
MIT/l.CS/™-158

SEMAPHORE PRIMITIVES 1lND· STARVATI01 -FREE

Mm.UAL ~CIIJSICN

fugene William stark

MarCh 1980

Semaphore Primitives and Starvation-Free
· Mutual Exclusion

by

EuKene WiUia:m Stark

January, 1980

Copyr'gbt @ Eugene W. Stark 1980

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Massachusetts

Semaphore Primitives and Starvation~Fre,e
Mutual Exclusion

by

Eugene WHUam Stark

Submitted to the Department of Eiectr · Cc\l Engineering and Com.puter Science
on January 18, 1980 in partial fulfillment of the requirements

for the degree of Master of Science

Abstract

Most discuss.ions of semaph.ore primitives in the literature pro"ride oruy an
informal description of their beha ior, rather han a more precise definition. Th~
.informal descriptions may be incorrect, incomplete, or subject to misinterpretation.
As a result, the literature actuaiUy e,011tains several diffe.rent definiti.ons of the
semaphore primitives,. The differences are important, :since the particular choice of
definition can affect whether a sofotion to the mutal exclusion problem using
.semaphor,e pdmitj,\/'es allows the possibility of process starvotlon. This thesis attempts
to alle iate some ,of the confusion by giving precise definitions of two varieties of
semaphore primitives· here called weak and blocked-set primitives. It ·s then shown
that under certain natural ,conditions, atth.ough it i.s possible to, implement
starvation-free mutual exclusion with bfocked.,set semaphores, it is not poss.ible to do
so with weak semaphores. Thus weak semaphores a.11e strictly less npower£ul0 than
blocked•set semaphores.

Thesis Supervisor! Irene Greif
Title: Assistant Professor of Computer Science

Key Words: paralle.l processes. mutual exclusion, semaphores, s,ynchronization

A ckno -1ed.ge ments

I am ·ndebted to Carl Seaquist for many productiYe discussions during the

early stages of this work, and for discovering a key idea in the proof of Theorem

3. I 4. I would like to thank my thesis supervisor., Professor Irene Gr . if, for her

patien.ce iln reading drafts of this thesis. Thanks also to Russ Atkinson, J,eannette

Wing and especially Jeff Jaffe and Craig Schaffert, for reading and commenting on

parts of this thesis at various stages afong the way. Finally, l would like to thank

th ational Science Foundation for pro-.•iding fellowship support over mos.t of the

period during which this rese'3rch was conducted.

- 4 -

Table of Contents

Acknowledgements ·········· 3

Tahle of Content,s ... u

1..1 Various Informal Definitions of Semaphores 8
1.1.1 Binary Versus Oenerat Semaphores -.. u 8
1.1.2 Blocked-Set and Blocked-Queue Semaphores -........ H. _ 9
1.1.3 \Veak Semaphores , , •• ··•••••· , iii. ·••·••••·
1.1.4 Yet Another Type ,of Semaphores ,..H ■•

1.2 Star ation Properties of the Various Definitions
I.) Relative 'Power I of the Types of Semaphores. •
1.4 Ou,tline or Thesis , , , •••

2. A DdiniUo:n of Starvation-Free M.utual Exclusion
2, l Parallel P'rogra1ns ,. , , •• ... ,. ••• • ., •.• Ii •• , ••••• , ••

2.2 Systems of P1rocesses ,.,1••··••···•· , •• 1 , ••••••
2.3 How the Semaphore Operations Work

2, 3 . .1 Weak Semaphor,es ... , ••••·• , ••••• ••• ,
2. 3. 2 Blocked~Set Semaphores • • • • • •. • • .• • • .• • • • •. • • •. •. • • • • • • • • • • • • • • •

10
12
13

15
16

18

18

22
30
30

30
2.4 Mutual .Exclusion Systell:LS •••• , ••·• ••••.• 32

2.5 Soh1tions to the Starvation-Free Mutual Exclusion Problem n 38
2. 6 Con,clusion i • • ,. .. • • • • • • .. • • • • ,. "' , • • • • • • • • • • • • • • • • .. • .. • • • • • • • • • 40

3. Semaphore Pr.imit.i Yes and Star, tion Free Mutual Exclusion 41

J.1 A Semaphore-Free Solufon ·······•••••·••······••• 43
3.2 Riestricted Classes ,of Mutual Exclusion Systems 43

3.2.I Busy•Waiting , •••• ,. , , •••••••••.• , ,. lli··•·il!· •• 4:5
3.2.2 Symmetric Solutions •.••••• ••· ••••.•••• ••• ·• •~ ·•••• ••• ••.••••• •4.5
3.2.3 01 M.emor}' •••••••. ••• •1•••• •••• , •• , •• ,. ,. SO

3,3 Summary of Results •••••••••••••••••.• , ••• ••• ••• ••.• ·•••· •• ···•·•••, •••• , 51

s -

3.4 Every Semaphore-Free Solution Has Busy-Waiting 53

3.5 There Ar No Semaphore-Free Symmetric Solutions ••• ••. •• SS
3.6 S mmetl'ic \Veak Binary Semaphore Solu ions With o Memory 59
3.7 Symmetric Weak General Semaphore Solu ions With: - o Memory no. 6J,
3.8 More on Weak General Semaphore Soluti•oos .,.,.. 70

3.9 Con.iclusion ••••••••• ,. ··•••·••· •1•••··,••·••,• •·· ... , •••••••••••••••••• ••·•·····•·•• 75

4. Some Exl·stence Results •••· ••••••••••••• ,. ••· 76

5 .. A Correctness Proof 85

5.1 Informa] Discussion of Morris' Solution , ,.. 86

5.2 • iorri,s Solution .Presente-d in the ParaJlel Prog!fam Model 88
5.3 Mutt al Exe usion . , , , ,,. ••• 90

.4 freedom From Indefinite Postponement 94
5.5 Freedom From D adlock ••••.•• ••••••·•·········•• , ••

5.6 Freedom From Starvation
5.6.1 Para] ei Program Homomorphisms
5.6.2 Proof of Freedom From Starvation • ·••t••·· •••••••••••••••••••••••

5 .. 7 Conclusion •••••• ,. , •• I ••••• • , ••••• , ••••••••• , •••••••••••••

96
105
106

113
11'9

6. Summary a'ftd Conclusioni ••••• ..•.. ··•·•••• •....... ••••• •. ••.•. •..•• .• 128
6.l Summary of Aocompli!ihments ,,,................. 12.8
6.2 Directions for Further St dy ,.. .. • 130

6.2.1 Possible bnprorvements, u , - 130

6.2.2 Possible Extensions •••
6.J Conclusion ,. •111 ••• ,. ,, •••1•• •.•••••.••• ., •••••• , ••• , ••••• ,.

7. Appendix , ...
7 .1 Philosophy of the Presentation ,

7.3 Inducti ·e Step for the Auxittary Invariants ,

131

133

1]4
134
135
137

7 .4 Remainder of the Inductive Step • ..,,.. ••) 42

Rererences 16.5

6-

1. Introduction

When a. number of concurrently-executing sequential processes share data1 it is

necessary to provide :some mecb.anism for syochroniz·ng the processes' accesses to this

data9 so that harmonious cooperation may be achieved. A large number of

synchronization primitives, or programming language constructs for expressing

synchronization have been proposed and studi.ed in the extensive literature that has

developed on this subject. The complexity or su.ch synchronization. primitives covers

a wide range: from J,ow-level primitives such as indivisible fetch a.nd st,ore operations

on shared memory locations· thro_ugb more power(ul, but still rather low~level

primitives such as semaphores (DIJKS68] [DJJKS7l]I, and c-ond;rional critical reg;ons

[BRI 72a]; to ,constructs capable of expressing syncllroniz:ation at a .higher level, for

example monito,rs [BRIN72bt or path expressions [HABER 75]. Each of these

constructs has been shown to, be useful in. solving various synchr,onization problems,

such as the ''mutual e.xclusion problem',, [DUKS6,5] l[DUK.5681 the "readers/writer.s11

problems [COURTII] and 111ltounded buffet• prob_ems like that in [HABER72] to

name just a few.

Th.e earliest, and perha!IJ5 the most extensively studied of th.ese synchrooizaticon

problems is the .mutual exclusion problem [DIJKS6S). This is the problem of

ensuring that the execution or certain critical regions of code in o,ne sequ.entiaJ

process is not i nter.ru pted by the ~ecution of simifar regions of code in another

process. Cr'fcal. regions a.re useful, for example, in a timesharing operating system

- 7 -

when it is desfre-d to manipu]ate system queues. These manipulations must not be

interrupted •hen he queue pointers are in an inconsistent state, or disaster may

result. It is possible to produce this mutual exdusio,n of critical regions using

indivisible fetch and stor,e opera ions to shared memory locatioos as the only

mechanism for synchronizing between proceSS€S: and quite a number of solutions

based on this princip)e7 for example l[DUKS65] [K UTH66] [LAMP0741 have been

devised. These so)utions have the common property that prooesses synchronize via

ubusy waiting"'; hat is. when wo processes desire o execute in their critical regions

simultaneously, one •of the processes waits by tooping and testing shared memory

locations un il the other process has competed ,execution in its critical region. Such

solutions are therefore wasteful 'n the sense that processor time is used for waiting,

instead of for more useful computation.

As a way of imprm•ing upon this situationt and of simplifying the solution of

the mutual exclusion probtem, DiJkstra [DUK.568] proposed the use of .semaphores.

A semaphore is a special type ,of variable, shared between processes1 that may be

manipu ated only by two speciai operations,. designated P and V. A semaphore

variable may take on on y nonnegathre integer values. One definition of the effect

of he semaphore operations is as fol ows: A process performing a P operation on. a

semaphore ariable s tests the value of s to see if it i.s greater ban rero. If so,. then

s is dec.remented and the process procee-Ols. The test and resultant decliement are

performed in one indh•asible step. If the value of s is not greater than zero, the

process is said to become blocked ·on. the semaphore s, and must wait to be signalled

by some process executing a V(s) operation. A process executing a V(s) operati,on

checks to see if there are an i processes blocked on s. If there are blocked processes,

then one of hem is signaled and allowed to proceed. If there are no blocked

proc sses hen s is simply incremented. The V(s) ope.ration is assumed to be

performed in a single indi isiblc step. This definition appears to be the on.e intended

by Dij"kstra in [DIJKS:68], however, as we shall see, ther are other, competing

definitions of the P and V primitives. Which definiti.on is used affects subtle

properties ,o.f solutions to the mutual exclusion problem implemented with

se1naphores.

One such subtle property is whether a solution aHows the possibility of

sl orWilion of one o,r more processes. Starvation occurs when one or more processes

attempting to ,enter their critical regions are delayed forev,er by a continuous stream

of other processes executing c.ritical regions. The goal of this thesis is to investigate

how various definitions of the .semaphore operations affect whether solutions to the

mutual ellCdusion problem implemented with semaphores allow the possibility of

starvation.

1.1 Various Informal Definitions: er Semaphores

There has been a good deal of c-0nfusion in the literature regarding th

definitions ,or semaphore operafons. Much of this has resulted from the fact that

often the effect 0£ the semaphore P and V operations is merely described informally,

rather than specified precisely. These informal definitions may be mcorrect,

incomplete, or subject to misinterpretation. In this section, sev,eraJ dtfferent

definitions of semaphores will be informally in roduced. However, i will not be

possible to use these informal definitions in ,our formal investigation. The informal

definitions pr,esented in this section are therefore intended only to ser e as

motivation for their formal counterparts to be giv,en in Cb.apter 2.

1. l. l Binary Versus General Semaphores

We wm distinguish, as is done by Oijkstr.a in [DJJKS68], between binary and

general semaphor,es. The discuss.ion above gave a definitfon of gmeral semaphores,.

Binary semaph.ores ar,e similar to general semaphor,es, exoept that the binary

semaphore variable may take on only the values .iero, and one. The effect of a

- 9 -

binary P operation on a semaphore variable s is id ntical to that of a general P

operation. However, to ensure that the value of the variable s never exceeds, one, a

binary V(s) operation wiU simply set s to one,, rather than incrementing s as is done

in a general V (s) operation. ote that if the value of a binary semapho11e variable s

is one. which implies that there are no, processes blocked on s, then execution of a

V(s) has no effect.

l. l. 2 B,Joc:ked-Set and Blocked-Queue Semaphores

Consider Dijkstra's definition of general semaphores presented above. Processes

that are blocked within a P operation on a sellilaphore variable s are distinguished

from processes that have not yet examined the value of the variable s and hence

have not . et become blocked in that the execution of a V(s) wiU cause a blocked

process to be selected in preference to a process that is not blocked. However., aH

blocked processes ar,e trea, ed ,equaHy as far as bemg selected is concerned;, no effort

is made o distinguish process-es that have been bocked for a short length of time

from those that have been blocked for a longer period. The group of blocked

pmc sses at any instant ,of time may therefore be modeled as a se1, fr,om which .a V

operation chooses at random a process to be s1gna1led. Let us call semaphores with

· his type of blocking discipline blocked-set sema.phores. It ·is also possible to define

blocked-,queue semaphores, which are lik blocked set semaphor,es except that the

group of blocked processes is maintained as a queue., instead of as a set. Processes

becoming blocked are placed at the ,end of the queue and processes are selected for

signalling from the head of the queue. Both binary and general block:ed-set and

blocked-queue semaphores may be defined.

L l.3 Weak Semapltor,es

As was mentioned above, it appears that blocked-set semaphores are the type

that Dijkstra intended to define in [DUKS68]. In [DIJKS71) he indicates the

possibility of defining bocked-queue semapho.res as well. .Blocked-set semaphores

also appear to be the type used in [COURTilL (COURTI2], [HABER72, and

[LIPT073]. How,ever, a third type of semaphore, much different than 1eith r

blocked-set or blocked-queue semaphore::; is also found in the literature. This is the

type of semaphore that may be impleme.nted with indivjsible "test--and5 .set"

instructions as foUows: A process attempting to perform a P operation on a

semaphore variabie s executes a busy-waiting loop in which the value of s 1s

c-ontinuaUy tested. As soon ass is discovered to have a value greater t'han zero, it is

decrementedi the decrement and the immediately prec,eding. test bein,g performed as

one indivisible step. A V(.r) ope.ration simply increments s 'in an indivisible step. We

will ca11 this type of semap.hore a ,wak semaphore. The preceding definition is for

weak general. semaphores, although it is possible to define weak binary semaphores .as

:vell. One of the results we will prove is that weak semaphores are indeed

significantly "weaker than blocked-set or blocked-queue semaphores, when their

starvatio.n properties are considered.

Definitions of weak semaphores equivalent to the definition abovie may be

found in [PRESS751 (SHAW741, [KOSAR73]. However, it is here that confusi.on

m.•er the definitions of the semaphore operations becomes ,evident. The definitions

given in [PRESS75]' are at best incomp1ete. Under the most st~a,gbtforward

interpretation though, they appear to define weak semaphores. Haberman

[HABER76]1 criticizes (PRESS75] for this;, and for presenting a definition of weak

semaphores without indicating th difference betw,ee1 this version. and the

blocked-set semaphores defined by Dijkstra.

