MIT/ICS/TM-149

AN EFFICIENT ALGORTTHM FOR DETERMINING THE LENGTH
OF THE LONGEST DEAD PATH IN AN "LIFO" BRANCH-AND-BOUND

EXPLORATION SCHEMA

Stefanc Pallottino
Tormaso Toffoli

January 1980

This research was suported in part by Grant
N00014-75-C-0661, Office of Naval Research,
funded by DARPA, and in part by the Consiglio
Nazionale delle Ticherche, Roma, Italy

AN EFFICIENT ALGORITHM FOR DETERMINING THE LENGTH OF
THE LONGEST DEAD PATH IN AN “LIFO” BRANCH-AND-BOUND
EXPLORATION SCHEMA*

Stefano Pallottino

Istituto per le Applicazioni del Calcolo “Mauro Picone,” CNR
viale del Policlinico 137, 00161 Roma, Italy

Tommaso Tolfoli

MIT Laboratory for Computer Science
543 Technology Sq., Cambridge, MA 02139

Abstract. The length of the longest dead path (LLDP) is a widely
uscd parameter in estimating the efficiency of branch-and-bound optimiza-
tion algorithms that employ the LIFO cxploration schema. Thanks to two
original theorems, we arc able to present a particularly attractive procedure
for determining of the LLIDP. In fact, this procedure requires a number
of storage variables which is independent of problem size and very small;
moreover, the procedure is sclf-contained in the sense that it can be exter-
nally attached to any LIFO branch-and-bound program without interfering
with its algorithms and data structures.

Keywords: Length of longest dead path, branch-and-bound, LIFO tree search.

1. Introduction

In a particular tree-exploration schema for the branch-and-bound (BAB)
oplimization method the search is lincarized, i.e., movements are allowed only
between adjacent nodes, and every arc considered in the search is eventually
traversed exactly once in either direction{l]. In this way, nodes that arc en-
countered going down the tree are encountered again—in the opposite order—
on the way up; for this reason, such an exploration schema is called “last-in-
first-out” (LIFO).

During an LIFO exploration, the BAB algorithm designates a certain sub-
sequence of nodes as increasingly better candidates for the optimum. At the

*This research was supported in part by Grant N00014-75-C-0661, Office of Naval
Research, funded by DARPA, and in part by the Consiglio Nazionale delle Ricerche,
Roma, Italy

end of the search, the last such node represents the actual optimum. If one
had sufficient foreknowledge, this node could be reached by a direct path from
the tree root to the node itselfl; this we shall call the true path. The remaining
explored portion can be visualized as consisting of dead subtrees (i.c., scarch
failures) attached to the true path. The maximum decparture from the true
path, i.c., the length of the longest path in such dead subtrees, is a significant
parameter in evaluating the efficiency of a given BAB algorithm.

While any procedure for determining the length of the longest dead path
(LLDP) must somehow work in cooperation with the BAB algorithm itsclf, yet
it would be convenient to have for this a scparate, gencral-purpose module
that can be appended - -“piggy-back,” as it were—1{o an arbitrary LIFO-oricnted
BAR algorithm without interfering with the algorithm or requiring it to manage
auxiliary data structures, especially ones distributed over the tree. In the follow-
ing scctions we shall illustrate a simple, cfficient, and sclf-contained procedurc
which (a) uscs a finite, very small amount of storage independent of problem
size, (b) is called in a uniform way by the BAB algorithm at every move on
the tree, and (c) is able to tell the length of the currently longest dead path at

any moment during the search and, in particular, the LLDP at the end of the
search.

2. An informal illustration

Since the LLLDP procedure that we are going to describe in no way affects the
operation of the BAB algorithm, certain preliminary conceptual simplifications
are possible. Potentially, the whole scarch tree is available to the BAB algo-
rithim. At any node, according to information accumulated during the search,
this algorithm is free to decide in what order to examine the outgoing arcs, and
may ignore altogether the existence of any of them and, conscquently, of the
subtrees attached to them. On the other hand, the scope of the LLDP procedure
is restricted to that portion of the problem tree which is effectively traversed.
This portion is also a tree, and henccforth will be referred to simply as the tree.
(As customary in computer science parlance, we call ¢ree what in graph theory is
called an arborescence, i.c., a rooted directed tree.) Since all routing choices arc
made ahead by the BAB algorithm, from the LLDP procedure's viewpoint the
tree is seen as traversed in a preassigned order; during this traversal certain nodes
are successively received as candidates for the optimum, and these candidates
supersede one another in the same order as they appear.

Note that the BAB algorithm is not allowed any “look-ahead;" in other
words, a node can be designated as an optimum candidate only while it is being

2

‘visited, and not at some later time. Moreover, the last candidate in the scquence
is confirmed as the actual optimum only at the end of the exploration, i.e., when
the search returns to the tree's root.

