s ical report on the
sirmulated execution in terms af the maximumr and average memory and processor us,e
and the utilization of data paths between the memories of the processors.

T e alternative approach is lo enter the full ,analysis stage with ·slaUst.ics
amounting t c the trming of the particular op,erations and to then generate a program
graph and the timing equat'ons which are associated with it. An advantage of this
approach ·s that in l0,0king at these liming equations, one can relate the speedup to
particular program characterist·cs. If we go H,rough the s"mulation techn'que. we can
generate the sta· istics, but we know not'hing about the program structure and can,'t
relate the speedup and the parallelism tc characteristics of the program

Our planned activities for the second year and beyond include extension of
the language, comp' ler,, and simulator. We also intend to study what k'nd of s pp,c.wt is
needed for genera1 operating system functions 1n a processor of this nature. Thus, we
wou d like to extend our ranguage to include date ypes~ a hig I level monitor construct,
and general facilities for communicating processes. In terms of the simulation, we'd like
to put in stream data cperations and then whatever other support we might need for
moni t.ors ,and communicatirng prnce.sses. In the per ormance studies, we'd like lo look at
rea1-time applical! ons and the divide-and .. conquer type programs.

1

We1re also ,concerned with a memo y hierarchy model. Because we can~l
currently support recursion due to memory demands, it app,ears that s.ome cache
mechanism ·s necessary. The Jdea ,on this 1s to bring in1 to the proc ssor just those
ins • ructio'ns which are, active. Our inter,est here is in the organiz,ation ,of the program
so information is broug t into the cache at the right lime.

VI. 'Robert Kel er. University of Utah

1 d ike t ,o report on some work by Gary Lindstrom, Suhas PatU, and mysel t
This i s a fairly new pro,j,ect as is evident by the· tact that we weren here last year.
We,re developing an arch' tecture and an eva uation model fer what we ca I loosely
coup.led parallel processors.

we~re studying a high y parallel architecture which supp,orts a. vadant. of
pure Usp as its main language. We fe.el that Lisip is we, -suited for data flow- ike
computation, al though .a few minor modifications are required, for instance converting
the cons operator lo a l'enien~ cons, an idea publiciz,ed by Friedman and Wise of Indiana
University.

isp is a single assignment ang1..1age, at leas if ycu don~t i elude the PROG
feature, although we are looking a~ t"e possibility of including that , ,eat.ure in some
limited form. It already has a data structure capabU tyt which a1 !ows concurrent
ope ation on many sites ·throughout a largie tree. And its use is a ready established
w,thin a substantial user communay.

Our processor has a tree-structured ,or-gar(zaUon. The leaves of the tree
are processor memory combina 'io·ns, and the initerior nodes serve a communic:ation
funcr on. One novel tea ure is that he frcnt'er ,of this tree, taken colliectivelyt forms a
universally addressable memory. There are no murky problems with how y,ou get
i forma1f on. Everyone can g,et to t, e same inf,orm,~tion as everyone else, at least at
the machine level.

One advantage of th's crganiz.a on is tha inherent in this t ee structured
communkaUon scheme is: a way o·f · aki1Flg advantage of lceaHty of commun'ication, i.e.
reducing· comm nicati,o costs fer paralle sub-,ccmpulatio s whi-ch are l,ogically related
to each other. Also, impl"cit here in the locality considera,Uon 's what amou ts to an
automat'c cache memoryi tha1 is, we don t have to explicitly put in another laye,r of
memory a . _d call it a cache. The leaves o·f the tree are actin l"ke caches themselves,
keep·ng information dose to where 1it s g,oing to be urlized.

The current status of the project Is that we hav,e defned the basic topo ogy
of the processor and designed a basic eva,uation model and simulator for il. Programs
in the machine languag are Ii earized representations of a graph v,ers·an of pure Lisp

12

programs. The parallelism is display,ed in the graphical repr,esentation. and recursion
comes almost free.

Immediate plans include locki1ng into the scheduling and balancing problems
associated with aUacati0n1 of tasks in this tree topol10gy. Als,o, we have to extend the
language t,o what mig,ht be caliled a programmer's Lisp rather than simply a pure lisp.
For examf:)le, including the Prog f,eature, ass,ignment stail,ements (or certai1n limited
variations thereof), arrays, and sc forth.

VH. Rob Witty, SRC United King,dom

I'm from the Science 1Research Council (SRC) which is the U.K. equ·valent ,of
th,e National Sc'ence Foundation. Th,e SRC is one of t e ma,jor funding bodi,es of
scientific research in the U.K.

Around tnid l 976~ the SRC decided to, create a program specificaUy to fund
distributed computing, wher,e distributed ,c,omptJting was defined as several autonomous,
but i nteracti ngt computers ,cooperating on a, common prob I em. We then created a
coordinated program that reaUy get off the ground when the coordinators were
appointed n January 197'8. Mrs. G. Ringland, a senior member of ,a software house in
the U.K., has the task of linking the prog,ram1 into non-universi ty ins itutions and
government esearch depar ,ments in industry. Professor Bob Hopgood of the SRC is
the academic supervisor. w,as appointed technical sec:retaryJ whose job it. •s to ask
the nasty quesrons whenever peopl',e a,pp y for funds.

he first problem that arose was to define a coordinated program. We
inv-ited proposes against what we saw as distr'buled computing .and interacted with
the various university peop]e ta see if we could get some sort of a coherent res,earch
program going. The normal way that research is funded through the SRC is that a
university group applies for money, and we either do or do riot give themi the money.
They then go away for a,pproximately three year,, somewhat o,n their own with no
forma, feedback. However, with a caordinatad program we require cooperation with
other groups working in the area, th,e production of reports, and a · t.endance at
workshops· such as this one.

Distributed c:ompuUng, as we see it, covers quite a bit. Categories in the
field cover such topics as theory., measurement, reliablHty, data flow, architecture,
,appli,cations, software, and communicaUon. Research on data flow computation is
considered o e of the major· areas of Uie distrtbuted computing program.

The four main data flow grnups in the U.K. are John Gurd and Ian Watson at
Manchester University, Peter Osmon at W,esUield Colleg,e of London University, Brian1
Randell and Philip Treleaven at Newcastle;1 and Roland Sleep who has just started at

13

Brunel University.

The mam i terest of the Newcastle ·group is gene al purpose systems. They
see problems with convent.ional dala flow and see the possi,bility of architec ures built
as a synthesis of data flow ideas and von Neumann 'deas, incorporat'ng the best of
both. Their ma1·n ·nterests involve architecture and 1language; they ,re currently
designhig I anguages and building simulators·.

Westfield College is interes ed in the language area They are currently
desi,gning a s·ngle aisslignment languag,e which is near completi.on and have recently been
funded to develop compilers and simulators for that. ; anguage.

The motiva,tion of Ma chester University is to desig , a high speed engine
which is mod lar, extensible, a .d asynchronous. Th,ey have a single assignment
languag,e caUed Lapse, wi't'h a compiler and two, :simulators. We just funded this group
ta build their processo , and we expect to have a operational mach·ne by Sep,tember
1981.

Session 2. language Issues
Chairperson: BiU Ackerman, MJT.

I. Karl B'oekelheide, Un'versity of Utah

14

Our research program began with the deve~o·pment of a data driv,en net
model. We then designed and bu· t a machine lo execute these nets. Now tha,t we
have the machi·ne, we'd like something a Uttle better to use in programming it. We'd
like to have some data structures1 lo prov'de some arder to our nets, and to allow
some type af high rev,el constructs. ·

We're do,ing a few thi ·, · s differently in the language we're developing. One
of tine most. radical is that we're going to, use an in eractive graphical representaUon,
rather than a textua representaUo,n.. We want lo use raphs as both the display
representation and the input representation, k,eeping the style o variables or data
items represented by a,rcs connec i1n,g boxes. How,ever, we want to use constructs
such as iterate bl10cks to reduce the amount of spaghetti we now have in programming
data dr"ven nets. Thi·s rades off with the ability to see the influe ce any data •tern
can have when alf the airrows are right there in front of you.

Wed Ike to retain in our language. a recursive quality similar to that
displayed by the arch'tecturei that is, at any level, ,everyth,l'llg looks the same as ,at
any other level. At any one level1 you are in a certain context, there may be context
above y,au in t at arrows are coming into you. And you may be able to, detail down to
any depth, u t 1 reaching a primitive operation. thing.

The I anguage should b,e a des gn tool, rather than j usl a programming
anguage. The representation should be close o the manner in1 which programmers

organize their thoug l process when t~ey design someth ng.. Thus, we hope lo
eliminate the phase of thinking about a. problem and writing down flowc-arts or state
diagrams by creatlng a process r1n some graphical form. We fee this is a very natural1
way of rep,resenrng programs.

The lan,guage w·u be c,omposed of a set of box shapes and ar ows. E:ach
construct wUI probably have a different shape. We wan to handle such th'ngs as cal'ls,
iteration, serial data flow to parallel data flow constructs for sha ed resources, paraUel
data flow lo seri.al data flow access. data structuresJ some sort of monitor f,acitity,
pipelining, synchrontz.ation, and cCH"ournes.

Our major concerns are the data input/output problem and hew to deal with
shared data. Without t. e implici sequential a,c:cess, i ~s very hard t ,o talk a,bout
seque:ntia:1 lies. Yet, w,e want to ,al ow sharing of fil,es for data base applications.
Finding solutions to these problems wH en,tail considerable work, and how they are

15

implemented wUI have some effect on our language.

II. Jack 8 . Dennis, M.I.T.

We are de•veloping a anguage which will be a user language for a F,orm 2
data flow machine and will be suitab e for expressing Livermore type probfems,. We ve
done some work on th s, and we r,e 1ry' g to put to;g,ether before the e d of this year ,a
reference manual that wU'I be a zeroth order approximation to the language.

In our design. we've drawn heavily on the anguage CLU design,ed by Barbara
Liskov at M.I.T., particularly in the area of data types and ·type specif icat on. Basically,
we are taking CLU and el im:inating aU the side effectsJ leavi1ng an applicat"ve
programming language. The entities o which the program·s in the !language operate are
strictly values. There's no ,concept of object in the language -- no concept of
something that can be changed by actions of the program.

The data types in the language are the classical scalar types (integer. real,
Bao~ean),, records, and arrays as they exist in CLU, al ough ·n our 1anguage they are
fixed val es and net subject to being updated by an ,operat on~ The on1y operations
ava lable on arrays and irec,ords are operations which accept an .ar,ray ,or record -nd
produce .a new array or record which might differ from the given one in s•ome way.

Arrays and records. are user-defned types. When an array is declared, the
type of its elements mus be specified and a the elements must be of the same type.
An array is regarded as a mapping from integers to values of the element type.
Records are sim lar to Pascal recordsJ there are a number of fieldsJ each field may be
of a different fixed type.

The language is expressi0n-orie·n1t1ed. There is only one express·on which
resembles an assignment. However, instead of caHi,ng U assignment, we do what many
app1icative language designers do and ca11 n a definiUon. An expression in the
language consists of a BEGIN. a se1quence of def1'n'Oons, the key work RESUl T, and a
further expression. The definition creates a number of bindings cf identifrers to
valuest and that set O·f bindings defines the env~rcnme,nt ·n wMch the expression is
eva'luated.

Our approach to iteration is based on t e position that recursion is more
natural and u derstandable than ·teration. There is a special kind of recursion, ca11ed
tail recursion, whiich can always be trans,lat,ed into it.e.rati,on, and we are s,eeking a
syntax for expressing iteration that is in some sense isomorphic to tail recursion.

In conventi anal 1languages, there are tw•o forms, a,f tteraUon. In one, lhe
instances of execution of the body depend on one another. That kind of i teraUon ls

16,

nature ly expressed as recursion. In the other for,m, the instances of the body are
really in.dependent I feel those are more naturally expressed by .a Forall construct.

There are two kinds of Forall c0n1struc s in our language. The firs one filnds
the value of an expression for a set. of nput values and lets these val es be the
elements of a newly constructed array. This is a major source of opportuni1ties for
concurr,ency. The second f,orm of For,aH is ,one in whic I an expression is evaluated for
a set of input values and the result is formed through eombinaticn of the resuiting
values using an assodative operation such as addition or multiplication.

App icative languages are side-effect free, which brings up the question of
how we deal with those kinds of computation wh~ch make use of side eUec s in
conven ional progra,mm,ing langua,g,es. For that purpo,se, the language supports two
kinds of program units. Tfie first one is the 1pr0cedure. Procedures are very much like
conven ion.al procedures, except they are free of side effects, which means that input
and outpu , parameters are separa·le and d' stinguished.

· The second form of program is the module. A module receives a stream of
values and ge erates a stream of values. The module may also receive input sca1ar
values. One ,cyde O'f operation o'f a module uses the values of the input stream and a
single seal ar value to produce a sing e scalar value and a stream of output values. Our
model of what occurs inside a module consists of same state variabhts which have
scalar varues. The module looks at the state information, reads some fixed number of
·nputs from an input stream, and looks at the scal,ar input values. Based on that
infoirmation, ft rede,Hnes the state and ·sends out values which are appended to the
output stream.

rn our model of data flow programs, a stream is terminated by an end-ot
stream1 token. The end-of-stream token need never arrive, but if it does, its ,an'ival
s·gnals the end of one cyde of the operation of the module. The module will then
reinitiafze 'tself in prepatet.on for the next set of i1n~u values. Similarly, when its
cycle ,of operation termlnat,es, an end-of-stream token wil erminate the output
stream.

Ill. Kim Gostel,ow, UC - Irvine

Our goall is to design a general-purpo,se computer that can utilize a large
number ,of pr,ocessors. To do thisJ we devised a da a flow base language that is as
asynchronous as possible. that can creat.e demands for a la.rge number of small
computaUons. The result'ng system is called tile unraveling interpreter.'

The basic principle of the language, Id, is he creatian of a large number ot
activHies, where an ac vily is a u iquely nam.ed instance of execut.ion of a data tl,ow

17

operator. Each token ·n the base language carries not on y a data item, but a control
field. The control f eld consists of fcur subfields, u.p.s.i., where Ii.I is the context in
which the current procedure p is exe,cuting, s is the data f ,ow operator destination of
the token, and i is the parUcular Ueratron or initiation of s for which this token is an
input.

Consider as an example the matrix multiply of t.wo n x n matrices. The
activity name manipulation mechanism is s:uc,h that if the, Id procram is written as three
nested I oops, where the inner,mcsl loop is a dot produclt the net effect · s that the two
outer loops 1"unravel and cr,eate n2 inner loop (dot product) instances, all potent,aUy in
execution al the same time.

Id is a compl:ete language, mccrporaling procedures (with recursion). loops,
conditional expressions, streams, and several special loop constructs on streams (Fo,r
Each and Return AU), abstract data types, protectial\ and data flow resource managers.
The fallowing discussion concerns resource managers.

Our goal is to build a general-purpose mach•,neJ and Id is lo be its language
for both applications and operating system codin,g,. For this reason. resource managers
were incorporated i nla Id. As opposed to a procedure, where each i nslance of
execution creates a new logical instance of the .applied procedureJ ~ach use of the
same resource manager obje<::t reuses that same manager. A manager is a separate
process to which inputs are passeolt and, .as opposed lo the rmoni ·ors of Brinch Hansen
and Hoare. control always resides within the manager itself. When another process
uses a manager, U actuaUy sends the data to the manager and relinquishes an control
of that data. A manager ma.y have memory in f he form of a I oop and thus exhibit
hi story-sensitive behavior. We have progr.amrned the readers-writers pro,b1 em,
distributed databases, e1nd other such appUcath:ms with this mechanism.

Our tntention i,s to show that data flow can do anyth'mg any ,other tanguage
can do. We are not trying to develop any new theories or ideas o her than those
which are easy ,or necessary. Oeveloping managers was one new idea which was
necessary. Thts goalt now must change. Data Uow is being stifled by the old ways. and
the semantics are getting too butky.

Backus observed that Programming languages have too, much framework;
and not enough observabl,e parts." Too many similar Ideas get expressed/imp emented
in distinct ways,; given appropriate primitives, we can comb'ne them by if-statements.
while-statements, etc. Ea,ch is imple·mented separately, but all are reaHy simply
examp~es of combining forms. wher,e expressians/fum::Uons ·ar,e the parameters lo those
forms.

tn e:sponse to, this, Backus devel,oped FFP Systems. Over the past two
years, the changes we have made to Id keep moving ·t further in the direction of FFP.