- l1 -

Sha,· [SHA W74] first presents a definition of semaphores like that of

b ocked-se semaphores gi en above, but. then proce,eds to show (incorrectly) how this

type of semaphores may be "implemented" with test-and-se instructions as

primitives. What actuaUy results from this implementation is weak semaphores. In

addi ion, he shows how general semapho.r,es may be simulated using binary

semaphores. With the test-and-set implementation of binary semaphores, this

s·muia ion is · □correct. Kosaraju [KOSAR73] points out the difference between

weak and blocked-set semaphores, and indicates the importance of this distinctioni

however he be!ieves Dijkstra s definition in [DIJKS68} to define wea rather than

blocked-set semaphores. Although Dijkstra's definition is rather vague, t.his belief

appear ill-founded, in vie\V of the agreement between [DIJKS681 (DUKS711,

[COURT11], [COURT72 [HABER72]~ and [HABER76i

The behavior of the weak semapho,re operations is most easi y described using

the 11busy-waitingu imp]ementation,, as was done above. Howev r, it may s,ee.m

unreasonable that bus •-waiting is used in th implementation of semaphore.&, which

are introduc d part1y because of the desire to avoid busy-waiting. It is also, possible

to imagine non~busy-waitin.g implementations that produce the :same abstra,ct

synchronization behavior. For example, suppose that all processes are run in

time-shared fashion on a sin.gle processor. When a process initiates a P(s) operation

and disc-0 ers that the value of s is :z,ero, it places itself in a Hst of processes waiting

on th s maphore :r, and reteases he processor. The system scheduler will not

reschedule processes waiting on .s as long as s has the value zero. A process

perform·ng a V(s) simp y increments St however rescheduling, does no'I u.ecessarily

occur after the incrementation.

- 12 -

We assert that the two informal definitions 1of weak semaphores presented

above, and the model of weak semaphores to be introduced in the next chapter,

define 11equivatent'1 synchronization beha.viors,. that :are essentiaUy different from the

behavior of b]ocked-set and blocked-queae semaphores. This statement wiU not be

pro ed, since a suitable definition of "equivalence'' is, lacking and it is beyond the

scope of this thesis to de elop one. However, [KELLE761 [DOEPP76], and

(KWONG78] indicate one way in wbich this might be done, with their discussions of

nabsUactH semaphores and uimp!e,mentations" of this abstract behavior.

f .,1.4 Yet Another Type of Semap ores

The definition of semaphores given in [COFFM7'3] p. 68 while usmg

busy-waiting to impfemen a kind of -weak semaphore, is somewhat different from

the other definitions discussed above in the fo]owing sense: His semaphore variables

may take on negative, as well as nonnegat'v,e, integer valu,es. This in itself would

not be such an important difference, were it not for the way the negative values are

used to control processes performing a P operation. A process performing a P

operation first decrements the semaphore variable. (t then loops until the value of

the variab]e is nonnegati e. A V operation simply incr,em -nts the value of the.

semaphore variable. Therefor~ if several proc,esses attempt to perform P operations,

and cause the \'alue of the semaphore variable to go w,ell below zero, none of the

proce.sses wiU be able to proceed until sufficient V operations have been performed

to make the value of the semaphore variable at least zero. At this, point, all

processes that w,e re waiting wiJI be a1lowed to proceed. This is in contrast to the

other definitions presented above where a V operation immediately aUowed one

waiting process to proceed. We will not oongider the type of semaphores defined in

[COFFM7J].

- 13 -

As a final indication of the ,conr usion: m the literature on semaphores, it is

inter,esting to note that aU the sources above claim that their definitions define

''Dijkstra's semaphore primitives".

1.2 Starvation Pro,perUes ,er th:e Various Definitions

The weak, bloe~ed-se4 and blocked-,qu,eue se:mapho11e primitives defined abpve

ha·ve different starvation properde.s. To see why this might be true, let us see what

happens when each definitio.n is used m a simpJe attempt to solve the mutua1

exclusion problem. Consider a number of pr0¢e5'Se:S, each executing the following

program:

semaphore s Initially l,

loop:, <noncritical regiolf>

P(s);

<critical region.>
V(s);,

goto /cop;

Ea.ch pr ess conti.nuaUy alternates ex,ecution between its critical regio.n and its

noncr,Wcal .region. In order to ensure that mutual exdusioa of critical regions among

aU the processes is obtained1 the cdtical region is bra.cketed by a P(a)~V(.s) pair.

Since the value of the semaphore variable s is initially one, and a process desiring to

enter the critical region must first perform a P(:r) operation whenever some process

is in its critical region, the value of .s is zero. Hence other processes .attemp,ting to

perform P operations and enter their own critical re;gions must wait.. Mutual

exclusion is therefore obtained regardless of whethe-r weak, blocked-set, or

blocked-q,ueue semapbores ar,e used.

Suppose that the semaphore operations are of the weak variety. and co,nsider

the execution of two processes, process 1 and process 2. Suppose that pre>ee$s 1 finds

the value of s to be one, and proceeds into its ,critical region. Since the· value of s is

now zern, process 2 is unab]e to complete its P'(.s) operation, and therefore waits

within the P operation for the value cf s to become positive. Now suppose that

process 1 completes execution in i:ts critical region, and performs the V(s) operation,

setting s to one. Since we have assumed the semaphore operations to be weak,

process 2 does not complete its P(s) operation immediately, but must retest the

semaphore variable s (or be rescheduled). It is possible, if process I executes quick.ly

enough for it to],oop around and perform another P(s) operation, resetting s to

zero, before pro,e.ss 2 could get around IO' no.ticing that s ever had the· "alue one.

This scenario may continue indefinitely, with the result that process 2 "starves"

forever within its P(s) operation. Note that this argument relies on the fact that, in

determining the behavior of a system of concurrent processes, we may make no

assumptions about the relative speeds of the processes, and must consider all possible

orders of executions of steps of the processes as equally likely.

Now, suppose instead that the semaphore operations are defined to be

b1ocked-se operations. The scenario described in the preceding paragraph is no

longer possible, since. tbe execution of a V operation by process I immediately causes

process 2 to complete its P(s) operation. Since s is :never set to one, it is not

possjb(e for proc~ l to complete another P(.r) before process 2 finishes its critical

reg.ion and performs a V(s). However, although starvation is no longer possible with

two processes, with three or more processes it again becomes possible for a process to

wait forever within the P(s) while other processes successfuUy complete infinitely

many P(.r) operations. The r,eason for this, is that the blocked-set V operation selects

the blocked process to signal at random, and in particular, gives no preference to a

process that may have been blocked for a long time. This situation may be

alleviated if blocked-queue semaphores are used. Blocked-queue semaphores impose a

FIFO discipline on the blocked processes, and hence any blocked proce.Srs win be

allowed to proceed after a oum ber of V operations that is at most equal to the

number of processes in the system.

1.3 Relative 0 Power" of the Types ef Semaphores

The simple scenado just priesented indica1es that, although weak, blocked-set,

and blocked-queue semaphores are all abte to implement mutuai exclusion of critical

regions, the three types of semaphores are evidently sot equivalent if the po55:ibility

of starvation is taken i o to consideration. We wi H be interested in obtain.mg more

detailed information of this type about ~he rela ive 1powern of the various kinds of

semaphore primitives. We will obtain this information by posing and answering

quest.ions Like; ".Is it possible to implement stanatmn•rree rnutuai exclusion with a

gi'\ren kind of semaphore1n If the: answer to this question is 11Yes1
\ then, ''Can

natural constraints be imposed under which it is .no .longer possib!e to implement

starvation-free mutual ex:c]usion?1 and "Is it possible to distinguish between the

relative ~power' of the various definitions of semaphores on the basis or the streng·th

of these constraints?t It turns ,out to be triviaHy possible to implement

starvation free mnhud exclusion with erther blocked-queue binary or blocke_d.,queue

general semaphores, under any of the constraints we will impose. We will therefore

concentrate our efforts on determining the differences in "powe.r'11 between weak

binary, weak: general, blocked•set binary, and blocked-set general semaphores.

The. nnavor" or this .investigation is similar to that of {BURNS79], where

sol u ions to the mutual exclusion problem are studied for a system of ptiocesses th at

synchronize not with t.emaphore operations, but with a general "testMand-setr1

operation cm a single shared variable. In tha study., bounds are obtained o,n the

number of distinct values that this variable must be able to record, i[sol.utions are

to exist to the zm1tual exclusion problem~ and to the stan,ation~free mutua] exch1sion

- 16 -

p,roblem.

The most important simila.rity between our study and that of [BURNS79] is

that in both,. results are stated and proved asser ing the existence or nonexistence of

solutions to the mutual e:xclu.sion problem sa isfying various properties. In both

studies, e,astence results are pro ed by displaying a solution to the mutual ,exclusion

problem, and proving that it has the stated properties. Resu.its asserting the

nonexistence of sol.utions are proved indirectly, b)r assummg the existence of a

solution satisfying the stated properties, and then. in£i rriog the existence or a

computation that ,contradicts one or more assumptions.

Another similar investigatfon was performed by Miller and Yap (MILLE77]. In

that pap _r a model of parallel process-es is, presented,, and used to formalize a

number or properties 'desirable'1 for a solution to the mutua] exclusion problem.

Under the assumption that a process may either fetch or storie the value of a single

shared variable as part of a single indivisible action, they are able to e.stablish some

lower bounds on the number of global vadabies required to, implement

starvation-free mutu11l exclusion.

Upton [LIPT07 3] also, investigates issues of the expressive 11power" of various

types of semaphore-Hke synchronization primitives. However, his focus of study is

not r,estricted to the ability of the various primitives to implement mutual exclusion.

Instead, the synchronizadon pr.imiti\res are distinguished on the basis of their ability

to implement vario,us abstractly specified synchronization behaviors.

lA OutUne ,or Thesis

The remainder of the thesis is organized as foUows: In Chapter 2 a model of

paraUei computation caUed par.aflef programs will be inuoduc-ed. This model is an

adaptation. of similar mod Is used by '[KELLE1'6], [DOEPP76), and [KWON078].

We wm need to make some restrictfons. on this rather general modelt to reflect the

£act that we are interested in modeling a specific type of parallel computation; that

is, a fixed number of sequential,, deterministic processes that communic.ate via shared

variables, and that synchoniz.e with semaphore operations. We wiU call this

restricted class of the parallel prngrams systemJ of processes. Oertain systems of

processes. i\ h · ch we calJ mutual exclusion sysrems mode.l a set of processes that

alternate heir execution between a critical regron and a noncritical region. We will

define a :so/uJion to the starvation~free mutual e.xdu1ion probfem to be a mutual

exclusion s stem that guarantees certain 'desirable' propen_ies,. such as mutual

exdusion, freedom from deadfock, and freedom from starvation.

In Chapter 3 we wm \Jse the formal model presented in Chapter 2 to

in ·est-igate the relationship between the definition of :semaphores .and solutions to the

star ation-free mutual exclusion problem.. The results pmved in Chapter 3 will be
11 negative0 resuhs wh.ich asser that under certain conditions, solutions to the

starvation-free mutual exclusion problem do not exist. In Ch.apter 4, actual solutions.

to the star •a.tion-free mutual e,iclusion problem will be exhibited in support of

complementary 11positive11 or •existence" results.

Chapter 5 and the Appendix are devoted to, a correctness proof for what is

perhaps the most interesting of the sotutions presented in Chapter 4. No ,other

solutions ar,e prnved CoHect, because the length of such proofs would be prohibitive.

In Chapter 51 three techniques for proving statements about paraUel programs are

developed, and then applied in the proof. While the most interesting aad intuitive

parts ,of he pr,oof are presented lll Chapter 5, the remainder, consisting larg,ely' of

tedious, mechanical verification, has been left to the Appendix. It is possible to,

understand the argu.ment.:i in Chapter S without r,eforence to the Appendix. Finally,

Chapter 6 contains a summary of results, and suggests possible directions for future

investigation.

- 18 -

2. A. Definition of Starvation-Free Mutual Exclusion

If we a re to make and prove statements th.at assert the nonexistence of

solutions to the starvation-fre mutual exclusion problem under various constraints,

then we must precisely define the class of possible solutions. For this purpose, we

will use. a model of parallel com,putation, caUed parallel programs, which is an

adaptation of those used in [KELLE76t [DOEPP76) a.nd [KWONG78]. The paraHel

program mod eJ is capable of modeling much more gener.al classes of parallel

computation than will usuaHy concern us 1 so a restricted class of parallel programs:1

which we caU :systems of processes. will also be defined. We wm further identify

oertain systems of processes, termed mutual exclusion system,, which model a number

of processes that repeatedly alternate between a critical ~egion and a noncritical

region. We wil[then define what it means for a mutual a:ciusion syst.em to have the

mutual exclusion property, to be deadlock-free, free from lndefinite posrponement1 and

starvalion-free. A solution to lhe starralion-free mutual e.xclusion problem will be

defined as a mutual exclusion syst m. that has these properties.

2~ I Parallel Programs

Keller [KELLE76j, introduces a model of paraHel computation, called a

fr.ansition system, which consis s of a set of stares, and a binary relation on those

states, called the I ransilion ref ation. A computation of the system is a sequence of

states· each. state r,elated to the next in the seq,ue.nce by the transition relation.

Keller uses a graphical o:ota.tion as a syntax for the definition of specific transition

relations. These graphs, which he can parallel programs, are a kind of labeled Retri

nets. RecaH hat an ordinary Petri net [HOL TIO) is a bipartite directed graph in

vhich the wo c asses of nodes are ,caHed places and transitions. At any giv -n

instant h p]aces of a Petri net are marked with varying numbers of to'1rens.

Markings evoJve through what is called firing the transitions. 13rie0y, a transition. is

enabled if there is at least one token on each place that is its immediate ancestor.

An enabled transition may fire by removing one token from each of these ancestor

places and add'ng one token to ea:C:h of its immediate descendants.

The parallel programs we wm be using are Petri nets whose transition nodes

have been labeled with an enabling predicate and an action fun,ctior,. Associated with.

each net is a et of ,ariableJ. The enabling predicate describes a condition on the

value.s of those variables. For a transition in a parallel program to be enabled, not

only must the token placement cond'tfon be satisfied but the enabling predicate for

that ,rans· ion must hold as wel. The action functiom describes the change in the

values of the variables that takes place when the transition is fired.

The variables in our parallet programs will take their values in a domain of

values VAL which contains the natural numbers, and aU finite sets of natural

numbers.. A natural numbe.r variable is a variable that always takes on natural

number values. Similarly, a set ariabie is a variab e whose value i.s .always a finite

set of natural numbers. AU variables, in any parallel pr,ogram presented in this thesis

will be either set variables or oatu al number variables.

Der·nition 2.1 - A parallel program r is a five-tuple, <'llr, OCr, Clr" q,,

labelr) where:

(l) 'Or is :a finite set of variable names.

(2) OCr = (G'r, 3r, ftr) is a bipartite directed graph in wbicb (P:r,
the set of places, and :Jr, the set of transitions, are the two classes

- 20 -

of nodes. and 4r ,c (G"r X :Jr) U (3r X ~r) is the set of arcs.

(3) Gr is the set of states of r. Each element q of Gr is a mapping

that assigns a natural number q(J,) to eac'h p e O"r, and a value

q(~ ,e JIAL to each ., e 'lJr.
(4) The slate q1 is a d"sting,uished element or Gr called the initial

slate.

(5) The function labelr assigns to each , e :Jr a pair of functions, B1

and F;, where Br Gr -❖ {true, raise} .is called the enabl;ng

predicate, and F,= Gr •-> ('Or --> l'Al) is called the action

function for I . The functions Bl' and F1 have the property that if

q, q' e 1tlr, and ,q(11) = q'(v) for all l' e 'Ur,1 then B1(q) = B,(q')

and Fiq) - F t<ql

If q is a state, p is a plaoe, and q(p) = k,, then we will say that there ar,e k tokens at

place p in state q. The latter part of condition (5) above states that enabling

predicates and action functions depend only upon values ,of variables, and not upon

t.he placement of tokens.

If r is a p,araUel program, and n e G'r U 3r then define input(n) to be the

set of aH n' e G'r U 3r such that (n", n) e <tr• Similarly, define ou1pu1(n) to be

the .set of aU n • e G'r U :Jr, such that (n, n') e «i,.

Dennitlon 2.2 - Let r be a paraUel program and suppose that f e Gr
and re :Jr. Then the na/ state £unction n.xt(q, r) is derined iff:

(1) q(p) > 0, for all p e input(t)

(2) B,{q) = tru,e

If nxt(q, 1) is defined and q' - nxt(q, I), then the foHowing relationships

hold betw,een q and q':

- 21 -

(3) q'(p) = q{p) - I for an .P e (inpul(t) oulput(t))

(4) q'(p) ~ q(p) + l for an p e (ourput(t) - input(t))

(5) q'(p) = q(p) for all p e inp.ut(t) n outpul(t) and for all

p ¢ input(t) U output(I)

(6) q'(ll) = (F1(q)),(P) for all v e 1Jr
If a is a finite sequence of traositions:t th.en mt(q, a:) 1s defined by

,composition in the obvious fashion.

