
MIT/LCS/'IM- 150

TEN THOUSAND AND ONE LCX;ICS OF PRCG~

Albert R. Meyer

February 1980

TEN THOUSAND AND ONE LOGICS OF PROGRAMMING

Albert R. Meyer

This research was sponsored in part by NSF Grant #MCS 7719754 and in part
by a Grant from ETH, Zurich, Switzerland.

1

TEN THOUSAND AND ONE LOGICS OF PROGRAMMING

Albert R. Meyer

Before coming here I had the pleasure of visiting with

Professor Engeler in Zurich for two weeks along with representa

tives of two different schools of algorithmic logic in Poland -

Salwicki, Mirokowska and Tiuryn - and also with my own colleague

Parikh. I thought I would take this opportunity to tell you

briefly what our concerns were and to try to summarize approxi

mately two years of my own work and the work of colleagues at

M. I.T. on logics of programs

So let me begin by reviewing what one of these logics

of programs looks like, naturally the one that I am most familiar

with, which was invented by my colleague Pratt, and which is called

Dynamic Logic (see slide 1).

The basic concept with which we'll begin is a classical

one, namely the notion of an interpretation or a structure. And

we use the synonym state of a machine

Slide 1

DYNAMIC LOGIC (Pratt):

"State" of a machine Structure

= Structure+ Assignment

= Interpretation

= Algebra

<Domain, functions, relation3/

Set of symbols

X' y' • • •

f, g, ..•

p 'Q' •••

= similarity type

zero-ary function symbols

k-ary function symbols

relation symbols

2

to refer to that. It means an algebra, a set with operati ons on

it. So we have a domain, functions and relations. In addition,

part of the concept of the state is a set of symbols or a similarity

type. On Slide 1, x and y are variables or zero-ary function sym

bols, f and g are function symbols of some-arity, and P and Qare

relational symbols. The idea of the state is that a state defines

the meaning of those symbols. It tells you the domain and for

each function symbol it associates a function on the domain for

each predicate, etc. An entirely usual notion from logic. Our

understanding of a program is that if we look at some simple program

scheme like the one on Slide 2: "while xis not equal toy, set y

to f(y)" --- if you begin by telling me everything there is to

know about the program, if you tell me the state, namely, what is

Slide 2

f3 :
0

while X "f y do y: = f(y)

s + t iff ((g n) [xs = f (n) (y)]
s s

and Yt = X s

and u s = ut all u % y

the domain and what f unction on the domain is f, and what elements

of the domain are x a nd y , then it's clear how to execute this

little while p rogra m. We could formally define it but it's obvious

what the s emantics are, and when we're finished we wind up in

general in a new state in which x and y have new values. More gen

erally, even f might have new values if we allowed array assignment

to f. So the semantics of a program like this is basically a map

ping between states, or, in fact, a relation between states if

the prog ram is nondeterministic. Slide 2 displays a simple meta

language f o r mu l a defining what the semanitcs of this program is.

3

It says that states can reach state t under this program 8 if
0

and only if there is some n such that the value off in states

applied n times to the value of yin states is equal to the value

of x in states and the value of yin state tis equal to the value

of x in states, and more stuff like that. The details don't matter.

With that concept I can define for you Dynamic Logic.

Namely, its first - order logic (see Slide 3). So we have terms

of the atomic formulas, and I can write equality between terms, and

if Pis a predicate symbol I can write P(t1 , t 2 , t 3) as an atomic

formula also, and then I can build new formulas by conjunction,

negation and universal quantification. That's exactly first-order

logic . And we have one more thing to get to Dynamic Logic . Namely,

if a is a program, I'll let you write [a]F, ("box alpha F") , when

Fis any formula in the language.

Now, the basic property of a formula in a logic is what

interpretations make it true or false. The standard notation for

that is that a states satisfies a formula F. And it means Fis

true under the interpretation given by states. Well, you know all

the rules for predicate calculus, that is, you know that FAG is true

at s if and only if Fis true at sand G is true at s. The only

thing I have to tell you that you don't know is when is [x]F true

at S? Well, the meaning of [a]F is to be read as, after doing a,

F will surely halt if a holds at all. So that is to say, a state

s satisfies [a]F if for all of the t's such that t can be reached

from s by a halting computation of a, t satisfies F; and that's

a complete semantical definition of Dynamic Logic. That's all

there is to it.

