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TEN THOUSAND AND ONE LOGICS OF PROGRAMMING 

Albert R. Meyer 

Before coming here I had the pleasure of visiting with 

Professor Engeler in Zurich for two weeks along with representa­

tives of two different schools of algorithmic logic in Poland -

Salwicki, Mirokowska and Tiuryn - and also with my own colleague 

Parikh. I thought I would take this opportunity to tell you 

briefly what our concerns were and to try to summarize approxi­

mately two years of my own work and the work of colleagues at 

M. I.T. on logics of programs 

So let me begin by reviewing what one of these logics 

of programs looks like, naturally the one that I am most familiar 

with, which was invented by my colleague Pratt, and which is called 

Dynamic Logic (see slide 1). 

The basic concept with which we'll begin is a classical 

one, namely the notion of an interpretation or a structure. And 

we use the synonym state of a machine 

Slide 1 

DYNAMIC LOGIC (Pratt): 

"State" of a machine Structure 

= Structure+ Assignment 

= Interpretation 

= Algebra 

<Domain, functions, relation3/ 

Set of symbols 

X' y' • • • 

f, g, ..• 

p 'Q' ••• 

= similarity type 

zero-ary function symbols 

k-ary function symbols 

relation symbols 
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to refer to that. It means an algebra, a set with operati ons on 

it. So we have a domain, functions and relations. In addition, 

part of the concept of the state is a set of symbols or a similarity 

type. On Slide 1, x and y are variables or zero-ary function sym­

bols, f and g are function symbols of some-arity, and P and Qare 

relational symbols. The idea of the state is that a state defines 

the meaning of those symbols. It tells you the domain and for 

each function symbol it associates a function on the domain for 

each predicate, etc. An entirely usual notion from logic. Our 

understanding of a program is that if we look at some simple program 

scheme like the one on Slide 2: "while xis not equal toy, set y 

to f(y)" --- if you begin by telling me everything there is to 

know about the program, if you tell me the state, namely, what is 

Slide 2 

f3 : 
0 

while X "f y do y: = f(y) 

s + t iff (( g n) [xs = f (n) (y ) ] 
s s 

and Yt = X s 

and u s = ut all u % y 

the domain and what f unction on the domain is f, and what elements 

of the domain are x a nd y , then it's clear how to execute this 

little while p rogra m. We could formally define it but it's obvious 

what the s emantics are, and when we're finished we wind up in 

general in a new state in which x and y have new values. More gen­

erally, even f might have new values if we allowed array assignment 

to f. So the semantics of a program like this is basically a map­

ping between states, or, in fact, a relation between states if 

the prog ram is nondeterministic. Slide 2 displays a simple meta­

language f o r mu l a defining what the semanitcs of this program is. 
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It says that states can reach state t under this program 8 if 
0 

and only if there is some n such that the value off in states 

applied n times to the value of yin states is equal to the value 

of x in states and the value of yin state tis equal to the value 

of x in states, and more stuff like that. The details don't matter. 

With that concept I can define for you Dynamic Logic. 

Namely, its first - order logic (see Slide 3). So we have terms 

of the atomic formulas, and I can write equality between terms, and 

if Pis a predicate symbol I can write P(t1 , t 2 , t 3 ) as an atomic 

formula also, and then I can build new formulas by conjunction, 

negation and universal quantification. That's exactly first-order 

logic . And we have one more thing to get to Dynamic Logic . Namely, 

if a is a program, I'll let you write [a ]F, ("box alpha F") , when 

Fis any formula in the language. 

Now, the basic property of a formula in a logic is what 

interpretations make it true or false. The standard notation for 

that is that a states satisfies a formula F. And it means Fis 

true under the interpretation given by states. Well, you know all 

the rules for predicate calculus, that is, you know that FAG is true 

at s if and only if Fis true at sand G is true at s. The only 

thing I have to tell you that you don't know is when is [x]F true 

at S? Well, the meaning of [a]F is to be read as, after doing a, 

F will surely halt if a holds at all. So that is to say, a state 

s satisfies [a]F if for all of the t's such that t can be reached 

from s by a halting computation of a, t satisfies F; and that's 

a complete semantical definition of Dynamic Logic. That's all 

there is to it. 

