
MIT/ICS/'IM-149 

AN EFFICIENT AI.GORITHM. FOR DEI'ERMININ3 THE LEOOrH 

OF THE LONGEST DEAD PATH lli AN "LIFO" BRAN:H-AND-roJND 

EXPLORATION SCHEMA 

Stefano Pallottino 

Tamla.so Toffoll 

January 1980 

This research was suported in part by Grant 
N00014-75~-06.61, Office of Naval Research, 

funded by DARPA, and in part by the Consiglio 
Nazionale delle Ticherche, Roma, Italy 



AN EFFICIENT ALGORITHM FOR DETERMINING THE LENGTH OF 
THE LONGEST DEAD PATH IN AN .. LIFO" BRANCH-AND-BOUND 
EXPLORATION SCHEMA* 

Stefano Pallottino 

Ist.itnt.o per le A ppli~azioni dcl CaJ(olo "Mauro Picone," CNR 
viale dcl Policlinico 137, 00161 Roma, It.aly 

Tommaso TolToli 

tv11T La:boratory for Computer Science 
545 Technology Sq., Cambridge, MA 02139 

Abstrnet. The length of t.he longest dead path (LLDP) is a widely 
used paramdcr in estimating the dl1cicncy of branch-and-bound optimiza­
tion algorithms t.hat employ the LIFO exploration schema. Thanks to two 
original f.hcorcms, we arc able to present a particularly attractive procedure 
for determining of the LLDP. ln fact, this procedure requires a number 
of storage variables which is independent of problem size and very small; 
moreover, the procedure is self-contained in the sense that it can be cxter­
naJly attached to any LIFO branch-and-bound program without in terr ering 
with its algorithms and . data structures. 

Keywords: Length of longest dead path, branch~and-oound, LIFO tree search. 

1. Introduction 

In a part.icular (.rec-exploration schema for the branch-and-bound (RAB) 
optimization method the search is linearized, i.e., movements are allowed only 
between adjacent nodes, and every arc considered in the search is eventually 
travcrsrd cxart,ly once in either dircdion[l]. In this way, nodes that arc en­
countcrrd going down the tree arc cncount.crcd again-in the opposite order--­
on the way up; for this rrason, such an exploration schema is called "last-in­
first-out." (LTF'O). 

During an LIFO exploration, the BAB algorithm designates a certain sub­
sequence of nodes as increasingly better candidates for the optimum. At the 

*This research was supported in part by Grant N00014-75-C-0661, Office of Naval 
Research, funded by DARPA, and in part by thcConsiglioNazionaledelleRicerchc, 
Roma, Italy 

l 



end of the sr.arch, the last such node represents the actual optimum. If one 
had sufficient foreknowledge, this node could be reached by a direct path from 
the trc-e rex>t to the node itself; this we shall call the true path. The remaining 
explored portion can be visualized as consisting of dead subtrees (i.e., search 
failurrs) attached to t.he true path. The maximum departure from the true 
path, i.e., thc- length of the longest path in such dead subtrees, is a significant 
parameter in evaluating the rfficiency of a given BAB algorithm. 

While any procedure for determining the length of the longest dead path 
(LLDP) must somehow work in cooperation with the BAB algorithm itself, yet 
it would be convenient t,o have for this a separate, general-purpose module 
that c.an be appcnckd - -"piggy-back," ns it were- to an arbitrary LIFO-oriented 
BAB algorithm witliout interfering wit.h the nlgorithm or requiring it to manage 
auxiliary data structures, rspccially ones distributed over the tree. Jn the follow­
ing sections we shall illustrate a simple, efficient, and self-contained procedure 
which (a) uscs a finit.c, very small amount of storage independent of problem 
size, ( b) is called in a uniform way by the BAB algorithm at every move on 
the tree, and ( c) is able to tell the length of the currently longest dead path at 
any moment during the search and, in particular, the LLDP at the end of the 
search. 