18

I think it needs to go all the way in cne jump, to benef't fro.m it, everything good about
data Oow is in FFF'. plus much more. I feel that FFP is a tremendous advance rn
machine languages a1nd I hope the data flow will simply be absorbed and become a
cons,equence of a more encompassing theory.

IV. Chris Hanki1n, WesUie1d College, University of Lendon

I have been working in data fllow for abcut a year wUh Peter Osmon, who
eads the group1 and four research students. Two of u1s ave been l ook,ng at

architecturest and two of us have been 1ookinrg a1t language impl"cations. We haven't
actually c,ome up with any answers ,on the architecture side yet, so l'I just ,speak on
the language.

We have a very primitive graphical notation the operator$,operate on single
bits and one boo,tstraps from there lo more complex operations. A. data flow graph in
our lang ag,e is a directed graph in wl'fch the nodes are used lo represent one of the
foHow·ng seven primitive operations: cons ant generator, copy, union, pri1mitive
transformation, data sinkJ true/false gate,, or application of a data flow graph. The arcs
connecting nodes of the graph repr,e,sent the data dependencies between the nodes

We haven't. commit ed ourselves yet. lo data driven o,r demand ddven
systemsf both concepts exist in our system. A data driven program terminates when
the,re are no elements enabled,, no unused input. data,, and nc, element is currently being
interpreted. The all,ernarve model, ,a demand driven system, terminates when a result
has been produced.

There is no eye, ic graph structure in our language. A well-formed graph is
an acyclic graph of functio al nodes. Such a well-formed graph represen s ,a wen
formed program in he anguage. This has a number of impricalions for languages.
First, we can consider pro;gram!s of any meaningful complexity t.o be networks of
function applica ions. This suggests a functional language,, such as L. sp. Because aU
the nodes are side-effect free1 it doesn~t really matter whet order you write themi
do,wn, the order of executicn ·s apparent from the various data dependenci,es between
the sta .ements.

The absence of cy,cl es in the graph lends to suggest a singl ,e assignment
rule. We have opted for a semantic single assignment rul.e which states that the
interp elation of a program must not cause any name in the pr,o,gram lo be assigned
mo,re than one, value. This is s·muar to Chamberlain· s single assignment ru1e and
1different from the syntactic shigle ass'g:nmenl rule. A name may appear on the left
hand side an,y number of times, as long ,a,s only one of t ose statements is executed

l '9

By r ling out cycles in our primiUve graphs, we've ruled out the use of
rterati ve processes. We don i ecessarily have to follow this through at the high level
language level, but recursion seems to us a mo,re elegant way ,of represenUng iterative
processes. Hence, a I of our iterat'on i:s represented by ta'I recurs·on.

· Our progra,mming an,guage, CAJOLEt ·.s similar to other nonprocedural
languages such as Lucid. Many cf the basic. features of CAJOLE arose dir,ectly from a
desire tc deve o,p a high leve langua1ge based on data ·How principles wh"ch
programmers would f'nd as natural to use s. current block s.tructured languages such
as Algol 68.

V. John Gurd, University of Mane ester

Like most of the groups in ,data How, we started off w':th .an a chitecture,
not a language.. I th'nk the o:nly excep ion la· that was the LAU system n To louse
which started with a l,smguage, and then developed ;an architecture. It seemed to occur
o everyone at once that singl,e assignllilent was de$irab ,e, a though for highly different

reas•ons. Our languag:e Laipse is ano he-r single assignment programming language for a
data flew machine. We attempted to keep its syntactic form a:s much l'ke Pas.cal as we
could, but. it's s,emanties ar,e c,omple'lely different

We approached the language des,gn by finding prob ,ems and developing
mechan·sms to solve the problems. We then, simulated i1n orde·r to eva, uate the
mechanisms and made dee sions as to the usefulness of the features. In this sense,
lapse was both experimental and educational.

There are two issues involved in the design of data and control s ruclures
for a language. The first is the accuracy cf the notation. its ability to expr,ess the
problem under co sideratio . hat c, early must be paramou · t. in any language. And the
so t of things I think are important are t e accuracy the concise ess, and 'lhe ability lo
prove that the program d·oes what you expect it to.

But then comes the very rea and nasty probl. m of what happens when the
program is trans ated into a machine runnable form. At this point the efficiency of
translation, the eff,ciem::y of compilaUon, and the efficiency of execution, become very
important. hese are the problems that we'r,e· a 1,ong way· from so~ving, but everybody
else seems to be ·n the same boal ·

Data types 1in Lapse are sca11ars, eorrespondi1ng o one token on one arc.
Structured data is carnied , s a number of tokens tha travel abo,ut, conceptually
simultaneously, on the same arc. The okens ar,e not necessarily in sequence, and can
be distribu ed around the machine. And they're not organized Uke a stream, they can
aU sit on · he arc at the same time. with the last. one coming firsl Th"s creates a lot of

20

problems and is the major reason w y we talk about control structures and data
structures separately.

The l.anguag,e is block structured and fonctiona1. Every statement appears to
be a functiion which takes in some input type and produces some cutput type. In the .
case of prrmHive instrucUons, a statement ts a mach·ne defined operation which
converts between he two, types. But, we can also have ,othe·r types of blacks which
,correspo,nd to primibve expressions, compound e·xpressrons, conditiona expressions,
iterative expressions, and recursive expressions.

Conditional activation in the languag,e ··s performed by a cons,truct catled a
test block. This construct is never seen by the programmer, he doesn't have access to
test bfocks, so he can t ha,ve conditionat statements, he can only us,e conditional
expressions which are tied together for h'm by the compiler. The test block performs
some t,est on the input data, and if the result of the test is true, the data is sent ,out
one output o,f the expression; ·f false, down the other. S,0 we can ensure mutual
exdusion purely by usi1ng IF THEN ELSE ,expressions.

A Repeat er Whil ,e block performs iteraUon through transJaticn into into a
sequence of test blocks, one branch of whi·ch re.executes the block, and the other of
which drops out of the iteration through .a common merge 0,perator which has an input
from one side cf each test blcck.

Recursion in the l.anguage i·s of the form test, ·, at the dropoutpoint, then
com,pute some: partial nonrecursive functicm Else, go into some block which calls the
function aga·n~ called a token block. The three forms of a token block are the iterative
form. in which the last action ts to call the funcUon that is being defined; the linear
form, ·n . which some operation remains to be performed after the function is called;
and lhe nonlinear formj incorporating a number of parallel cans t,o the same fu ction.

We want the implementation to be simple, c,ampa.ct, and efficient ail runtime.
Tc achieve these objedives requ'res keeping the number of tokens small. so an
operator accepts only two input tokens at any one time. This ca1,iU:1es, pro bl ems in the
case of arrays where there are a lot o·f tokensJ. bu there is way in the language to
define a tu cticn whkh acts directly· on the array. In, some sense we don't want this,
since if we had a function which ac ed directly on arrays., it would have to collect an
the tok,ens together at one point, and that's the very thing we~re ryi g to avoid. Since
we don l want to dup,licale code for iteraUon or recursion to, handle components of an
array, we .se lh,e same sort of laberng mechanism as; A vind and Gostelow. W 1e split
this labe into a number of fields, including a iteration eve, an identifier which
des·gnates the instanUaUon, and an index which designates the part of the array.

21

VI. Gary UndstromJ University of Utah

My purpose here is o ask the followi g· questi'on, "Although a lot of
r eferences have been made to Lisp as a1 potential hmgua,ge for t e k"nds of ma.chines
we~re talki1ng about today. nobody seems to be targeting their machine toward Lisp.
Why not?' My thes1s is -that Usp shoul,d be U$eti as a progiramming language for data
flow machines.

lisp akeady exists. tt has an applicative kernel, hence, it is side effect free
i "'i ewed as an isolated evalua1U0n of a function cal. . U's fundame·ntally bui t upon
recursi:cin, so the problem of how · o 1nco:rporate recursi0n1 is already taken care ot.
Also, reductio, evaluation ·s alura! fer the lenguag,e.

There is a ne,ed for more computing power on Lisp machines in such areas
as symborc computation and artifcial intelligenc:,e.. A so, the L'sp user community is
sophist~cated and non-entrenched. Such a community would o e ate cha1n,ges in
r ,ecommended programming styles for suitable 1payo,ffs.

T ere is already a, wealth of implemenlaUon ideas for L"sp in existence,
reveaUng· that ifs a very supple language ·n t.er,ms of implementation. Usp is
implemented 1interprerve'ly using S expressions and a tree stru-c ured evaluation model,
in1 compiled •form using activaro -1 records and ,pure ,eode1 and in hardware, as is done at
MJ.T. on the Lisp machi e.

Lisp is linguistical ,y rich in the sense that its proven over the perl10d of its
existence to be a v,ery ccnven· ent language for experimentation. It has a base for
language ,extension which partly interest, us:1 but mare importantlyJ it ·serves as a lrial
horse, for different machine dest,gns.

The architecture we have in mind shou d support a hybrid style of· both da1ta
fllow and demand evaluation. A~so, the concept ,of leni,ent" cons should aUow us to
view cons as a non-operator. as simply a currying construct Particularly from he
standp,oint of demand evaluat on it should allow demands to be directed simply lo car
and cdr fields independently.

AU problems o,f "standard' languages can be studied within Lisp to avoid
deveio,ptng a completely new la guage fo their evaluation, and sa1ution. isp is a more
manageable vehicle for thos,e stud"es right now. lisp has encapsulated in it the k,ey
problems that have been brought up in this sessioni that is, celil s/ assignments,
seq ential contr0l 1 1/0, and fi es.

22

VIiii. Philip Treleaven, University ,of NewcasHe-Up,on- yne

The work at Newcastle can best 1be descrjbed as dissatisfactiion wrth what
I'd like to can pure da,ta f ow. The problems that we ,see in pure data flow are that rt
has a very elegant, although primlHveJ activation by availabil'ty control model, it has
the concep,t of pass' ve storage rke the von Neumann mode which leads you to
regenerating data occasionally, and there seems to be diff culty iin representing notions
such as mes and input/output.

We tr,ed ·to take the best features of pure data now and ,combine these
wi lh lhe vo N'eumann mode . What we j,ke in data flow is the concept of activatio,n
by availability of data and the underlying direded graph representation, What we Uke
in conventional control flow is he pa,s:sive memory and the ,abUity to be able to
provide additiona,I sequencing constraints.

We?ve based our wor'k upon lhe concept of activating computations w,th
contro'I tokens. We've bunt concepts of memory into the models. Sa We7re moving
away from pure data flow1 although we feel we can suppo·rt da a flow concepts.

We ve based the project upon two forms of program representation which
are basically independenl attacks 0 -1 the probhl!:m. One. which we caU the structured
d"rected graph language, we :l ike to think of as data flow pll us. The other
representation ·s caUed the generalized control flow architecture. we~re dev,elopi·ng,
this architecture as a better form of simulator ta represe -t this spectrum of ,anguages,
to g·v,e us a machine for trying out our la,nguage concepts to deal w i th structured
directed graphs.

At the moment, t ,e project invo ves seve•n or so peop e and has three
simulato,rs implement,ed for tt-ie architecture. Two are being used to study the
arch"tecture and he other interprets a large machine language, ·nto which ou various
transla ors compile. W,e have implemented our own variant of data flow language and
have a translator which translates a subset of Fortran to ru on our concurrent
architecture.

We~re hoping to implement the la,nguage and architecture and, with the
experience we've gained from that, move across t.o some new form of anguage and
archilec: ure. We tend to think o.f the structured directed graph language as being
something like Algol, and the· computer architecture a,s being something Ii e a 360. You
have to actual ly remove all the structu·re from th,e language to run i t on the
architecttJre. Our longer term goal is to design an extended vers·o I of the architecture
which would enable the structure of the program to be retained ,exp icit y at run time.

Our model of computation has the notion o unique assignme • t in which here
are never multiple tokens upon one arc. Only a single ,object is cr·eated whenever a

23

statement rs executed, and that ,object acts as a memory that can be referenced by
any number of destinations.

We activate c:omputations 1' n the l anguage through use of control tokens.
We also .allow two mechanisms that seem to b,e comp,lement.ary: activation by
availability, which se,ems very nice fo partial results* and activation by need,. which
solves the problems we see in imptemenUng files.

Objec s a;re read ,only, o be acces·sed ,any numb r ,of times by any
destination. We also, a ow these data objects to, be structured ·n that they can contain
subelements wh"ch can be accessed either by name or by position. An object is only
accessed from w ' th'n the function in which ·t is located. Hence, when that procegs has
fini,shed ,and generated its resu s, that Is an appro,priate time to get rid of he object

24

Session 3 . . ApplkaUons
Chatrperson: George Michael, Lawrence Livermore Laboratory

t Jeffrey Jaffe1 M.tT.

Pm going to speak about two data ·flow programs which solYe the Laplace
equation. In developing these programs, we had the goal of tirying cut the data flow
anguage under development at M.I.T. and seeing if the language constructs were able
to express the ideas in the program. A related go,al was to investigate the
development of translaUcn rules to tra·n.slate source programs into data How graphst to
see if a program expresse·d in the· source code c:ou1d be successfully translated into
the highly paraUel representation we would ha1ve xpected if we had coded the
p,rogiram at the graph levet

We wanted to study a real problem whose so ution w,ould be of use to
people. We also want,ed to examine potential soluUo,n me hods for the Laplace
equation that exist in the literature and have certain nice features about them, but
require too much computation time an a sequential computer, and to see if these
solutions ,could be used on a data flow computer. The final go,al was o perform some
sort of performance analysis to get an ,idea of the :sart of computation speed that could
be expected from a d'ata f 'ow machine.

The problem can be viewed as laking place in a two-dimensional region an
the boundary of which there exist temperature or potential val iues which a e fixed for
aU time. The problem is to find the steady slate tempera1lure for each point in the
region. The usual way of solvin- this problem i$ 81 relaxatio,n method in which iniUal
values are assigned each po nt, the temperature is recomputed by averagi.ng· the
neighbors, and the termination condilicn is tested to see if the p.rocess is converging.

The second method for s,olving this problem i s the Monte-Carlo or
probabilistic met od. From each point in the region, we lake a random walk to the
boundary, evaluate the temperatur,e at the boundary and use that as the ini Ual
estim.ate of the temperature of the point at which we began the walk. Thts process is
performed man!Y times and the temperature values are averaged to obtain lhe est.imate
for the steady state temperaiture at the point.

Both the relaxation and Monte-Carlo methods can be readily expressed in
the data flow language through use of ForaU construct., to apply he required
computation to eac , point.

Both methods achieve s'gnifican, compu ,ational speedup in data flow due to
the capability to compute all points in parall ,el a1nd perform he random walks 1in
parallel. The advantage of each depends on the particular co,ntiguration of daita flo,w

·25

mach·ne on which they are t.o be executed.

t Oav,d H'rschman, M.I.T.

translated a Fo tran program to so\ve the Lagrangian formulat'on into data
flow. Although a numb,e of problems a.rose from the· d' fferent natures ,of the
anguages,, I was able to achieve a significant decrease in the size of the program by
the trans ation process.

The basic assumpUon of the Lagrangian formulation is that a gas exists in a
three-dimensional s ace which is divided into small boxes. The assumpt'on is then
made tha all the atoms or molecules in, a box wi I stay there f,orever. although the
shape of the boxes may change, as the temperature and pressure of the gas chan,ges.

Si nee a box always f'lias the same nei1ghb0rs, and the contents of a box
remain the same he slate of the system can, be depic .ed by an fixed size array thal
holds all the state variables fer the system. S.ome v,ariabl,es ar,e associated wrth each
box, a d o , hers are associated w'th the corners a d ends of the boxes.

e rela1ti0 ship be ween l ,emperature and p essure is described by many
differential eq ations. The program is an approximation of those equations, turning the
partial differen ial ,equations int.a difference equaifons aind solving them ·tera ively.

The original Fortran program whic I translated into data flow was very clean in its
control structu e, but c,reated q ite a problem wiith global variables in COMMON blocks.
Hencei a good portion of the ranslation effort invo ved determining which programs
used which data.