Slide 3 

Formulas: t 1 = t 2 terms t 1 , t 2 

First Order } 

P(t1 , t 2 , t 3) Pa predicate 
symbol 

F/\G 

lF 
VxF 

DL} [a] F 
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Slide 4 

s l= F means "F is true in state s" 
s t= [a] F iff 

a 
t I= F for all t such that s -+ t 

----------------------------
I= F means "s I= F for all s" 

"F is valid" 

Now let us turn to Slide 4 (above). If I write just F 
("double turnstile symbol"), it means that the f ormula is valid, 

i.e ., true in all states. So that's the object, the mathematical 

object that we've been studying and that I want to talk about . 

Let ' s just for practice look at one or two quick examples. 

Here is a valid formula of Dynamic Logic (Slide 5). It says: after 

doing an array assignment in which we set the value of f(x) to be 

y, (this has the effect of course of changing only the function f; 

x and y don't change) ... after setting f(x) toy, P(f(z)) holds, 

well, that's equivalent to saying that, well, if z were not equal 

to x , (so that f(z) didn't change) then that's the same as saying 

what you said before, P( f(z)). On the other hand, if z was equal 

to x, in which case f(z) has changed, then you say P(y). Again, 

it doesn't matter whether you follow that in detail, I'm trying 

to illustrate the language and the sorts of things that can be 

said quite conveniently with it. 

Slide 5 

p: ( [ f ( X) : =y] P ( f ( Z) ) ) :: ( Z "f X P ( f ( ( Z) ) ) 

v ( z=x P!'(y) ) 

<x:=g(x); y:=g(y) (x=y}> 

neither valid nor invalid 

<while true do NO? true 

is always false 
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Slide 6 

x[g(f(x))=x] -+ 

[y: =z; REPEAT z:=f(z)] 

x•=? means 

[x: =?] Q +-+ 

<x:=?> Q +-+ 

<REPEAT z:=g(z)> (y=z) 

"set X to an arbitrary 

( V X) Q 

( JI X) Q 

value" 

~ V [<B> (x=z) +-+ <y> (x-z)] means "Bandy are z 
equivalent (nondeterministic) programs w.r.t. output x. 

Here's one more final example (Slide 6) of using the 

language. Here's a formula that's also valid. Let's look at 

the hypothesis. The hypothesis says that f is a one-to-one 

function and g is its inverse. The conclusion says the following: 

if I remember the initial value of z someplace, call it y, and 

then I nondeterministically apply f to z, any finite number of 

times (that's what REPEAT means, its a nondeterministic operation, 

sometimes written "star"), then after doing that, it is necessari­

ly the case that it is possible to repeat some finite number of 

times doing the inverse off, which is g to get back to where you 

started. (Diamond, which I read as "it is possible," is an abbre­

viation for "not box not", so it's not a new construct in the 

language, it's simply something that I'm so used to using that I 

didn't realize that I left out the slide defining it when I pre­

pared this talk.) One more illustration of an operation that we 

sometimes allow in programs - and that may help understanding about 

boxes and diamonds - is called random assignment statement, x:=?, 

("x gets question mark"). The semantics of that is that after 

you've done it, x can have any value at all in the domain. Nothing 

else changes. So that, e.g. if I said it's necessarily the case 

that after setting x to anything at all, Q holds, that's exactly 
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the same as saying that for all x, Q holds. And likewise, if I 

said it's possible to set x to something at all and have Q hold, 

that's exactly the same as saying that there exists an x such that 

Q holds. Technically speaking, once I've got this random assign­

ment allowed in programs I don't even need the quantifiers. Al­

though in general, real programs wouldn't have this random assign­

ment, we use them for theoretical reasons. 

Now, let me charicature some other very similar approach­

es to logics of programs. They vary but they all start off with 

similar motivation. We'd like a formal language in which we can 

make assertions about programs in a convenient way so that the 

assertions are easily written and not hard to transcribe from natural 

language into formal language. 

DLPratt 

AL Engeler 

ALSalwicki 

LED . Tiuryn 

Assertion 

Slide 7 

LOGICAL CHARICATURES 

How programs are treated: 

Modalities (Quantifiers) 

(Predicate Transformers) 

Atomic Formulas 

Terms (Modality) 

Terms (Atomic Formulas) 

Atomic Formulas (Modalities) 
Langconstable 

Nevertheless, all five approaches are essentially 
equivalent (in expressive power, degree of undecid­
ability, axiomatizability). 

At least five different groups of people have proposed such logics. 