Slide 3

Formulas: t 1 = t 2 terms t 1 , t 2

First Order }

P(t1 , t 2 , t 3) Pa predicate
symbol

F/\G

lF
VxF

DL} [a] F

4

Slide 4

s l= F means "F is true in state s"
s t= [a] F iff

a
t I= F for all t such that s -+ t

I= F means "s I= F for all s"

"F is valid"

Now let us turn to Slide 4 (above). If I write just F
("double turnstile symbol"), it means that the f ormula is valid,

i.e ., true in all states. So that's the object, the mathematical

object that we've been studying and that I want to talk about .

Let ' s just for practice look at one or two quick examples.

Here is a valid formula of Dynamic Logic (Slide 5). It says: after

doing an array assignment in which we set the value of f(x) to be

y, (this has the effect of course of changing only the function f;

x and y don't change) ... after setting f(x) toy, P(f(z)) holds,

well, that's equivalent to saying that, well, if z were not equal

to x , (so that f(z) didn't change) then that's the same as saying

what you said before, P(f(z)). On the other hand, if z was equal

to x, in which case f(z) has changed, then you say P(y). Again,

it doesn't matter whether you follow that in detail, I'm trying

to illustrate the language and the sorts of things that can be

said quite conveniently with it.

Slide 5

p: ([f (X) : =y] P (f (Z))) :: (Z "f X P (f ((Z)))

v (z=x P!'(y))

<x:=g(x); y:=g(y) (x=y}>

neither valid nor invalid

<while true do NO? true

is always false

5

Slide 6

x[g(f(x))=x] -+

[y: =z; REPEAT z:=f(z)]

x•=? means

[x: =?] Q +-+

<x:=?> Q +-+

<REPEAT z:=g(z)> (y=z)

"set X to an arbitrary

(V X) Q

(JI X) Q

value"

~ V [(x=z) +-+ <y> (x-z)] means "Bandy are z
equivalent (nondeterministic) programs w.r.t. output x.

Here's one more final example (Slide 6) of using the

language. Here's a formula that's also valid. Let's look at

the hypothesis. The hypothesis says that f is a one-to-one

function and g is its inverse. The conclusion says the following:

if I remember the initial value of z someplace, call it y, and

then I nondeterministically apply f to z, any finite number of

times (that's what REPEAT means, its a nondeterministic operation,

sometimes written "star"), then after doing that, it is necessari

ly the case that it is possible to repeat some finite number of

times doing the inverse off, which is g to get back to where you

started. (Diamond, which I read as "it is possible," is an abbre

viation for "not box not", so it's not a new construct in the

language, it's simply something that I'm so used to using that I

didn't realize that I left out the slide defining it when I pre

pared this talk.) One more illustration of an operation that we

sometimes allow in programs - and that may help understanding about

boxes and diamonds - is called random assignment statement, x:=?,

("x gets question mark"). The semantics of that is that after

you've done it, x can have any value at all in the domain. Nothing

else changes. So that, e.g. if I said it's necessarily the case

that after setting x to anything at all, Q holds, that's exactly

6

the same as saying that for all x, Q holds. And likewise, if I

said it's possible to set x to something at all and have Q hold,

that's exactly the same as saying that there exists an x such that

Q holds. Technically speaking, once I've got this random assign

ment allowed in programs I don't even need the quantifiers. Al

though in general, real programs wouldn't have this random assign

ment, we use them for theoretical reasons.

Now, let me charicature some other very similar approach

es to logics of programs. They vary but they all start off with

similar motivation. We'd like a formal language in which we can

make assertions about programs in a convenient way so that the

assertions are easily written and not hard to transcribe from natural

language into formal language.

DLPratt

AL Engeler

ALSalwicki

LED . Tiuryn

Assertion

Slide 7

LOGICAL CHARICATURES

How programs are treated:

Modalities (Quantifiers)

(Predicate Transformers)

Atomic Formulas

Terms (Modality)

Terms (Atomic Formulas)

Atomic Formulas (Modalities)
Langconstable

Nevertheless, all five approaches are essentially
equivalent (in expressive power, degree of undecid
ability, axiomatizability).

At least five different groups of people have proposed such logics.