2. An informal illustration 

Since the LLDP procedure that we arc going to describe in no way afTects the 
operation of the BAR algorithm, certain preliminary conceptual simplifications 
are possible. Potent ially, the whole search tree is available to the BAB algo­
rithm. At any node, according to information accumulated during the search, 
this algorithm is free to decide in what order to examine the outgoing arcs, and 
may ignore altogether the existence of any of them and, consequently, of the 
subtrees attached f,o them. On the other hand , the scope of the LLDP procedure 
is restricted to that portion of the problem tree which is effectively traversed . 
This portion is also a tree, and henceforth will be referred to simply as the tree. 
(As customary in computer science parlance, we call tree what in graph theory is 
called an arboresccncc, i.e., a rooted directed tree.) Since all routing choices arc 
made ahead by the BAB algorithm, front the LLDP procedure's viewpoint the 
tree is seen as t.rave:-r~cd in a preassigned order; during this traversal certain nodes 
are successively received as candidates for the optimum, and these candidates 
supersede one another in the same order as they appear. 

Note that the BAB algorithm is not allowed any "look-ahead;" in other 
words, a node can be designated as an optimum candidate only while it is being 

2 



· visited, and not at some latrr time. Moreover, the last candidate in the sequence 
is confirmed as the actual optimum only at the end or the exploration, i.e., when 
the search returns to the tree's root. 

As we shr11l sec, no explicit knowledge or the tree's global structure is re­
quired or the LLDP procedure, and the only information that this procedure 
needs t.o receive from the RAB algorithm is or a local nature. Namely, the LLDP 
procedure will be told 

(,1) when the BAH just stepped one arc down, or 
(b) the BAB just stepped_ one arc up; and 
( c) when the current node is designated as the new candidate for the op­

timum. 

For the sake or illustration, we shall examine first a case where only one 
optimum candidate is eventually found. The complete exploration journey of 
Figure 1 a (from START to sToP) "circumnavigates" the tree, coasting from node 
to node along arcs, in successive (upward or downward) steps, in such a way 
that every arc of the tree is traversed exactly once in each direction. 

-roof: . . sroP 

ST"AR.T ···-~'-. 

(a) 

optimum.-·:-.-.,~,· .. ... ~-· : :: ···.~·-
··· :~: ····.~~~-

2 

3 

2. 
4 -----------

_J_ 1 

(b) 

i 
opt,·mum 

F'1G. l (a) Complete exploration journey {dotted line), dead subtrees 
(dashed), and true patl1 (thick line) . (b) Schem,1tic representation of the 
de.id subtrees, witl, tl,eir lengtli ;ind tlicir position along the true path. 

Note that, since one docs not know until the end of the search whether the 
current candidate is indeed the actual optimum, the exploration will continue--­
and this may creak ncw clrad subtree:,; •· even after the actual optimum has been 
rearhrd. Sincc we arc interested only in the length of the longest dead path, 
the dead subtrees att.ac:hcd to the true p;ith can be represented merely by the 
length of their longest path, as in Figure 1 b, where for convenience the dead 

3 



subtrees explored before finding the optimum are drawn on the left, and the 
others on the right or the true path. 

If the situation illustrated in Figure I ,1 were static, i.e., if one knew beforehand 
which arcs belonged t.o t.he true path, then computing the LLDP for each of the 
dead subtrees and determining the overall LLDP would be trivial; in this case, 
every time that the ~xploration departed from the true path and entered a dead 
s,ubt.rec one would keep track or the distance from the root of that subtree, and 
update a 

11current maximum distance" register every time a greater value were 
found. 

In pradic.e, there is no way of knowing a priori whether the current can­
didate will turn out to be the actual optimum. This difficulty can be overcome 
by keeping two parallel accounts for dead arcs, namely, ACCOUNT I, which will 
proceed as if the current candidate were to "win," and ACCOUNT II as if it were to 
"loose." Every time the current candidate is replaced by a new one, ACCOUNT I 
is suitably reinitialized; both accounts then resume their independent evolution. 

More explicitly, ACCOUNT I will work in such a way as to be able to tell the 
lcngt,h of the currently longest dead path (LCLDP) on the hypothesis that the 
dircd path from the tree root to the current node--which we shall call the open 
path--- wcre the true path. On the other hand, ACCOUNT II will work in such a 
way as f.o he able at any momrnt to tell the LCLDP on the hypothesis that none 
of the optimum candidates enrounterrd r:;o far represents the actual optimum. 
At every reinitialization, i.e., when a nrw optimum candidate is found by the 
BAB algorithm, ACCOllNT I will interrogate ACCOUNT II and obtain the value of 
the LCLDP. 