They differ in how programs are treated. The one I have described 

to you - and as I say I don't have time for formal definitions, I'm 
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going to resort to caricature, - is Dynamic Logic. In Dynamic 

Logic, as Pratt formulated it (what I just showed you), programs 

in effect are being treated as modalities. The box and diamond are 

operations from modal logic. And in effect they are generalized 

quantifiers. As you saw talking about setting x to question mark 

inside of box (i.e. [x:~?]) was nothing but universal quantifica­

tion. And we regard programs simply as more general kinds of quanti­

fiers. Or predicate transformers, if you like. In algorithmic logic 

as Engeler formulated it originally, back in about 1967, and he was 

a seminal figure here in proposing this kind of thing - in his style 

of proposed logic, what he called algorithmic logic, and which I 

call algorithmic logic a la Engeler, programs appeared as atomic 

formulas. 

In algorithmic logic a la Salwicki, invented about 1970 

or 1971, programs appeared more as terms, though recently he has 

shifted more towards treating them as modalities. In the language 

of effective definition proposed by Tiuryn, again programs are 

treated primarily as terms, although I'm trying to persuade him 

that atomic formulas would be somewhat better. I don't know if 

I've succeeded yet. And finally there's an assertion language 

that Constable has proposed for talking about programs, in which 

again programs play the role of atomic formulas. All five of these 

approaches are essentially equivalent in expressive power, degree 

of undecidability, convenience of axiomatizability and so on. You 

haven't seen the ten thousand logics yet, all five of these are 

actually the same. And each can be transcribed into the other. 

So, where are the ten thousand logics? (See Slide 8). 

Slide 8 

TEN THOUSAND LOGICS OF PROGRAMMING 

DIFFERENT CLASSES OF PROGRAMS LEAD TO DIFFERENT VERSIONS 

OF DL: 
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Basically, the one parameter that I have left undefined 

in explaining Dynamic Logic to you is what class of programs to 

use. I illustrated it with a simple flow-chart scheme. But, 

in fact, about four thousand or so of the ten thousand logics arise 

because of four thousand different plausible notions of what a 

program scheme is. So basically, different classes of programs lead 

to different versions of DL. That is to say, we might consider 

Dynamic Logic in which the only programs that can appear in formulas 

are programs definable by finite flow charts, not using random assign­

ment, only using simple assignment. Or we might consider some other 

kind of program. Briefly, what are these kinds of programs? The 

most basic and familiar programs (See Slide 9) are defined by 

deterministic finite flow charts in which the tests in the programs 

are simp l y atomic formulas, and the only kinds of assignments are 

the most familiar kind of simple assignment in which one sets a 

variable to the value of a term. Somewhat more convenient and em­

phasized by Pratt are regular programs, which are the same thing 

except nondeterministic. And there's just an illustration, a picture 

Slide 9 

BASIC PROGRAMS 

fin ite flowcharts (deterministic ) 

atomic tests 

simple assignment 

REGULAR::= Nondeterministic BASIC 

- - -) x: =f (y) 

w:=g(w) 
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of one, I don't even remember what it does. But, again, this should 

be fairly familiar stuff . More generally , though, it's technically 

convenient and natural to make the leap to considering general pro­

grams which are defined by infinite flow charts, instead of finite 

ones (see Slide 10). And in which also for technical reasons it's 

quite natural for a logician to consider, as one of the many variants, 

allowing besides merely atomic tests, first-order formulas to appear 

as tests in the programs. And that is about the most general notion 

of program that any of us have considered and that I would consider 

it even unreasonable to adopt. I'm not advocating this, I'm 

trying to offer this as an upper bound of what we might in the most 

inclusive way call a program or an uninterpreted program. 

Slide 10 

GENERAL PROGRAMS: 

infinite flowcharts: ======== 

.\ y:=?l l) . 
false true 

Within this frameworK I will quickly run through four 

thousand possibilities. They multiply together, so there are only 

about five or six categories, with five or six subcategories and 

I'm merely going to try to give you the flavor of the options. So 

one has various options on types of instructions (Slide 11). The 

basic kinds of instructions we're considering are assignment instruc­

tions, we could have array assignments, random assignment, and there's 

a technical distinction about whether we will allow arbitrary nested 
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terms or only simple terms. And you can choose almost any of the 

nonempty subsets of these four things and you already get about 

sixteen possibilities or fifteen. 