If nxt(q, t) is defined, then we .say that t is enabled in state q, and that

q' = n.:ct(q, t) is the result of firiffg transition t in. state q.

Definition 2. 3 - Let r be a parallel program, .and suppose that q o e Clr.
A finite or infinite sequence of transjtions a = l(I 1 ... is called an execution

sequence from q0 for r with corresponding state sequence t:J(I/J ... , if for

each i >-O, raosition 11 is enab]ed in st.ate q;, and <Ji+J = nxt(qp 1;)- A

state q • is reachable from a state q if there is an e~ecu tion. sequence (J such

that q· = nxt(q,, (J). An inilfal execution sequ:ence is an ex:ecuticm sequence

from <fr

Definition 2.4 - Let r be a paraUel program. We say a transition ;

affec1s a variable v if there exists a state q such that {F ,(q))(v) ~ q(~). We

say that I depends on ~ 1[there exist states q and q', with q' identical to q

e::i.cept for the value assigned to ~, such'. that either B,(q) ~ Bf..qJ or

(F ,{q))(v') =,I:, (F,(q'J)(v') for some variabte p' affected by 1.

A pictorial representation of a parallel program is s.hown in Figure 2.1. Places

are denoted by circles, and transitions by hodmntal bars. 'Each transition t is

labeled by a statement of the form ·hen B do (rv1, ... , ~ml := F,. where B is a

truth-valued exp1ession desctibing the enabling predicate B,. and the multiple

assignment (, ,, ... • f,n) := F de-scribes the action function Ft We wjll follow the

convention that if I affec •s no \.1ariables, then. the do part of the label of t wiH be

omitted, and .if B1 is, identicaUy true~ then the hvn part wiH be omitted,, unless this

would result in a completely unlabeled transition.

l{;eller shows ho•w parallel programs may be used to model parallelism,

nondeterminism and processes, tha.t fork and join. It is particularly convenient to

model the instruction counters of concurrently executing processes by positions or

tokens on the parallel pmgram graphs, and we wiH do this, in fact, in the next

section.

2. 2 Systems o,f Pro1:esses

For our purposes i.t wiU be convenient to introduce some syntactic restrictions

on parallet prog.rams. The reason for this is that we will be studying a rather

specific type of parnllel computation: systems of a fixed number of sequ.ential,

deterministic processes, which communicate via shared global variables, and

synchronize with semaphore operations. This restricted class of parallel programs

wiU be caMed systems of processes. Before giving the definition, though,. some

motivational discussion win be .helpful.

A system of N pmoesses will be a paraltel program whose graph consists of N

disconnected subg.rap.hs. Th.e ith subgraph is caUed the graph for process i. In any

reachable state, there wiU be eJllacdy one token on the graph for process i1 modeling

the position of the instruction counter for the ith process. To ensure that any

reachab1.e state has a meaningful configuration of tokens, we require that in · the

- 23 -

do counl:"1

hen · ue ,when c.ount=3 do v.ar!->..,ar+l

l·igure 2.1 • Exarnple of a Parallel Program

- 24, .,

initial state q1 there be exactly on tok,en in the g,raph for ,each pr,ocess,. and that

each transition h~ve ,exactly on.e input place and one output place. This means tha ·

firing a transition preserves the total number of tokens in the graph. Since graphs

for distinct processes are disconnected, tokens cannot '' cross over" from one process

to another., and hence firing transitions preserves the single token in the graph t:or

each pr,ocess as welt

The r,estriction-s outlined so far ensure that a system of proc~ accurately

models a coUection of N concurrently-executing se{lueotial processes. Since we are

interested in deterministic processes, we would also like to exclude the situation in

vhich a process has more hao on t ansition enabted in a g,iven state. We wiU

th refon? require that for any plaoe p, the enabling predicates for transitions in

outp11t(p) be pairwise disjoint. We will make one minor exception in the definition

of blocked-set V operations below.

·we .also require of a sys em of processes that tbe set of variables be partitioned

into three subsets: a set 0£ fo.u,J 'Variables, a set of gfobt1I variables, and a s·et of

synchronization •ariables. The set ,of local variab es is furthe.r partitioned into N

subsets with t.he ith subset caUed the set of local variables for process i. Transitions

in process j may not depend on or affect local variables for process i, if j :Ji i.

Global variables may be depended on and affected by transitions in any process,

ho "ever, a single transition may depend on or affect, but not both, at most one

global variable. Th.is models processes that access shared variables with indivisible

f: tch and stor,e operations. It is convenient, and results in no loss of generality, to

assume that the sets of local variabtes for any two processes are in one-to-one

correspondence.

- 25 -

Certain S\1 bgra ph.s of a system of processes will be identified as modeling

semaphore operations.

Definition 2.5 Let r be a p•araHel pr,ogram, and let i be a subgraph of

OCr, We will call :E a 1emaphore operation o.n the variable s ff the

following ho d:

(I) ~ has one of the forms shown in F ig,ure 2 .2 or Figur,e 2. 3. The

subgraph iE: wiU be ,caHed a weak/blocked-set, binary/general,

P /V ,operatfon.t depending upon which graph it maitches. The

subgraph E will then have a distinguished place,, called the input

place, as indicated in the figu l'les.

(2) Connections with the r,est of the graph S:r are made such that an
arcs from ,out:side i into 2 must terminate at tlte input place in E.

There must be no arcs from inside E out except f:or those shown

in. the fig 1re, and there must be a unique plaoe not in S, at which

aU arcs from inside i out terminate.

Note that while transition labels in weak P(s) and V(1) operations menti.on

only the semaphore variabte s, blocked-set. operations make use of two additional

:rclzedufing variables., whose names are formed by adjoining _en and _bl to the name

of the semaphore variabfo; in this ca:se to1 form "'s_en" and n,-b·/1.. The semapho.re

variable s is a natural number variable" whereas s_en and $_bl are set variables. We

prohibit any transition that is not in a semaphore operation from .affecting or

depending on semaphore or scheduling variables.

Note that within the graphs for blocked•set semaphore operations, reference is

made to he process number i. It is important to ree-ognize that ; does not rep.resent

a paraUel pro.gram variable; it only serves to indicate that the labels of transitions o,f

- 26

BINARY G-ENEilAL

"input p]ace" "input place"

P OPERATION ? wli•• .00 do •""·

input -place'' ''input place1'

YOPERATION dos,. -

Figure 2.2 ~ ,vcak Semaphore Operations

POPERATION

whe.os>O
.lo S::-'S- 1

OENERAL
V OPERATION~

when s..bl";
do s:-·+1

- 27 -

•.

''input place"

wbeo s=O
do lt..hl:-s.J,lU{iJ

"blticked i,laoe"

when i{s_en
do s_e11:~..$n-{i}

"input pla:oe"

when 1€s..hl
do (sJ,J, s__enp

1(s.J,i-{l}, s_e.nU{l})

wlten .2.ts....bJ
do {s..hlr &_Clih""

• (s_bI-{2}, s_enU{2})

.

• wlieo TEs....hl
do (s.....hl, s_c.n}:"'

(s_hl-{N}1 s..e.n!J{N})

Figure 2.3 BJothd· 'et Sl' maphore Operations

28 -

a blocked-set semaphore operation in process 3, for example, must contain the

1 umer.:d 'J," in positions where 1
, .. is used in Figure 2.l The pmcess number is used

for sch duJing purposes w.ithin blocked-set senmphore operations; this is discussed in

Jnore detaU below.

The synchronization effect or the P and V operations is obtained through the

possibility that a process whose token is at a place within a P' operation may have

no enabled transHions in a given state, and be forced to wait. We wish to, require

that this type of waiting onfy occur wi hie semaphore operations; the.refore we

stipulate that if a place p is not within a semaphore operationf the disjunction of the

enabling predicates of transitions in output(p) must be identically true.

The above discussion is sumrnariied in th.e following definition:

Defi'Pition 2 •. 6 - A system of N processes is a parallel program r that

sati,sfies tbe following restrictions:

(1) The graph :S:r consists of N disconnected .subgraphs

oc; = <a,f,, 3f, a,;), ... , s:; == (<f'r, ~. <Jf), where oc; is

caHed the gr:aph for process i.

2) For each i, l < i < N, the set IJ>f contains a distinguished place

p, called he start place for process i,, such that qjp) = 1. and
I

q ,(.p') = 0 for alf p' E CP'r with p' ~ p.

(3) If f is a transitiont hen input(t) and ouJput(t) contain exactly one

place eac.h.

(4) "1,· = ~ + Sr + Sr, whe11e ~ is the set of local variables1

Sr is the set of global rariab·les, and 3i, is the set of

synchronization variables. (The symbol n+~• denotes disjoint

union . .) The set of synchronization variables is partitio.ned into

the set of semaphore 11ariables. a.ad the set of scheduling variables.

- 29 ~

Th p_ . ' . d . p!_ P!!. h p_!_ e set -r JS partitmne mto N subs,ets~ --r, ... t -r• w · ere -r
is called the set of local' variables for proces.s i. There is a

i . -
one-to-one ,correspondence between £i,i and £r for all i a.nd j.

(5) Either all semaphore ,opera ,ions in OCr ar,e weak, or all are

bock d-set in which case we say that r has weak or blocked-set

semaphores respectiviely. The process number referred to within

each Mocked-set semaphore operation must match that of the

process in ,,hose graph the semaphore operation appears.. If r has

weak semaphores, then r bas no scheduling variabtes. If r has

blocked~set semaphorest then corresponding to each semaphore

variable s, are two scheduling variables, s_en and s~bl. Both s-:en

and Y_bl are set variables with: initial value 0.

(6) Ir I e 3{. then r must neither depend on nor affect any variable

in ~, for all j # i. If t is not part of a semaphore operation,

then t must neither depend on nor aft:ect any synchronization

variab]es. Also, either: (a) no global variables are affected ,or

depended on by I; (b) t depends on a single global variable, but

affects no g1oba] variables· or (c) r affects a single global variable,.

but depends on no g]obal variables.

(7) If p is a place not in a semaphore operation,, and :if output{p) =
Ir 1, ... , 1,Jt with k > O, then the conesponding enabling

predicates B, , ... , B1 are pairwise disjoint, and B1 v ... v B 1 is
I I I I

identically rue.

\Ve wiU use su erscri pts when it is ne-0ess:uy to explici·tly indicate the correspondence

b twe,en the se s ~ and ~ . menti,oned in condition (4) above. Thus, ir ./ e ,£f,
then ~ denotes he corresponding iiariable in~-

2.3 Ho,w the Se aphore Oper.aUons Werk

In this section we will discuss the way in which the graphs of Figure 2.2 and

Figure 2.3 model weak and b!ocked·set semaphore operations.

2.3. l Weak Semaphores

Figure· 2.2 sbm'lS the graphs for weak binary and weak genera] P and V'

operations on a semaphore variable s. A process whose token ani¥es at the input

place for a weak binary or weak genelia.l P operation must wait until a state is

reached in which the value of s is gr,eater than zem. When this occu.rs, the

transifon for the P operation may fire, decrementing the variable s. A process

arriv.ing at the input place for a weak V ,operation may proceed w.ithout waiting;

causing s to be set to one in the case of a weak binary V operation, or incremented

in th case of a weak general V operation. ote that there is no queueing. or

priority mechanism included in th weak semaphore operations. In particular, a

pro<:es-s arri. ing at the input place for a weak P operation reoeives no guarantees

about how many processes will complete P operations on the same semaphore

Yariable ahead of it.

This definition seems to capture he important properties of the informal

definitions of weak semaphores gi\,en in Chapter i. The most important of these is

the fact that a process performing a V(s) operation does no,t immediately cause a

waiting process to, complete a P(s).

2.3.2 Bfocked-Set Semaphores

The graphs, shown in Figure 2.3, for binary and general blocke-cad-set P and V

operations on a semapho.re .r, differ from the corresponding graphs for weak

semaphores in .several important respects. In addition to the semapho,e variable s,

the graphs for the blocked-set operations .refor to, tbe scheduling variables s_en and

s_bl. The variable .1_en is a set variable that represents the set of enabled processes

for the semaphore st and the variable s_bl is a set variable. that .represents the set of

processes blocked for s.

If the to ·en for process i i:s at. the input place for a blocked-set P(s) operation,

one ,of two things can happen, depending upon the value of s. If s is greater than

z o~ the blocked-set P completes exactly as in the case of the weak P ,operation. by

dec.r,ementing the armable s. However, if the value of s is zero, process i in.serts its

process number into the blocked set s_bJ, and the token for process i ad\1anoes to the

blocked place. Process i may not proceed until some other process performing a V (s)

has transferred the p,rocess number i from s_bl to s_en. When this occurs, process i

may remove the number i from s_en and proceed.

A process at the input place for a blocked-set V operation will do one of two

things depending upon "hether or not s_bl is emp,ty. If s_bl is empty, s is set to

one in the case of a binary V operation, or increanented in the case of a general V

operation. If s"""bl is not empty, some process number j is selected

nondeterministically from s_bf, and is transferred to s~en. This has the effect of

enabHng the blocked prnce.ss j. The nondeterm·nistic selection ·s modeled by the N

transitions lab led "when j e s_b! do (s_bf, s_en) := (s_b/, { j J, .r_ent.J{ j D , for

1 :5: j < N; more than one of whkh may be enabled in any given. state, depending

upon the contents of s_bl. Note that this is ·the on y exception we wm make to our

requirement that no proce have more than one transition enabled i.n any state.

This definition of semaphores d"stjn,guishes blocked pr,ocessest whose tok,ens are

at the blocked p]ace in some P ,operation, from processes that are- not blocked. A V'

operation gi es blocked process.es priority over o, her processes, howeve.r mo further

dtstinction fa made among blocked proces-ses.

2 4 Mutual Exdusion Systems

We wish to use the system o.f processes model in our discussion of mutuat

exclusion. · ot all sys.terns of processes model a co1lection of processes, attempting to

achieve mutual exc]usion of critical regions· therefore we must impose some further

r,estnctions on systems of processes. Sys.terns in the resulting ,class will be called

mutual exclusion systems. It wm then be possible to formalize the notions of mutual

e.tcluslon, absence of indefinite postponement, freedom from deadlock,, and freedom

from star,mion1 as properties I desirable•• for a solution to the starvation@free mutual

exclusion probt,em. In fact:. we wiU define such a solution to be a mutual exclusion

system with these de.sir a hie proper ies.

Let us first see what are the important ,concepts to capture in the definition of

a mutual exclusion system. H is typical, in the literature,. to pr·esent a. solution to the

mutual exc1usion problem as shown in Figure 2.4, where a program to be executed

by process i is displayed. This particular solution at ributed by DiJkstra to Joseph

M. Morris, is interesting in its own right,. and will be discussed in detail in

Chapter 4.

In the program of Figure 2.4, process i ex.ecutes in an infinite cycle" first

performing smne computation in tbe 1 noncriticai .regfon°, and then maniplllating

some ,·ariables and semaphores in th "trying re,gion• .. These manipulations

culminate in the entrance of the process into he 'critical region11
• After completing

execution in the crjfcal region, more manipulation of variables and semaphores is

performed in the "leaving region , and the process returns to the noncritical region

to complete the cycle. It is access to, the critica1 region that is being controlled by

the "synchronization code' in the trying and leaving r,egion. In th.is solution, waiting

for other processes occurs only ia the trying regioni however it is possible to imagine

solutions in which a process might wait in the leaving region as wen.