To i:.um up, AccoUN1' I assumes that the true path is known, and only has to 
uptdat.c the LCLDP when a longer path appears in any subsequently explored 
dea-d _subtree. As we have remarked above for the static evaluation of the LLDP, 
such.updating activity is trivial (cf. Figure 1). On the other hand, the activity of 
ACCOUNT Il, which must dynamically preserve enough information about pre­
viously traversed dead subtrees to serve ACCOUNT l's reinitialization needs, is a 
bit more complex, and we shall discui:-s it in more detail below. 

3. Dynamic evaluation of the length of the longest dead path 

Clearly, the open path evolves dynamically during the exploration. In the 
example: of Figure 2a, dead subtree 1'3, which is "shorter" than T2 and would 
be neglected in favor of the latter if the open path coincided with the true 
path, might become critical in the determination of the longest dead path if the 

4 



exploration were to back up along the open path, as shown in Figure 2b, where 
subtree T~ is "longer" than T2. 

1;_ i 

1; ----~---

3 

(b) 
F1G. 2 Typical situation in the dynamic evaluation of the LLDP. The 
open path is indicat,ed by a solid line. 

On the other hand, independently of the future course of the exploration, subtree 
T1 may be d_isrcgardcd in comparison with T2, which is already "longer" than T1 
·and may only become even "longer" if the exploration were to back up above 
T2's root. Thus, in this case there is no reason for ACCOUNT Il to "remember" the 
exi~t.cnce of T1; only information about root position and length of the longest 
path for T2 and T3 is still relevant at this point of the exploration and must be 
preserved. 

In what follows, we shall formally cst.ablish general criteria for decidin~ what 
information about previously traversed dead subtrees can be ·discarded in the 
course of t.he search, and what information must be retained. It will turn out 
that at no moment docs one have to carry over from previous exploration more 
than four incfrpcndcnt inkgcr quantitit:s. 

First of all, in the light of the ahovc example it is easy to introduce the 
foJlowing theorem. (With reference to Figure 3, we shall call li, l2, and l3 the 
"lengths" of any three dead subtrees T1, T2, and T3 that arc attached in this 
order to the open path; and d1, d2, and d3 the distances from each root to the 
previous subtree's root or, by default, t.o the tree's root.) 

THEOREM I In tl,c situation of Figure 3a, if 
(a) l2 > l1, 

then rlc-ad suhtrcc T1 r.;rn he disrr.1;.1rrlcd in the determination· of the LLDP; 
si mi fa rl.Y, i ( 

s 



(b) li > l2 +d2, 
then T2 can he disrr.gardcd. 

Proof. For any evolution of the open path, inequality (a) implies that 
any dead subtree containing T2 will have a length greater than or equal to that 
or any dead subtree containing Ti. On the other hand, inequality (b) implies 
that, no mat.ter what fraction of the open path between r1 and ~ is eventually 
incorporated in a de~d tree containing T2, the LLDP will be independent or 12, 

since l1 will give a greater contribution.a 

d 1: z 1. 
1 - - - -- 1 __ - ,y; 

t 

(a) 

d.,. 
T l~ 

z ---- - ---- 1i 

(bJ 
F1G. 3 Details of tree structure and nomenclature for Theorem 1 (a) and 
Theorem 2 (b). 

RBMARK 1 Only in the case whr.rr. l2 < l1 < l2 + d2 will ACCOUNT IT be 
unable t.o dcc.idc, without further information, whether T1 or T2 can be discarded. 

Stipposc now that. AC:COUNT TI, whilr already preserving information about 
two dead i:m bt,rccs Ti and T2 ( d. Hem ark ) ), is requested to consider a third dead 
subt.rcc T3 . Tr it is impossiblr. t.o discard any of the three subtrees by pairwise 
comparison using Theorem 1, then one of them can be discarded in any case in 
view of the following t.hcorem. 

Tm~onBM 2 If the conditions for tl1c applicability of Theorem 1 contcm-
porarily fail for the pairs (T1, T2) and (T2, T3) (and,. consequently, for the pair 
(T1, T3)), i.e., if l2 < l1 < l2 + d2 ;rnd l3 < l2 < l3 + d3, then dead subtree T2 
can be disregarded in the determination of the LLDP. 