Next choice is the control structure. There are a 

number of possibilities here. You might insist that this infinite 

flow chart be at least reasonably constructive. The strongest 

version of constructive is that it actually be a fin ite flow chart. 

But then you might settle for it merely being recursive in the sense 

of definable by recursive equations, which actually means the flow 

chart itself is in a certain sense context free. 

1) 

Slide 11 

Type of instructions: 

a) x:-f(y,z) 

b) g(u,v,w) : =x 

simple assignment 

array assignment 

c) x•-? random assignment 

(atomic terms or arbitrary terms) 

2) Control structure 

a) Constructivity 

i) finite flowchart (regular sets) 

ii) recursive schemes (context-free sets) 

iii) computable flowcharts 

iv) r.e. flowcharts 

v) arbitrary 

b) Deterministic or not 

c) Bounded fan-out or not 

Or you might allow the flow chart to be merely recursive in the 

effective sense of recursion theory, or you might allow it to be 

recursively enumerable, you might allow it to be absolutely arbi­

trary. You can also worry about whether it's deterministic and 

whether a given box in the nondeterministic case has a bounded or 
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Slide 12 

3) Type of tests 

a) atomic 

b) existential 

c) 1st order 

d) "rich" test: any DL formula 

4) Number of tests 

a) finite 

b) infinite 

i) bounded quantifier alternations or 
not 

5) Memory structure 

a) ffnite number of "registers" or not 

an unbounded number of arrows are allowed to leave them, or even 

an infinite number of arrows . You can also consider types of tests: 

Whether they're atomic or first order and so on, whether the number 

of kinds of tests is finite or infinite (that can only happen in 

infinite flow charts) and put various quantifier restrictions 

upon them. You can also worry about whether or not in the case of 

infinite flow charts they should be allowed to work with infinitely 

many temporary registers or only finitely many. That's just about 

four thousand logics. 

There are some other options which I'll mention very 

briefly, that have come up in the literature and been considered. 

Salwicki proposed two special constructs that he wanted to add 

that they thought were appropriate for talking about programs. 

One of which says it's possible to do a some finite number of times 

and have P hold (see Slide 13). (This doesn't add anything if your 

programs are closed under nondeterministic repetition, but in the 

case that you're dealing with deterministic programs, then adding 

this to the logical language might increase its power.) They have 

another operation which I won't define, called intersection. 
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There's one particular predicate of programs that has got­

ten a lot of attention because of Dikstra's weakest precondition, 

in which the notion of looping plays a critical role. It motivated 

Pratt and Harel to define what they called Dynamic Logic Plus, the 

"plus" was "plus looping". I won't define that for you except to 

say, put it in or put it out, it increases the number of poss ibili ­

ties. And then, one can consider, and these variations have been 

considered, other kinds of path predicates of a kind like looping, 

fairness and weird things like that. The case of the logic wit h­

out quantifiers turns out to have quite a rich structure, and also 

the case where one adds arithmetic as part of the structure with 

the standar d interpretation, which was studied extensively by Harel, 

is closely related to the weak second- order version. That ten 

thousand l ogics. (There's one co~ing, I haven't forgotten.) 

Slide 13 

ADDITIONAL LOGICAL CONSTRUCTS 

1. U(a,P) ::= <REPEAT a>P 

* (i.e., <a >P) 

(redundant if programs are closed under 
REPEAT) 

2. 
n U(a,P) ::= <a >P n 

(redundant for deterministic programs: 

3. Loop 
a 

PA [REPEAT a]<a>P) 

:: = "Infinitely many boxes of 
accessible" 

are 

4. Other "path" predicates: until (a ,P,Q), fair 
(a,P) 

5. Quantifier-free DL 

6. Arithmetic DL (Harel), Weak Second- Order DL 
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Now what sort of results are there about this thing to 

give you the flavor of our concerns. Well, the main concern that 

I had and still have when I'm faced with a situation like this is, 

with ten thousand possibilities, it's very likely that if you choose 

one at random it will be the wrong one, and since answering quest­

ions about these things tends to be quite challenging technically, 

it would be a disaster to spend years of your life working on the 

wrong version of logic. On the other hand, it's not at all clear 

what the criteria should be to choose the right one, and we have 

been floundering. I at least have been floundering, in trying to 

bring some order to this set of possibilities, get some understand­

ing for what various options give you, how these logics relate to 

classically understood ones and also get some sense of the addition­

al expressive power that allowing certain constructs will provide 

that others will not. The objective roughly is, that we would like 

to have the absolutely simplest logic that is adequate to talk a­

bout programs and prove things about them. 

