
MIT/LCS/'IM-148

SPACE- BOUNDED SJMUIATION OF MULTITAPE

WRING MACHINES

Leonard M. Adleroan

Michael C. I.oui

January 1980

Space-Bounded Simulation of Multitape Turing Machines

Leonard M. Adleman and Michael C. Lout

Laborator, for Computer Science
Massachusetts Institute of T echnDlog'J

Cambridge, Massachusetts 021J9

December 1979

Abstract. A new proof of a theorem of Hopcroft, Paul, and Valiant is presented: every
deterministic multitape Turing machine of time complexity T(n) can be simulated by a deterministic
Turing machine of space complexity T(n)/log T(n). The proof includes an overlap argument.

Key Words: Turing machine, time complexity, space complexity, overlap.

This report was prepared with the support of National Science Foundation Grants No.
MCS-n-19754 and No. MCS-78-01313 and the Fannie and John Hertz Foundation.

1. Introduction

We present a new, direct proof of a theorem of Hopcroft, Paul, and Valiant Ol: every

deterministic multitape Turing machine that runs in time T(n) can be simulated by a deterministic

Turing machine that uses space T(n)flog T(n). Earlier results [2], HJ apply to Turing machines

with only one tape. Paul and Reischuk [6] establish the strongest theorems known about

simulations by space-bounded deterministic Turing machines: every logarithmic cost random access

machine that runs in time T(n) can be simulated in space T(n)llog T(n); every multidimensional

Turing machine that runs in time T(n) can be simulated in space T(nXlog log T(n))flog T(n).

A multitape Turing machine has a finite number of worktapes, each with a single head, and

a separate two-way read-only input tape. The worktapes are infinite in both left and right

directions. Initially, the worktapes are blank, and the head on the input tape is positioned on the

leftmost symbol of the input word. The machine accepts the word by entering an accepting state

and halting.

The class of languages accepted by deterministic multitape Turing machines of time

complexity T(n) on inputs of length n is denoted DTIME(T(n)). The class of languages of space

complexity S(n) is denoted DSPACE(S(n)). The corresponding classes for nondeterministic

machines are NT IM E(T(n)) and NS P ACE(S(n)).

2

2. Simulation

Let M be a deterministic Turing machine of time complexity T(n). Assume that M reads all

of tu input: T(n) ;::: Ti. Set S(n) .. T(n)/log2 T(n). We present a simulation of M by a

nondeterministic machine M' of space complexity O(S(n)), and subsequently, in Section 3, we make

the simulation deterministic without increasing the space.

To achieve a space-efficient simulation, M' keeps only part of the contenu of the tapes of M

and recomputes the contents of individual tape ce11s whenever they are needed. Assume for

simplicity that M has just one worktape; at the end of this section we handle multiple worktapes.

· We first describe M' informally; a precise description appears below. On an input word of

length n, machine M' partitions O(S(n)) of its tape cells ~nto several windows of fixed size. Each

window holds the contents of contiguous tape cells of M. See Figure I. Starting from the initial

configuration, as the worktape head of M moves rightward across the leading edge, window l shifts

to the right; M' forgets the symbols that drop off the trailing edge at the left. As the worktape head

proceeds to the right, every new tape cell that it encounters is initially blank. Although the

worktape head of M may move leftward, M' will have the contents of the cell read by the head as

long as it remains within window I.

Finally, at step s1 of its computation, M reads cell C to the left of the trailing edge of window

I. See Figure 2. At this step M' begins to use window 2, which moves leftward. Using window l,

M' repeats the entire simulation up to step s1 to initialize window 2. Knowing the contenu of C in

window 2, M' simulates M at step s1. Whenever M reads the tape cell to the left of the leading

(left) edge of window 2, it uses window l to reconstruct the contents of that cell.

Windows are unidirectional. Window I always shifts to the right, window 2 to the left.

3

Figure 1.

(a) Window ~ shifts to the right. The symbol B denotes a blank on a cell not yet visited.

1 0

trailing edge

· tra ;Jing
cell

0 0 1

leading
cell

h.ead

B B

· leading edge

(b) As the worktape head of M moves to the right past the leading edge, the wfndow shifts
rightward.

0 0 0 0 B

Figure 2. The worktape head of M moves out of window I on.to cell C.