They differ in how programs are treated. The one I have described

to you - and as I say I don't have time for formal definitions, I'm

7

going to resort to caricature, - is Dynamic Logic. In Dynamic

Logic, as Pratt formulated it (what I just showed you), programs

in effect are being treated as modalities. The box and diamond are

operations from modal logic. And in effect they are generalized

quantifiers. As you saw talking about setting x to question mark

inside of box (i.e. [x:~?]) was nothing but universal quantifica

tion. And we regard programs simply as more general kinds of quanti

fiers. Or predicate transformers, if you like. In algorithmic logic

as Engeler formulated it originally, back in about 1967, and he was

a seminal figure here in proposing this kind of thing - in his style

of proposed logic, what he called algorithmic logic, and which I

call algorithmic logic a la Engeler, programs appeared as atomic

formulas.

In algorithmic logic a la Salwicki, invented about 1970

or 1971, programs appeared more as terms, though recently he has

shifted more towards treating them as modalities. In the language

of effective definition proposed by Tiuryn, again programs are

treated primarily as terms, although I'm trying to persuade him

that atomic formulas would be somewhat better. I don't know if

I've succeeded yet. And finally there's an assertion language

that Constable has proposed for talking about programs, in which

again programs play the role of atomic formulas. All five of these

approaches are essentially equivalent in expressive power, degree

of undecidability, convenience of axiomatizability and so on. You

haven't seen the ten thousand logics yet, all five of these are

actually the same. And each can be transcribed into the other.

So, where are the ten thousand logics? (See Slide 8).

Slide 8

TEN THOUSAND LOGICS OF PROGRAMMING

DIFFERENT CLASSES OF PROGRAMS LEAD TO DIFFERENT VERSIONS

OF DL:

8

Basically, the one parameter that I have left undefined

in explaining Dynamic Logic to you is what class of programs to

use. I illustrated it with a simple flow-chart scheme. But,

in fact, about four thousand or so of the ten thousand logics arise

because of four thousand different plausible notions of what a

program scheme is. So basically, different classes of programs lead

to different versions of DL. That is to say, we might consider

Dynamic Logic in which the only programs that can appear in formulas

are programs definable by finite flow charts, not using random assign

ment, only using simple assignment. Or we might consider some other

kind of program. Briefly, what are these kinds of programs? The

most basic and familiar programs (See Slide 9) are defined by

deterministic finite flow charts in which the tests in the programs

are simp l y atomic formulas, and the only kinds of assignments are

the most familiar kind of simple assignment in which one sets a

variable to the value of a term. Somewhat more convenient and em

phasized by Pratt are regular programs, which are the same thing

except nondeterministic. And there's just an illustration, a picture

Slide 9

BASIC PROGRAMS

fin ite flowcharts (deterministic)

atomic tests

simple assignment

REGULAR::= Nondeterministic BASIC

- - -) x: =f (y)

w:=g(w)

9

of one, I don't even remember what it does. But, again, this should

be fairly familiar stuff . More generally , though, it's technically

convenient and natural to make the leap to considering general pro

grams which are defined by infinite flow charts, instead of finite

ones (see Slide 10). And in which also for technical reasons it's

quite natural for a logician to consider, as one of the many variants,

allowing besides merely atomic tests, first-order formulas to appear

as tests in the programs. And that is about the most general notion

of program that any of us have considered and that I would consider

it even unreasonable to adopt. I'm not advocating this, I'm

trying to offer this as an upper bound of what we might in the most

inclusive way call a program or an uninterpreted program.

Slide 10

GENERAL PROGRAMS:

infinite flowcharts: ========

.\ y:=?l l) .
false true

Within this frameworK I will quickly run through four

thousand possibilities. They multiply together, so there are only

about five or six categories, with five or six subcategories and

I'm merely going to try to give you the flavor of the options. So

one has various options on types of instructions (Slide 11). The

basic kinds of instructions we're considering are assignment instruc

tions, we could have array assignments, random assignment, and there's

a technical distinction about whether we will allow arbitrary nested

10

terms or only simple terms. And you can choose almost any of the

nonempty subsets of these four things and you already get about

sixteen possibilities or fifteen.

Next choice is the control structure. There are a

number of possibilities here. You might insist that this infinite

flow chart be at least reasonably constructive. The strongest

version of constructive is that it actually be a fin ite flow chart.

But then you might settle for it merely being recursive in the sense

of definable by recursive equations, which actually means the flow

chart itself is in a certain sense context free.