I ran info a few problems that arose from the diner,ent natures of the two
tanguages. The Fortran program is conc,emed primarily with array s ruclures, and the
implementation of such stiructures is an impo,rtant problem in da.ta flow machines. In a
standard von Neumann machine ,one just carves out a hunk of memory for the array,
and each element has a specific cell.. However, a1 data flow processor has no discrete
memory where the array can be placed.

An array is created in a data flow machi e by use of a F orall construct to
perform some operatton on t e elemen s of one array, creating a new array, or by use
of an Append operator to add an element to an existing array. It is very difficult. to
just change one element of an array. For example, it rs very d'fficult to c ear the main
diagonal of the array, s·nce he who e array mus be copied to perform this, using
nested F oraU cons ructs.

26

Such operations on arrays were commor, In the Livermore code I was
translaUngt primarily due to bou1ndary condiifons. These operations, which are
relatively easy in Fortran, involved a good deal of copying of arrays, just adding
elements in the right places . .

Strangely enough, these parts of the cede were the parts where I achi,eved
the greatest reduction in the size cf the code. In one part of the program. I reduced
the size of the code by a factor of seven, since I wa.s forced to do the 0peralion1 as
one whole, whereas the Fortran code had special pieces to take care of the right edge,
the left edge, etc.

We arem~t finished with the transiabon -- there are some tricky parts on
whrch other peopie in the project are work'ng -- yet enough has been done to
convinc,e me that a 'real world I program can be written in da a flow.

Ill. S:ob Meyer, Clarkson Col ege

rm not going ta speak about a specific application, but rather about the
interaction between app kations that ,one would ike to solve and the architectures and
languages used in the so1ut'ons. I am dr·ven by applicaitions, and entered this field from
the point of view of s.tudying algorithms a,nd systems for solving certain kinds of
problems, not from the point of view of designing machines.

The appl icati,on areas that pr;rnari ly interest me are image processing,
automated cartography, and scene analysis. Our research goa\s ar,e, to characterize
these problem classes in some manner whi:ch is mathematically precise. defining the
class O·f ptoblems to which a particul1ar architecture or language is well suited.

The next step is to lock for a common descr'ptive framework for describing
al gcr' thm s or programs for solving these pr obi ems. Then one must synthe·si ze an
arch·tecture which is well-matched ta the prcbl,em class, where well-matched i1mp1ies
good performance in terms of speed. Finally, there must be methods of evaluating the
performance cf the proposed architecture, where th, s in comb 1nal' on wit , the previous
step forms a loop through which one travels.

Image processing tends to dea] w ' t an intermediate size data base,
somewhere between 256 nousand o about four million bytes of data. One of 'lhe
other important characlertsUcs is that there are many instructions of a few ypes. In a
typical application, one might have ten operations on a point, with six to ten instrucli on
types. Thiird, the computations are very much locally interdependent. depending only
on a few other ccmput - ticns within 1e,ome small eighborhood. Also, the data
dependency graph for the probl1em ·s very highly .structured.

The automated cartography problem usually utilizes a much larger data base,
anywhere from o e milficn to ten million er more bytes. The precessing required tends
lo be fairly significant, there are a number ,of N~squared .a1gcrithms, where N is the
number of bytes. Again, the computa ions tend to be lacal, but the data dependencies
are very involved and complex.

We wish to mate the structure of a processor to the s ructure of the
problem we~re interested in solving. To do this, we utiliz _ a coUection of processa,r
tnemory modules, where each modu\e consists ,of a process,or, some program memory,
some data memory, and some communications interface. W,e would ike to be able to
vary the processor capabi ty to match the functional leve1 of each of the nodes in the
computaUon.

he i nter-proces.sor commun1cati on in t e s.ystem should be f I exi bie and
dynamic, au awing the machine to readily appear as thougn it were connected rn
dHferent structures at different points in lime. The ,program shcutd determine the way
·n which the interprocessor communh:ation takes place. We don't need complete
interprocessor communication, each processor need no commur11cate w~th al others,
however, the communication paths should r,ol be arb' ,rary.

IV. Tim Rudy. Lawrence Livermorie aboratcry

Livermore,s interest in data flow is for high speed c:omp,ulation. We
consider it one of severa alternatives that we are currently 'nvestigating One of
these alternative - is the S-1 proJect which involves the development of mote
conventiona multi processing structures. We're also la,aking at Cal T,ech/lvan
Sutherland sort of Solomo · reincarnation.

When we talked to M.I. . initially last Junet we thought 100 Mega.flops
(mill"on floating point operat~ons per sec·ond) was a pretty good number. A 7600 runs
anywhere from four to zero1 he Star up to mteen. After same "tl,ough it appears that
one hundred fifty two hundred Is a more reasonable request of a data flow machine.

I think the botueneck in a problem such as a one-dimensional hydrodynamks
arises in the memory interface. Examining lhis on he Star at 13 megafl.ops, we see
that a memory request is made every 19 nanoseconds. Fer tne Crayt Wiith double the
perfo·rmance, the emory access ra e is al most half as much. due to the vector
registers which act as a cache. H we extend this to 00 megaflops, we see that on a
Star there would be a memory access requ,esl every 3-1/2 nanoseconds, and ·for the
Cray. about every 10-1/4 nanoseconds. I suggest that it's difficult to get memory that
runs this fast, and hat more aUenlio should be paid to this prob em. ·

28

The codes that M.I.T. has been examining are relatively smal. If we 1examine
a lar·ee computation1 such as a lwo--d'mensional heat conduction problem,. we see that a
Cray perf,orms eac time step in 7.05 milliseconds, a speed of 27.l megaflops, or 1 LS
nanoseconds per memory request.

In terms of data flow, assuming we can proce·ss each zone independently,
there would be approximately 204,642 oper-ati ons 2 9 per mierosec,ond o,r 34. 5
nanosecond$ per operation. This requ'res 1,588,739 memory references, 22.5 per
microsecond1 or 44.4 na,nosec:onds per refe-ence. Jus to makh the Cray, requires
l 9.4 nanoseconds per o,peraU.on or 1memory ,refe enc,e, and w,e want to go much faster.

~s n01 cl ,ear that Liv,erm.ore can use pure data flow. The real value of
data How to livermore is ,o open us up to other possibilities for getting high
performance. We knew how to, do vector computation, but at some pcint we,re going
to have to go lo multipr,ocessing. What we learn from data flow is going to help us in
that. regard.

29

Session 4. Translation
Chairpers,on: Kim Goste ow, UC Irvine

I. Lubomir Sic, UC - Irvine

T e long term go,al o,f our ,project ,at UC - lrvi e is to develop a gener-al
purpose sharable data f ow machine. The sharable aspect implies that we are entering
the domai ot operating systems. One ,of subproble·ms of t his is to develop a
mechanism tha . allows the impl,emenlabon of a variety of protection pol icies to perfor1m
such services as guaranteeing the prtvacy of information, p,ermilting conlro led sharing
and excha:nge of ,nformatfon and services, and preve.nt'ng possib e sabotage acts.

When I first looked at this area about a year ago,. I d\scovered that there
are some common probilems thait are automatically e iminated by use of a data flow
representation. The modification of data automatically implies the creaUon of a new
copy, so there is no need for wnt.e protection. Also. use of a procedure written by
someone e!se (the Tr,ojan Horse problem) wi mot a low that p ocedure access to any
data not passed o it as an argument.

There are still some other pro bl ems ef t The moni t.or concept rs an
essential pa1rt of sharing ,and exchange of informa\io in our system. The monitor is an
execution domain consisting of two actors. the Entry actor and the Exi t ac or. The
Entry actor co l,e,ds requests and and f0rms a stream which g,oes into the body of the
mon·t,or. The monit,or also conta'ins a. feedback loop which acts as, a memory.

In contrast, a pro•cedure call, which has a simila syntax, pass,es the
procedure defi ition and argument tc an activate actor, a domain, is created between a
Begin .and End statemen,t, and the execufon is carried on between these two actors.
The major distinction between mcnitars ar.d procedures is that the execut' on domain of
a procedure is creat,ed on1ly once. Each exec,uUon of a ,pr,ocedure has a drfferent
execuron domain. Whereas fo a monilo,r,, thee exish1 one domain which may be
accessed severa t'mes, as many times as you wish during the ife o,f the monitor.
Thus, a :procedure is me·moryless., whereas a monitor is history sensitiv,e.

We envision a model in which the boundary of the system is a sphere.
Inside i:s a c,ollection of mon·tars and the users sit outside, the sphere and access the
monit.ors inside. Every user initially obtains a job control monit,or and can dynamicaUy
create any numb,er of nu:initors w ~ch can intera,ct w· h each other, exchainge
informati,cn, and communicate,.

One major departure from, convenHonal systems i1s that we don,t equate the
human user wrth the use-r process. In a conventional system .• if a process executed
within the ·sys,lem can g:ain access to secret informatiani, it as considered a protection

30

viol,al on. This is not the case in our sys emJ we allow infarmat'on to go anywhere
within the sphere. Any information can prapa,gale to a y monllor within the system,
and a protection violation occurs on~y tor in1f orma ion1 which 1eaves the sphere and
reaches a user outside the sphere.

A mechanism is provided which allows the attachment of a unique protection
key to any value within the sys em. A value may· leave the syst,em only tf no key is
attached to it. Two primitives operate upon keys, attaching and detaching keys to
values.

These constructs ,allow us to sol!ve the selective confinement problem. We
can send wo kinds of infa,rmation · o a m,onitor simultaneous1y1 protected and
unprotect,ed. For example,, .an incom,e tax monitor could receive income informal.ion
protected and other information unp·rotected. In such a case, any returned information.
such as .a biU is unproteded only if no protected information was used to generate it.

1 I. Susan Conry. Clarkson GoUege

The work rm going to speak about is related to translation and
implementation o data How programs. My feeing is that although we want to folliow a
data flow approach, we must be intelligent about t e mann,er in which we do it. We•d
liked to make sure that things are dc,ne ·n a fashi,on that doesn t cost us much1

undi sdpli1ned data flow can be very expensive.

The problem 1~d rike to address is, how to execute data flow programs fast.
Clear,y, whe we get down to the nitty gritty,, there wil be problems that are machrne
specific and problems tha.t are anguage specific. The kind of problems rd like lo
address today are t ose which ere nei· er machine specific nor la guage ·specifiic.

It's been mentioned several mes that there are a number of costs
associaited with the execution ,of data flow programs. One of them is of course the
Ume U takes to perform operations. Another is the number of processors requir~d.
And, particularly in data flow campu alion, its rather clear that the communications
overhead wi I substantially affect the cost of mpleme ting a program.

I'd like to revise the problem a bit and ask how can we assign operations in
a dafa flow program to functional, units in the machine in ·a mann,er which anows three
things to occur. FirstJ no concurrency shouild be lost) if at all possible. Second, the
soh 1tion s oul use a minimum number of proceHors. Third, the1 commun·:calion·s
overhead should be reduced as much :a,s possible. 1lt,s improbable that a11 three can be
optimized simultaneously. However, we,d lirke to try.

31

Given these go a Is, I'd Ii ke to make a numb er of assumptt ans. First of all, we
assume that a data flow graph of the program is available. Second, we have to assume
that f ow of data is com,parable with flow of ccntro . We alsc, assume that there are
enough processors to carry out the computation.

The firs pass at an a\gorithm ta perform the assignment of prccesso,rs is to
take a static program graph and find a mai>:'mum le ,g h cycle .. free palh through the
data flow graph. We assign all the 0pera1ti0ns. on · ·hl,s path to the same fun.ct' ona, uni l.
We then delete all '"assigned'' nodes from the g·raph, forming a reduced graph. H thi·s
reduced graph is not empty, we p,erf orm the same o,peration an the new reduced
graph. This y ields an assignment of operators to functional units which is optimal in the
sense, hat it provides a way of ass'gning operators which uses a minimum number of
operators and in whic the ,communicaticns ove:rhe.ad ·,s reduced,

This naive approach has the problems that the algo,rHhm ·s quadratic in the
numbe1r o nodes and he algor'thm prov·des no informat'on about l,oaps in the graph.
This informa ion is necessary lo exploit locality withi ., any loops. So ou sec:andary
goal is to obtain a easonable assignme t, information about loops and to do less work.

A first approach to thiis new problem 1is to ,p_armio the graph so that loops
are easy to identify and the ccs of finding assig.nments ils lower. It seemed t.o m,e thal
the body of work on global flow analysis as. used in compiler opUmizabon was
approp1riate t,o this probl em1

An 'nt.,erval in a control f, ow graph is a max:1mal ingl,e entry subgraph in
which aU cycles pass through the entry node. It is possible ta choose head nodes of
th,e graph so a now graph is unique y parttt oned int,o int rva ·s. Furthermore. the
algorithm is 1inear in the number of edges ·n: the graph. Naw that the problem has
been deeomposed1 we• can perform a process similar to that described previou&ly. The
algor·thm is stm quadraUc, but for much smaller graphs.

lnterva'I analysis is linear as ,ong as the graphs are redudble. How,evert this
· s not always the case. Hecht and Ullman have co.me up with a scheme for doing flow
analysis which is. not ,quite as nice as ntervals in that loops are not such an intuitive
idea. However, their algorithms apply in roughly he same Ume frame to irreducible
graphs as we I as reducible ones. And some loop informafon is 0btainable from th"s
approach, although techniques for processor assignment have nol been developed

Ill. !Lynn Montz. M.I.T.

My research has been concerned with saf,ety and optimization
transformations for data flow programs. Th·s work as the main goal of determrn·ng
methods for tra,nsl.at' ng high level datai Uow programa into mach'ne language .

32

representations.

At the moment, we plan to accomplish this translati or, through a two step
process. First1 the high 1.evel data flow program is translated into a data flow graph.
The second step involves trans1ating the data now graph into a machine representation.

The firing rules of a datai flow program state that there can never be two
tokens simultaneously pres.ent on one arc ,of a graph. To ensure this withi1n the
processor, we must add acknowledge arcs to the program Petri net theory assures us
that the proper assignment of aeknowled'ge arcs lo form one. token directed cycles will
emture safety of the graph, the qua ity we are seeki g.

The use of acknowledge arcs pr,ovides de erministic and deadlock free data
ffow productions for ea.ch data flow language construct, allowing us to show that the
resulting interconnedions are determinate ,and deadlock free. The algorithms under
development will allow the assignment of acknow ,edge arcs to a pre gram, creating the
one token directed eye est and wiU then remov,e unnecessa y acknowledge· arcs,
optimizing the solution.

IV. Karl Ottenstei , Michigan Technological University

My thesis research i:s concerned wi1th program translation and optimization.
While offering the potential for transl.ation of convenrona'I languages in o data flow
graph I anguages, my w,ork is presently concerned with von Neumann machines .and
languages.

The research recognizes that certai11, trans.formations. on standard
intermediate program forms, such a,s directed acyctic graphs (DAGs), abstract syntax
trees, three addtess code, or prefix notation, are reasonably complex and ooks for a
beHer form that utilizes the informatio,n contained ini a DAG-like form in order to
perform these t.ransf ormations more directly. Essentially1 what we~re ta,king about is
the extens,on of the daita-dependency concept inherent to a DAG to a complete
program; a cydie data dependency graph.

The first step in the translation involves the extr,actlon of a simple ,data flow
graph for each basic block of the program This data flow graph consists of a data
dependency graph for lhe assignment statements, an ordered list of input and output
variables a se of nodes whict'I have no predecessors ·n ' he graph (inputs to the
block), a set cf nodes which represents the defini lions 'n the block which are available
lo other portions of the program, and finally1 one distinguished node w ich as the root
node of the terminating conditional determines the execution-time successor ,of the
block.

33

We then construct a eye ic g -aph f rem all these simple graphs. After
deter,min·ng the set of definitions which can reach ,a particul,ar block, the uses of
variable~ are link,ed to defiinitions fo1Jnd ,elsewhere. in the program. The resuUing data
How graph can be compressed since many nodes repres,e , t temp,orary variab1es only,
and can be eliminated from the graph. The pr,ogram is lf'len compressed further through
examination backwards from ou puts to input.s,, e iiminating any nodes or edges wh'ch
are not reachable.