Proof. As the search progresses, eventually part of the open path will be 
incorporated into dead subtrees, while the rest will remain in the true path (TP). 
Considering the root ~ of subtree T2, two cases are possible: 

6 



(a) r>i E TP; 
in this case, :-;ince l1 > l2, then dead subtree T2 can be discarded. 

(b) r2 ~ TP; 
in this c.ase, since l.i < l3 + d3, then dead subtree T2 can be discarded. I 

REMARK 2 At no moment during the exploration docs ACCOUNT Il 
have to retain more information about previously traversed dead subtrees than 
that. reprcsent.cd by four integers, namely, the root position and the length of 
two particular dead subtrees. 

Observe that, owing to its "pessimistic" attitude, ACCOUNT II never 
needs to be corrected or reinitialized when a a new optimum candidate is en­
countered. On t.he 6ther hand, owing to its "optimistic" attitude, ACCOUNT I 
may often prove wrong and must be rcinit.ialized when a new optimum candidate 
is encountered. The only information that is required for this reinitialization 
is, of course, t,he length of the currently longest dead path (LCLDP), which on 
such occasion coincides with the value of l1 in ACCOUNT II. 

At the end of the RAB exploration, when the current optimum can­
didate is indeed the actual opt.imum, the LCLDP in ACCOUNT I (denoted by l 
in Figure 4) will coincide with the LLDP, i.e., with the quantity the we set out 
to determine. 

4. The LLDP procedure DIP 

As noted in Section 2, the LLDP procedure that we have been discuss­
ing is called by the BAB algorithm every time the latter steps up or down or 
finds a new optimum candidate. For convenience of implementation, the explicit 
version of this procedure that we present below under the name of DIP will 
assume that such calls have been lumped into groups each corresponding to 
a dip, i.e., an uninterrupted sequence of "down" calls followed by an uninter­
rupted sequence of "up" calls; an "optimum" call may appear between the two 
sequences, and either sequence may be empty. 

Procedure DIP will be called according to the format 

eall DIP(down, find, up), 

where the integer variables down and up represent respectively the number of 
downward and upward steps in a particular dip, and the logical variable find 
assumes the value true if a new optimum candidate was found at the bottom 
of that dip, and false otherwise. 

7 



AccoUNT I 

folse · true 

Update Reinitialize 
l +- max(l,d + down) 

_....._....., 
l +- li 

d +- max(O, d + down - up d ..--0 

AccouNT II 
Add dead branch 

l3 +- up 
d3 +- d3 + down - up 

true 

Th.2 Th. 1 
,, +- 1 I I 12 +- fa . 

1~2 +- d2 + d3! la2 - d2 + d3 
d3 +- 0 ' . d +- 0 

Th. true 
l1 +- l2 
½ +- 0 

d1 +- d1 + d2 
d2 +- 0 

Th. 1 

½ +- max(l2 - d3, l3) 
d2 +- d2+d3 
d3 +- 0 

· folse l 

Th. 1 
l1 +- max(l1 - d2, l2) 
i2 +- 0 

d1 +-di +d2 
d2 +- 0 

Fie. 4 Overall structure of the LLDP procedure DIP. 

8 



The procedure itself is illustrated in Figure 4. All internal variables arc of 
type own integer and arc set to O at the beginning of the search. Variable up 
is rcnamrd "lJ°' in AccotJNT IT only to put in bdter evidence the regulc1r struc­
ture of the algorithm. In order to simplify the program's structure, subscript 
3 is always associated with the subtree corresponding to the current dip. The 
variables associated with the other two subscripts (1 and 2) are used as needed 
to carry over relevant information about at most two previously encountered 
dead subtrees, and are set to O when not in use. 

A FORTRAN listing of procedure DIP together with comments and examples 
can be obtained by writing to either of the two authors. 

Reference 

. {l] Giorgio Gallo, Peter L. Hammer, and Bruno Simeone, "Quadratic 
Knapsack Problems," IX Int. Symp. 011 Math. Progr., Budapest, August 1976. 

9 