·tra 11 ing edge leading edge

0 0 0 1 B

Cr-

4

At step s2 of the computation of M, when the work tape head of M reads a cell to the right

of the trailing edge of window 2, M' begins to use window 3. It employs windows I and 2 to

reconstruct the contents of cells beyond the leading edge of window 3 by repeating the simulation

up to step s2.

Let us describe the simulation of M by M' explicitly. The position of each worktape cell of

M can be specified by an integer written in binary. The first worktape cell that M reads is at

position 0. Cells to the right have positions given by successive positive integers, cells to the left by

successive negative integers. Write C(p} for the cell at position p on the worktape of M.

The tape alphabet of M' comprises the tape alphabet of M, symbols for the states of M, and

a query-symbol QO' for each a- in the tape alphabet of M. Let B represent the blank symbol used by

M.

A window W of size w is a linear array of w cells x0, ... , Xw-l• each of which can contain a

symbol from the tape alphabet of M or a query-symbol. A cell of W that contains a query-symbol is

a query-cell. With each window associate an integer called the position of W. If W is at position p,

then for t • 0, ... , w-1, cell Xi represents cell C(p + i}. Every window has a fixed initial position and

a fixed direction (left or right). Suppose W, which moves rightward, is at position p. The leading

cell of W is X w-l• which represents C(p + w - 1); the trailing cell is X 0- The head of M crosses the

leading edge of W if it moves from C(p + w - 1) to C(p + w}, it crosses the trailing edge of W if it

moves from C(p) to C(p - 1). To shift W (to the right), change its position to p + I and for t • I, - ..

t.11-l simultaneously, replace th':! contents of X i-1 by the old contents of X t· The definitions for a

leftward moving W are analogous.

For i - 1, 2, ... , O(S(n)/log _T(n)}, M' sets up a data structure D, that ·contains the following

information, including a window W i of size Wf

5

Fixed information

,:, Size wi of W i (the number of tape cells that it contains)

t, Direction of W i (left or right)

•) Initial position of Wt

Changing information
~• Contents of W i

,:, Position of W i

,:, State of the machine M
•) Position of the input head of M
,:, Position of the worktape head of M
,) Step counter (to specify the simulated time step)
t., Status of W. -

i

current,
suspended (waiting for the contents of the query-cell),
initializing (waiting for contents of all cells), or
inactive

'-' Last-written step (the last step at which the query-cell was written)

Throughout the computation of M' every window has at most one query-cell. and at most one

wind.ow is curr.ent.

Simulation of M

Phase 0. Set up windows. Nondeterministically partition O(S(n)) tape into O(S(n)/log T(n))

windows. For each window set its status inactive and guess its direction and its initial position.

Phase l. Initialize D1. Set the tape contents of w1 to blanks. Set the step counter of D
1

to I,

the head positions to 0, and the state to the initial state of M. Make W
1

current; set t ._ l.

Phase 2. Single step. Simulate one step of M in the current window W ,= after reading cell

X, which in Wt represents the cell read by M, write a new symbol ti on X. ~or J > t, if Y ts the

query-cell of W J and Y represents the same cell as X, and the last-written step of D j is less than the

value of the step counter of Dt, then write the query-symbol ~ on Y in W j and copy the step

counter of D, into the the last-written step of DJ Increment the step counter of Dt by land change

6

the state and head positions of Di to record the new state and head positions. If the worktape head

of M crosses the leading edge of Wt• then go to Phase 3. If the head crosses the trailing edge of

Wt• then go to Phase 4. Otherwise, continue with Phase 2.

Phase 3. Recomputation. If i .. I, then w1 is the current window; in this case shift w
1
, make

the leading cell blank, and go to Phase 2. Otherwise, shift W i• set its status suspended, write QB in

its leading cell, and set the last-written step of Di to 0. For an J < t set the status of W j tnacttve. Go

to Phase I.

Phase 4. Next window. Make Wt inactive. Putt 4- i + 1.

Cast 4a: W i is suspended. Convert the query-symbol Qc, to the corresponding symbol "•

make the status of Wt current, and resume the simulation at Phase 2.

Case 4b: W i is initializing. Convert the query-symbol Qc, on the query-cell of Wt to the

corresponding symbol c,. If the query-cell is the last cell of Wt• then mak~ the status of Wt cu"ent,

and go to Phase 2. Otherwise, make the next cell X of W i its query-eel~ write QB on X and set the

last-written step of Di to 0. For all j < i set the status of w
1

inactive. Go to Phase I.