, • DL Arrays, 

Slide 14 

DEFINABLE PROPERTIES 

R.E. Flowcharts, :=? 

Weak 2nd order 
~l:;,---->~ pred. calculus 

, 
Card. of domain 

R.E . set 

Finiteness of.' 
domain 

• 

DL Weak 2nd order 
Arrays,:=? ~ (finite relations) 

DL Arrays, 
Loop 

~<-----) DLArrays DL:=? , -t _____ ...,&. •• 

• 

Finiteness of • 
Herbrand values•• 

(Parikh, Paterson, Pratt, Winklmann) 

transitive 
closure 
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Because the world being as it is, you can be sure that if you have 

more technical machinery and power than you need to do the job at 

hand, you will pay for it in things like degrees of undecidability, 

or in the ease of theorem proving, or in some other unanticipated 

way. This led me to the question of asking, can we prove equiva­

lences? Surely now, these ten thousand are not all different. 

Well, they're not all different, although there are more than one, 

when you're all finished. Above are some partial results of some 

landmarks of what some of these systems turn out to be (Slide 14). 

Starting at the top, if I look at Dynamic Logic for 

the class of programs that contain array assignment and have in­

finite effective flow charts, and also random assignments, I get 

something that turns out to be equivalent to a nice classical 

object (semiclassical anyway), weak second-order predicate calculus. 

And I recently discovered that weak second-order predicate calculus 

is not well defined. There are two different versions of it that 

are not equivalent. They agree on states with infinite domains 

differently. So, we can look at Dynamic Logic with finite flow 

charts that have array assignment and random assignment and that 

turns out to be equivalent to the other version of weak second­

order logic and this is strictly weaker than that. Let me say 

that the solid arrows represent things I know and the broken arrows 

represent things I think I can prove but the proofs aren't written 

out yet and I don't want to claim them on the same status. It so 

happens if you take away array assignment and leave me with random 

assignment, or you take away random assignment and leave me with 

array assignment, I get logics that are incomparable in expressive 

power. And finally, if you give me what Pratt originally defined 

as regular DL, which uses just ordinary regular flow charts, 

nondeterministic finite flow charts without the funny instructions, 

you get something that is strictly weaker than having either arrays 

or random assignment. It also turns out that whether or not you 

add loop in regular DL with or without array assignment makes no 

difference; the extension to Dynamic Logic Plus was actually 
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unnecessary, although the proofs in both these cases were nontrivial 

and these two proofs are utterly different. In general you might 

expect that adding loop to some other logic might change things , 

but in these cases of most interest it doesn't. To get a feel 

for how some of these distinctions are made, here are some things 

that can be said (indicated by dots) in some logics and not in 

others. 

At the top, the most powerful of these logics can do 

this: pick your favorite recursively enumerable set, and it's possi­

ble to write a formula in this language whose meaning is, the domain 

is finite and its cardinality is in your recursively enumerable 

set. No such predicate is definable in any of the other weaker 

logics. In the next one down, there is a formula which is true 

precisely of those states whose domain is finite . That's definable 

with array assignment and with random assignment , but you need 

both. If you have random assignment but not array assignemnt, you 

can define transitive closure of a relation; if you have array 

assignment but not random assignment you can define finiteness 

of the set of values of terms in the language. Neither of these 

things are definable in DL if you just have simple assignment and 

no random assignment. But even in DL, the most primitive of these 

languages, you're well beyond first order and you can, for example, 

define any ordinal less than omega to the omega (ww) up to isomor­

phism, although Parikh and I are able to show you can't get beyond 
w w. These results are variously due to Parikh, Paterson, Pratt, 

Winklmann and myself. 

Now, let's take a bigger overview of what's the gist of 

all of this, what have we learned in our two years or so of study 

and two weeks of conf~rring together? And this is the big picture 

which appears to be emerging (Slide 15). All of these variations 

are equivalent to various fragments of the language L , which 
W l 1 W 

is an infinitary extension of first-order language. That observa-

tion was in effect first made by Engeler and subsequently independently 
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made by lots of people, most everybody who worked in the language. 