- 33 -

blocked~set general semaphore a, b, m initially l, 11 0::

global countl,, count2, initially O, O;

(Program Executed by Pr,ocess 1)

loop. <noncri tfcal region>
P(b);

(trying region)

count}:.= countJ + l;
V(b);

P(a)-

P(b)i.

co,.mll e:ount2 ·= count! - I, c-ount2 + 1
if count I > 0 then begin

V(b);

V(a)
end1 else begin

V(b);

V(.m)

end;

P(m);

<critical regiolf>

countl := coum2 - 1·
(lea11ing region) if count2 > 0 then V(m) ,else V(a);

goto loop;

Figure 2. 4 - Typical Presentation of a Solution to the MYtual EJ!clusion. Problem

- 34 -

Th speci£ic computations performed in the critical and noncritical regions are

irrele\rant as long as they do not "interfere1
' with the synchronization protocols of

the trying and leaving regions. However, it is usually assumed that c.ritical regions

always terminate. although his is not required of noncritical regions. The program

of Figure 2.4 ,can be considered a Hsolution11 to the starvation-free mutual e:xdusion

problem only i£ it works "conecdy•i, regardless of tb.e order in which processes

terminate their noncritical regions.

We wiU attempt to capture tb.ese ideas as follows: A mutual exclusion system

will be a system of ,c 1clic processes. Since the specific computati.on performed in the

critical and noncritical regions. is irrelevant, these regio1ns may be r,epresented in the

mutual exclusion system by single places. We therefore require that each. process

have two distinguished places, called the critical place and the n,oncritical plac:e. The

remaining places in the graph are partitioned into the frying regif,,n and the leaving

regfon. Connections, are made so that within a process, contlol always nows from

the noncriticai pi.ace to he trying region, to the criticai place, to the leaving region7

and back to the noncritical p]ace, in that order. It is convenient to require that each

process begin execution with its token at the noncritical place.

For technical r,easons., it is convenie.nt to require hat the connection between

the noncritical p.lace and the t rying region be made with a sinule transition, whose

enabling predi.cate is identicaUy true, and which affetts no variables. We a.Isa

require. that the connection between the critical place and th.e leaving region be

made with a similar transition.. As a result of these requirements, the graph for

process i in a mutual ex:clusfon .system will have the form shown in Figure 2.5. The

place NCP'_i is the noncdtic-al place for process i, CP _; is the critical place, and

NCT_i and CT _i are the single transitions connecting the noncritical place with the

trying regio.n, and the criticaJ pla~e wi h the leaving region. respectively. Let us

s ummar-ize the reguiremen ts we h av made so far.

Definition l. 7 A mutual exclusion syst'em of N procuses is a system of

N processes,. where the graph for process i has the form shown. in Figure 2.5

for 1 < i < N. As de pkted in Figure 2.:5, process r h.as two distinguished

place-S, NCP _i and CP J, caUed the noncri,ical place and critical place,

respecti\•ely. The. remainder of the graph for process i is divided into, the

trying region. the leawng regio,n and two distinguished transitions NCT _; and

CT _i, that connect the noncritical place with the trying region, and th:e

c.rititai place with the]eaving regiont respectively. We requi11e that the

start place in each process be the pla~ NCP _i.

If q is a state and q(CP _1) = I, then we say that process :i is in the critical

region in sta e q. Similarly, we say that process i is in the noncritical region in state

q if q(NCP _,) = 1. If there is a place pin the tryi.ng region (resp. leaving r,egion)

for process i such thait q(p) = 1 then we say that process i is fn the trying region

(resp,. in the /e(IJling region) in state q.

Not a l execution sequences or a syste n of processes can be regarded as

modeling the execution of t•real0 processes. In particular1 we are only interested in

execution sequences that sansfy the so-caHed flnlte defqy property. Th · fmi,te delay

property requires that one process in a system must not run infinitely slower tlilan

another (fair scheduling), and appears to be necessary for any discussion of

stan ation-free s nduon'zation. This property is mentioned by name iD (KELLE76],

[K WONG78 [MILLE17J~ and used i.n the definition of an "admissibl.e schedule 1 in

[BURN 79 . The finite dela property will be incorporated into 011.u model, as part

of the notion of a nvalid 11 ,execution sequence.

- 36 -

"stal"'t 1>laco"

when true

when t:rue

Figure 1.5 - Gr, ph for a Process jn a !vfotua] Exclusion System

Definition 2. 8 - Let a ·= tot 1 ... be an execution sequence for a mutual

exclusion system ,of N [PtOOesses, and suppose that 'l(fl 1 ... is the

corresponding state sequence. Then_ « is valid if it is finite, or for aU i,

l < i < N. either

(1) for infinitely many "j > 0, tj is a trans·tion for process i; or

(2) for infinitely many j > 0, process i is not enabled in state 'lj; or

(3) the re exists k > 0 such that for a U j >-. ~ process i is in the

noncritical region in state qi
We wiU say that a state sequence is valid if it is the state sequence

correspondjng to a va id execution ooquenoe.

Stated ano her · ay, for an infinite ex cution se-quence to be validt there can be

no, process m either the try·ng, cri ·cal ,or leaving region, which is enabled for

infinitel man consecuti,e states, but fires no transiti.ons. One implication of this is

that a process , hose token is at the input pface for a weak P operation can starve if

there , re infinitely many states in which the Yalue of the semaphor is zero.

Another version of the finite delay pr,operty,, which requires that a process fire

transitions even if that process is only enabled infinitely often, is discussed in

[K WO 078], Kwong shows hat if this stronger version of the fin"te delay property

is adopted then the possibility of starvation is eliminated in many situations. F,or

example a process at the ioput place for a weak P' operation would always be

required e,·entua ly to complete the P operation unless the valu.e of the semaphore

variable ,,..•ere .zero for infinitely many consecuti e s,tates. This means that

starvation~free mu ual exclusion could be trivially implemented with weak

semaphores. Since this does not aceur.ate)y mode] the .intuiti •e properties of weak

semaphores discussed in Chapter 1, we reject this version -of the finite delay property.

- 38 -

2.5 Solution·s to the Starvation-Free Mutua.l Exclusion Problem

Our definition of starvation-free mutuai ,exdusio.n wm be complete once we

have formalized the properties "desirable11 for a s:o[ution to the mutual exclusion

pr,oble.m. The most important such property is the mutual exdusion propert,.

Definition 2. 9' • A mutual ,exdusion system has the mutual exclusion

property if ther,e is no reachable state q. such that more than one process is,

in he critical region in state q.

A solution to the mu ual exclusion problem woufd be of no use if it .allowed

the possibility of dead/eek, which may be defined as follows:

Definition 2.10 - Process i in a mutua:l exclusi:on system fa deadlocked in

a state q, if process f is in the trying o.r lea ing region in state q, and there

is no finite execution sequence at consisting only of transitions for processes

in the trying region, critical region, or leaving region, such that proce-Ss i is

not in the trying or leaving region in s ,ate nxt(q, «). A mutual exclusion

system is deadlock-free if no proc-ess is deadlocked in aoy reachable state.

In the preceding definition, to show that a process i in the trying or leaving

re.gion is not deadlocked in a given s.tate,, it is sufficient to construct a finite

execution sequence from that state which moves process i into the critical region or

noncritical region. The requirement that this e1:ecution sequence consist onJy of

transitions for processes in he trying region, critical region, or leaving region is a

consequence of our intuition that whether or not process ,; is deadlocked should not

depend upon ,.vhether a parfcular process j 7'- i decides to leave the noncritical

region at any given time.

39 -

Dijkstra [DIJKS66J requires, of a solution to the mutual exdusion pr,oblem that

"If t.vo processes are about to enter their critical regions, it must be impossible to

devise for them such finite speeds, that the decision wh"ch one of the two is the first

to enter its critical region is postponed to eternity." This, :statement implies that the

system is free of a certain type of stanra tion. We wm require that any solutio,n to

the mutual exdusjon prob em have a somewhat stronger versio.n o,f this property,

stated below. At thou gb ·it seems r,easonable to require th at this property hold, it will

not be needed for any of the resu its proved in th is thesis.

Definition 2.11 - A mutual exclusion syst,em is free from indefinite

pos1poneme,nt if here is no valid infinite state se-quence. 9(11 J ... , with f/0 =
q1 , such that for soime k and all j > k no process is in the critical region in

state qi

The properties of mutual exclusion, freedom from d adlock, a'Od freedom from

indefinite postponement will be required for all solutions to the mutual exclusion

problem. The additional proper-ty or freedom from starl'alion will be required for a

solution to the stana1ion-Jree mu uaJ ,exclusion probl.em. The diff, rence between

freedom from indefinite postponement and freedom from starvation is that the

former apphe.s to infinite execution sequences in which, after a certatn point, no

processes are in the critical r,egion, whereas the :latter is oonc-emed with situations

wher,e a process remains fore"er in the trying or leaving regjon, while other processes

execute infinitely' many critical regions.

Definition 2.12 - A mutual exclusion system is star~ation-free if there is•

no vand infinite state sequence q,(111 ... , with tf O' - q1, having the foUowing

properties:

(I) There is a process, i such that Cor aH k ~ 0,, th.ere is a. m ~ k and

- 40 -

n > k with process, i in the critical region in state qm and process

i not in the critccal region .in state. q n·

(2) There is a process i' and a k' ~ 0 such that for all j ;:: k',

process i' is in the trying, or leaving region in state qi .

We may now define the term "solu ·oo to the (starvation-free) mutual

exclusion probtem 11
•

Definition 2.13 - A solution to l'he mutual exclusion problem for N

proces'Ses is a mutual exclusion system of N processes that has the mutual

exclusion property, is deadlock•free, and is fr,ee from indefinite

postpoo.ement. A solution to 1he stantation-free mutual exclusion problem is

a solution to the mutual exclusion problem that ·s starv,ation.-free.

2.6 Concluslon

In this ,chapter, paraUel programs we.re introduced as a rather general model of

paraUel ,computation. A subclass of pairal el programs,, caned "systems ,or processes"

was defined and we saw how the various types of semaphores could be modeled.

Certain systems of processes, called 'mutual exclusion sys,tems", were identmfled, and

it was s,een that mutual exclusion systems model the important aspects of a system of

proce:sse.s ,competing for access to cr1tical regions. Fin.ally, we were able to use the

model to precisely define a 'solufon to the (starvatfon.free) mutual •exclusion

problem". In the ned chapter we wiU use these definitions in our investigation of

the r,el.ationship be.tweeen sem,apho.re primitives and starvation-free mutual exclusion.

- 41 -

3. Semaphore Primitives and Starvation Fr,ee. Mutual Exclusion

,vith the definitions of the previous chapter behind us, we may now proceed to

the main task of his hesis: the investigation of he starvation properties of the

various types of semaphores. The kind ,of question we w'H be attempting to answer

is, "Can we soJve the starvation-free mutual exdusion problem, using a particular

typ_ of .semaphores?'' Let us quaiify this somewha , by noting that. it is trivial to,

produc a solution to the starvation-free mutual e~clusion proMem for N < 2

processes; therefore we assume throughout this chapter that N ;=:: 2. With this

quahfica ton in mind, we discover almost immediately that it is poosibfe to solve the

· starvatfon~free mu ua) exclusion problem w'thout us·ng semaphores at all. The .
solution that illustrates this is due to Knuth [KNUTH66] and wm be discussed in

the next secHon. If we ar to obtain any interesting information about the 'power"

of binar and ge11eral, weak and blocked•set semaphores with r,espeet to their ability

to sohe he s arvation-free mutual ,e~clusion problem, then it appears that we must

modify o,ur ques ion somewhat.

Knuth s semaphore-free solution to the starvation-free mutual exclusion

problem has two properties tha • might be deemed '1undesirabt if found in so,lutions

using semaphores. We will term these two properties busy-waiting and asymmerry.

Knuth"s solution has busy-waiting because processes synchronize by looping and

esdng shared variables rather than by becoming blocked. The solution is

asymme ric because the program text executed by each process in the system

- 42 -

depends explicidy on he process number. That is, the pragrams ex,ecut.ed by the

p.liocesses are not textually ide111f cal1. as is usu.ally the case in solutions that use

semaphoJies. Note that the noHon of symmetry intended here is qu·te strong.

Precise definitions of busy-waiting .and symmetry wiU be given fat.er in this chapter.

We wiH restrict our attention. to symmetric m.utual e.1clusion systems, and mutual

exclusion systems with no busy•waitiag. We will show that there are no

semaphore-free symmetric solutions , and no semaphore-free so1utions ·without

busy- iYaiting. Furthermore, under tb.ese res:tricfons, differ,enoes in the · power" of

the different kinds of semaphores will also become .apparent.

The results proved in this chapter will be so-caHed "'.negative:" results w.hich

assert that ,certain dasses of mutual e1dus·on systems contain no solutions to the

stanation-free mutual exdusion problem. In Chapter 4,. solutions wm be exhibited in

support of complementary "positive results, which assert the existence of solutions in

certain classes. The combination of negative and positi.ve results will give us a

somewhat clearer picture of the difterences between the types of semaphores.

This chapter is organized as foUows: After briefly examining Knuth's

semaphore-free solution in th.e nex section, we \viU procee.d to the precise definition

of symmetry and busy-waiting. A third property, no memorp will also b defined.

The assumption or 11
00 memory" is natural in conjunction with the assumption of

·symmetry. FoUol ing the definitions wiH be a s.ummary of t:h.e results of this chapter

and the next. The remai11der of this chapter will consist or the precise statement

and proof of the negative r,esults

- 43 -

3.1 A Semaphore-Free Solution

Knuth's semaphore-free solution to the starvation free mutual exclusion

problem is d ispla •ed in Figure 3.1. It should be noted at this point that for purposes

of understandabiHty and compactness of presentation, any mutual 1exclusio.n system

we discuss \,·iU . e present,ed in an algontb.mic notation simdar to that of Figure 3.1.

The reason ,,~e need the graphical notation of par.aUel programs at aH is because our

discussion wiU most often be at the level of single 1'atomk" state changes, and it is

quite con 'enient o associate thes,e state changes with the transitions of a parallel

prog.ram . I; should be a straightforward task for the reader to translate a mutual

e:xchsion s ·stem presented in an algorithmic notation to the corresponding graphical

form. \Vhern performing such a transfafon care should be taken to be sure that

each tr nsition depends on or affects at most one gfohal variable. ote also that

:llthough the program of Figure 3.1 u&es a global array variable control, we have no

provision for army variables in the paraUel program model. The N:..slot array control

nust therefore be replaced with N global variables, for example c,ontrol_J,

conrrof_2 ... , confrol_N. The locat variable j in Figure 3.l may be. eliminated by

"unwinding' the loops.

For o, ir purposes, the salient features of Knuth's sofotion are: (I) it has

busy-w.aiting since a process waits by looping in the trying region, and repeatedly

,examining the .array control· and (2) it is asymmetric, since the. program text

executed by process r makes expHcit referenoe to the process number i.

3,2 Restricted Classes of Mutual Exclusion Systems

We now urn to th prec~e definition of busy-waiting, symmetry, and n.o

memory.

~ 44 -

global .array oontr:o~b¥:) initlally 0.
global k initially li

(Program Executed by .Prooess t)

lot:al j

.loop. <noncrltical regiolf>

LO-. contro41] := l;
LI: for j :.= k step -1 untd 1, N step •l ·u tlJ I do

begin af j = i then R•oto £2.
if cont.,ml,] ~ 0 then aoto LJ

end;

L2: cont.roi[t] := 2;

for j := N step -I unUI 1 do
if U :/, 1) A (contro.,f;] = .2) then goto LO;

<crWcal regio.n>
k := if i = 1 then N ,else i - 1 i
contro~1] := 0;
goto loop-.