As we shall sce, no explicit knowledge of the tree's global structure is re-
quired of the LILDP procedure, and the only information that this procedure
needs to receive from the BAB algorithm is of a local nature. Namely, the LLDP
procedure will be told

(a) when the BAR just stepped onc arc down, or

(b) the BAB just stepped one arc up; and

(c) when the current node is designated as the new candidate for the op-
timum.

- For the sake of illustration, we shall examine first a case where only one
optimum candidate is eventually found. The complete exploration journey of
Figure 1a (from sTaRrT to sTor) “circumnavigates” the tree, coasting from node
to node along arcs, in successive (upward or downward) steps, in such a way
that every arc of the tree is traversed exactly once in each direction.

700t
sTART TN ___-’_’—__71
ShgE . g, = ? s 1
‘ol 2
“’ " 1% i
i -
oplimum

" optimum ZiNG.
ceT il ._?\._

SN,
I e

() o (v)

Fia. 1 (a) Complete exploration journcy (dotted line), dead subtrees
(dashed), and true path (thick line). (b) Schematic representation of the
dead subtrees, with their length and their position along the true path.

Note that, since one does not know until the end of the search whether the
current candidate is indeed the actual optimum, the exploration will continue-—
and this may create new dead subtrees - even after the actual optimum has been
reached. Since we are interested only in the length of the longest dead path,
the dead subtrees attached to the true path can be represented merely by the
length of their longest path, as in Figurc 1b, where for convenience the dead

3

subtrees explored belore finding the optimum are drawn on the left, and the
others on the right of the true path.

If the situation illustrated in Figure 1a were static, i.e., if one knew beforehand
which arcs belonged to the true path, then computing the LLDP for each of the
dead subtrecs and determining the overall LLDP would be trivial; in this case,
every time that the exploration departed from the true path and entered a dead
subtree one would keep track of the distance from the root of that subtree, and
update a “current maximum distance” register every time a greater value were
found.

In practice, there is no way of knowing a priori whether the current can-
didate will turn out to be the actual optimum. This difficulty can be overcome
by keeping two parallel accounts for dead arcs, namely, account I, which will
proceed as if the current candidate were to “win,” and Account II as if it were to
“loose.” Every time the current candidate is replaced by a new one, account I
is suitably reinitialized; both accounts then resume their independent evolution.

More explicitly, account I will work in such a way as to be able to tell the
length of the currently longest dead path (ILCLDP) on the hypothesis that the
direct path from the tree root to the current node-—which we shall call the open
path-—-were the true path. On the other hand, account II will work in such a
way as to be able at any moment to tell the LCLDP on the hypothesis that none
of the optimum candidates encountered so far represents the actual optimum.
At every reinitialization, i.e., when a new optimum candidate is found by the
BAB algorithm, account I will interrogate account II and obtain the value of
the LCLDP.

To sum up, accounT I assumes that the true path is known, and only has to
uptdate the LCLDP when a longer path appears in any subscquently explored
dead subtree. As we have remarked above for the static evaluation of the LLDP,
such.updating activity is trivial (cf. Figurc 4). On the other hand, the activity of
account II, which must dynamically preserve enough information about pre-
viously traversed dead subtrees to serve account I's reinitialization needs, is a
bit more complex, and we shall discuss it in more detail below.

3. Dynamic evaluation of the length of the longest dead path

Clearly, the open path evolves dynamically during the exploration. In the
example of Figure 2a, dead subtree 73, which is “shorter” than Ty and would
be neglected in favor of the latter if the open path coincided with the true
path, might become critical in the determination of the longest dead path if the

4

exploration were to back up along the open path, as shown in Figure 2b, where

subtree T% is “longer” than Ty.

8
O e
b2l Bl
1

; {':"

S ak

Ty ¢

['."."':.“.::.,? ? | "1“1 j

1

(b)

Fic. 2 Typical situation in the dynamic evaluation of the LLDP. The
open path is indicated by a solid line.

On the other hand, independently of the future course of the exploration, subtree
T} may be disregarded in comparison with Ty, which is already “longer” than T}
‘and may only become even “longer™ if the exploration were to back up above
T3's root. Thus, in this case there is no rcason for account II to “remember” the
existence of T; only information about root position and length of the longest
path for 75 and T3j is still relevant at this point of the exploration and must be
preserved.

In what follows, we shall formally establish general criteria for deciding what
information about previously traversed dead subtrees can be discarded in the
course of the search, and what information must be retained. It will turn out
that at no moment daes one have to carry over from previous exploration more
than four independent integer quantitics,

First of all, in the light of the above example it is easy to introduce the
following thecorem. (With reference to Figure 3, we shall call Iy, I3, and [3 the
“lengths” of any thrce dead subtrees T}, Ty, and T3 that are attached in this
order to the open path; and d;, dy, and d; the distances from each root to the
previous subtree’s rool or, by dcfault, to the tree's root.)

Tueorem 1 In the situation of Figure 3a, if
()l > 1,
then dead subtree Ty can be disregarded in the determination of the LLDP;
similarly, if

(b) lh 2 I+ dy,
then Ty can be disregarded.