Case 4c: W i is inactive. Make the status of W i tnitializtng. Verify that when Wt is placed

according to its initial position p, the position of the worktape head of M is between p and

p + w - 1; if not, then reject the input word and halt. Copy the state, step counter, and head

positions of DH into the corresponding parts of Df Write QB on the first cell of w
1
, and set the

last-written step of Di to 0. For all j < i set the status of w
1

inactive. Restart at Phase 1. O

Machine M' halts when M halts in Phase 2, when some window has an inappropriate initial

position in Phase 4, or when M' runs out of windows. In the latter two cases M' reports a failure.

Section 3 proves that for every input word some computation of M' simulates M until M halts.

7

Since M uses space O(T(n)), the position of every cell visited by M can be specified in space

O(log T(n)). The position Qf the input head can be recorded in space O(tog n) ~ O(log T(n)). Each

of the T(n) steps of the computation of M can be specified in space O(tog T(n)). Consequently, the

O(S(n)/tog T(n)) data structures Di occupy

O(S(n)/log T(n))O(log T(n)) + Li wi • O(S(n))

tape cells. Therefore, M' uses space O(S(n)).

To prove that M' simulates M, it suffices to observe that throughout the computation of M',

for every j, if W j is current or suspended, then at the step of the computation of M specified by the

step counter of DJ the state and head positions of Dj are the state and head positions of M, and the

contents of the cells of W j (except the query-cell) are the contents of the cells of M that they

represent We show that M' recomputes the contents of cells of M correctly. Lets be the first

simulated step of M at which M' uses window W J Suppose W J is suspended, waiting for the

contents of ce11 C at simulated step t after s. Since W j moves in only one direction, it could not

have included a representative of C before. Thus, M does not visit C between sand t. By

induction on j, machine M' correctly computes the contents of C at a11 steps prior to step s when it

reconstructs the computation of M iJefore s. The last .symbol that M writes on C before sis the

symbol that M' uses to simulate step t. If M does not visit C before step s, then C holds a blank B,

and M' converts the query-symbol QB to a blank.

This simulation can be modified to handle multitape machines. Let M haver worktapes,

numbered I, ... , r. Use the same number of windows for each worktape; for each j, windows w11 .. .,

W rj are used to simulate the same steps. As before, the total number of windows is

O(S(n)/log T(n)). Begin the simulation with windows W 11, ... , W rt· When for some a the head on

work tape a crosses the trailing edge of Wal• start using W l2' ... , W r2" Employ W 11, ... , W rl to

8

determine the initial contents of W 12 , W r2 and to recompute for each a the contents of cells on

worktape a when its head crosses the leading edge of window W a2" In general, whenever a

worktape head crosses the trailing edge of a current windo_w, the current windows for all work.tapes

are changed.

J. Proofs

We prove that some partition into windows permits a successful simulation of a machine of

time complexity T(n) by a machine of space complexity T(n)/log T(n).

Intervals of steps of a computation are denoted

lto, t1J • {t: t0 ~ t ~ t1}.

Interval [to, t1] immediately precedes interval [t2, t3]_ if t2 .. t1 + l. For interval / • [to, t1l define

min(]) • t0 and max(])= t1. On a Turing machine tape a loop is a sequence of cells (Co, ... , c1),

l ~ 0, such that:

(i) c, is adjacent to CH for each t;

(ii) Co .. Ck.• but Co ~ Ci for O < i < k.

A tape head H traces a loop L during [t0, t1] if L is the sequence of cells that H reads at steps t2'

t2 + I, ... , t3 for some t2, t3 in [t0, t1J. At steps t2 and t3 tape head H reads the same cell Co- Let tt

be a step in [t2, t3] at which H reads a cell Ce farthest from C~ call te an extreme step for Land Ct

the extreme cell. The other cells of L are its interior cells. The width of L •is the number of its

interior cells. If there is only one distinct cell in L, then L has no interior cells, and the width of L

is 0. A window of size w + I can contain representatives of the w + 1 cells in a loop of width DI.

9

When a tape head traces a loop of nonzero width w, it reads thew interior ce11s of the loop

both befbre and after each extreme step. This observation leads to an overlap argument [51

During a computation of a Turing machine, if two successive visits to the same worktape cell

C occur at steps u0 and u1, where u0 < u1, then the pair (uo, u1) is an overlap pair, and C is the

overlap cell for the pair. For intervals Jo, J 1, let wa<J o, J 1) be the set of overlap pairs (uo, u1) for

which u0 e JO and u1 e JI and the overlap cell is on worktape a.