1)

Slide 11

Type of instructions:

a) x:-f(y,z)

b) g(u,v,w) : =x

simple assignment

array assignment

c) x•-? random assignment

(atomic terms or arbitrary terms)

2) Control structure

a) Constructivity

i) finite flowchart (regular sets)

ii) recursive schemes (context-free sets)

iii) computable flowcharts

iv) r.e. flowcharts

v) arbitrary

b) Deterministic or not

c) Bounded fan-out or not

Or you might allow the flow chart to be merely recursive in the

effective sense of recursion theory, or you might allow it to be

recursively enumerable, you might allow it to be absolutely arbi

trary. You can also worry about whether it's deterministic and

whether a given box in the nondeterministic case has a bounded or

11

Slide 12

3) Type of tests

a) atomic

b) existential

c) 1st order

d) "rich" test: any DL formula

4) Number of tests

a) finite

b) infinite

i) bounded quantifier alternations or
not

5) Memory structure

a) ffnite number of "registers" or not

an unbounded number of arrows are allowed to leave them, or even

an infinite number of arrows . You can also consider types of tests:

Whether they're atomic or first order and so on, whether the number

of kinds of tests is finite or infinite (that can only happen in

infinite flow charts) and put various quantifier restrictions

upon them. You can also worry about whether or not in the case of

infinite flow charts they should be allowed to work with infinitely

many temporary registers or only finitely many. That's just about

four thousand logics.

There are some other options which I'll mention very

briefly, that have come up in the literature and been considered.

Salwicki proposed two special constructs that he wanted to add

that they thought were appropriate for talking about programs.

One of which says it's possible to do a some finite number of times

and have P hold (see Slide 13). (This doesn't add anything if your

programs are closed under nondeterministic repetition, but in the

case that you're dealing with deterministic programs, then adding

this to the logical language might increase its power.) They have

another operation which I won't define, called intersection.

12

There's one particular predicate of programs that has got

ten a lot of attention because of Dikstra's weakest precondition,

in which the notion of looping plays a critical role. It motivated

Pratt and Harel to define what they called Dynamic Logic Plus, the

"plus" was "plus looping". I won't define that for you except to

say, put it in or put it out, it increases the number of poss ibili

ties. And then, one can consider, and these variations have been

considered, other kinds of path predicates of a kind like looping,

fairness and weird things like that. The case of the logic wit h

out quantifiers turns out to have quite a rich structure, and also

the case where one adds arithmetic as part of the structure with

the standar d interpretation, which was studied extensively by Harel,

is closely related to the weak second- order version. That ten

thousand l ogics. (There's one co~ing, I haven't forgotten.)

Slide 13

ADDITIONAL LOGICAL CONSTRUCTS

1. U(a,P) ::= <REPEAT a>P

* (i.e., <a >P)

(redundant if programs are closed under
REPEAT)

2.
n U(a,P) ::= <a >P n

(redundant for deterministic programs:

3. Loop
a

PA [REPEAT a]<a>P)

:: = "Infinitely many boxes of
accessible"

are

4. Other "path" predicates: until (a ,P,Q), fair
(a,P)

5. Quantifier-free DL

6. Arithmetic DL (Harel), Weak Second- Order DL

13

Now what sort of results are there about this thing to

give you the flavor of our concerns. Well, the main concern that

I had and still have when I'm faced with a situation like this is,

with ten thousand possibilities, it's very likely that if you choose

one at random it will be the wrong one, and since answering quest

ions about these things tends to be quite challenging technically,

it would be a disaster to spend years of your life working on the

wrong version of logic. On the other hand, it's not at all clear

what the criteria should be to choose the right one, and we have

been floundering. I at least have been floundering, in trying to

bring some order to this set of possibilities, get some understand

ing for what various options give you, how these logics relate to

classically understood ones and also get some sense of the addition

al expressive power that allowing certain constructs will provide

that others will not. The objective roughly is, that we would like

to have the absolutely simplest logic that is adequate to talk a

bout programs and prove things about them.

, • DL Arrays,

Slide 14

DEFINABLE PROPERTIES

R.E. Flowcharts, :=?

Weak 2nd order
~l:;,---->~ pred. calculus

,
Card. of domain

R.E . set

Finiteness of.'
domain

•

DL Weak 2nd order
Arrays,:=? ~ (finite relations)

DL Arrays,
Loop

~<-----) DLArrays DL:=? , -t _____ ...,&. ••

•

Finiteness of •
Herbrand values••

(Parikh, Paterson, Pratt, Winklmann)

transitive
closure

14

Because the world being as it is, you can be sure that if you have

more technical machinery and power than you need to do the job at

hand, you will pay for it in things like degrees of undecidability,

or in the ease of theorem proving, or in some other unanticipated

way. This led me to the question of asking, can we prove equiva

lences? Surely now, these ten thousand are not all different.