I have developed recursiv,e graph-marking algarithms fer perform·ng scalar
propagationJ subsumption, dead code removal and constant propagat' on in near inea
Ume. An algorithm has b,een develop,ed for p,er orming redundant common
subexpression elimination on programs with reducible control-now graphs. This
algori1thm ts more comptete than any ,other known practica algorithm and, he vari ,ous
algor' thms are simpler than those tor other i,ntermedia e forms partly because aU use
definition relationships are exp 'cit. In my thes·s, I prese t. me hods for trans at"ng
these graphs back into von Neumann Janguages and sketch a method for tirans ating into
a data flow l anguage. The applicability of these methods to data flow machine
programming seems clear.

34

S,ess,on 5. Architecture
Chairperson: Elliott Organick, lJnive.rsity of rnah

II. □av·d Klappholzt Columbia U iversity

Our work is not within the data flow framework; however, most o,f the
underlying archltectural insights are in conceptual agreement wilh data flow. Most of
the reasons why we feel our architecture· will work are exactly the same as th,e
reasons the data f ow people feel th.e1,r architectures wl I work.

Our macliine is called OH0PP1 the Col11umbla Homogeneous ParaUel Processor.
The on'ly goal of the design is to achieve orders of magnitude speedup of computaUon.
The machine is to be genera' purpose, but gen,era purpose for those prob ems that
re qui re very much more com'3utation than we can do in reasonable time today. This
design is not. directed at applications such as business data processing, where there is
no paraUelism, and, in fact1 there~s no need for speedup.

The user of our machine is required to have a parallel algorithm Rithich he
codes as a pa,rallel algorithm. But unlike machines such as llliac IV, CM\ o C.MMP, the
user codes a parallel algorithm assuming an effectively unbounded number of
autonomous processors. The actual number of processors and their configuration is
tota y irrelevant to him. He can also assume a conflict-free shared memory. In
par icular, the user should write his paraUel. al ·g0,ri thm totally disregarding any no .ion of
memory to task assignment, processor to task assignment, overlaying, or referenc,e
resolution , these are all done for him by a combination1 of hardware and software.

The user fanguage looks like a conventional language fro,m which side effects
have been r emoved by prohibiting shared variables from being accessed excep under
synchronization cont.rol. The types of constructs that we add to lhe language are
things like Spaw n Task which simply creates an instance of a precess. We also add
synchronize message constructs such as Read Buffet and Wdte Buffer1 wl,er,e a 'buff.er
is a mailbox or Dijkstra message buffer.

The design cri ter,a for th,e processor require an architecture to be
conceived without predict' ng in advance the rate of demand and traffic pattern of
demands for memory accesses, al location of resources, or communication. We thus
have to support t e maximum tha can occur. o ac.complish these criteria, our design
has no central control and no central intelligence.

The physical inter,conneclion structure of the machine is hat of a k
dimensiona! binary cube. The l'nks between the vertices are bidirectional packet
transmission Ii ks. We have chosen a particular deterministic routing algori tlim that has
the nice proper y that a memory packet satisfying a memory request travels over the

35

same path as the packet requesting t at particular fetch from memory, whkh wm have
nice s'de effects ,on the rest of the design. This routing is under loea1 control and is
dead ock tree.

Each node in the machine c-onsists of a processor a,nd a memory ba k. The
memory ba k is no a local memory bank, i 's just one of the banks forming the large
shared memory. There are also a 1number of input ports, a number of output ports and
a routing controller, with queues located on most links.

Our macnine has a latency problem in that he p,rocessor cannot execute the
next instruction in a program until a packet returns from the memory with the
instrucron. This latency is larg,er than in a conventional architecture due to the
communication delays through the k-cube. We eliminate this latency by executing
several tasks a a time on the processor. A processor contains a bank of multiple
r ,egi ster sets each containing the envir,onment for a different task, and multiptexes
between tasks in order to keep busy.

feel that the M.1.T. data flow de.sign and our desisn are equivalent in that
the two designs w·11 either succeed or fail together with each other. Fundamen,tal1yt
u derneath the obvious differences, the intuitions hat ead ta both designs had to do
with the feeling that ,ce tral c,ontirol is absolutely deadly, central intelligence is
absolutely deadly, that packet architec ure with v,arious kinds of so ting 1netw0rks can
be used t,o avoid all that Theo e point on which ,I would criticize the M.I.T. des·~n, the
one point where I think it differs significantly from ours, is that the design has
c,ommunication networks, but there's no notion of forcing the traffic 'n the ne w,orks to
be uniform.

II . Suhas Patil, University of Utah

Our ideas en architecture crystallized last summer when we tried to comb'ne
the good features of a number o·f the various, da ' flow machines such a1s the MJ.T.
machine and the Irvine machine. lt~s hard to beat the von Neum-nn arch' tecture for
doing local ized computing. Hencet our processing efements are s,mi lar lo
microprocessors~ as in the frv'ne design. However, the communication bus of tha1l
design is rather cumbersome, so we utilize routing network commun· car on structures
similar 'to tnose in the M.I.T. design.

Our architecture has arbitration and distribution netwo ks, as the M.tT.
machine, but the networks have been superimposed Thls provides loidirect'onal links
which ca,n carry information between processors and memory and has the advantage
hat it ·s not necessary for information to travel all the way through the networks to

ri.s~ach a desUnar on.

The processing un;ts of our mach'ne are on the order of c.omplex·ty ,of a
m'crocotnputer, together witn the memory prese,nt at the physical y same ocaUon.
Although the memory is associated with a processor, it is in real'ty one bank of a large
memory system and each memory bank rs accessible fram any processor.

The archi .ecture is ab e to exploi1t locality of information. In effect, the
architecture makes sense if one is able lo argue that locality ·s an important aspec.t of
data How machines. The structure of our communication network allows the aver,age
amount of r me any informatio , requires to travel within the machine to be small, even
when the mac:h'ne is operating in a mode of mimickirig the M.1.T. machine.

Ill. PhUlip Treleaven, University of Newcastle upon Tyne

The highly concurrent computi1ng systems project at the University of
Newcastle rnvol1ves the invealigat' on of a new fo1rm of general-purpose MIMD computer
architecture and programming language, in whtch programs are regarded as implicitly
para lel and serialism has to be· indi1cated explicitly. his investigation centers on two
forms of program representatron namely a machine level representation embodied in an
MIMO comi:iuter architecture. which we refer to as he "generalized control f o,wh
orgain1izalion, and a new style of high level concurrent programmling ,anguage, based on
a "structured directed graph" representation.

The gen1eralized contra flow (GCF) organization is, a least in the abstract.
somewhat conventional in appearance,, co sisting of (i) mem0ry ocations that are used
to store data, (ii) data instructions that perform computations on this data, a1nd (iir)
con ro instructions which organiz,e the execu ion af a computation. The major
difference between the conventional control fj ow organizaliori and the GCF organization
is that control instructions in the latter ma.y be viewe-d as, forming a directed contro1
graph through which partial controls (contra\ signals or t,okens) How. Using contro'I
instructions like FORK and JOINJ these partial controls can fan-,out to activate multiple
streams of code, or can fan-in to synchronize the streams. A partial control may a1so
activate a process whtch can run concurrently with the calling precess.

It is the responsibility of the programming ranguage ccmpilers tor a GCF
compu er to ,optimize the style of control and data inslruclior.s that are generated,
depending both on1 the. resources of the targe, computer and cm the style of language
being translated. For example, for a computer of a limited store size, a compUer for a
conventional programming language might generate highly sequential code that. reused
storage, ,and a single partial contro which simulated lhe operation of a program counter
in a vo Neumann computer. Whereas, for appropriate problems where high
performance is essen fall and a ''pure" data flow calcutation s adequate, such as Mesh
ca culations or fast Fourier transforms, programs could be encoded in some form of
concurr.ent programming language, probably based an a single assignment rule, and

37

would be tr.anslated into a data flow style of representaUon to take advantage of any
'nherent concurrency. In such cases, the contro,1 graph will correspond to the f ow of
data. However, for other more general ypes of calculations, where additiona
sequendng constraint.s seem to be needed, extra control instructions can be provided
to supply just the necessary synchronization, without incurring he over specificatian
of sequence characteristic of vo Neumann computers.

Part'a~ controls in the GCF computer define the addresses of i dependent
tasks (each of which can be a single ins: ruction or a process), that are ready to be
processed by the c,omput,er. These names are grouped together in what can be
viewed as an unordered set of tasks that provide a.pocl of work for the computer.

The basiic structure of the GCF computer consists of three units: a Ta,sk
Unit, storing the instructio addresses of , asks equlring processing, a Proce.ssing Unit,
compf s'ng ,a p,ossibly . arge number of processing elements, and a Memory Unit,
providing storage for the programs and data.

When a pr,ocessing element becomes idle through the comple ion of a task, it
selects a next nstrucUon address from the Task Unit. Using this address, the
processing element fetches the i struction fr,om the Memory Unit and decodes it o
obtain a specification cf the required ,opera i,onJ the memory addresses cf the input and
output operands, and tne address(es) ,of the following inslruction(s). The processing
element follows a. conventional instruction execution eye e and then places the next
· nstruct" on address(es) in the Task Unit before relutriing t.o the idle slat.a.

The addressing mechanism of the GCF computer s central to its concurrent
operation, it uniquely identifies each object (data elemenil or instruction) stored in lhe
Memory Unit,, as well as distinguishing between concurrent activations (invocations) of a
spedfic procedure either within a single program or within separate programs. An
address wHh·n the GCF computer consists of two fields: ,a user name allocated at
compil,er time lo, a particular object (the relative address of an instruction) and an
environment name which is allocated at untime to identify a particJar environment (a
given invocation of a process). The environment name is passed ar,ound the system via
the next instructio•n address and is appended wher,e appropriate, by a processing
element, to the addresses used in accessing the Memory Unit.

One of the key difficulties in imp ementing a c,oncurrenl ccmpu er, such as
,he GCF, is ho,w to design lhe architecture s·o tha,t the uni ts which make up the
compu1ler can interact asynchronously, allowing the prccess·ng elem nts to access
in ormation in t e Task Unit a!"ld Memory Unit in paraUel w thout getrng, extensive
memory dashes. The solution currently under inves.t1igation1 is a r1ing-based architecture
in which all asynchronous units communicate via packets of information placed on one
or more slotted rings, where a slotted r'ng can be viewed as a drcular conveyer belt
subdivided into a number of individual segmentst each capable of holding a packet.

38

Thus, the Task Unit c,ould be represented by a ring in which each slot contains a next
Instruction address. This ring-based approach also allows concurrency to be exploited
in the execution of individuat Instructions, by decomposing (pipe\ining) the ,aperati,ons
performed in the normal instruction fetch-decode-execute cycl1e and aUoca ing them to
separate units around the dng.

In terms of perf a,rmancet there is clearly a limit to the number of un· ts which
ca1n be connected to a single ring or even a set of rings. For his reason, the ring~
based computer is consider,ed ta form one module (bo-ard) in some larger GCF computer
in which a number of such modules would be interconnected 'nto a tightly coupled
network. The problem of intereonnecUng these modules, whether to form a high-speed
machi1ne or a desk-top· computer, is intertinked with the problems of reallocating the
nits comprising the various rings and scheduling work among the modules. Our c rrent

'deas for overcoming probtems of routing information a.round a1 GCF network are based
on the addressing mechanism described prev,jously1 and equating addresses in a
particular range, say, to a Memory Unit in a particular module. In this case the address
of an object is used for routing da,ta in a similar fashion to ,a telephone number.

IV. 1an Watson, Univ1ersUy of Manchester

The research program at the Universtly of Ma chester has as ,ts major
motivation the exploitation of paraUelism in the design of very high speed machines.
We view data flow as one a,pproach to desi'gning a flexible· paralle ar,chiteclure for
such high speed processors. The project has as secondary motivations the realization
of a cost effective and reliable design.

Our design is being carried out under two constraints! the machine must . be
re 1ative~y cheap and it must be fas .. To old costs dow , the machine should not
require a very large store. This implies that there can be no code duplication for the
ex.ecuti on of procedures, iterative comiputaUo s, or concurrent execution of a
computation on parallel data To build a f.ast machine, we cannot waste processing
power. Nodes of a program should ~ot be ,aUocated to a processor unrl all inputs are
avaHable, Also, there can be· no unnecessary holdups such as would be arise if all
input tokens were available but the node description was being used or wai,Ung for
output. As a fina1I goal, the design should be modular1 allowing extensibil1'ty to realize a
more po'werful machine and reduc.ibilily In the event of partial failure.

Tc realize these goal sJ aU tokens 1in the language carry a abel which
contains a unique procedure lnvocat'on identifier, a specification of the Iteration llevel,
and a data structure identifier specifying the array index. The node firing rule req,uires
a set of inputs with matching 'labels to be avaUable 1 remov:ng he need for code
duplication or unnecessary holdups.

39

The ma ching opera1ti0 performed by a node ls simpli jed through limiting
the number of input tokens to a node to two and may be performed in a content
addressable memory which acts as a pseudo-associative memory.

The arc itecture is organized a,s a single ring. A Switch ac::cepts ini ial input
tokens to a program and pla,ces them 'n a Res.ult Queue on the ring. The Result Queue
is simply a b ffert holding tokens which are waiting for something to ha1ppen. Each
token in he Result Queue consis s of a va ue. a label, and a node address which
designates the node description to which this token is destined.

A taken is removed from the head of the Result Queue and, if destined for a
two-input operation, goes to a pseudo,..assoeiative Matching Store where the name
ti e·ldt consisting of the I abe and node addr,ess '·s used to fekh the c,ther operand. If
the ,other operand is not available, the token is stored n the Matchiing Store. (f the
,other token ·s found in the Mate ing Store, or \f the ope aition 1requires only one
operand, the token(s) travel o an instruction S ,or,e which contains a description of
nodes, each node description co sisting of an operatio , two ,eddresses for results, and
a literal (if required) .

The cperation ·s retrieved from the nstruction Store. and, mn conjunction
with the tokens, is sen oft , o a Processing U ·t. The P,rocessing Unit, which consists
of one or many p,rccessors 1 accepts the 0pera1tion a d data items and eventuaHy
produces a result 0ke,n1 which is presented t,o the Switch either for entry nto the
Result Queue or for transmission to the sys em output.

The ring opieration is pipelined with a typical! length o the order of fifteen,
so , here i s a 11 1ecess· ty o no only have enough tokens available to keep the
processing units busy, but also to fill the pipelines.

his sing.le ring structure has :some limitations. The main Umitation is that
there is no par,aHelism in the store ,e. The sort of technology from which we"'re
intending to bu' ld the proto ype has a store operation o the order of 200
nanoseconds a d an1 instruction execution tim,e of l to 3 m·croseconds. We could keep
approximately 10 processors busy 'n such a system, but after that, add'ng more
processors would accompl'sh oUfng, because the store wcu d be a bottleneck. U we
look at high speed tecnnolo•gy with 20 nanosecond stores and instructi,on execu i,on
speeds on the order of 00 ,anoseca,nds, we still reach a ultimate limitation based an
the store speed.

What we re,ally want is a very high speed machine cap ab e of providing
para I I els m i n both p r10ce s,i ng and storage. This I eads us to a multiple ring
architecture, consisting of the same ring s-tructure dupl ca ed a number cf times. The
rings share a common switch to all,ow communication among all tt,e r'ngs .and with the
external environment. This switch i's not a bottleneck due to its p'pel"ne structure as a

40

binary swi khing tree.

We have order code and hardware simulators curren ly available.
Preli mi nary s i mutation results suggest that we can expl cit around 90 per cent of the
avar1able processo.r power on a single ring architec ur,e. In a mumple ring archit.ectur,e
(up to l 0) the figure is more on the order of 70 per cent of ave11ab1e power. We are
currently planning and performing further simulation to get a better handle on these
figures.