All of them have a very high degree of undecidability for deciding 
1 

validity, it's not even arithmetic, it's at level rr. We've 
1 

shown that there are at least five distinct languages distinct 

in terms of their expressive power. There may be more, my own judg­

ment is there are probably not more than a dozen, but there might 

be several hundred. The open problems at the present time are such 

that several hundred possibilities remain among the ten thousand. 

The model theoretic properties of these logics are similar to 

those of L , and so far have been amenable to classical methods, 
W 1 ,-w 

the deepest results obtained so far being due to Parikh and Tiuryn, 

using omitting-type theorems, Ehrenfeucht games, and all kinds of 

neat stuff. 

1. 

2. 

3. 

4. 

5. 

Slide 15 

GENERAL THEORETICAL PROPERTIES 

All variations are equivalent to various frag-
ments of L (Engeler et.al.) 

W 1, W 
1 

"All" have IT 1 decision problems for validity. 

There are at least 5 but perhaps not many more 
inequivalent versions of DL (Parikh, Winklmann). 

Model theoretic properties similar to L d w 1 , w an 
so far amenable to classical methods (Parikh, 
Tiuryn) . 

Easily axiomatizable (relative to arithmetic with 
uninterpreted extra symbols , or by infinitary in­
ference rules). (Harel, Mirkowska, Pratt, Salwicki, 
Tiuryn). 

And these logics are all easily axiomatizable, modulo the fact that 

they are totally undecidable of an unimag inably high degree of un­

decidability. So when you axiomatize them, something funny has to 

happen. One way out is to choose as axioms, axioms of arithmetic 

with uninterpreted function symbols. Take all the valid sentences 



17 

of arithmetic as axioms. Well, that's where you get the incredible 

degree of undecidability. Once you've got that around, it's easy 

to get a relatively complete axiom system for your programming 

logic . The other way to go is to have what's called an infini­

tary axiom system, and for what that's worth, that's been done. 

The title of this talk as originally announced was "Ten 

Thousand Logics of Programming", but after hearing Manna's opening 

lecture, I had to add one. 

The one more logic is the temporal logic that Manna 

talked about due to Pnueli (Slide 16). The main theorem as far as 

I am concerned about temporal logic is that in the propositional 

case, which is the main case that's been studied, temporal logic 

is precisely equivalent in expressive power to the first-order 

theory of the natural numbers under the order relation "less than" 

(with uninterpreted monadic predicates also allowed) . That's the 

theorem of Gabbay, Pnueli, Shelah and Stavi. The corollary due to 

Meyer - I have to get in my controversial remark - is that that 

makes it not interesting theoretically . Now that we know their 

theorem, it seems to me quite apparent that you're not going to 

learn anything special about programs by talking about the order of 

the integers. Unfortunately I don't have time to really get into 

the argument about that, but that's what my interpretation of their 

recent main theorem is. 

Thm: 

Slide 16 

The "one" more logic is 

TEMPORAL LOGIC (Pnueli) 

(Gabbay, Pnueli, Shelah, Stavi) 

Prop)sitional Temproal Logic is equivalent to 
the first-order monadic theory of (IN,<): 

Cor: (Meyer) Therefore it is not theoretically 
interesting. 
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One more question issue: why are these Dynamic Logic 

logics, all the different variations, why have they come out so 

classically? (See Slide 17.) I'm disappointed in them, too, be­

cause we have not yet encountered the real combinatorial aspects 

of programs which I would hope the right logic of programs would 

have to embody. We're getting things like weak second-order logic 

and fragments of infinitary first-order logic. The reason, I 

think, is because we began with the classical notion of state from 

logic, that is, an algebraic structure. It seems to me that the 

direction for the future is when we begin looking at richer notions 

of state. Like reflexive domains, and structures with pointers 

and things like that. Some preliminary steps, I regard them as pre­

liminary, have been taken by Milner and Scott in LCF and by 

Van Emde-Boas with his work with intensional logic. And I'm hoping 

that some synthesis will come about from merging our own work with 

this classical notion of state and infinitary logics with the work 

that's previously been done in this other direction. 

Slide 17 

Why are the DL-logics and results so "Classical"? 

Because of the classical notion of "state" chosen! 

For the future: Logics of richer notions of states: 

Reflexive domains - LCF (Milner, Scott) 

Structures with pointers - Intensive 
Logic (Van Emde-Boas) 
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