Well, they're not all different, although there are more than one,

when you're all finished. Above are some partial results of some

landmarks of what some of these systems turn out to be (Slide 14).

Starting at the top, if I look at Dynamic Logic for

the class of programs that contain array assignment and have in

finite effective flow charts, and also random assignments, I get

something that turns out to be equivalent to a nice classical

object (semiclassical anyway), weak second-order predicate calculus.

And I recently discovered that weak second-order predicate calculus

is not well defined. There are two different versions of it that

are not equivalent. They agree on states with infinite domains

differently. So, we can look at Dynamic Logic with finite flow

charts that have array assignment and random assignment and that

turns out to be equivalent to the other version of weak second

order logic and this is strictly weaker than that. Let me say

that the solid arrows represent things I know and the broken arrows

represent things I think I can prove but the proofs aren't written

out yet and I don't want to claim them on the same status. It so

happens if you take away array assignment and leave me with random

assignment, or you take away random assignment and leave me with

array assignment, I get logics that are incomparable in expressive

power. And finally, if you give me what Pratt originally defined

as regular DL, which uses just ordinary regular flow charts,

nondeterministic finite flow charts without the funny instructions,

you get something that is strictly weaker than having either arrays

or random assignment. It also turns out that whether or not you

add loop in regular DL with or without array assignment makes no

difference; the extension to Dynamic Logic Plus was actually

15

unnecessary, although the proofs in both these cases were nontrivial

and these two proofs are utterly different. In general you might

expect that adding loop to some other logic might change things ,

but in these cases of most interest it doesn't. To get a feel

for how some of these distinctions are made, here are some things

that can be said (indicated by dots) in some logics and not in

others.

At the top, the most powerful of these logics can do

this: pick your favorite recursively enumerable set, and it's possi

ble to write a formula in this language whose meaning is, the domain

is finite and its cardinality is in your recursively enumerable

set. No such predicate is definable in any of the other weaker

logics. In the next one down, there is a formula which is true

precisely of those states whose domain is finite . That's definable

with array assignment and with random assignment , but you need

both. If you have random assignment but not array assignemnt, you

can define transitive closure of a relation; if you have array

assignment but not random assignment you can define finiteness

of the set of values of terms in the language. Neither of these

things are definable in DL if you just have simple assignment and

no random assignment. But even in DL, the most primitive of these

languages, you're well beyond first order and you can, for example,

define any ordinal less than omega to the omega (ww) up to isomor

phism, although Parikh and I are able to show you can't get beyond
w w. These results are variously due to Parikh, Paterson, Pratt,

Winklmann and myself.

Now, let's take a bigger overview of what's the gist of

all of this, what have we learned in our two years or so of study

and two weeks of conf~rring together? And this is the big picture

which appears to be emerging (Slide 15). All of these variations

are equivalent to various fragments of the language L , which
W l 1 W

is an infinitary extension of first-order language. That observa-

tion was in effect first made by Engeler and subsequently independently

16

made by lots of people, most everybody who worked in the language.

All of them have a very high degree of undecidability for deciding
1

validity, it's not even arithmetic, it's at level rr. We've
1

shown that there are at least five distinct languages distinct

in terms of their expressive power. There may be more, my own judg

ment is there are probably not more than a dozen, but there might

be several hundred. The open problems at the present time are such

that several hundred possibilities remain among the ten thousand.

The model theoretic properties of these logics are similar to

those of L , and so far have been amenable to classical methods,
W 1 ,-w

the deepest results obtained so far being due to Parikh and Tiuryn,

using omitting-type theorems, Ehrenfeucht games, and all kinds of

neat stuff.

1.

2.

3.

4.

5.

Slide 15

GENERAL THEORETICAL PROPERTIES

All variations are equivalent to various frag-
ments of L (Engeler et.al.)

W 1, W
1

"All" have IT 1 decision problems for validity.

There are at least 5 but perhaps not many more
inequivalent versions of DL (Parikh, Winklmann).

Model theoretic properties similar to L d w 1 , w an
so far amenable to classical methods (Parikh,
Tiuryn) .