Proof. TFor any evolution of the open path, incquality (a) implies that
any dead subtree containing T3 will have a length greater than or equal to that
of any dead subtree containing T;. On the other hand, inequality (b) implies
that, no matter what fraction of the open path between r; and ry is eventually
incorporated in a dead tree containing T3, the LLDP will be independent of I,
since l; will give a greater contribution.f

® @
d T 3]k
" ol T W 1™
4-----3___.72

d,

d). Tz-__Zl_......“'z

Tz -_-..12_-__-_] 12 . "’5
E T.; --.-__Ze"_-_..1 43

(@) (b)

© Fi16. 3 Details of tree structure and nomenclature for Theorem 1 (a) and
~ Theorem 2 (b).

Remark 1 Only in the case where I <} < Iy + dy will Account TI be
unable to decide, without further inforination, whether T or Ty can be discarded.

Stippose now that. account T, while alrcady preserving information about
two dead subtrees Ty and T3 (cf. Remark 1), is requested to consider a third dead
subtree T3. If it is impossible to discard any of the three subtrees by pairwise

comparison using Theorem 1, then onc of them can be discarded in any case in
~ view of the following theorem.

Turonrem 2 Jf the conditions for the applicability of Theorem 1 contem-
porarily fail for the pairs (T}, Ty) and (T, T3) (and, consequently, for the pair
(T, T3)), ice., if b < |y < ly+dy and I3 << ly < I3+ d3, then dead subtree Ts
can be disregarded in the determination of the LLDP.

Proof. As the scarch progresscs, eventually part of the open path will be
incorporated into dead subtrecs, while the rest will remain in the true path (TF).
Considering the root n of subtree Ty, two cases are possible:

6

(a) m € TP;
in this case, since lj > Iy, then dead subtree Ty can be discarded.
(b) r2 & TP;
in this case, since by < I3 4 d3, then dead subtree T3 can be discarded.}i

Remark 2 At no moment during the exploration does account Il
have to retain more information about previously traversed dead subtrees than
that represented by four integers, namely, the root position and the length of
two particular dead subtrees.

Observe that, owing to its “pessimistic” attitude, account II never
needs to be corrected or reinitialized when a a new optimum candidate is en-
countered. On the other hand, owing to its “optimistic” attitude, Account I
may often prove wrong and must be reinitialized when a new optimum candidate
is cncountered. The only information that is required for this reinitialization
is, of course, the length of the currently longest dead path (LCLDP), which on
such occasion coincides with the value of [j in account II.

At the end of the BAB exploration, when the current optimum can-
didate is indeed the actual optimum, the LCLDP in account I (denoted by !
in Figure 4) will coincide with the LLDP, i.e., with the quantity the we sct out

to determine.

4, The LLDP procedure DIP

As noted in Section 2, the LLDP procedure that we have been discuss-
ing is called by the BAB algorithm every time the latter steps up or down or
finds a new optimum candidate. For convenience of implementation, the explicit
version of this procedure that we present below under the name of DIP will
assume that such calls have been lumped into groups cach corresponding to
a dip, i.e., an uninterrupted sequence of “down” calls followed by an uninter-
rupted sequence of “up” calls; an “optimum” call may appear between the two
sequences, and either sequence may be empty.

Procedure DIP will be called according to the format
call DIP(down, find, up),

where the integer variables down and up represent respectively the number of
downward and upward sicps in a particular dip, and the logical variable find

assumes the valuc true if a new optimum candidate was found at the bottom
of that dip, and false othcrwise.

AccounTt I

Update

false ® true

Reinitialize

| « max(l,d 4 down) le—1,

Account I

d — max(0,d 4+ down — up) d —0
|

B gl l
-

Add dead branch

3+~ up
d3 + d; 4 down — up

true
Th. 2 Th. 1
b +— 03] G —1; : b — max(ly — da, l3)] .
gz dz+d3 lay —dy{da dy — dy -+ dj |
|d3 0 | {dge—=0 d3 —0
true "~

da >0
false \2 .
I > false!
Th. I Tirue Th. 1:

11 4--12 ll - Zad max(ll —-dg,lg)
lh+—10 lh—0

d) +— d) 4 dy dy «— d; +dy
d2+—0 (Igf—o

-

Fic. 4 Overall structure of the LLDP procedure DIP,

The procedure itselfl is illustrated in Figure 4. All internal variables are of
type own integer and are set to 0 at the beginning of the search. Variable up
is renamed “l3" in Account IT only to put in better evidence the regular struc-
ture of the algorithm. In order to simplify the program’s structure, subscript
3 is always associated with the subtree corresponding to the current dip. The
variables associated with the other two subscripts (1 and 2) are used as needed
to carry over relevant information about at most two previously encountered
dead subtrees, and are set to 0 when not in use.

A rortraN listing of procedure DIP together with comments and examples
can be obtained by writing to either of the two authors. :

Reference

1] Giorgio Gallo, Peter L. Ilammer, and Bruno Simeone, “Quadratic
Knapsack Problems,” IX Int. Symp. on Math. Progr., Budapest, August 1976.