Lemma 1. During a computation, if the head on worktape a traces a loop L of width tJJ

during [t0, t1] and te is an extreme step of L, then 1<->a<Cto, t) [te + I, t1J)I ~ w.

Lemma 2. For every m and every set {hi i = 0, ... , m; J .. 0, ... , 2'-t} of intervals of steps

during a T step computation of a Turing machine with r worktapes, if for every t, j, interval J tJ

immediately precedes interval hj+J and h,2j U h,2j+l "'h-lJ then

Proof. Fix a worktape a. By definition of the _intervals hJ the sets tJaVt,2/ lt,2J+l> are

pairwise disjoint. Consequently, since there are at most T overlap pairs for tape a,

and (I) follows. O

Theorem 1. IfT(n) ~ n, then DTIME(T(n)) ~ NSPACE(T(n)/log T(n))

(I)

Proof. Let deterministic machine M with r worktapes run in time T(n). Set ·s(n) •

2rT(n)/1og2 T(n). We demonstrate that for every input word of length n, some partition of O(S(n))

tape into at most T(n)112 .. O(S(n)/log T(n)) wtn·dows enables the nondeterministic machine M•

presented in Section 2 to simulate M in space O(S(n)).

10

Consider a computation of M on an input word of length n. Let J O,O be the interval of atl

steps of the computation. Repeat the following for i .. 0, I, ... , until

L j watj s S(n) for all a. (2)

Stage i. Suppose intervals f t,J for J = 0, ... , 2'-t have been defined. For a • 1,
... , r, let waif be the width of the largest loop Lai} traced by the head on worktape a
during J i,J If (2) does not hold, then L j wbij > S(n) for some bi. For each j, let tnj

be an extreme step for loop Lb;ij set lt+l,2j .. Cmin(Jtj, tti} and lt+l,2J+I •

[tet/'• max(Jt}J.

Let t0 be the least t for which (2) holds. According to Lemma l,

for t • 0, l, ... , t0-l, hence

La Lt<to L J ~a<ft+l,2/ J t+l,2J+l)I ~ to5(n).

Lemma 2 and (3) together imply that

r T(n) • (S(n) log2 T(n))/2 ~ to5(n),

t0 s (tog2 T(n))/2.

With a partition into windows of sizes waiof + I for each worktape a, machine M' simulates M

successfully. This partition has 2io s T(n)112 windows for each tape, and the sum of the sizes of

these windows is

La L j <watoJ + I) S La (S(n) + i 0) s r(S(n) + T(n)1f2) • O(S(n)).

To ensure that M' uses space T(n)/log T(n), appeal to constant-factor tape reduction

[3, Theorem 10.11 0

(3)

11

Theorem 2. If T(n) ~ n, then DT IM E(T(n)) ~ DSP ACE(T(n)/log T(n)).

Proof. To circumvent the nondeterministic choices in Phase O of the simulation, try all

partitions into windows by enumerating strings in {0,1}'1; the O's separate the window sizes denoted

by the l's (in unary). Also, enumerate all combinations of directions of the windows and all possible

initial positions for the windows. Finally, S(n) may not be tape-constructible; successively try S(n) •

l, 2, ~ •... until the deterministic machine has enough space to complete the simulation successfully. D

Acknowledgments. Albert Meyer, Joel Seiferas, and Daniel Weise suggested expository

improvements.

12

References

[I] J. Hopcroft, W .- Paul, and L. Valiant, "On time versus space." J. ACM 24 (1977) 332-337.

[2] J.E. Hopcroft and JD. Ullman, "Relations between time and tape complexities." /. ACM
15 (1968) 414-427.

[3] J.E. Hopcroft and JD. Ullman, Formal Languages and tlitir Relation to Automata.
Addison-Wesley, Reading, Mass., 1969.

[i] M .S. Paterson, "Tape bounds for time-bounded Turing machines." J. Comp. s,s. Sci. 6
(1972) 116-124.

[5] M.S. Paterson, M.J. Fisher, and A.R. Meyer, "An improved overlap argument for on-line
multiplication." In Complexity of Computation, SIAM-AMS Proc. vol. 7, ed. R. Karp,
Amer. Math. Soc., 1974, pp. 97-lll.

[6] W. Paul and R. Reischuk, "On time versus space II." Proc. 20th Ann. S,mp. on
Foundations of Computer Science, 1979, pp. 298-306.