Easily axiomatizable (relative to arithmetic with
uninterpreted extra symbols , or by infinitary in
ference rules). (Harel, Mirkowska, Pratt, Salwicki,
Tiuryn).

And these logics are all easily axiomatizable, modulo the fact that

they are totally undecidable of an unimag inably high degree of un

decidability. So when you axiomatize them, something funny has to

happen. One way out is to choose as axioms, axioms of arithmetic

with uninterpreted function symbols. Take all the valid sentences

17

of arithmetic as axioms. Well, that's where you get the incredible

degree of undecidability. Once you've got that around, it's easy

to get a relatively complete axiom system for your programming

logic . The other way to go is to have what's called an infini

tary axiom system, and for what that's worth, that's been done.

The title of this talk as originally announced was "Ten

Thousand Logics of Programming", but after hearing Manna's opening

lecture, I had to add one.

The one more logic is the temporal logic that Manna

talked about due to Pnueli (Slide 16). The main theorem as far as

I am concerned about temporal logic is that in the propositional

case, which is the main case that's been studied, temporal logic

is precisely equivalent in expressive power to the first-order

theory of the natural numbers under the order relation "less than"

(with uninterpreted monadic predicates also allowed) . That's the

theorem of Gabbay, Pnueli, Shelah and Stavi. The corollary due to

Meyer - I have to get in my controversial remark - is that that

makes it not interesting theoretically . Now that we know their

theorem, it seems to me quite apparent that you're not going to

learn anything special about programs by talking about the order of

the integers. Unfortunately I don't have time to really get into

the argument about that, but that's what my interpretation of their

recent main theorem is.

Thm:

Slide 16

The "one" more logic is

TEMPORAL LOGIC (Pnueli)

(Gabbay, Pnueli, Shelah, Stavi)

Prop)sitional Temproal Logic is equivalent to
the first-order monadic theory of (IN,<):

Cor: (Meyer) Therefore it is not theoretically
interesting.

18

One more question issue: why are these Dynamic Logic

logics, all the different variations, why have they come out so

classically? (See Slide 17.) I'm disappointed in them, too, be

cause we have not yet encountered the real combinatorial aspects

of programs which I would hope the right logic of programs would

have to embody. We're getting things like weak second-order logic

and fragments of infinitary first-order logic. The reason, I

think, is because we began with the classical notion of state from

logic, that is, an algebraic structure. It seems to me that the

direction for the future is when we begin looking at richer notions

of state. Like reflexive domains, and structures with pointers

and things like that. Some preliminary steps, I regard them as pre

liminary, have been taken by Milner and Scott in LCF and by

Van Emde-Boas with his work with intensional logic. And I'm hoping

that some synthesis will come about from merging our own work with

this classical notion of state and infinitary logics with the work

that's previously been done in this other direction.

Slide 17

Why are the DL-logics and results so "Classical"?

Because of the classical notion of "state" chosen!

For the future: Logics of richer notions of states:

Reflexive domains - LCF (Milner, Scott)

Structures with pointers - Intensive
Logic (Van Emde-Boas)

19

REFERENCES

1. Banachowski, et.al. An Introduction to Algorithmic Logic,
Mathematical Investigations in the Theory of Programs,
Banach Center Publications, Volume 2, ed. C. Olech, Polish
Scientific Publishers, Warsaw, 1977, 7-100.

2. Constable, R. and M. O'Donnell. A Programming Logic, Winthrop ,
Cambridge, Mass. c. 1978, 389 pp~

3. Engeler, E. Algorithmic Logic in Foundations of Computer Science,
ed. J. W. DeBakker Mathematisch Centrum, Amsterdam, 1975, 57-88.

4. Harel, D. First-Order Dynamic Logic, Lecture Notes in Computer
Science, Springer-Verlag, New York, 1979, 133 pp.

5. Harel, D. Proving the Correctness of Regular Deterministic
Programs: A Unifying Survey Using Dynamic Logic, Theoretical
Computer Science, 1979, to appear .

6. Manna, Z. and A. Pnueli. The Model Logic of Programs, Automata,
Languages and Programming, ed. H. A. Mourer, Lectures Notes
in Computer Science, 1979, 385-409.

7. Tiuryn, J. Logic of Effective Definitions, unpublished report,
Lehrstuhl fur Informatik II, Achen, BRD, July, 1979, 29 pp.