Figure 3.1 .. Knuth's Solution to the Starvation-Free Mutual Exc.lusion Problem

- 45 -

3.2.1 Busy-Wa1tinR

As mentioned abo,ve, .any solution to the mutual e.xclusion problem that has no

semaphore operations must 1se busy .. waiting to achieve synchronization. This is not

difficult to pro ·e, and we , m do so presentlyt however we must first have a predse

defi 'llition of 'busy-waiting". The characteristic feature of a solution that uses

busy-waiting is that no a priori bound may be ptaced on the amount of computation

that a. process may perform in the trying or leaving region. We attempt to cap,tur,e

this intution in the foUowing:

Definition 3.1 ~ A mutual exclusion system ha,s bu:ry waiting if for any

'1 > 0,. ther is a process i,, numbers m and n; and an initial execution

sequence , ot 1 ... , with corresponding tate sequence f(/11 ... , such that:

(1) For aU j wi h m < j < n. process i is in the trying or leaving

region in state qi
(2) The number of 'm' 'm+I' ... t In that are transitions for process i

is at teast Jff.

Let NBJ¥ be the class of aU mutual exdusio,n systems that do not have

busy- :vaifng. Sine one of the r~asons semaphores were introduced is to avoid the

waste of processor thne that is associated with busy~waiting, restricting our attention

to solutions in .NJJW seems lik,e a reasonable thing to do.

3.2.2 Symmetnc Solutions

Another benefit of using semaphores to solve the .mutual exclusion problem is

that we obt:1in he ability to produce symmetric soiutions. The notion of symm try

,,,.e are concerned with l.ere is that of exact textual identity of program text when

this text is presented in an a]gorithmic fashion as in. Figur,e JJ. It is possible to

1magme eaker notions of symmetry, under which Knuth's program would be

- 46 •

r,egarded as symmetric. An example of such a weaker notion would be to regard a

_pmgram as s mmetric if given the process number i, it is possible to compute the

program text to be executed b~.r process i.

Finding an apprnpr'ate definition of symmetry ·s somewhat complicated by the

fact that although the motivatioa for the definition comes from comparing the

algorithm·c presentation ,of tbe prog,ram text for 1each process,, we must make th,e

defin;tion ·n terms of the graphic.a) notation of mutual exclusion. systems. In th.e

a]gorithmk notation, the queueing discipline of the semaphore operations is not made

exp)icit and here.fore it is reasonab e to defme symmetric mutual exclusion systems

to be those in which the code fo1r all process s is textua ly id(lntical. In the graphical

not:ttion hm ev,er the use of the process number within blocked-set semaphore

opemtioi ,s is explicit, and herefore it is not possible for the ,graphs of tY.'O different

processes including the labels of the transitions, to be identical, as long, as

blocked-set semaphore operations are in use. We do not wish to conside.r a mutual

exclusion system as asymmetric if the only difference between processes is the

process number used for queueing purposes within biocked«set semaphore ,operations.

Another reason why the definition cannot be made in this, way is that whereas

transitions in process i refer to one set of local variables, the transitions in process j

refer to another. We do not wish to consider the system asymmetric if the only

difference bet 'e n processes i and j is that wherever process i refers to the loca]

variable ./, process j refers to · he corresponding local \'aliiable pi_

On the other hand, the definition of a symmetric mutual exclusion system must

inclt1de the pro iso that th.e local variables of one p1rocess hav, · the same values in

the initial state as the local. variables of any other process. If this were not the case,

then in the initial state, the local variables of each proce.ss could encode a process
0 identity". This identity could then be used by a process to select between different

synchronization pro ocols. Thus, although the solution would be superf1ciaDy

symmetric in es&ence it w,ou)d be asymmetric. These ideas are i.ncorpo.rated into the

following definitions:

Def"nition 3.2 - Processes i and j in a mutual exclusion system r are

structurally identical ff there is a graph isomorphism from OCf to trf that

preserves the pritica1 place the noncritical place, and sema.phore operations.

'\Ve wi l indicate corresponding places and transitions in structurally identical

processes b following a notatmnaJ convention in which the process numbers are used

as superscripts to the variables denoting the piaoes and transitions.. Thus, if r/ and r'
denote a pace and transi 'on in process {, then pf 211nd ti denote the corresponding

place and transition in the structura ly identical process j.

It is convenient to define when two states "look th same' to, some process fo

a mutual exclusion system. Informally, this oceurs when the token for the process is

at the same place in its graph in both states, and all global variab es and variables

local to the process have the same values in on state as they do in the other.

Related to he concept of wo states •looking alike11 to a single process is the notion

of a s·ngle state hat "looks arke" to structur.aUy identical pr,ooesses in a system.

The foUowing definition captures bo h of these ideas.

Definition 3 .• 3 - Suppose processes i and j in a mutual exclusion system r
are structurally identic.al. If q and q' af'e states, then we say tha.t q looks

to process las q' looks to precess j (written q rJ q') if:

(l) For a ' p' e <Pf, q(/) = q'(jl)

(2) For au "e Sr q(F) = q'(p)

(J) For an ~ e ~t q(v') = q'(.J)

- 48

If q ,:1 q, then we say that state q looks alike to pracases ; and). If

,q ,? 1 q' then we uy q looks like q' to process i.

Note that for any processes i, j. and k, and states q, q\ and q":

(1) qr, q

(2) q ,J q' .ff q' JI q

(3) If q r1 q' and q' ,,. q" then q IA q"

Two structurally identicaJ processes i and j wiU be s.aid. to be similar if each

transition r" in process i has the same effect" as the corresponding transition ,, in

process j. If I and ti are both transitions in a semaphore opera tioo, then "same

effect" is defined by condition (1) of Definition l.4 below. Condition (l) states that

the only difference between the labels of I and rJ ·s that wherever f refers to the

process number i, transition tl r,efers to the prooess number j. Condition (2) defines,

'same effect'' i£ I and ti are not part or semaphore operations,. and states that the

two transitions must' have similar 1effects when fired from states that look the same.

Note that similarity of pr~es is an equi alence relation.

Definition 3.4 - Two structurally identical processes i and j in a mutual

exclusion s stem r are similar if for each. pair ,' e :S:. and ti e 3f- of

corresponding transitions ei.ther:

O Both I and ti are part of semaphore operations, and there exist

functions B: N X t1r --> (true, falsej and F: X Gr ->

(1Jr --> VAL) suc.h that for an states. q:·

(a) B1{q) = B{i. q)

(b) BrJ(q) = B(j, q)

(c) Ff1q) = F(i, q)

(d) F1;(q) = FU q)

or (2) Nei.tber I nor ti is part of a semapho~ operation, and for an

states q and q' such that q 11 q':

(a) B1{q) = B,J(q)

(b) (Fr1tq))(v) = (F,;(q"))(l-1) for aH VE Sr
(c) (F1,1q))(vi) - (F,1(q'))(v') for aH ~ ,e ~

The foUmving lemma is the basic property of similar processes, epon which we

wiU bas,e most of the results of this chapter.

Lemma 3.5 - Suppose processes ; and j are simHar processes in a mutual

exc1usion system r. Let f be a transition. for process i,, n.ot part or a

semaphore operation, and suppose that q and q' are states such. that q r 1

q '. If t is enabled in state q then t1 is nabted in state q ·, aad

nxt(q, f) r; nxt(q' tJ).

Proef - Suppose r' is enabled in state q. This means that the token for process i is

on the input place for transition l in state q. By the fact that q ,J q'• ,and since

processes i and j are simiiar, and hem::e hav.e isomorphic graphs, we krmw that the

token for process j must be on the input place for transition ti in state q'. By

Definition 1.4 we know that B,{q) = B,i(q'), and hence transition 1J is enabled in

state q' . Using Definition 2.2 and the fact that processes i and j have isomorphic

graphs we have that

(I) (n.xt(q, i))(/) = (nxl(q'~ ti))(I) for all 1l e cv;
In addition Definition 3 .4 i mpHes that

(2) (nxt(q, ri))(v) = (nxt(,q', tj))(P) for a1l e S'r
(3) (nxl(q, r)(v') = (nxt(q', /f))(v') for aU "e ~

Hence nxt(q, I) ti nxt(q', 11).

Derinltion 3.6 - A mutual exclusion system is symmelric ·if for every two,

processes i and j.

(l) Processes i and j are shnilar

(2) q, iJ "11

W,e wrn denote the class of all symmetric mutual t:tt,lusfon systems by SYM.

3~2~3 No Memo,ry

We will se-e in Chapter 4 (Example 4J) th.at restricting our attention to

NBIY n SYl•f gives us no more resolu ion of the differences between. the types ,of

semaphores than if we examine the larger class NOW. The reason for this. which is

the central idea behind Example 4.3 is that any asymmetric solution to, the

star ·ation-fre.e mutual exclusion problem in NBW may be used to construct a

symmetric solution that is also in NBW. This construction requires the introduction

of an additional semaphore variable, and an additional local variable. in each prooes-s.

Proce,5ses use the additional local variable to remembe[" information about their

synchronization history wbile they are in the noncritical r;egion. We will say that .a

mutual exclusion that does not use local variables in_ this way bas no memory· and use:

NM to denote the class of atl such systems. The precise definition of "no memory'1

may be gh1en as foHows:

Definition 3.7 - A mutuali exclusion system _r has no memory if for each

process ;, local variable for process i and reachable state q such that

process ; is in the noncr·tical region in state q, q(11,1) = qf.v).

That is to say, wbenever a process is in the noncritical region. its local variables have

the same alues as they do in the initial state q,. It is obvious that this implies that

the local \lariables cannot be used to "remember' information about past

synchronization history.

- .51 -

Although there is no apparent reason why having no, memory is a property of

particuiarl ugood" solutions to the mutual exclusion problem, it is pointed o,ut in

[BU~N'S19] that practically all solutions t-o the mutual exclusion problem in the

literature have this property. "e win see later on that within the dass SYM n NM,

weak b'nary semaphor,es are strictly "weaker than blocked-set binary semaphores ,

when their abjiity to implement starvatio.n-friee mutual exclusion is compared.

. ote that it is .not in:teres · ng to· impose th requi r,ement of no memory· unless

we also require symmetrk solu fons. This is because, in the absence o.f the

assumption of symmetric solutions global variables may be llsed to 'simulateu th.e

effect of local variables,, by assigning each process some "private" global variables.

N"hich it alone can aocess. .State information Jocal to each process may then be

stored ·a these ariables. The requirement of symmetric solutions prohibits private

global .adables, since each process in a symmetric solution must access global

variables in the same way as .any other process.

3.3 Summary of Results

The results of this tbes·s ar,e summarized below:

(I) If no r,estrictions are placed on the set of mutual. exclusion systems allowed

as solufons, then the starvation·free mut,ual exclusion prob1em can be

solved without semaphores (Section 3.1).

(2) There. are .no semapho,re-free solutions to the mutual 1e11clusioo problem in

either SYln or NBW (Theorems 3.8 and 3.12 . That is,, requiring solutions

either to be symmetric ,or to have no busy-•waiting is sufficient to eliminate

semaphore~free solutions.

(3) There exists a solution in NBW to the stanation-:free mutual ,exclusion

problem using either weak binary or weak general semaphores (Example

4.2). Although this solution is asymmetric, a simple transformation yields a

s,o,lution in NBW n SYM (Example 4.3). This solution, howeve.r,, is not in

NM. Thus; ahhough requirin,g solutions to, be symmetric and have no

busy-waiting elbni.nates the possib"lity of semaphore-free. solutions., it does

not rule out solutions that use weak semaphores.

(4) There exists a solution to the starvation-free mutual exclusioa problem in

NBW n SYM n NM, using either blocked-set binary or blocked-set general

semaphores (Example 4J). Thus. the .requirements of symmetry and no

busy-, aitmg do not rule out solutions that ·use blocked-set semaphores

either.

(5,) There .are no solutions to the starvation-free mutual ,exclusion problem in

SYM n M.V, wb.ich use weak binary semaphores (Th orem 3.14). In

,conjunction with (3), th.is result sh.ows that although either weak binary or

weak general semaphor,es can be used in a solution to the starvation-Cree

mutual exclusion problem that is symmetric and bas no busy•waiting, it is

necessary to use *' memory' to aocomplish this. T ,oget her with (,4), this

result shows that weak binary semaphores are strictly 1'weaker than either

blocked-set binary ,or blocked•set general semaphores.

(6) There are no solutions to the starvation-free mutual exclusion pr,ob1em in

.NBW n SYM n NM that use weak general semaphores (Theorem 3.17).

Howev,er, there is a solution for two processes in the larger class SYM n
NM (Example 4.4). Although it is unknown whether a solution exists in

this class for mor,e than wo processes, any such solutioa must make use of

loca] \'ariables ,(Theorem 3.21). Thus. although weak generaJ semaphores

a£1e slightly mo,re "powerful" than weak binary semaphores, th y are still

strictly ;, weaker11 than eithec type of btoeked-set semaphores.

Figure J.2 summarizes the results concerning the exis"tence, in various restricted

cJasses of mu ual exclusion systems, of solutions to the starvatio.n .. free mutua]

exclusion problem using each of the four types of semaph.ores. A "Yu entry in the.

table indicates the existence of a solution an "N" indicates that no solution exists.

The "2" indicates that a solution for two prooesses is known to exist, although

whet er a solution ,exists for more than two prooesses ts an open question. Four of

the eight possible combinations of NJJW, SYM, and NM are om·ued from Figure 3.2.

The reasons are the foHowing: The unrestrict,ed case is covered by (1) above; Nl•I

and NOW n NM are elimina ed by the obser ation in the previous, section that

requiring no memory is useless unless .symmetric solutions are also required; and

final y it was pre\·iously observ,ed that any so]u ion in NBW may be transformed

into a s mmetric solution, thus eliminating case NBW n SYM.

Let us now proceed to the statement and proof of our results.

3.4 Ever · Semephore~Free Solution. Has Busy-Waiting

H a = I or 1 . . . is an execution sequence for a parallel program, then let

seq(a: , i, J) denote the subsequence 'll+J ... 't 1 of a, if i > j. or A, if i = j. If a is

infinite, then let seq(•• i, o:>) denote the infinite suffix t;t;+J •.. , of«.

Theorem 3.8 - E ery semaphore-free ·solu ion to the mutual exclusion

problem has busy- vaiting.

Proor - Let r be a semaphore-free solution to the mutual ,e:xclusios problem. By

Def nition 2.7, aU processes are in the noncritical region in the. initial state for r.
Since r has no semaphores, every process has exactly one transitron enabled in a.ny

reachable s ate. There is therefore a unique infinite initial ex.ecution -equence a for

pr,ocess 1. · nd it is easily seen that ,« is va)id. (An execution sequeE1ce for process 1

is defined as an e~ecution seqt2ence consJsting solely of transitions fo1r ,process 1.)

Because r is assumed deadl.ock-(ree, it follows that 10 contains a finite pr1efix

o.m = seq(a, 07 m), such that pr,oce:ss 1 is in the cr:itical region in state nx1(q1 , am>·

- 54 -

NBW NBW
STM SYM SJ'M

NM NM

'\Veak Bi,nary y y N N
Weak General y y 2 N
Blocked-set Binary y y y y
Bloc.ked--set General y y y y

Figure 3.2 - Relative 'Power' of Ute Various Semaphore Primitives

- 55' -

Nm corresponding to each n > 0 is, a unique finite execution sequence fJn of

Ieng h n such that ,an is an execu ion sequeooe for priocess 2 from nxt(q1 , am>·
He nc for any n the sequence a. ,,p n is a valid initial execu tfon sequence for r. By

the strncture of the graph for process 2, aod by the assumption that r has the

mutual clusion property, process 2 must ht -the trying region in state

nxt(q1, amseq(~ ,v 0, J)) for all j wi h O :S j s. n·. Since n may be chosen arbitrarily

brge r has busy-waiting. ii

3 5 There Are No Ser,1aphore-Free Symme.tric Solutions

It ,-.•as mentioned above that any soiution to the mu ual exclusion pr,oblem in

SYM mus use semapholies. The proof of this statement (Theorem 3.12) below

depends in an e sential fashion on an impo' tant property of symmetric mutual

exclusion s stems which states. that under certain conditions, two, simi1ar processes

may execute in "fock-step'' fashion, alternating the firing of corresponding transitions

in their respec i,;e graphs. Each or th.e two processes executing in this way is

"unaware" of the presence of the other. In fact, in some situations, it is possible for

two processes to execute jn lock-step a1l he way from their noncritical regions to

their critical regions. This hio s that the idea of foe ·-step ,execution might be used

as a technique for showing that a mutuat exclusion system does not have the mutual

exclusion proper y.