V. Kim Gastel ow, UC - Irvine

Our work has foll ,owed lwc basic principles; the naticn ·of an activity as a
unit of computation and the concept of locality, or that those activities closely related
in a logical way should be executed closely together in a physical way. Procedures
and loops are natural boundaries of locality, but the principle is valid st many levels.
In any caset we especi any recognize procedures and I oops and cal I an i nslance of
execution of either a 1'logical damarn. 11

We have been using a ·simulator to test our architectural ideas, and almost
al of our architecture plans are now present in the simulator. Basicany, our processing
elements (PEs) are complex pipe inied machines con ected together by a token
commun·caUon system, currently envisic,ned as a ring. Also connected to the PEs is a
memory system tor holding structure values. n seems hat three PEs connected ta a
single memory controller is about right, and al I memory ,contro\l ers are connected
together ,on another bus. Thus, a PE sees a single memory system which is actually a
distributed system.

The memory controllers ,connected together on, a ring form a single ph)"sica1
domain. We expect a physi,cal domain to be of fxed size with, say1 sixteen, thirty-tw01

or whateverJ PEs- The com,plet,e data flow machine is then an n-dimensiona\ coUection
of interconnected physica1 doma!·rH!i.

This system represents a number of changes from our original ideas.. We
earned early that pur,ely I,ogka! addressing af token,s is not workable. Each PE now,
just before it 01.1tputs a, token.1 uses an asslgnmenl function to map the activity name of
the output tckenJs destinaUon to a priyslcal processor address. Al I ac::ti vi ties in the
same logical domain use the same assignment f1.mclion; thust two sources with the
same destination activity will both send their tokens to the same PE.

Memory bandwidth and distance of a data structure from the requesting PE
rs important. In fact, we have a simple structure-copy mechanism whereby lhe first
request to a structure in a non-I,ocal controller's memory ,causes that structure to be
automatically copied tc the requester,, since much of the Ume further requests, will be

41

made of that same structure by that same PE. We represent structures in memory
either as balanced trees er as linear arrays (for static data such a program code).

PEs are pipel".ned. Since many activities may be assigned t,0 the same PE, a
stream of input tokens 's constantly arriving· at the i put of a PE. The PE"s first job is
to sort toke s 'nto gr,oups according to .activity name. When a tok,en which comp. etes
an activity arrives, that activity s input tokens are queued to the execution sec io,n
which accepts the activity and carries it out Output tokens are produced and handed
to the output section wh,ch computes the assignment function and places the tokens 0n
he tok,en dng. Or, if the resulting tokens are assigned to the producing PE, they are

- -

moved to the input section for sorting.

We also f.ound that by judicious sellectio of operator names in the compiler
and the assignment function f, the token ring can be made in,to a pipe. Thus. H
opera.tor i sends ,a oken to operator j in the program, then f(i) < f(j) greatly increases
the performance, w ere the direc ion of the ring is from low numbered to higher
numbered PE·s. ·

F·nal y, o promote even gr,ea ,er pipelining along the ring. we found that a
second counter-rota 'ng ring with appropriate assignment cf loops to PEs, was very
effective ·n i provi g performance -- even when the two rings. ran al speeds less than
l /2 the speed of the original single ring.

V. Ken ·we g1 M.I.T.

My rnterests llie in seeing ,an architecture sim' ar to the MJ.T. Form 3 or 4
machine which does not introduce additional architectural complex,ty lo support the
concepts of procedure invocaron and streams.

I firmly be,lieve ·that a data flow p·rocessor should support recursion instead
of iteration, avoiding cyclic data low schemas and allevja inig lhe problems associated
with variations in the executic t:ime of instructions The use of recursion allows a
dramatic reduction in the number of acknowledge sign.a\s required in the computation.
Recursion allows he spec.ific.ation1 af a semantics for streams :in a very simple manner
,and al ows ef fident implement.ation of streams en the proces·sor. A so, the
imptementation of a · orall construe can be readily based upon recursion.

If we have a pr,oced re P within wh"ch there are two adivat'ons of another
procedure Q, at runtime we must have some means of uniquely identifying the di fferent
i stances of the procedure Q. One way i·s to have a unique identifier for each
instantiat" on of the pr,ocedure, based on a ccunter or a unique. 'dent" fer pcol. Within
a:n activation of a, procedure, each token carr'es a data value and a destination address,
consl$t' ng of the procedure name, the instruction number, and the unique identifier.

42

Th·s forms a og'cal address space w,ifch is mapped (through the distribur on network)
into lhe physical mem1ory re$oUrces.

Instead of copying a procedure upon ·nvocatio J it. is possible to perform
dynamic fetching of instructions upon demand. One way to assign responsibi ity for
fekhi ng i nstructicns · s to di$ting ish at compU,e time the arcs of these data fl ow ·graphs
responsible for inHiaUng requests for inst.ruction fetches, a low·ng ,prefetching of
i1 nstructions and ,avoiding the dela.ys assodat,ed w·t waiting for alll operands prior to
f etching an instruction.

There a e not really ha,t many choices as to how procedures can be
implemented. The· difficulty is in choosing the be·st alternative withi ,n the constraints. of
the particular architecture.

The execution time ,of a data flow program can be decreased either by
making the operations faster or the co,mmunication de ays shorter. Since the
commun·cation de ays in a data flow p,rocessor are significant. · would like to see the
processor folded up in the manner suggested by Patil, wi th data structures and
procedure activat ions distributed thro11Jgh the network. If dynamic allocation
mechanisms are also us,ed, then the 1c0mmunicalio delays in the machin,e should be
significantly reduced.

43

Sessi,on 6. Implementation
Chairperson: Phil Treleaven, Uriiversity of Newcastle

II. Dominique Comte, C.E.R.T.-0.E.R. I., Toulouse

The LAU multiprocessor sys em consists of a number of processing elements
sharing a common secondary storage, a job management system, a task management
system, and an 1/0 sup,ervisor. Each processing e ement in the system executes a
single task in co current fa.shio~ expl1oiting the parallelism between the instruclions o
the ask.

We are currently constructing a processing element which interfaces to a
mi icomputer host which compiles the high leve programs and downloads them for
execution. The processfng eleme consists of a data contra unit to hold the status of
data Hems, an instruction co trol unit to hold the status of 1instructions u der execution,
a main memory o hold the data items and instructions, execution processors lo
perform the execution of the instruct'onsJ and bus managers to coordinate the transfer
of da a wi1thin the processor.

The main me.mory of the processing element consi,sts of a number of smaUer,
'nterleaved banks of memory, in conjunction with an input m~ltiplexer a d an outpu
demu Uplexer. ,Each bank of - emory has 4K by 64 bits of 480 nanosecond static RAM,
with a1 cycle time of 480 nanoseconds for the memory. The input of a bank consists of
a FIFO queue of length 40 o held reque·sts for that par icular bank. Using a boa d size
on t.he order of twelve inches by twelv inches, the eight banks of memo, y in the
prototype system occupy eigM boards, with the input multiplexer and output
demul ip exer each occupying a single board.

An ex ecutlon proeesso·r in the system is buiH as a horizontaUy
microprogrammable sequential processor, using 2900 serjes ICs. Each processor has a
16 bit wide data path and a cycle Ume ,of 200 nanoseconds, usrng approximately 280
ICs and fitting on one sta,ndard LAU board. There wil be a total of 32 processors in
the system approximately 8,950 res.

The control unit1 consis 1ne cf the instrucUon c,ontrol memory and the data
control memory, is, buHt of Schottky T L technology with cycle imes of 120 and 200
nanoseconds, respectively. The 'nstruction control unit fits on two boards and uti ,iz,es
250 ICs. The data contro unit occupies one board and 200 ICs.

The bus managers grant he bus to :any requesting processor with·n one bus
cycle, 60 nano,seconds. Hence, a round robin scheme i·s not sufficien we must utili1ze a
s'mp e mechan·sm wi h a priority encoder and decoder ·o arb·trate among bus reques s
and grant the bus to one cf the processors. There are two bus managers per board,

44

incorporating apprcximately 1 50 IICs in Schottky TTL technology.

The, complete LAU machine conUguration, containing 32 execution proce·ssorsJ
consists of a otal of 49 boards, representing approxima ,ely 11,900 ICs. We are weU
into the construction of this machine and expect the pro, olype to be operational within
six months.

II. William Cote, Wayne State University

Rick Riccelli and I have been working on the design of a da a driven
processing eleme t. A primary objective• • the design was ta produce a machine that
executes basl,c data flow programs and could be expanded to handle procedures.
Another objective was that the machine should have consisten control structure for a I
instrucUon types. hirdJ the machine should be designed aro1Jnd standard devices.

We f ef t that lhe machine should main lain information on the a:cto·1r type~ the
cl ass ,of instruction and the ty,pe within that class, the arc to which the output arc of
the actor is directed, the presence or absence of tokens on an arc, the token values,
and the specific rule for firing.

In lh1e case of binary operations, thi1s information is kept in a four word
instruction cell, called an i1nstruction word. For an 'nstruction the insiruclio,n word
specifies the destination address, two input values, and the type of operation. A link
has a fanout of three, so it has a sir,gle input value and three destination specificaliions.
The switch actor has two destination addresses. a da a 'nput, and a Boolean input.

To keep track of tokens, we added in paralile1 wi h each instrucUcn wo,rd
four bits of content addressable memory (CAM). For binary operations, one b·t
·ndicates whether a token is present on the output arc, and iwo bits indicate if the
input tokens .are available. For the link, the, status bits correspond to the three
outputs and the ·nput. For the swltch. there are lwo output and two input status bits.

o know the specific firing rule for an actor, we added an extra bjt lo each
of lhe four words of an inst.ruction. This indicates wi'l,elher each instruction word
should be rewritten when the· actor fres.

The system structure consists of the instruction memory in conjunction with
the CAM flag memcry, a rebroadcast queue to hold data values whose destinations are
currently occupled, a set of functionat units, instruction, data, and control bus,es ta
distribute packets amcng the functional units1 and a control section lo handle traffic on
the buses.

45

A seq ence control unit maintains a list of the functional units wh·ch are
available. Th' s un·t interrogates lhe CAM for an inslruct''on in the enabled state which
can be executed on th t type ,of functional u it. At the same time, it te s an
·nstrucUon control unit which function I u it is to be uU ized. The nslruct' en packet is
then read out of the instruction memory and sent off to the functional unit Wnen the
functional unit completes its computationJ it stgnals a data-in control unit that i wishes
the data bus. When, the data bus is available, the data-'n control informs the functional
unit that it has the bus, and the result value is transmitted to the data-·n control. The
data-·n control then interrogates the CAM ta see if the desrnation arc ~s avai able. H
so, the data item ~s wrUen into the i strucUon memory; otherwise, it is placed in the
rebroadcast queue.

111. M'los Ercegovac UCLA

rve been study'ng algorit ms for reducing he bandwidth of interconnection
networks and ae ieving a low-cost speed 1.:1,p i1n ov,erlappi g c,omputations:. By aUowing
for certai, unusual properties at the data repr·esentation level, one is able la obta'n
algorithms with unusual properties.

An on-line algorit m is characterized by the property that the result is
computed in a dig't -by-digit fas'hion, with the most siw,:ificant cfigi firs . The j th d',gi
of he result is computed ,as soon as j+& digits: of the operands a e available. The on
ine delay 6 is just one for add'tion, subtraction, multiplication, and square root. For

divis·on, 8 is hree or four. This gives us a s1gnmcanl spe-edup in computation.

Since we communicate at the tevel of digits, these algorithms al ow red ced
bandwidth o in erco nections and 1/0. hey al ,ow the use of low-cost error-detec .ion
adthmetic codes. Their use allows a1 modular impTementaUan which i ,s extendable
through the addit" on of ide tic al modules In addition, signrficance monitor'ng is easy to
·ncorporate n such a system. Such a system can be f.ormed of reconfigurable arrays of
on-line units a,s, special ,operators to match the problem :structure.

These echn'ques allow an increase in compulat'on speed hrough the
addibon .of a simple on-Hne arithme· ic unit to the instruction cells of the machine. Thi:s
would permit ocal processing ot arithmetic operations, signtfic ntly reduc1ng the packet
traffk in the communication networks.

IV. 1Robert KeUer, University of Utah

II m going lo speak about the evaluatiion mode' for our I oose y coupled
para 11 el process 0 r. The use of the I anguage Lisp i ·s molt va ed pri mari 11 y from
consideration of symbol manipulation applicar ons rather than numeric applicaUans ..

46

Howe,ver, there are ,charact,eristics ,of he ,anguage that should be cf use to the LlL
people, at least by transitiv'ty.

Flow graph Usp has the domain of binary rees over some selJ say the set
o,f integers united with the se of <:haract,ers and some special termi atar symbol nill.
The operators in the language will be the eons operator, the ccnverse ,operaitors car
and cdr, a test to see if a tre,e is an atom, and an "if !hen else" conditiona1, in addition
to the usual simple ar'thmetic opera ors. We represent procedure invocation in the
language by productions in a graph grammar. The occurrence of a symbol representing
a p1rocedur e s · ould be thought of as being replac,ed by he body of the procedure·
represented by the symbol.

An array is r ,epresented as a i·st, Which is a special case of a ree in which1
a I the right-hand subtrees are simply atoms. A two dimensional arr.ay is just a list of
lish:1 and so forth. This representation has the dtsadvantage ttial it doesn t. take
advantage of the contiguity of storage aUocatton, but lhaes an optimization probiem
hat we should be able to cope with.

Strict cons serves two rol,es -- it's a paring function and a synchronizing
f ncUon, evaluating both arguments. Leni e:n · cons,, o the other hand, serves mere y as
a pairing function, no evaluation is pe formed. Th"s has important properties for
increa.sing the as.ync ronism and hence the parallelism In a computaUon. A so, there are
certain good semantic prope·rties t at hold for lenient cons that don7t ho1d in general.
For example, taking the car of a cons o,f two t'hi ngs allows us t,o "'short-circuit" on.e of
the 'nputs to the oIJ puts. This allows us to, do computations on trees whUe they''re
s iU being created, permitting the use of streams and streams of streams. Thus, pr,oper
implementation requires a demand-driven 1evalua ion strategy.

The demand-driven strategy of our evaluator s· mprUes he program graphs
(especially conditionals), prov'des a great deal of flexib"nty. yieldi g a mce way of
deciding when to expand procedures and preventing run-away recursions, and doesn't
require arrival of all th,e data prior to initiation of the evaluation. The evaluator copies
the code, which is an advantage in our case by prevenfng contention for memory
loearons. However, this is not yet a firm decision, our scheme may easily be
convert,ed t,o pure cede. We can do recursion without the procedure-instantiation
abels of the M.l.T. and Irvine machines. here's no associative memory involved in the
machine, exc.ept possibly to fil,d the meaning of a procedure name. This memory can
be e iminated if there is no dynamic creation o,f processes.

The remai ing work contains a 1[arge number of optimizations which must be
performed, both in terms of conventional code aptimiza ion and the epresentation of
the dat.a and the evaluator i h 1eU. We have to consider space allocation and
reclamation. There is the possibility o comb'n'ng data and demand driven computations
which has interesting imp ications ..

47

V. Clement Leung. M.I.T.

Our group has. coriducted quite a bit 01f work on 'mp!ementation.. Katsu
Amikura studied the logic design cf a cell block in our processor. An S.B. thesis has
recenNy been completed en the design of foncti0 ar units based on on-Unie algorithms.
in the fashion studied by Milos Ercego·vac. Work is contin1u'ng on an ,architecture
descr'pt' on lanc:i,iage which we expect to use es a hardware spec1·ucatron tool and on
how to .incor·po:r,ate fault tolerance into the hardwar,e des·ign.

My work invo'lives the study of fault. tolerance. The imode 1 ram work'ng with
is ,an interconnection of mcdul,es, called a packet ccmmunlcation system. Each module
of the system has a well defined interface 'n terms of a set ,of input ports and a set of
output ports .. Each port c·ommunica es over wires whtch carry a data encoding using an
asynchronous packet communication p·ro,toc:ol. The research has th,e goal of specifying
certain properties for how to des·g the.se modules. If we can build modules lhat
s.alisty these goalst then we can build fault tolerant systems.

The failur,e modes in the model are s uck-al-0", '"stuck-at- I'", and .. transm·t
a ra dom pulse train." Given these failure modes and modules which are designed to
satisfy the property that the electrical signals presented at an 'nput port are always
interpreted by the hardware as a stream of packets, then the behavior of a faulty
module f aHs in one of a few classes.

The ault-tolerance s udy will devel,op methods of providing complete
single-fa ult c,overagej that is1 a system wrn be able o continue cc reel operation
follow·og a single-module failure. We would lik,e a failure to be readily diagnosable and
easUy serviceable, and we would like the fault tolerant pr,ope,rty to, be realized in a
way thait avoids increasing softwar,e complexity.

We are studyi1ng the u,se of m,odular redundancy t echnique s i n the
implementati on of fault tolerance. However, use of thes,e techniques in asynchronous
systems raises a number of prob ems such as how ta, all ,ow the system to treat
anomalies in module behavior t al appear as long delays before any output is
produced.

The overall stra,\egy for in,corporating fauU tolerance in a data flow
proc:essor involves the utiliza iol\ of redundant. structure and information in the various
subsystems of the process·or. Since a different redundanit representar on may be mor,e
vtable in each subsyst.em, we must provide conversion between the redundant
representat·ions at the subsystem interfaces The different kinds of subsystems appear
to require different techniques to provide graceful degradat'on in the event of
component failure, and the studi s of how to, incorporate such faciUlies in each ,case

48

are in a sense Independent.

Vt Daniel Schwabe, UCLA

Th1e Systems Architects ApprenUce {SARA) being develop!!d at UCLA by
Gerald Estrin and Wilson Ruggiero provides an environment suitable for the design of
systems utilizing data flew arch1tecture. SARA p.rovides simulation and analysis tools
and supports a design methodology which has multilevel modeling power, supporting
abs tracli on and re fine me -t of designs and compcsi ti on of pretested or preveti f i ed
building block models. The system supports a requirement-driv,en design discipline,
providing a well-rounded system for computer system development.

SARA could be: used to design data flow architectures through refinement of
the design down to the composit an of dafa flow primitives. W1e could extend our PL/ I
preprocessor PUP to include the data flow 1Primttives. Alternatively, we can represent
data flow primitives in the graph model ,of behavio (GMB) primi ives. Furthermore,
data f ow primi lives could be transformed ,'nlo existin-g contra and data flow models.
This would then allow us to create a library of preestablished SARA building blocks
which have been 'mplemented wi h data flow primitives and compose systems with
these building block modes.

_ SARA 1is a requirement-drfven1 system. Every SARA design begins with a set
of requirements, to be satisfied by the syste.m and a set of req1.f re men ts (or
assumptions) to be met by thie emtrcnment of the system. Ta manage complexity,
SARA supports multilevel models with e·tner t,op dawn ref'nemenit or bottom up
abs.traction. Every design must end by composing models of we\ -understood building
bocks.

SARA is currently a collection cf programs residing on a 360/ 91 till UCLA
and on the Multics system at M.I .. and can be access.ed via the ARPA network. The
system is st II under development and usable at your own risk.

VII. Ian Watson, University of Manchester

During the next three years we wUI be building a single r'ng prototype
mact, · ne based on the principles described in our previous talk in the arc hi tee ture
session. The machine wil be constructed from medium speed technology to investigate
design principles and wi I be extensible to .a multiple ring architecture at a ater date.

The processing unit wiU consist of ten Schottky bit slic,e microprocessors,
working on a 32 bit word with a floati g point add time on the order of three
microseconds. The result queue will be of size 1 SK by 96 bits with a 2,00 1nanosecond

49

read/write cycle. A word in the queue will consists of 32 bits of datat a 36 bit labe1,
and 24 bits for the node address, with 4 extra bits. The matching store wm be lhe
same size. The instruction store w·11 be 16K by 32 bits with the same cycle time. The
overall i nstructi 011 execution speed of the processor will be approximately three MIPS.

The processing unit will be micro-programmed with a RAM microprogram
stona: to ensure ·flexibiOty. The unit wi i consist of the ten processors connected by an
input bus and an out.put bus, with an input control unit to aUocate an executable node
to the first free pr·ocess,or in sequernce and an output control unit to accept results
from the processors.

The r,e,sul queue is to be implemented as a RAM with recirculating pointers
to simulate a first-in1 first-cut queue. Similar schemes using two independent blocks of
store are under cansideratiori to permit concurrent r,ead-write. ~he instruction store
utUizes a conventional RAM employing a simp e segmentation system to designate a
ioc ati on in the store. The matching store is bum from RAM .and uti I izes hardware
par.al I el hash techniques to act as a pseudo content addressable memory w, lh an
access lime similar to, that of R'AM.

The prototype machine is to contain approximate1y 2500 iCsJ of which I 000
are used in the stor,e, and lo cosl approximately 50,000 pounds (S95J500).

50

Session 7. Performance and Simulation
Chairperson: Su1san Conry, Clarkson College

I. Randy Bryant, M.I.T.

rm interest.ed in developing analytica models for interconnection networks,
in particular. networks for interconnecting a arge number of i dependently 10perating
para II el units. I'm focusing nitia Jy on the arbttralio and distribution networks of the
M.I.T. data Uow processors, but I feel that the general ideas which rm studying apply to
many of the other networks which have been discussed here.

My proposed approach is , o condense the elements in the network into a
series of gr,01.Jps of el•ements, called chunks. Packets are then modeled as a fluid or
continuous medium flowing between he chunks. This approach is inspked by the
manner in which th·ngs are done in fluid mechaMics and physics.

A system is character'zed at any point in lime by a number of state
varrab es. A set of equaHons can then be developed to describe how the state
vari ab es change with t'me. These characteristic equations shou1d form a set o,f
di fter,ential equations, highly nonlinear and not correspo ding to any known physic.a1
processes. A characteristic equation for the network is then bu flt up from
cons,ervation ,of packets. the system 9tructure, he system parameters, and the
assumed distribution of packets.

t Andy Boughton, M.I. T.

My work is concerned with the devel,opmen of structures that one might
use to design the routtng networks in the M.I.T. data flow machine. An arbitration
network af the machine has a large umber of Inputs and a smaller number of o tputs,
and each input has a tag specifying on which ,output it is to appear. I decompose the
arbitration network into a concentration1 network that doesn't loo,k al the tagsJ funneling
packets from a large number of inputs to a smaller number of outputs and another
network that has the same number of ·nputs as outputs and does all the routing of
packets. I can be shown that nothing is lost by ignoring the tags i - the first stage of
this decomposed .system. Similarly, a distribution network (with fewer inputs than
out puts) can be decomposed into a square c0ncef'!ltrati on ne work and a tree of
switches.

Last year I described the design of concentration networks. This year my
work has, been concerned with the design of connection networks, those networks with
an equal number of inputs and outpuh wnich sort the packets on the inputs and
distribute each to the output specified by the associated tag. T e easiest way to do

51

this is through use of a crossbar switch consisting of a switch tree, a level of FIFO
bufferst and a level of arbttrat.ion. However,, this apprcach requ·res N2 FIFOs and is
too expensive for general use.

An alt.ernate approach involves limiting the size ,of the structure by breaking
the network into a number of stages1 each stag·e consisting of a ,column of switches
followed by a co I um of a rbi tr a ti on uni ls.. i 'm current! y Io oki r, g at other met he d s of
spliUing up co centraticn networks to keep both th.e widt a,nd the depth at minimum
values. rm also 10,0,kir,g at ways 0'f avoiding such networks, together with their artificial
cons lr aints on the How of data, through the use of certain probabi Ii sti c network
structur!3s.

Ill. Arch Qfdehoeft, Iowa Sta ·e University

Our work has the objective cf measuring the paranelism in computer
programs that can be expl,oited by data flow machines. To this endJ we ve looked at a
number of real programs, not necessarily programs with a lot of parallelism. Some of
our tuture eff orh wm involve I ooki ng for applicati ans where parallelism can be
exploited.

We assume an underly~ -g architecture which is a feedback interpreter with
operands received from predei:::essor instructions and acknowledgment, from successor
instruct.ions. The data types include real, integer, Boo1eant structur,es, and sequential
fi I es. The operations we allow are the standard arithmeUc, logical, :and trigo,nometr,c
operations; select and appe d· readJ writet readedit and writ.edit fer files;, and app y
for proc,edures.

Our first approach involved building a simutator for a data flew machine and
cap uring measurements during simulated execution of programs. his approach had
the drawback of being a very expens ve processt eve y da,ta flow instruction cost
bet ween . 7 and 1 cent to simulate. in additi ont the memory ccnstrai nts of the
computer we were using would often no,t allow us t.o execute the program al aU.
Furthermore, the statistics we realized were often diUicutt to, reiale to the program
being si mutated.

Our second approach was lo construct the program graph at some leve~ ,of
detail and derive formulas w ·ch characterize a program1 in terms of execution Ume.
We first assigned numeric values as execufon times for base machine instructions.

his rnforma ti on was used dur~ng compilation to construct characteristic ti ming
equahons for the sequenti,al e,xecution time and parallel execution time as func·tions of
he branching probabrlities and the number of loop iterations. We then formed a ratio

,0 f the two i mes a d used tha • ra Uo as a criteria far parallelism.

52

The numbers reaUzed from this :graphical approach differed by I ess than t,e,n
per cent for most programs from the numbers realized from simulation of the, programs.
The major drfference between the two approaches appears to be in the hiding of
overlap in computaron caused by the approximations in the graphical approach. The
major culprit in this is. the repeat-until clause. Other causes are p,ossibly inaccurate
eslimales of branching probabiUUes and the, ,possible inaccuracies introduced by the
assumption that innermost loops dominate th.e computation.

We have done some preliminary· work on the ·ncorporation of $\reams and
vector operations into the simulator. Whll,e much work remains to be done in this areaJ
the preliminary results indtcat,e that, for appr,opri ,ate computaUons, signifka,nt'ly larger
speedups are achievable through use ,of data f ow techniques.

IV. Roy Zingg Iowa State University

Our simulat'on work ,as tried o avoid tying, the simulation to any spedfic
fmp[ementat1ion. We are more interested in just what parallelism there is in a program
and the consequent resource demands, than how close same implementation ca,n come
to efficienUy executing the program.

The current version of he simulator measures only scalar parallelism, there
is no unravel ing1 no streams, nc vector fu ctional units. The simulation, incorporates
acknowledge signal co,ncepts and hes ess,entially a complete backward fliow of tokens
for that purpose. Als01 the simulator explicitl'y implements merge instructions.

The simulator ccmsis s of an instruction memory contatning currently active
prccedures. When a result is sent to an rnslructioni the instruction identif er i1s put on
a check list as potentially ready for execution. An enabler examines items on the
check list and places enabled instructions on the ready list. The enabled instructions
are then transferred to an execution list which is maintained by scheduled complet.ion
imes for the instruction packets on the rst.. When an instruction ·s put on the

exe,cuti en I ist, acknowledge signals are sent to, the appro,priia,te predecessor
instructions.

A decoder distributes inst-ruction packets from tne execution list to the
functional unlts as they are schedu ed for executio . At the conclusion of the'r
execution, results are sent back to the instruction memory. A file memory i,s used for
VO, and a program memory contains copies of procedures not currently active.

We simulated student programs, System 360 ,subroutine packages, and
algori lhms from CACM. The programs performed such operat1ons as root finding,
numerical integration,, and solution of simullan ous linear equations. Program sizes
ranged t1rom 69 data flow instructions (35 high leve.1 language statements) to 353 data

53

flow instructions (137 high level language statements).

For eac program a single set of input data was selected to ,exercise those
branches most rikely to be ex,ercised in pr,aclice and o ensure at least fi v,e it,eraf ons
of each loop encou ternd. An adequate r,um'ber 1of functional units were al ccated to
insure minimum parallel execution ime. We assumed that most func ' ens took one unit
o simulated ,execution timeJ wi h lhe exceptions that trigonometric and hyp,erbolie
functio s took two units, expcne ra and inverse trigonome r'c fu ctions required
hre,e, and identity and merge m general ,re,qulred zero units of lime.

The simulation achieved speedups en, the crder of 1.5 to 3.5. If sequent"al
1/0 is ignored, the speedups, range up to 4. We find that in some cases, the parallel'sm
is due to the 1/0, and in other ,cases. the I/Qi ts ho ding ·t up. The res Its of the
simu ation i dicate that in order to achi1eve signUicant degrees of paraUe ism, w ,e have
to take advantage of hings that are vectorizable.

54

Session 8. Spec'fication and Verif'cation
Chairperson: Arch OldehoeftJ low.a State University

I. Earl Schweppe, University of Kansas

rm reporting on some work done by Eli.zabeth Unge'r , nd myseU on a
concur,rent model o,r a natural mode of concurren computation. We hope to achieve
concurren-cy intrinsicaUy and naturally with a language that is l,ocally unordered, but
well struchJred. The basic control philosophy js da ,a driven w:i'lh the addition of
cons ,rue ts which we call stimulation and t,ermination.

A simple statemen in the la guage1 called a request. specif1,es that an a.ction
is to be applied to certain material objects which will p:roduce other esul ant obj,ecls:.
The basic principle gov,ernin,g the ordering of execution among requests within the
model is data driven. Th s ordering ts based upon the availability of the action, the
data object, and an author"zation to use each object involved.

The model incorponates two conditions, which are simple Boolean
expressions. These stimulation cond'f ons and ermination conditions govern, the
eligibility for execution and t ,ermination of execution of an action, respectively.

We ve done some work on ag:gre _a,Uon of dat.a ,objects. We pr,o,vide for
both ordered and unordered eolle,ctions of objects. We have also done work on
repeti ti ,on (simi I ar to the F oral I constructs.), which we treat as being di sti net from
iteration or recursion. Recu sion occurs without an,ything ·special,, we aUow acUvar on
w1thout au data necessary for completion. We have done some formal work, we can
easi I y prove that the I anguage is universal. Wi lh some restricUon, we can prove
de erminacy. We ave put a farr amo,u t of effort in comparin,g the model with other
concurren' models such as concurrent Pascal. Our model has the advantages over the
other models t at it unifies a number of things in a manner that is simple and natura1, rt
is oriented toward a data proces$ing production en,vironment. it i·s oriented toward a
diverse network environment) and it provides v,ery flexible control 0,ver activities.

II. Bill Ack,erman, M.1.T.

Dean Brock and I have shown that history functions ca not. possibly describe
non-determinate packet communka,tion systems. A packet commumcation system is a
conceptual model that artses in both hardware and software a11d turns out to be of
grea.t use i data How systems.. The formal semantics of packet systems are important
to both scftwar,e and hardware. For s.oftwar,e, they allcw definiUon ,of progr.amming
languages for ver'fication purposes. For hardware, the semsntics allow verifica,Uorn of
he hardware s r cture.

The semantic model of a p.ackel system is that input data values enter a
modu~e or subsystem as,ynchr0nously and results of the computation are eventually
emitted, with nc liming· constraints. This is the common model of the semantics of
software systemst but is unusual for hardware. The semantics of pack.et systems · s
generally represented by history fun.cticn,s wh;ch relate the iota h~stcry of aU the
tokens that have entered the system to the history of the tokens il wiU eventually
emit.

There exists a theorem that, fer deter,:ninate systemsJ the intercannedion of
any coUecticn cf determinate systems is determinate and i s history function can be
computed from nothing but the history funcU,ons ,of the componen ,s and the method of
their connection. Thi$ cap,abil'ty demonstrates that hrslory functions are a consistent
semantic model, abstracting a consistent amount of inf ormaUon.

Similarly we can characterize a 1n0ndeterminate system by a nondetermirnate
history function, that is a Mstory function which maps each ·nput history into the set of
pos·sibl e output his tori es that could hav,e occurred. This can be specified with a
his ory relation or a multiple-valued function. It can be shown that history functions
form a cons·stent semantic model fer acyclic systems.

However, th ,e model breaks down when the systems are both
nondeterminate and cyclic. We can demonstrate this by exMbiting two ·sys le ms wh· ch
a•re ndi sti ngui shabl e in terms of their history funcf ens but wh ch, in fact, behave
differenHy when interconnected. In particular, there is a tt,ird system in wh'ch these
two systems cannot be substituted for each ot.her without affecUng the history function
af the 1.arger system.