In this section, we wiU formalize the notion of lock~step e~cution of two

proce-Sses, and w i l then a pp _· it in the proof of Theorem 3.12. Befo,re we can do

this, ho\: e er, we must prove a sightly gener.aliz.ed version (Lemma 3.10) of Lemma

3.5.

Definition 3.9 ~ Let i and j be structurally identical processes in a mutual

exclusion system r' and let q and q' be states. Let ,, C Sr u .c;.. We

say tha q r; q' except possibly for ariabfes in 'U if:

- 56 -

(1) q(/) = q'(pJ) for .au ti e G>f
(2) q(v) = q'(p) for aJI v E Sr - 'O
(3) q v) = ,q'(.,i) ror alt v e ~ - 'U.

Lemma 3~10 - Let i and j be similar process.es in .a mutual excl':1sion.

system r. Let I be a transition for process i, not part of a semaphore

operation, and let q and q' be states such that q ,-
1

q' except possibly fo.r

variables not depended on by l If I '.s enabled in state q~ then t1 is

enabled in state ,q' and nxt(q, t) rJ nxt(q\ ti) except possibly for variables

not affected by t _

Proof ~ S, ppose I is enabl,ed in. state q. By Definition 3.4, transitions I and t1

I
affect and de.pend on the same global variab]es. ln addition a locad variable JI e £r
is affected (depended on) by t' if and on,y if ,I is affected (depended on) by ti. Let

q,(Ji q 1 ... , qn be a sequence of st.a es, ,vith 'IQ = q' and qn Ji q, such that for

0 '< ; < n, s.tate 'I; is identical to 9i+I empt for the ,alue of a sin,gle variable not

depended on by ti. Such a sequence can be constructed since the set of variables not

depended on by tj is finite. By Lemma 3.5 ti is enabled in state q,,,, and

nxt(q, I') ,;=.j nxt(q,r 11) . Now, by Defin'tion 2.47 for OS i < n:

(I) a,,(q;) == B1J(qi+J); and

(2) (F1j(qi))(~) = (F1i(q1:+1))(11) for aU variables , affected by ti.

Hence B,j(q') = B,J(,q,,) = true and for aU variables v affected by t1, (FtJ(q'))(v) =
(F,J(qn))(v) = (nx1(q,r i))(v). Therefore, ti is enabled in state q', and

(3) (nxt(q', ri))(v) = (nxt(q,r, rl))(v) ~ (nxt(q, f))(v) for au e Sr affected

b l; and

(4) (n:xt(,q' 11))(~) = (ru:1(q,,, tJ))(vl) - (nxt(q, f))(v) for all f E ~ affected

by I.

- 57 -

Hence nx f(q, f) , 1 .n.x t(q ', ri) ex.cept possibly for variables, not affec.ted by I. I

If processes J and 2 in a mutual exdusion system are si mil.ar, and if

a: = I b1 ', is an execution sequence for process 1, then let af t(a ~ f. J) denote the

seq11eace ,:,:,f ... Jri+J ... 'J-11)-1' if j > i, or At if J = i. The following I mma

formalizes the notion of lock-step eJl':ecution. Although: h requires that the sequence

of t.ransitions to be executed in lock-step include no transitions that He part or
semaphore operations, th.is restriction will be eased in Lemma 3.15.

Lemma 3.11 - Let r be a mutual exclusion system of .N ~ Z pr,ocesses,

and suppose plioces-ses 1 and 2 in r are similar.. Suppose further that a =
tbt} ... t/n-J is an execu ion sequence for process 1 from a state 'l{Jt with

corresponding state sequence f/(fl 1 ... 'Im· If q,0 1=2 (/O, then the execution

sequence (j = ah(a O m} is also an e,::.ecution sequesce- from qo, ,provided

that a contains no transitions that are part of semaphore operations. In

addition, if q /,z = rut(qf> ,S)7 then q;,, 1=2 q /,,t q nz 1= 1 'Im, and

q ~ (.r) = qm(s) for all semaphor,e variables s.

Proor - Sl.lppose Q: contai.ns no transitions that are part of semaphore oper.ations.

Th,e proof is by induction ,on the leng t b of a:.

Base:· If a = A then the Lemma hoid s triviaHy.

Jnducrion Step: Suppose th Lemma holds for all sequences of length less than m,

for some m > 0, and suppos · a: is of length m.. Then appiicat1on of the inductive

hypothesis to the prefb: seq(a., 0, m-1) of o: shows that afr(a, 0, m-1) is an execution

sequence from ,q(J If q /n~J = nxt(qo, aft(a, 0 m~l)), then q /n-J 1......,1 q m·-J,
q ;,,_, 1= 1 q,,,_17 and q /,,.1(s) = ,1,,,_1(s) for aU semaphore variables s.

•

- 58 -

To complete the proof, we wHl show that alt(a, m~1, m) - 'in-J'in-J is an

execution sequence from q ;,,_1, and ff q;,, '- nxr(q m-J• r/,,r/n) then

q ,~ 1= 2 q /n, and q /n 1= 1 'Im· Note that since q ;,,_i(s) ~ q m 1(:i) for aU

semaphore. variables s, and t/n.J and tJ,_1 do not affect any semaphore variables by

hypothesis, it must be the case that qitz(s) = 'lm(s) for all semapho,,e variables J.

Since q;,,_J 1=1 9m-b by Lenuna 3.5 •/n-1 is enabled in q;,__,, and, if

q;;, _ l = n:x I(q ;,,_ 1, tin- I), then q ~ _ 1 1= 1 ,q m · The remainder of the proof is 5 pli t

into two cases, depending upon whether 1Ji_1 affects a gtobal variable or not.

Case I: If , Jn_ 1 affects no glohai variables, then ,q ;_, 1= 1 q ;,,_ 1. Hence. by

Lemma 3.5, 'in-1' is enabled in ,state q ;;,_11 and if q ~ = nxt(q ;.J, tJ,._1), then

q,;,, 1= 1 q ;;,_1. Ft1rthermoret since 11,,_ 1 affects no global variables,. neither does

,Jr_,, and hence q;,, 1=1 q;;,_1 1=1 qm. Thus sisce q;,, 1---1 q;;,_1 and q;;,_J 1=1

q ;,,, we have that q :n 1=1 q;,,.

Case 2: If ,,~-J affects a global variable gt then neither t/n-J nor 1Ji-1 can depend

on any global variaMes. Hence 9'~-1 1- 1 q ;,,_1 e~cept poGsibly for variaMes not

depended on b 'in-J· But then by Lemma 3.10,. t~-1 is nabled in state q~_J, a.nd

if q ,~ = nxt(q ;~-J, tJr_,), th.en q /n 1=1 q ;,_J, exoept possibly for the values of

, ·uriables not affected by tJ._1. This means that q /n(g) = q ;;,_J(g), and since g is

the only global variable affected by 1;:,.J, we know that q;,, 1- 1 ,q~-J 1=1 qm·

That is, even hough r;,,~/ affects g, when fired from state q ;;,_1 i.t assigns the same
- I

value to g as transition t/n-J did when fired from state q /n-J· .Also, if ,/ E £r is

not affected by t/n.J, then q/,,('v1) = q;;, 1(v') = q;,,_i(,1) = q;,,__i(wl) -

q ~ _ ,< ~2
) = q :n< ~). Henc-e q;,,, r 1 q ;;,_J, and therefore q;,, z= I q m·

- 59 -

Theorem 3.12 - Every solution to the mutual e1;clusion problem in SYM

uses semaphores.

Proof - Suppose r is a sol.u fon to the mutual exclusion pr-obi m that is in SYM but

ses no semaphores. As in the proof of Theorem 3.8, there is an initial execution

sequence am = rlJ,b ... litz-J Cor process l, such that prouss I is in the critical

region in sate 'lm = n.xt(q1, «m>· By Defini ion 3.6, q1 1---1 q,- Application. of

Lemma 3.11 shows that fj = ah(t1, 0~ m) is aa initial execution sequ -.nee fo.r r, and

that if q:n = nxt(q1, fJ), then q;,, 2=1 'Im and q;,, ,=, t/m· But this means, that

processes 1 and 2 are both in the critical .region in state q;,,, a contradiction with

the assumpti n hat r has the mutual exdusion property.

3.6 Symmetric Weak Binary Sem.-phore Solutions WUh No Memory

In this section we will show that there are no symmetric solutions to the

starvation-free mu ual ,exclusion pmblem that use w,eak binary semaphorest and have

the "no memory1 pr,operty. Befo~ proving this statement (Theorem 3.14), we must

first introduce Lemma 11.3, which gives conditions relating two states qO and q iJ,
sufficient to ensure that an execution sequence from tf,O is, also aR execution seqtJence

£com qi, Lemma 3.13 applies only to .mutual ,exclusion syst-ems with weak binary

semaphores, howe\l"er later on we will state a version (Lemma 1.16) .applicable to

systems with weak general sem.aphore-s.

When , e discuss systems with weak semaphor~ note that we. may, without

confusion make the statements ntransition I is a P operation ,on a semapbore

1,•ariabie s'',, or II ransition t is a V(s) operation . This is because each weak

semaphore o eration contains only a single transition. Also note that in a :system

wi h ,. ,eak. semaphores, there are no synchronization variables other than semaphore

variables.

~ 60 -

Lemma 3.13 - Let r be a mutual exclusion system with weak binary

semaphore.s. Suppose a is an execution sequence for process 1 from a state

,q,(} If q o is a state such that q o 1= ,· 'IO and if q 'cf.s) ~ qcl,.s) for an s e

Sr,, then a is an e.xecution sequence from q o as well.

Proo(- Not,e that it suffices to prove the Lemma for finite sequences a, since if«

is infinite, then application ,of the finite case shows that any finite prefix of a is an

execution s.equence from q,(}t and hence a itself is an. execution .sequence [rom q a-

The proof for the finite case is by induction on the length of er. However I it is

convenient to prove a somewhat stronger result, namely in addi tiofl to proving that «

is an execution ~equence from q o, -we win sh.ow tha.t if qm = nxt(qo, a) and q Jn =
nxt(q ,(}t «), then qm 1=1 q.:n and q;,,(s) > tl,n(s) for alls e Ir-

Base: If a = A, then the resu[t holds trivially.

Induction Step: Suppose the result ho~ds for aH sequences of length less than m, for

some m > 0, and suppose a = , ot 1 ... Im- J' is, of length m. Then application of the

indu tive hypothesis to the prefix .seq(a, 0, m-1) of t1 shows that seq(a, 0, m 1) is an

execution sequence from q {JI aod if qm-1 = nxl(qo, seq(a, 0, .m-1)) and q /n-J =
nxt(qi:,, scq(o,, 0, m~l)), then qm-l 1=1 q:n,.J and t1!n-1(s) > qm_JCS') for all s e

3r. It remains to be shown that 'm-/ is enabled in state q ln-1' and if qm =
r,xl(qm-l' 'm-J) and q;,, = nxt(q ~-/ 'm-Jl, then qm 1- 1 q ~ and q ;,,(s) > flm(s)

for a I s E Sr,. The proof of this is split into three ,cases, depending upon whether

'm-1 is a P opera ion a V •operation, or neither.

Case J: Transition 'm-J is neither a P operation nor a Y operation. Then Lemma

l.5 shows that 'm-l is enabled in state q m-1 and that qm 1=1 q ;,... Since 'm-1

affects no semaphore variables, we know that for all s e Ir, q ;,,(s) = q ;,._1(1) 2::

.. 61

Case 2: Transition 'm-l is a V ,operation on a semaphore variable i Then '.m-1 ·s

enabled in state q !rz-J because Im-I is enabled in state 9m-J, 'Im-I 1= 1 ,q ;,,_,, and

the enabling predicate of a weak V operaf'on is alwayg true.. ow 'm-1 affects only

s and hence qm ,= 1 ,q ;,,,. Also q ;,,(s), = I = ,qm('s) and for aH s e Ir with s ~ s
we know that q ;,(s) - q ~-1(s) ~ q111 _1(s) = qm(s).

Cose 3: Transition 'm-/ is a P operation on a ~semaphore variable i Then 'm-1 is

enabled .in stat,e q /n-J if q :n.1(s) > 0. But since 'm-l is enabled in state qm-1• we

know hat qm_1('s) > 0. Sinoe q ;,,_1(s) > qm_,(s), we know that q ;,_J(s) > 0 as

well. Since 'm-l affects on.ly s we have that qm 1=1 ,q;,, and that for aH s e Ir
"ith s #- s q ~(s), ?- qm(s) as in Case 2. In addition q ;,,(s), = q :n_ 1(s) - 1 2::

qm-1(5) - l = qm(s). II

Theorem 3.14 - There: is no solution to the starvation free mutu.a]

,exdusion problem in SY.Mn NM that bas weak binary semaphores,.

Proor - Supposer is a solution to the starvafon-free mutual exclusion probl m t'bat

is in S Y.W' n NH. Suppose further that r has weak binary semaphores. We will

construct an execution sequence for r that s,tarves prooess 2. Since this contradicts

the ass mption that r is starvation-free, we conclude that r canno,t exist.

Now,, the assumption that r is, deadlock fre,e may be used to show that there is

a unique infinite initial execution sequence a for process. 1, in which process I enters

and exits its critical region infinjtely often. Let q(fl 1 ... be the state sequence

corresponding, to «. Define the indice.s ncr 1 ncr1i .. • and er J, er z, as follows,:

(1) Let ncr 1 = 0, and let er I be the least J > 0 such that process l is in the

critical region. in. state tf j

- 62 -

(2) For each i > 1 let n,cr 1 be the least j > crf.J such that process l is in the

noncriticai region in state q; Similarly, let crt be the least j > ncr; such

that pr,ocess 1 is in the critical region in state qi

Let us first show that for each i > 0, seq(_a, ncrft, er,) contains a.t least one P

operation. To see this, suppose there were no P operations in seq(.:r, ncr;, er;) for

some i. Because r is in SYM n NM, we know that processes 1 and 2 are similar,

and that qncr. 1=1 qncr: Application of Lemma 3.U shows that alt(a, ncr;. er;) is
r l

also an 1execution sequ,ence from qn.cr• and that if q~,. = nxt(qn,cr• alt(a., ncrt, er;))
I I I

then q ~r, 1== 1 q ~r, and q ~r, ,= 1 <lcr; Hence processes I and 2 are both in the

critical region in the stare q ~, .. a contradiction with the assumption that r bas the
I

mutual exclusion property.

Thus each seq(a:, ncrr cr1) must contain at least one P operation. Let the

indices fJ 1, P2t ... be defined so t hat t},
1

is the first P operation in seq(«, ncr;, er;),

and Jet si he the corresponding semaphore variable. Since Si, is finite, bllt there are

infinitdy many s;, there must be one semaphore var.iable i: such that s; = s for

infinitely man i. Let k be the teast i for which s; = s. We will oow show that

fj = seq(,:i. 0, ncrk)alt(a, ncrkt Pk)seq(at p~ oo) is an initial execution sequence for r
that st a n·es: process 2.

Oblri,ot1sly s-eq o, 0 ncrk) ·s an initial execution sequence for r. Now

seq(a., ncrk Pk) con ains no P operations, and 'In.erk. 1=1 qncr11.· Application of

Lemma 3.11 shows tha all(a., ncrll' p,J is an execution sequence from state fncr .
I:

ln addition if q i,
1

= nxl(qn·cr._' alt(a ncrh Pk,)), then q PA 1=.1 q Pi and qPA: ,.-, qP,c"

Thus both processes 1 and 2 are at the input p]ace for a P(s) in state qp' . In
- l

addition, aH semaphore variables bave the same values in state q pk as they do in

state state qp;,· Lemma J.13 therefore shows that se.q(e1, Ph oo) is an execution

sequence from qPi for r. Thus fj is an infinite initfal execution sequence for r.

To shm that ~ starves proce-s.s 2, note that process I en.tees and exits its

cri Heal region infirutely often in /j, 'While p:rooess 2 remains forever in the tlying

region at the input place for a P(s). Since seq(a, Ph ro,) contains infin~tely many

P(j) operations, and each P(s) sets l to zer~ process 2 is disabled in.finitely ofte.n in

fJ . The sequence {S is therefore a valid execution sequence in which process 2 starves.

This contradicts the assumption that r is starvation-freet and we conclude that r
cannot exist . I

3. 7 Symmetric Week General Semaphore Sol·utions With No Memory

Theorem).l7 in this section show.s that any weak general. semaphore solution

to the starvation-free mutual eJC:clusion problem that is in SYM n NM cannot be in ·

NBJV. Before we can prove this though, we need ersions or Lemmas 3.1 l and 3.13

that apply to execution sequences containing weak general semaphore operations.

Recan tha Lemma 3.11 gave .conditions under which two sim.ila,r processes

couid ,execute a sequence of transitions in lock-step. However, Lemma 3.11 only

applies if the seq tenee of transitions contains no transitions that are part of

semaphore operations. This is too . r,estdctive for systems with. weak general

semaphore.st since even semaphore operations can: be executed in lock-step, as long as

the va]ues of the semaphore variab]es are "great enough.0 Lemma 3.15 below makes

this idea precise.

If a is, a finite sequence of transitions for a mutual exclusion system with weak

generai semaphorest and ifs i.s a semaphore variable, then define the index of a wilh

respect 10 s denoted ind(s, a), to be the number ,of P(s) transitions. in a minus the

number of \l(s) transitions m a. Th.e notion of the index of a sequence of

transitions ·s useful for the following reason: If q is ,a state~ a is an execution

sequence. from q and s is a semaphore variable, then (nxt(q, a:))(s) -

q(s) - frid(s a:).

Lemma :tIS - Let r b a mutmd e~clusion system or N ~ 2 processes

whkh h~1s weak general se1naphore-i,. and suppose processes I and 2 in. r are

similar. Suppose funher that a - tbtj ... tAz 1 is an execution sequenc

for process 1 from qo, with corresponding state· sequence f(fl J ... fm· If

qO 1=2 q(J, then the execution sequence IJ = ah(a, 0, m) ·is also an

exec.ufon sequence from f/() provided that for all J e ~ and O S j S m,

q(/,.r) - 2~ind(s .req(a:, 0, J)) > 0. . In addition, if q;,, - nxl(qo, /j), then

q ~ 1= 1 q ,;,, q;,, 1- 1 qrn, and for an s e £r., q ;,,(s) = 'lcf..d - 2•ind(:r, o:).

Proor - Suppose that for aU s E 3rw and O :S: j < m, qrJ.s) - 2•ind(~ sef(a, 0, J)) >
0. The proof .is by ind:uction on the length ,of •·

Base: If a = .A then the Lemma holds trivially.

Jndm:tion Srep: Suppose the Lem1mll ho]ds for a 1 sequences of length less than m for

some m > 0, and suppose ,cc is of length m. Apphcatmn of the rnductive hypothesis

to the prefix scq(a., 0 m-1) of a shows that .al t(o: ,, 0, m-1) is an. e11:ecution seq uenoe

frotn qO- If q /,, 1 = nxt(q() oll(a 0,. m-t)}, then q ;,,_1 1=2 q m-1 and q in-J 1 1

qm-/· In addition, for aU s e S:r1 q ;,,_,(s) = qcf..s) - 2•ind(s, seq(a, 0, m-1)).

To complete the proof. we will show that Qll(a., m•l,. m) = t/n-1t:/n-1 is an

execution sequence £mm q /n-Jt and if q m = nxt(q m-J, t/ntJ1) then q ;,,_ 1=1 q :rz
and q /n 1- 1 qm. In addition, we \' iU show that q ~(s) = q.rf.s) - 2•ind(s, a) for all

.r e3r,

There are three cases, depending upon whether tJ,_1 (and hence tfn-1) is a P

operation, a V operation, or neither.

CaN J: Transition ,fn._1 is no part of a semaphore operation. lu this case, an

a _p plication of Lemma 3.11 completes the proof.

- 65

Case 2: Transition tfn._1 is a V operation on some semaphore variable s. Since the

enabling predicate of a V operatfon is always true, it is clear that. 1 ,:.,._ 11'1,,_.1 is an

ex,ecu ion sequenc,e from q :n-J- Now, tJ,_1 and 'in-/ affect only the semaphore

variable i It th refore foUows easUy that q:rz ,=, qm and q;,, 1=2 q;,,,. The effect

of executing t/n_ 1t/n-J is sirnpl to incremeo , .i twioe. Hence for an s E Sr with

s ~ s. q :r,(s) = q ;,_1(s) = qrjs) - l•ind(s, seq(c., 0, m-1)) - q<fs) - 2•ind(s, •).

Also q l~(s) = q :rz_1(s) + 2 = qrf,.s) - 2•ind(s, seq(a, 0, m-1)) + 2 = ,qo{s)

2•indi s. a:).

Cas-e 3: Transition tJ,_ 1 is a P operation on some semaphore variable s. ow, by

assumption qO - 2+ind(s, «) > 0. But since q :n-1fs) - ,qo -

2•in.d(s, seq ,c:r, 0, mpl)) ~ qO - l•ind(s, a:) + 2, e have that q;,,_1("s) > 2. But

this means that I 1~_ 1, J,_ 1 is an execution sequence from q ;,,_ I- Since I /n-J and

t,~-J affect onl • s, we know that q/n 1=1 t/m and q;,, 1=1 q:n as in Case 2. Also

as in Case 2 q ~(s) = qrj..s) - 2•ind(5, «) for a1l s e Sr, with s ~ s.. Finally, q ,;,(s)

= q ;,,_1(s) - 2 = q(/..s) - 2 ind(sj seq(«, 0, m-1)) .2 - q(/.,IJ - 2•ind(s, o).

Lemme 3.16 - Let r be a mutual exclusion system with weak general

semaphores. Suppose « is an execution sequence for process 1 fmm a state

q. If q' 1=1 q and if q'(s) - ind s, seq(o., 0 J)) > 0 for an s E Sr, and

0 < j < length(«), then a is an exec-utio.n sequence fr,om q' as. wen.

Proof - The proof which is quite similar to the proof of Lemma 3.13, is. left to the

reader. ii

Theorem 3.17 -· Any solution to the starvation-free m:utual exclusi.on

problem that has weak general semaphores and is ,·n SYM n NM, also has

busy-w.aiting.

The construction in the proof of this theorem is somewhat more inv,olved than

thos,e that have appeared so far, and it wilJ be convenient first to separate out some

reasonably independent pairts ,of the proof as, Lemma 3.18, Lemma 3.19,, and

Corollary 3.20.

For the remainder of this section, let r be a so.lufon to the starvation-free

mutual exclusjon problem that has weak general semaphores, and is in SYM' n NM.

Let • = tbti ... be the (u.nique) infinite initial execution sequence for process 1, and

1 t the indices nu Jt n,cri, ... and er 1, cri, ... be constructed as in the prooif of

Theorem 3.14. Let Q(II 1 ... be the state sequence corresponding to the execution

seq1. ence a. If s e 3r then let #p(s)(i, J) denote the number of P(s) operations in

the subsequence seq(ot i J) of a. Let ind(s1 i, 1) abbreviate ind(s, seq(a,. i, J)).

Define ~al(s , i, J) = ,q1(s) -- 2•ind(s, i, 1). Intuitively,, val(s1 i, J) .r,epresents the value

that the semaphore variable s would have if processes t and 2 were to execute the

"lock-step" execution sequence alt(at ,r~ J) from state qi.

We " m now in ves;tigate some proper ies or the execution sequence a. The

in uition behind Lemma 3.18 below is that if processes, 1 and 2 begin e11ecuting in

"lock~stepn from state qncr~ for some ; ~ I, then there must be some P operation

' before both processes reach the critical regjon, when! the J)roce-sses are forced to

I ·split upu.

Lemma 3.18 - For each i > 1 there exists a number split,, which is the

least j ncr; S. j < "r such that tj fa a P operation on some semaphore s

with val(s, ncrt, J) < 2. Moreover, if!; denotes the semaphore variable on

~hich t~p/it, operates, then val(i;, ncr1, split1) = I.

Proof - If val(s, ncr;, J) > 2 for each j with ncr; ~ j < er; and tj a P operation

on some semaphor,e variable :s, then we coutd ap,ply Lemma 3.15 to show that

- 61 -

alt(a.,. ncr;, cri) is an execution sequence from qncr: Since this means that processes
i

I and 2 would both be in he critical regfon: in s·tate n~tC'lncr, alt(a, ncr;, er;)), it
I

must be he case tha here is at least one j with ncr; < j < er; and tJ a P

opera ion on some semaphore s such that val(st ncrr J) < 2. Let split; be the least

such jt and let f; be the corresponding semaphore varfable.

It remains to be shov n that valff v ncrr spJi~i) ,': 0. Suppose the contrary. By

the cons rue ion of spNt; in the pr,ecedi.ng paragraph, we know that .,af(s, ncr;, J) ~ 0

for all semaphore variables s and aU j with. ncr; < j < split;. We may therefor

apply Lemma 3. 5 to show that alt{o., ncr;, spfit1) is an execution sequence from

qncr: F 1rthermore,. ir we l t q;'Plit. = nxt(qncr' ah(•~ ncr;, spilt;)), then
' •· l

q;p/;1.(ff) = 0. But processes I and 2 are both at the input place fo,r a PU';) in ,
state q~plil/ and hence are deadlocked. This is a rontradiction, and we conclude

tha ~a/(Jr ncrt, split;) = I as asserted. I

Processes I and 2 can e-xecute the sequence olt(a ncrr split;} from 'Iner before
I

being forced to spHt up,, but there is no guarantee that process I wm be able to

continue alone unhindered. We wou]d like an answ,er to the questioa of how far it

is nsafe ' for processes 1 and 2. to execute in loclMtep rrom •finer, lf process 1 is then
f

to continue a I one unhindered. The answer to this question depends upon. h.ow great

th.e "'alues of the semaphore variables are in state qncr/ and is given by Corollary

].20 below.

Lemma 3.19 - let i > 0 and let c: Sr---> tJ, with the property that qJs)

> c(s) for aU j > ncr i· Then there exists a number safe-{' which is the

lea.st j, ,,er, < j < split;, such that transition 'J is a P operation. on. some

semaphore variable s, and ;nd(i, ncr;, .J) = c(s).

Proof - It suffices to show the existence of ooe such j. We break the proof into

- 68 -

three cases

Cme J: i11d(t;, ncr,, split;) c(f;). In this case, let j = split1 ands== 11 •

. Ca.re 2: ind(f;. nt:r;, split;) < c(I;), By the definition of 1plil; e know that

•·al(f r ncr;, split;) = qnc,,(11) - 2•ind(t;, ncr;, splil;) 1, and hence

c(f;) S ,qsplh:}'11) - 1

= 1'1n,cr.<t;) - ind(!p ncr;, split;) - 1
' = ind(t,. ncrft, split;) bf (l)

< c(I;), by the assumption defining C'.ase 2

This is a contradiction, and we conclude that Case 2 is impossible.

Case 3: ind(J;, ncr/t s:plit;) > ,c(t;). Le·t I(J) abbievfate ind(f;, ncr;, J) and let the

predicate (l(J) be true fff I(J) < d..f;)- Since l(ncr1) = 0 we know that Q(ncr;) is

t me. Now, suppose Q(J) is true for some j with n.,:,; :5: j < er;- If tj is not a P(t ;)~

then Q(J+l) is true. If tj is a P(I;), then Q(ji-l) is fal$e . iff J(]) - c<_t1). Since

Q(spht;) is false and Q(ncr1) is true, this means that there must be a J with

ncr1 s j ~ split;, such that tJ is a P(..f;) and Ju) = ind(l;, nc~;, J) = · cl.I;), This,

completes the proof.

Corollary 3.20 - If ncri s; j S safeit and if ,qj -
n.xr(qncrl alt(a, ncrr J)) then seq(a, j, ,co) is an execution sequence from qj

Proof ~ The Corollary is proved by an application of Lemma 3.16 after observing

- 69 -

that for aU s E Sr, q 'js) 2:, q1{s) - c(s), and for an k > j, q j.s) - md(s, j, k) ·>
c(s). a

Proof of Theorem 3.17 - We wm show that r has busy..:waiting, by showing the

· e istence of a semaphore variables such that for any M ~ 0 there is an. m > 0 w·th

#p(s) ncrm crm) > .M. This wm be accompiished as foUows: We wiU sho,w the

existence of a sequence of functions c() c J• ... mapping Si, to N such that:

(I) For aU .i 2:; 0, c; < c; 1, where c; < ci"t-/ is defined to mean that for aU

semaphore variables, s, c1{s) < ,c;+i(s)t and strict inequality holds for at

!east one s.

Since th re are only a finite number of semaphore variables, property (l) implies

that here mus be a semaphore 1adable s such that c,{i) increases monotonically

v ith · ncreasing i. We wH show in addition the •ex·stence of a sequence of natural

numb rs k(0 , k.(1) ...• with the properties:

(2) For all i > 0, for aH j > nc,k(ij and for aU semaphore variables s, qj.s) ~

c,{s).

(3) For any n there is an m > n such that #p(s)(ncrk(mi crk(mP > Cm(l)

Properties (2 and (3) show that r has busy-wa· fog, since given M > 0 we may

choose n such that c,,.(s) > M, then select m :::, n so that #p(1)<ncrk(m) crlc{m) >
C,m(:r).

We no,,, turn to the inductive construction of the functions c; and numbers

k.(1).

Base: Defi_ne k{O) = I, and let co(s) = 0 for all s e ,lyi. Obv·ously,. for aH j ·~

ncrk(O) :md aJI s E Sy,, q}s) > c~s).

·- 70 ~

lnd11ction Step: Suppose for some i > 0 we have a function c; and number k(;) such

that for aU j > ncrk(i) and aU s e Ir, qjs) 2: c1{s).

Lemma 3.19 and Corollary 3.20 show the existence of sa/eJ(ii such that tJ =
alt(,;i, ncrk(l)' safek(ij}seq(o., safek(ii oo) is an eJecution sequence from qncr1.,,, for r.
In fJ, process I executes i.nfinitely many critical regions while process 2 remains in

the trying region at the input place for a P operation on some semaphore, call it 1 i·

If /J we re valid, then we would have a 1con tradiction with the assumption that r .is

starvation-free. Hence ,tJ must not be va id. The only way for th"s to occur is if

1here e1:ists k(i+J) > ki,.r) such that ,q'jJ1) > 0 for aH j > n·crk(i+li where flj ~
nx1(qncr1«m' olt(a, ncrk(l°i saf~k(;ftseq(a, safek(i; J)). Bttt since q'j.1;) > 0 and

q'}1;);, qJ<1;) - ,c,{1;) we have that ,q/1;) > c,fs;) + I. Define C/+J(s) == c1(s)

for aU s e 8r with s ~ 'sit and d fine ,ci+J(s ;) = ,,{1;) + 1. This completes the

construction of c;..,1 and k(r+I) from c; and k(1).

It is eas to see that the c1 and k(,) defined in this .vay have properties (1)

and (2). To see that (3) holds as weU, let s be the semaphore variable, whose

existence was argued above, such. that c,{s) increases monotonically with increasing ;,

It must be the case that for infinitely many ,:, s is the semaphore 1 i· Since for eac~

such i, ind(s, ncrk(ij, safek(i}' = c,{s). and since #p(s)(ncrk(ii safek(i;) 2:

ind(i, ncrk(i)' safek{iJ>• property (3) holds as well.