In. Suhas Patil, Universay of Utah

At last year's workshop. , 'ndicated how one might imp,lement the un·,ts of
the M.I.T. dat.a flow computer using programm-ab ,e logic arrays to provide the necessary
flexibility at a reasonable cost. Last year ·t w.as not cl.ear wha , fad1ities would be
available for creating these devices. I would like lo take thrs time to give a brief
update on what might be possible.

he National Science Foundation has iiven the University of Utah a grant to
set up faci 1lities for creating the first set of logic arrays as a feasib"'lity demonstration.
We hope to have the first of these devices ready by the end ,of 1979. The devices
we are thinking abou will have 4S columns and 256 rows and are to be implemented
in either I 2 short-cha·nnel MOS, or CMOS. The · nilial devices wil I 'be mask
programmed, but we enviston · he appearance of field programmable and erasab1 e
devtc es soon after. A number o·f semiconductor manufacturers have Fndicated en
interest in production of these chips after our development, the time scale an that is

56

perhaps two years.

57

BIBLIOGRAPHY

Ackerman W. B., A Srrw:mre ControUer fer Data Flow Computers, Computation Str ctures
Group {Memo 156), laboratory fo Computer Science, MT, CambridgeJ MassachuseUs,
January 1978.

Ackermant W. 8. A Srru,ture Memor for Dara Flow Com.pu1ers, Labora ory for Comp" ter
Science (TR-186). Ml , Cambridge, Ma,ssachusetts, August 1977.

Ackerman, W. B.t 'A Structure Processing facility for Data Ff,ow Comp1Jters," Prouedtngs
of the 1978 lnterna.lional Confe;ence on Parallel PttJCtsstng, August 1978.

Ackerman. W. 'B.~ and J. 8. Dennist V Al 99 A Va/tu-Oriented Algari.th.mi.c Languag.e :
Preliminary Reftre-n.,e Manual, Computation Structur,es Group, laboratory for Computer
Science, MIT, Cambrtdge, Massachusetts, In PreparaiUon.

Adams, 0. A., A Computation Model Wtth Data Flow Stqu.tnctng. School ,of Humanities and
Sciences 1(Technkal Repcrt CS 117), Stanford Universi Yt Stanford, Cal'fon,ia1 December

968.

Adams, □. A., 'A Model for Para11el Computations," Pa-ra.llel Processor s,jzenu, Tedznologt.ei,
and Applications (L. C. HobbaJ D. J. Theis, J. Trimble1 H. Ti'lus., and I. Highberg, Eds.),
Spartan Books, New York, New York, 1970, 311-333.

Amikura1 K., A Logic .Destgn for the Cell Blocff. of a Data FloilJ PrO'r:essor1 Laboratory for
Computer Science (TM-93), MIT,, Cambridge, Massachusetts, December 1977.

Arvind, and K. P. Go,ste!ow, "A 1C0mputer Capable ,of Exchanging Processors for Time,"
Information Processing 77: Proceedings of IFIP Congress 77 (8. Gild1rist, Ed.), August 977,
849-853. -

Arvind, and K. P. Gostelow* Dataflow Computer Archittctu:re.- Resea.TCh and Goals; Department
o·f lnformati,on and Computer Science (TR 113), University of California - Irvine~ Irvine
Califorma,, February 978.

Arvind, and K. P. Gostelow, 'Mic:roeledro,nics and Computer Science," Proeet1dings of tht
2nd .IE.EE(G PH P)IJSH M UniversU-yflndu_str"jlGover-n·ment Microelectronics s-,mposium,
University of New Mexico, Albuquerque, New Mexico, January 1977.

Arvind and K .. P. Gostelow, A New Interpreter for Data Flow Cind lu Implications for
Comp~aer Arcl·dt,ecrure, De

1
partment of Informal" on and Computer :Science (TR 72),

Univetsi y of California - Irvine, lrvine1 California) October 1975.

58

Arvi1nd, and K.. P. Gostelow, Semantics of L()()p, ExprtJsionJ in ID., UCI Dataflow Architecture
Project (Note I 1), Unl1versity of California - Irvine, lrvine1 CaHfornia, March 1977.

Arvind, and K. P. Gostelow, Some Relationships Between Asy111chronous In .erpreters of
a Dataftow language/' Form.al Description of Programming Cr>ncepu (E. J. Neuho'_d, Ed.),
Aug 1st 1977. North-Holland Publishing Company, New York, New York, 95-119.

Arvind, K. P. Goslelow, and W. Plouffe, "lndelerm·nacy, Monitors and Dataflow,"
Proceedings of tlic Sixth ACM Symposium on Operating System..1: Printiptu, Operating Systems
Rtuit:w 11, S{November 1977),, 159·159.

Arvind, K. P. Goste ow, and W. Plouffe, The (Prtlimrnar1J Id Rt.port, Department of
Information and Comp1Jter Science (TR 114), Unlv,ersity of California - Irvine, lrvi,neJ.
Cal,fornia. May 1978.

Arvind, K. P. Gcsteiow. and W. Plouff,e, Programming ln a Viable Data Flow Language,
Department of Information and Computer Science (T1R 77), Universfty of California -
Irvine, Irvine, Cal If arnia, March 1976.

Ashcroft, E. A.1 and W. W. Wadge, "l cid, a Nonprocedural Language with Iteration/'
CommiLnicalions of rAe A'CM 20, 7(July 19 77), 519-526.

Baer, J. , D. P. BovetJ and G. Estrin, 'Legality and Other Propertie•s of Graph Models
of Computations," Journal of the ACM 17, 3(July l '970), 543-552.

B.Shrs~ A .• "Operation Patterns: An Extensible Model ,of a Extensible tang _.age,'
Jnterrurtiona.l Sympo.sium on Theoretical Programmfng (A. Ershov, and V. A. Nepomniashy,
Eds.), Lecture Notes (n Computer Sdence ,, 19721 2 7-246.

Bic, L., A Ba.sic Model for Protection i11 Dataflow, UCI Dataf ow Architecture Project (Note
22), Department of I formation and Computer Science, University of California - Irvine.
Irvine, Cal1iforni a. September 1977.

Bic, L, Confined lnrerprocess Cornmuriication, UCI Dataflow Architecture Project (Note 26).
Department of Information and Computer Sc,ience, University of California - Irvine,
lrv·ne. CaliforniaJ March 1978.

Sic, L., An Extended Model for Protection in Dateflowt UCI DataHow Architecture Project
(Note 23)~ Department of lnformat~on and Computer Science, U iversity of California
frvi neJ Irvine. Californi.a1 November 1977.

Bic, L. Propriety Services for Data/low, UCI Dataflow Architecture Project (Note 27),
Department cf Information and Computer Sci,ence, University of CaUfornia - Irvine,
Irvine~ California, February 1978.

59

Bict ., Pro,et Ucm. tn Dacafforut UCI Dataf low Ard,rtectur Project (Note 25), Department
of Information and Gomputer Science,, Univers1ty of CalHornia1 - Irvine, Irvine, CaUforni,a,
!November l 97 7.

Sic, L, Security and Protection in a Dataflow Computer S,y:ste.m. Departme1nl of Information and
Computer Scie ce1 Univ,ersity of California 9 !rvi e, Irvine, California, February 1978.

Boughton, G. A., Routing Networks and Data. Flow Archttedures, S. M. Thesi,s. Department of
Electrical Eng, eeri ng and Computer Sci enc,e, Ml -, Cambridge, Massachusetls1 May
1978.

Brock, ' . D, Operational s,manttc.s of a Data Flow .Langua.g~, S. M. Thesis, Department of
Electrical1 Engineering and Computer Science, Mn, Cambridge,, Massac:huse ls,
September l 978.

Brock., J. □ .. and W. B. Ackerman, An Anomal~ in th~ Speciflcalions of Nonder,rmmat,e Packrt
Systems., Computation Structures Group (No,\e 33-l), Laboratory for Computer Science.
MIT, Cambridge, Massachusetts, January 1978.

Bryant, R. E., Simula.lion of Packet Co,mmu.ntcatton. Arcliitecrure Computer Systems, Laboratory
for Compu er Science (TR-188), MIT, Cambriidg~ MassachusettsJ November 19 77.

Bryant, R E., and J. B. Dennis, C0<ncu.rrenJ Programming, Computation Slr,uc ures Group
(Memo 148-2)~ Laboratory for Camputer Sdeince·, Milt Cambridge, Massachusetts, J'uiy
1978. To appear in Research: Directions in Software T ecAnotogy (P.. Wegner, Ed.}, 1 978. ·

CamposJ I. M., and G. Estrin, Concurrent. Software System Desig Supported by SARA
at the Age of One;•' T Aird International Conftrence of Software Engzneertngi May 1 '9178, 230-
242.

Campos I. M.1 and G. Estrin, "SARA Aided Design of Software for Concurrent .Systems ...
AFIPS Conj, rence P1oc,eedi11gs 47, 1978 Nael<mal Computer Conference, 325-336.

Chamberlin, D. D., "The 'Singl,e-Assignmenl' Approach to Parallel Processing," AFIPS
Conference Proceedings)9, Jr:Jl/ Fa.fl]ofnc Computer Confereru:.e, November 1971, 263-269.

Ciccarelli, E., Strict Semantic Equations for Data Flow Programs, Ccmputa,tion Structures
Group (Note, 26), Laboratory for Computer Science, Mr, Cambridge, Massachusetts,
August 1976.

Comte □., G. Durrieu, O. Gelly, A. Plas1 and J . C. Syre, "Parallelism, Control and
Synchronization Express,ons ,n a Single Assignment Language.," SIOPl.AN Notices IJ,
l (Janua,ry 1978)J 25-33 .

•

60

Conry~ '$. E. (see also S. C. Meyer)

Conry, S. E. and J. R. Jump. "Function I Equivalences in a Model for Parallel
Computation," to appear in lnform<Ztion and Control.

Cote, W. F., and R. F. Rice 1elli, "The Design of ai Data □riven Processing Element,"
Procee.ding.s of tl1e Jr/78 International. Conference on Parallel Process.ing, Aug,ust 978.

Cro,oks, L., Analysis of Airplane CollWon Avoidance Algorithm Wrirun in Dat,a Flow,,
Computation Structures Group (Not,e 25), Laboratory f,0r Computer Science, MIT,
CambridgeJ Massachusettst May 1976.

Davis, A. L., " he Architect re and System Method of DDMl: A Recursively Structured
Data Driven Machine/ Proceedings of th.t Fiftli Annual Symposium on Computer Artlii.tecm.re,,
Computer Architecture News 6, 7(April 1978}, 210-215

Davis, A. L., The Archttecture. of DDM J: A Recursivet, Structured Data Driven Macliint,
Technical Report UUCS-77. 113, University of Utah, Sail L.ake City, Utah, October,
1977.

Davis, A. L, Data. Driven Nd Queueing Ph.e1u,mtnon, Burroughs lRC Report, San Diego,,
Ca1litorniat 1975.

Davis 1 A. L.1 An Overview of Data Driven Machint 1, Techii'cal Report, Burrought AS□O, San
Diego,. California 1976.

Davis, A. L., Str1lcturtd Dara, Burroughs IRC Report, San Diego, California1
, 1975.

Davis, A. L., S PL • A Structured Progra.mmi:n.g Langu.agt', Ph. D. Thesis, University of Utah,
Sal Lake CHy, Utah, l 972~

Davisi A. L. 1 Sy i tem and Muliod for Concu,rent and Ptpeline ProuJ.Stng Emplo"Jing a Dau:.
Driven N ttwark: 1 U. S. Patent 3,978,452, issued August 31, l 9 76.

Davis, A. L., Systems Aspats of Data Driven Nets, Burroughs IRC Report, San Diego,,
California, 1 9 75.

Denning, P. J, 'Operating Syst.ems Printi ,ples for □ala Flow Networks,"' Crm:pure.r II,
7(Juty 1978), 86-96.

Dennis, J. 8. 1 "F'rst Version of a Data Flow Procedure La guage,' Programming
Sympo.siu m · Proceedings , Colloque sur la Programmation (B. Robinet, Ed.), Lecture N otts in
Computer Scienc~ 19, 974, 362~376.

Oennist J. B., "A Language Design for Structured Concurrency" Duign and lmplemencarion
of Programming Languages: Proceedings of a DoD Sponsored Work.s!,op (J. H. Wil iams and D.
A. F"sher, Eds.), lecture Notes in Computtr Science H, Oclcber 1976.

Dennis, J. 8., 'Pa1cket Communication Architecture," Proce.edingJ of the 1975 Sagamore
Computer Conference on Parallel' Proc sstng, August 19751 224-229.

Denn·s, J. B., 'Programm·ng Genera ity Parallelism and Computer Arch"tecture,'
Information Prot.esstn.g 68. North-Holl,and Publishing Co., Amsterdam, N,etherlands, l 96 9,
484-492.

Den is, J. 8., and J. B. F,0sseenJ lnrrod1u:tt.cn1 to Dara Ffow Schemas, Computation Structures
Group (Memo 81 >~ Laboratory for Computer Sci e,n.ce1 MIT, Cambridge, Massachus,etts,
September 1 9 73.

Dennis, J. 8.1 J. 8. Fosseen and . P. Linderman, "Data Flow Schemas,'" .Int rnational
S m'{x!sium. on Th.ca elical Program.ming (A. Ershov, ant:! V. A. Nepomniashy Eds.), Lecture
Notes in Computer Science 51 19·72, 187-216.

Denni st J. B .• C. K. C. Leung, and 0. P. Misunas, Sp~lflca.Uon of the fostruction Cell Blotk for
a Data Flow Proce.s.sor, Gomputa ion Structures Group, (Data Flow Design Note 1),
Laboratory fer Computer Science, MITJ December 1975.

Dennis, J B., and D. P. Misunas, 11A Computer Architecture for Highly ParaUel Signal
Processing," Proceedings of tAe ACM 1974 Na.Uonal Conftrence, November 1974, 402-409.

Dennis, J. 8.,1 and D. P. Misunas1 Dara Procesltng Apparatw for High.l1 Pat'allel E;cecuuon of
Stored Programs U. S. Pate!nl 3,962,706,, ssued Ju e 81 19,76.

□ennis1, J. 8., and D. P'. Misunas, The Des,tgn of a Hfghl'j Paralltl Computer for Signal
Processing Applications, Computat on Structures Group (Memo l 01), Laboratory for
Computer Science1 MIT, Cambridge, Massach11JseUs, August 1974.

Denn;s, J. 8., and □. P. Misunas, "A Preliminary Archit,ecture for a Basic Data-Flow
Processor," The Second Annv.4l Syrnpo.siu.m on Computer Art:litll'Cl!lrt: Co iftrenc• Proceedings,
January l 97!5, 26 132.

Dennis, J. 18., D. P. M'sunas, and C. K. C. Leung A Htghl'j Parallel Processor U.s ng a Data
Flow Machine La guagt, Computation Structures, Group 1(Merno 134), Laboratory for
Computer Science, MITt Cambridge, Massachusetts, January 1977 To appear in IEEE
TranJar(lons on Com.purer .s.

62

Dennis J. B.t and K.-S. WengJ "Application of Data Flow ComputaUon to the Weather
Problem,' Higli Speed Comp,uter and Algori:tJrm Organlzatfon (D. J. Kuck, D. H. Lawrie, and
A. H Sameh, Eds.), 1977, 143-157.

Elllis, D.. J, Formal S pec.ifi.cattonJ for Packet Communication S"JJtems, Laboratory for Computer
Science (TR-189), Milt Cambridge, MassachusettsJ November 1977.

Estrin, G., ''A Methodo\ogy for Design o,f OigUal, Systems - Supported by SARA at the
Age of Onet AFJPS Confer,mct Proceedtngs 471 19'?8 Natwnal C&mputer Conf,;en.a, 313-324.

Estrin, G., and R. TurnJ "Au _omatic Assignment of Computations in a Variable Structure
Comput,er System," IEEE Transactio-ns ,on Electronu Compulers EC-12, 6(December l 9,63).
755-773.

Feridun A. M. 1 Design. of an On-Line, B'jte-level P,pdined Arithmetic Proc~~sor1 ComputaUon
Structu1re Group (Memo 16,2) Laboratory for Computer Science, Cambridge,
Massachusetts, July 1978.

F1itzwat,er1 D. R.t and E. J. Schweppe, Consequent Procedures in Conventio,nal
Computers.' AF/PS Conference Proceedings .26, Fatl Jctnt Computer Ccnjeuna, 465-476,
1964.

Fri adman, □ . P .• and D. S. Wise, "The lmpac of Applicative Prog1rammrng on
Multiprocessing1" P oceedingJ of the J'f16 lnt~rnatwnal Conftrt'nce 0'11 ParrJllel Processing, (P.
H. Enslow Ed.)J August 1 976, 263-272.

Gelly, 0., er al., ''LAU System Software; A High Level Data Driven Languag·,e for Parallel
Programmi ng1 n Proceedin gs of the 1976 International Confueru:.e on Parallel ProuSJtng ,(P. H.
Enslow, Ed.), August 1 976, 255,.

Glauert, J., A Single' AHlpment Language for Data Flow Computing, M. Sc. □· ssertatiion,
Department of Computer Science, University of Manchester, Manchester, England,
January 1978.

Gurd, J ., and I. Watson, "A Mu!Ulaye.red Oata· F\<ow Computer Archi t.ecture,"' Prouedings
of c/i e l9'17 lncernarional Conjerenct on Pa.ralM Processing (J. L. 18aer1 Ed.), August 1977, 94.

Gu d, J ., I. Watson, and J. Glauert, A Mullila~ered Dez.ta Flow Computer Architecture,
Oepartmen · of Computer Science, Univ,ersity of Manohes\er, Manchester, England, July

978.

Glushkov, V. M., M. B. lgnatyev,. V. A. Myasnikov, and V. A. Torgashev, Recursive
Machines and Computing Technology, Information Processing '74: Proceeding of the IFIP
Congress 74 (J. . Rosenfeld, Ed.), 1974, 65-70.

63

HankinJ C. L.,, P. E. Osmon, and J. A. Sharp, A Data Flow Model ,ef Computa.tton, Department
0f Com.puter Science, Westfield C0Uege1 Ha1mp$tead1 London, 19,78.

Jacobsen, R G., Anal,ysts of Structure.s for Pack.tt Sorttng Networks, Computation Structure
Group (Memo 163), Laboratory for Computer Sc'e ce, Cambridge, Massachusetts, Ju'ly
1978.

Jacobsen, R. G., and □. P .. Mis1.1nas, "Analysis ,of Str clures for Packe Communi,cation,0

Procttdings of the 1977 International Conference ,on Parallel Proussing (J. L. Baer Ed.).
August · 977., 38-43.

Jaffe1 J. M., "The Use of Queues in the Parallel Cata, Fl ow Eva uation of If-Then-Erse,
While Programs," Proceedings of rite 1978 Conferenoe on lnjo·rmation Scttnce:s and Systems,
March l 978J 45 -456.

Jaffe, J. M., a d L. Montz, Two Data Flow Solutioni of laplau's E'quarion, Computation
Structu es Group (Note 37), laboratory for Com1p1Jter Science, MIT, Cambridge,
Massachus,et ts, Jully 1978,.

Kahn, G., ''The Semantics of a, Simple Language for Parallel P,rogramm·ng, 1
lnform.arion

Pro,eHing 74: Proucdi.ng of the lFIP Congress 74 (J. L. RosenfeldJ Ed.) 1974; 471-475.

Kahn, G., and D. MacQueen;1 "Coroutines and Networks of P.ara lei Processes,'' lnjormarion
Processing 77: Proceedings ,of IFIP Con{Tess 77 (IB, Gilchrist, Ed.), Augusl 1977f 9'93-'998.

Karp, R. M., and R. E. Mi le ''Propert es of .a Model, for PairaUel Computatio,ns:
Determinacy, Terminatio1n, Queueing 11 SIAM Journal of Applied Macliematt,s 14, (November
1966) 1390-141 L

Kesse ,s, J. l. W. 11 A Conceptual Framewo .. rk for a Nonp,nocedu at Programming
Language;' Commumra.ttons of (ht ACM 20, 12(0eeember 1977), 906-9113.

Kosinskit P. R. ''A Data Flow anguage for Operating Sy.stems Programm½ng1" Pniceedings
of ACM' SIGPlAN-SlGOPS Interface Mtettng.s, SIGF'LAN Nottces 8, 9(September 1973),
89 94.

'Kosinski, P. R. A Data Flow Programming Language,, IBM T. J. Watson Research Center
(RC 4264)t York own Heights, New York, March 19173.

Kosinski, P. R. Denotational Semantics of D.etermlnat., and Non-Determlnatt Data F,low
Prograrn.s, Ph. □. Thesis in prep·aration, Department of Electrical Engineering arid
Computer Sci.ence, MIT, Cambr"dge, Massachusetts, expected January 1979.

64

Kosinskt, P. R., '"Mathematical Semantics and Data Flow Pr,ogramming, Conjeunce Record
of tlif Tliird ACM Syrnpo:simn on Pri:ncipiu of Programming Languagit1, .January 1976, 95-
1.03.

Kos'nski, P. R'., "A Straightforward Denot.aUonal Semantics for Ncn-Determinate Data
Flow Programs," Conference Record of tlr.e Fiftli ACM s,mposium on Principles of Programrnf.ng
languages, January 1978, 214-221.

Leung. C. K. C,1 A DL: An Architecture Description language for Packet Communlcarion Systems,
Computation Structur,es Group, laboratory f,or Computer Science. MIT, Cambridge,
Massachu$etts, In prepara1tion.

Leung, C. K. C., Formal Properties of Well-Ftmned Data Flow Schemas, Labor,atory f,or
Computer Science (TM-66),, MIT, Cambridge. Massac 1.1seUs, J1une 1975.

Leung, C. K. C., D. P. M!sunas,, A. Nec~dt and J. 13. Dennis, ''A Computer Simulation
Facili y for Packet Communi,cation Architecture;' Tliitd Annual S-ympostu.m on Computer
Ardiitecti,u: Conjer.ence Proceedings, January 1976, 58-63.

Lloyd, S. C., Parallel Computation Stliemata (PCS): A Construcrivel, Determinate Model wirll.
Dynamic Operand Resoluticm and Dlstribu.ied Control, Ph. D. Thesis, Oeparl-ment cf
Computer Science, Duke Umversily, Durham,, North Caro il'la, December 1974.

McNaUy, M. E.1 The Delign of an Arbitration Network.Jot a Data-Flow PrccessrJr, Compulabon
Structure Grcup (Memo 64). Laboratory for Computer Science, Cambridge,
Massachusetts, July 1 9 78.

Meyer, S. C. (see also S. E. Conry)

Meyer, S. C., An AnatyJi.s of Two Models for Parallel Compu.Mlion 1 Ph. □. Thesi ,s,
Department of Electrical Engineering, Rice Univers ty, Houston, Texas, December 1974.

Meyer, S. C., "An Analytic Approach to Performance Analysis f,or a Class of Data Flow
Processors," Prc,ceedings of the 19'16 International Con.Jtrence im Parallel P-rocesslng (P. H.
Enslow, Ed.), Augus 197,6, , 06~·115.

Mil 'lar, R. E., and J. Cocke, °Ccnfgurable Computers; A New C~ass of General Purpose
Machines," lntanartona.l S1mpostum on Tb.e·oreuu:l Propammtng 1(A. Ershov, and V. A.
Nepomniashy, Eds.), lecture Nous in Computer S.ctence ,, 19721, 285-298.

Minne, ., Stream Programming in RED la.nugages,.UCI Oataflow Architecture Project
(Nole 24), Department of lnforma,Uon and Computer Science, Un,iversi ty 0,f CaUforni a -
kvlne, Irvine, California, December 1 '977.

65

Mtran'ker, G. S. 1 All; A pproac/1 For Proving Pa,ket Commu11t,ations Architectures C orr-u.t,
Computation Structures Group (Note 27), Laboratory for Computer Science, MIT,
Cambridge Massachusetts October 1976.

M"ranker, G. S. 1 Desip and Coructntss ef a Data Flow Procedure Mechanism, S. M. ThesisJ
Depar ment of Eledrrcal Engineering and Computer Science, MIT, Cambr·dge,
M ssachusel s, January 1977.

Miranker, G. S.1
1 I plementalion of Procedure,s c a Ctass of Data Flow Procedures,'

Proceedings of the 1977 fnternationol Conference on Parallil' Processing (J. L. Baer, Ed.),
August 1977 77-86.

Mi ranker, G. S., lrnplementacton Schemes jM .Data Flow Procedures, Computation Structures
Group (Memo 138), Laboratory for Computer Science, MIT, Cambridge, Massachusetts,
May 1 '9176.

Mi ranker, G. S., Proving Packet Comrnunu:a.mms Arclzitecturei Correct, Computation Structures
Group (Memo 143), labcratory fer Computer Science, Milt Cambridge, Mas.s-achusetts
September 1 9 76.

Mi ,unas. ID. IP., A Computer Ardlftecture for Data~Ftow ComputaUon; laboratory for Computer
Science (TM- 00), MIT~ Cambridge, Massachusetts, March 1 '978,.

Misunas, □. P., "Deadlock Avo·dance in Data-Flow Architecture;• Prottedtngs a/ .the Tlitrd
M ltvauJu:e Symposium on Au.tomactc Computation and Control, April 1975,.

Misunas. D. IP'., "Error OetecUo a d Recovery m a Data-Flow Computer/' Proc.eedingJ of
the l9'76 International Conference of Parallel Proct.5.sing (P. H. Enslow, Ed.), August 19 76J
117 122,.

Misunas, D. P'. , 'Performance Analysis cf a Data-FJow Processor,' Proceedings of tne 1976
lnternatfona.l Conference of Parallel Processing (P. H ,Enslow, Ed.), August 1976, 100-105.

Misunas, D. P., Performance of an Elementary Data~Flow Proc.essor, Computalion Structures
Group (Memo 115), aboratory for Computer Science, MIT, Cambr1idge, Massachusetts,
February 1 975.

Misunas, D. P., * Petri Nets and Speed I ndependent Design." Communic-ationJ of tht ACM 16,
8(August 1973) 474-481.

Misunas, □. P'., '"Report on the Wo,rkshop an Data Flow Computer and Progr,am
Organ'zationt Computer Ard.ttecturt News 6, 4{0ctober 1977), 6-2.2.

66

Misunas, D. P., "Structure Prioeessing in a Data-Flow Camputer, Pr,ocudings of the 1975
Sagamore Computtt Coriferenet on Parallel Processtng, August 1975, 230--235.

Mont::z, L, Saftl'j and Optimitatton Transformatf.ons for Data FlollJ Programs, S. M. Thesis in
preparation, Deparlmen • of Electrical Engineering and Computer Science, MIT,
Cambridge, Massachusetts, expected January 19179 ..

Nadler, 0 . R.. Dara FlonJ Computer Pufo,marr.ce for th.e GISS WtatJier Model1 Computation
Structures Gr·cup (Memo 159), lab,oral,0ry for Com,puter Science, Mff, Cambridg,e,
Massachusetts, Maren 1978.

0 dehoeftJ A. E.t S. A. Thoreson, C. Retnadhas, and R. J. Zingg, Tile D.estgn of a Software
Simula.tor for a Data Flow Computer, Department of Computer Science (Technical Report
7 7-2)t Iowa State University, Ames,, lowa1 April 1977.

Oldehoeft, A. E., S. AUa S. A. Thoresont C. Retnadhas, and R. . Zingg, Translatto11 of
Hig!,. Level Programs to Data Flow and T'heir Simulated .E:xecurion on a Feedback lnterpreter1

Department of Computer se··ence (Techmcal Report 78-2), owa Sta e University, Ames:,
Iowa, 1977. - ·

P'atift S. S., An Asynchronous Logic Array, tabor.story for Compu\.er Science (TM-62), MIT,
Cambridge, Massachusetts. May l 975.

Par!, S. S., "Cellular Arrays for Asynchronous Co t,ral,' Proceedings of the ACM 7rh Annual
Workshop on M iaoprogrammlng, September l 974., , 78-185.

Pa ·, , S. S., "Micro, Contr,ol for Parallel Asynchronous Computers.;· Proceedings of t h.e
Eu.romicro Work.,s./i()p7 June 1975.

Pa i , S. S., "On Structured Cligilal Systems,- 1975 ITiterruzU.onai Symposium. on Compu.ter
Hardware Description ,Languagts and TActr Applications Proceedings, September 1975, 1-6,.

Pal'I, S. S .• R. M. Keller, and G. Lindstrom, An Ar,hituEure for a Looul~~Caupled Parallel
Processor (Draft), Department of Comput,er Sciene (UUCS .. 78-105}, University o,f Utah,
Salt Lake City, Ut h, July 1978.

Peterson, J . L.1 Mode/Ung of Prnttllel S'jstems, Ph. D. he·sis Department of El,ectrica1
Engineer"ng, Stanford University, Stanford, California, Dece·mber 1973'.

Plas, A., D. Comtet O. Gelly, and . C. Syre, 'tAU System Arcli' tecture: A Par,at el Data,
Driven Processor Based on Single Assignment,' Proceedings of the 1976 lnttrnattonal
Conjttence on Parallel Processing (P'. H. Enslow, E:d.); August 1976, 293-302.

,67

Rodrigue2t . E.,, A Orapli Model for Para.Utl Computation, Laboratory for Computer Science
(TR-64), MIT Cambridge, MassaehuseUs, September 1969.

Rumbaugh, J _ E.t "Da a Flow languages:' Proceedings of the ltJ"i'J Sagamore Computer
Con./~r n.ce on Parallel Processing, August 1975, 217-219.

Rumbaugh, J. E., "A Data Flow Multiprocessor, · Pr«eeding;s, of t'1e 1975 Sagamore Computer
Conference on Parallel Processing, Augus , 1975, 22:0-223.

Rumbaugh, JI. E., 'A Data F ,ow Multiprocessor,° IEEE Transactions ,o,n Compuurs C-26,
2(February 1977), 138-146.

Rumbaugh, J. E., A Parallel, A synchronous Computer Arditer:ture f"r Data Flow Programs~
laboratory for Computer Sciience (R-150)., MlT Cambrid:ge1 Massachuse ts. May l 975.

Schroeder, M. A.1 and R. A. Mey,er, ""A Distributed Computer System us'ng a Data F'low
Approach/1 Proceedings of th.e 19'77 Jnternationa.l Conference on Parallel Processlng (J. L. Baer,
Ed.), August 1977, 93.

Science R'esearch Council, Tlie Coordtna.ted Programme of Rtseard. in Dl.stributtd Computing
Sys, ems, Science R,esearch Council, England, 1978.

Seeber, R. R., and A. 18. lindqu·st, "Assoc'ative Logic for Highly Parall e, Systems,
Procudtngs of !lie AFIPS Conference 24, 19631 489-493.

Shapiro, R M., H. Sai , l, and 0. L Presberg,, R..epresentation of Algoril.hm.s as OycUc Partial
Orderings, App, ied Data Research (CA- 7112-2711), Wakefield, Mass&:huseUs, 1 9 7'l.

Sonnenburg, C R., A Configurable Parallil Computin.g Sjstem, Department o,f El ectrica 1

Engineeriing ,(SFL TR 82), un·versity of Michigan, Ann Arbor. Michigan. Oc ,ober 1974.

Stoy, J. E., Proof of Correct1u.ss of Da.t'ajlaw Programs, Computation Structures Gro p (Memo
I I 0). Laboratory fo C,0mpu _e:r Science, MIT, Cambridge, Massachuset, s, September
l 974.

Sul ivant H., and . R Bashkow, A Large Scale, Homogeneous, fully Distrjbuted Pa,ra11e'I
Machine, I," Proc£edin.gs of the Fourth. Annual Symf».sium 011 Computer ArchUectureJ March
1977.

Sullivan, H., T. R. Bashkow, and D.- Klappholz, hA Large Scale, Homogeneous, Fully
Distributed ParaUel MacMne~ Hi'" Procee·dirigs of tM Pourth Annual s,m.poslum on Computer
Architecture, Mar•ch 1977.

I

'Phillip Treleaven
Ian Watson
Ken W'eng
Char'les Wetherel
Rob w ·tty
Roy Zingg

70

University ,of NewcasUe-Upon Tyne
U, i,versity of Manchester, England
M.ll.T. Laborafory for Compute Science
ILa,wrence. Liverm,ore Laboratory
.Rutherford Laboratory., Qrxon, E1ngland
owa State University