3.8 More on Weak General Semaphore Solu'Uons

We ha e seen that any solution to the starvation•free mutual exclusion problem

that has weak general semaphores and is in SYM n NM, must also have

busy- ~·aiting. In Chap,ter 4, we will actually e:xh'bit such a solution for the special

case of two processes. AJthougb it is unknown whether this solution extends to the

case of more than two processes, we conclude this ,chapter with a result that shows

that such a solution must make \JSC of local variab es,

Proof

- 71 -

Theorem 3 •. 21 - .Any solution to, the starvation free mutual exclusion

problem that has weak general semaphores and is in SYM n NM, must

contain ioe-al variables.

Suppose r •s a solution to the starvation-free mutual e:1ciusion problem,

that has weak general semaphores, and is in SYM n NM. Let u inherit aU the

notaHon of he previous sectfon pertaining to the execution sequence a for r.
Suppose, to obtain a contrad"ction, that r has no local variables. We will construct

an execution sequence for r that starves process 2.

From among the numbers k(O), k(l), ... defined in the proof of Theorem l.17,

select numbers m(O) < m(l) < ... , suc.h that #p(s)Cncrmfi> safem(i} <
#P(s)(ncrm(i+l)' safem(f+Ji} for aU i;;: 0. Let "i = seq(o,. ncrm{t)' safem(ijJ• Thus

the m(t) ar,e chosen to make the number of P(.i) operations in a; a monotonic.ally

increasing f mction of i.

Le «m(iJ be the se of aU f e :Jr such that I appears in a; and t is a P

opera ion. CaU he pair (f t') a link in ,a, if I' and t' are both in «m(i) and l"tl is a

subsequence of a.i such that 1' contains no P operation . The set of aU links in •;

forms a chain w; = Ut/ 1t)<ri
1

t~} ... (,iJ-l ,:}, where ncrnr(i) :s; r1 < r2 < ...
< rj < sofem(ii Let <Bm[iJ be the set ?f aU distinct Hnks in ,r i·

No - by he construction in the proof of Theorem 3.17, given c ;;?; 0 there

exists i > 0 such that the length. of the chain 1r i is greater than or equal to c. If we

define ffl - lim sr1p (Bm(rJ as i -·> 001 then there exists C > iO such that I > C

implies that w i is composed solely of links in CB. Because the number of P

operations in a; is a mon tonicat y increas.ing function of i, this means that chains of

arbitrary length may be fanned fro.m Jinks in d\. However, since the total number
. ~ of transitions ·a ..:..r- and hence the total number of distinct links is. finite, it follows

72 .,

that (l\ must contaia a cycle x :: (uo, u 1)(u Jt 112) ••• (uk-J, uo), of length k. In the

seq mel, suppose an subscripts of u to be reduced modulo k that is:, Jet u; == u; mod k

.for au i.

The remainder of the proof consists ,of the foUowing:

(l) From among the numbers m(O),, m(I), ... , sel.ect n(O) < n(l) < . . . , such

that u0 e «n(O) and for each i > 0 the rnk (u;, u;;.r) is in '1,n(i+Jf

(2) Se:tect a1,, az, ... , and b() b11 ... with ncrn(O) < bo < safen(O)

and ncr n(i) < a; < b; < safen(,J for each i > ~ such that ,~, = "fr tJ,
1
=

Uf+l' and there are no, P operations in seq(a, a1+1, b;). That is, for each i

> 0, '~-and ,~. are the endpoints of the ith link (modulo k) in the cycle x.
I I

We willl then show that the sequence

,fJ = seq(a, 0, ncr n(Oi)aft(a, ncr n(Oi bo)seq(a, bo, a 1)

all(o.,. a1, b1)se,q(a, b1, a2) ... al.l(a. a;, b;)seq(«, b;, a;+Jl ...

is an execution sequence for r that starves proce$S 2.. The situation is diagramnted

in Figure 3.J..

The selection of the a;, br and n(,) is performed inductively as follows:

Bas-e: Choose (from among them(,)) n(O) > C such that uo e (1.n(O> and define ho

so that ncr n(OJ s bo < safen(OJ and 'ho = U(j Since bo < safen(Oi w~ may 111se

Lemma).15 to sho,w that

is an initial ,e~ecu ion sequence for r, and Corollary 3.20 to show that seq(«, bl> oo)

is an execution sequence from nxt(q,, io). If qb
0
= nxt(q1, tJo), then process 1 is at

- 73 -

RCJ' n.(O) bo

Cl'n(l}

ncrn(2)

er n(3) ·nm (3) Ill ,

Figur~ 3.3 - Diar;rnm for Proof of Theorem 3.21

-14 -

the input place for transition 1l in state .qb', and qb' .-2 qb' . • 0o -o o ' · a

Induction Step: Suppose,, for some i > 0,, we have chosen n(i) and b; such that

ncrn(i) < b; < safen(i)' and ti,,= u;, Suppose further that we have shown th.at ~; is

an initial execution sequence for r such that if q b = nx1(q1, II,;), then process 1 is
{

at the input plaoe for transition ti, in state ,qi,, and qb r - 1 qi,. Finally, suppose
I I I l

that s-e;q(c.., bjt co) is an execution sequence :From q b for r. We now wish to ,
construct a; 1·, b;+J, n(i+l), ud fJ;+/'

If se4(a, b,;, oo) were a. ,a/id ,execution .sequence f-rom q 1,_, then we would have
I

a contradiction ~ith the assumption that r is starvation-free, since process, 2 would

be left at the input place for 'b·! which is a P operation on some semaphore, call it
I

s;, while process l ent,ers and exits its critical reg·ou infinitely often. Hence

s~q(a, b;, oo) must not be vatid. The only way this c~n happen is if there e.xists

n(i+l) > n(,) such that qfs1) > 0 for aH j ?- ncrn(i+lf Since ea.ch link in the. cycle

x appears in infinitely many CB;, we may assume n(i+l) to be chosen so that (Ut,

"i+J> ,e ffi,n(i+li Now, .let a;+J and b;+/ be chosen to satisfy:

(1) ncr n(i+l} < •0i+l < bi+J < sa/en(i+l)

(2) t
0
1 = u,·

i+ I

(l) ,b. = Ui+l
t+J

(4) There ar,e no P opera.tions in seq(•, ":i 1+lt b;,..J)

We are· assured that "i+I and b;+J may be chosen in this manner by the way we

selected n(i+ 1).

Let ,& ~ seq(«, bt, ai+J>· Since a is a prefix of .seq(a:, .b;; ro) we kuow that a is
an execution sequence from qi, . Let q ~ = nxt(q i, 3). Now., in state q ~-

; l+I i ,+ I
process l is at the .input place for tl'ansition ,~;+/ which is a P operation on sf

Also, process 2 is at the input place for transition rj,_. But tb - t~ = "i by
, I l+I

construction and since r has no local variables; this means that qa' 1;;;;1 fa' .
i+I · l+I

- 7S -

By the way n(f+l) was chosen, we know that q0' (s1) - ind(s:. t~) > 0.
H/ r w~/

Hence. q ~ (s1) ~ 2. The segue_nce ,~ t~ is therefore an execution sequence
~I ~I ~I

fwm q ~- . Since the sequence- ah(«T a;+i+l, b;+J) contains n.o P operations,
1·+/

Lemma .. 15 shows that aft(a: ai+J+l, b;+i> is an execution sequence from q ;,1♦ ,·

Define fi,-TJ = fJliolt(o, "i+J, b;+J>-

It is not difficult to see that if ,q b; = nxt(q1, 6 i+-J)t then for an s # s; and
{4'1

aU j > bi+/1 qi,_
1
(s) - ind(s, bi+l' 1) = qj,.(s) - ind(s, br J) 2 0. Also,. by the

I J

way n(I+ l) was chosen, q b.
1
(s;) - ind(st, ht+/' J) = q i,_{s;;) - ind(r;, hr J), - l ?- 0

i+ t

for all J ~ bi+/· Hence Lemmai 3J6, shou.--s that seq(o.t bi+/' o::.,) is an execut:ion

sequence from qi, . This completes the induction step.
i+ I

Thus we have pro ed that a is an execution sequence for r. In addition, /J is

mlid since processes I and 2 each have in.finitely many transitions in fJ, However,

prncess 2 r•e.rnains forever in the trying riegion whi e p,r,ooess I enters and exits its

critical region infiniteiy often. Hence fj starves: process 2, a contradiction, and we

cond u de that r must have local variables. ii

3,.9 Com:lusi.on

In this chapter we presented a numb Ii' of results that shed some light on the

'' pon·e r 11 of weak semaphore primitives, when used to implement s tarvat:ioo-fr,ee

mutual exc]usion. The 11negativen results of this chapter are most interesting wken

viewed in relation to the complementary "positive' results to be presented in. the

nex.t chapter. Let us proceed now to the statement of th~ results.

4. Some Existence Results

In the last chapter we examined various classes of mutual exclusion systems,

and were able to .show that within some of these classes, weak semaphores ,are not

sufficient to implement starvation-free mutual exclusion.. In par-ticular1 there are no

solutions to the starvation~free mutual exclusion problem that use weak general

semaphores, in the class NBW n SYM n NM, and there are .no solutions using weak

binary semaphores even in the larger cla$$ SYM n NM. To obtain a more complete

picture of the situation, we sltould ask whether there ate any solutions at all using

mutual 1clusion sy,ste I W bave been examuung. .he answers are interesting, and

are the subject of this chapter.

This chapter is organized as a series ,of "examph:s••, in which a candidate

soh.1tion to, the starvation free mutual exclusion probl.em is presented, along with an

informal argument that it has the stated properties. Only one of these solutions

(Example 4J) •ill actua.lly be proved conect, and the reason is lhat the correctness,

proof for just this one examp e requir,es aH of Chapter 5 and the Appendix.

Example 4.1 - The mutual exclusioa systern described by Morris' program

in Figure 2J is a solution to the st:arvation~free mutual eKClusion problem

which is in NBW n SYM n NM. Although the solution is shown using

blocked-set g.eneral semaphores, blocked-set binary semaphores wo,r'k just as

wen.

Discussion - Note that this solution, combined wi.th Theorems 3.14 and 3,.17, shows,

that either blocked-set binary or blocked-set general semapho.res are more powerfuJH

than weak semaphores,. as far as their ability to implement starvation-free mutual

exc 1 usion. is concern d.

A proof of correctness for this solution is the subject of Chapter 5 and the

Appendix. Note that such a proof requires t:hat the algo.rithmic presentation in

Figure 2.3 be translated into g,raphical form, and this is done in Chapter S. It

should be possible, however, for the r,eader to mentally verify that the algorithmic

presentation of Figure 2.3 indeed represents a mutual eiclusion system in NB.W n
SYM n NM. No graphical translations will be provided for any of the other

examples of this ch apter.

Example 4.Z - Th.e mutual exclusion. s.ystem. described by Figure 4.1 :is .a

solution to the starvation free mutual exclusion problem which is in NBW.

Although the soluti.on is shown using weak binary semaphores, in fact it

makes no difference what type of semaphores are used.

Discussion Note that this solution is not in SYM, smce explicit use is made of the

process number i. Example 4.3, though~ shows how this solution may be transformed

through the addition of one semap,bore var·able and one focal variable in each

proceS-st to a solution that lr in SYM, but not in NM.

The soilution work~ .as foUows: When process I enters the tryin.g region, the

first c hing it does is to indicate its presence by setf ng the variable flagJf.11 to true.

The proc,ess next tests the global vadab]e empty t.o find out if any other processes

- 78: ..

are in the trying o.r critical .regions. If empty is true, indicating that th.ere are no

other processe-S, process i remember this by setting its local variable first to tru·e. It

then proceeds directly to the critical region. If there are other processes, first

remains false, and process ; executes a P(se#i(tl) to, await its rurn in the critical

region.

When process, ; enters the leaving region , it resets flags[;) to f lse, indicating

that it is no lon,ger interested in executing in the cr:itical region. It then examines

the array flags to determine the next process to execute in the critical region. The

global variable ne.x.J is used as a roving pomter to ensure the fai.ro.ess or this,

selection. The selected process is signalled via a V(sem[.11) ,r,peratioa, and process i

exits the leaving region. If all the entries ,of flags are f.alse, no proress is present]y

interested in executing a critical region, and the variable empty i.s reset ·to true.

The semaphore mure.x has a dual purpose. First, it ensures mutually exclasive

acces~ to the variable •empty. Se-eond1 it prev,ents the possibility of the deadlock

situation where a process in the: leaving region finds all entries of flags to be 1-lse,

but before it can set empty to true,. a process in the trying region reads it, and then

waits at the P(sem[m for .a V(sem[,]) that may never occur.

It should not be difficult to convince onesdf that the correctness of the

solution does not depend upon what type of semaphores are used ..

Example 4.3 - Any solution to the starvation-free mutual exclusion

problem may be transformed into a. symmetric solution through the

addition of a single semaphore ·variable and a local variable in each process,

as shown in Figure 4.2. The resulting solution,. however, is not in NM.

Discussion • I.n particular, applying this transformation to the solutfon of Figure

4.1 shows that there is a solution in NBW n ,SYM, using any type of semaphor,es.

global inh:R,er ne.xl initially l;
alobal boolean empty mitially true;
1dobal boolean array flag.(tA1 initially false;
we.a k h in ary semaphore mu tex I nit i.a.Uy l ·
weak binary semaphore array semll :JV1 initially (}.

(Program Executed by Process 1)

local boolean first:
local integer j.

foop.: <noncriricaf regfo,o
{lag:(sl := true:
first := false; -
P(mutex)·
if empry then betfn

emp,y ~= f alsei
firs/ ·= true

endi
V(mutex)~
if -,firsr then P(sem(1]);
<critical region>
f I agJl,1 := f aise;
P(mulex)~
fer j =next+ I to N step1 I., 1 to next step 1 do

if fl agslJ] then hegin
next ::= j;
V(sem[Jl~;
goto out

endi;
emply ·= true;

out: V(murut
g.0110 loo?i

Figure 4.1 - Asymmetric Solution With No Busy-Waiting

Figure 4.2 shows how the N trying regions and N l1eaving regions: of the given

solution may be combined into a singt trying ud leaviDg region that is run by all

proces-ses in the transformed so,ution. The semaphore mutexl is shown as a weak

binary semaphore in Figure 4.2 to be consistent with Figure 4.1, however when

applying this transformation to an arbitrary solutio.n,, the semaphore mutexl should

be of the same type as the semaphores in the given solu1ion.

The transformed solution operates as follows: The first time each pr,ocess

enters he trying region, its locaJ · ariable ident has, the value :rero. The process then

•picks a number' by assigning the value of procno to ident, and then incrementing

procno. Each process thus obtains a unique value of ident. which it then uses to

select among the N different trying and leaving reg· on protocols.. It is im portmt to

note that "picking .a number' occurs exactly once per process, the first time that

process enters the trying regiont and is not performed on subsequent vi.sits to the

trying reg,ion. Thus even though the semaphor,e mutexl is a weak semaphore, there _

is no possibility of starvation.

It is easy to see that the transformation does not introduce the possibility of

busy•waiting. Since the program text run by ,one process is identical to, that run by

any other process, the transformed solution is symmetric. The only thing that

distinguishes one process from another is the value of the variable ident. The

corre:ct.ness of this solution_ depends crucially on the £act that it uses "memory". As

in Example 4.2, it is not difficult to see that the correctness. of the transformed

solution does not depend upon the type ,of semaphores used.

Exa pie 4.4 - The mutual e~clusion system described by Figure 4.3 is a

solution to the starvation•free mutual eJtclus:ion problem for two processes,

which uses weak generaJ semaphores, is in SYM n NM,. but is noi in NBW.

- 81 -

global integer procno inUiaHy l ·
eak binary semaphore mute.xi lnlha.Hy l;

(Program Ex,ecuted by Process 1)

local integer ident initially 0.

loop: <noncritical r:egion>
U idenl = 0 then begin

P(mutexl);

end~

ident := procno;
procno ·= procno + l;
V(mutexl)

If idem = 1 then <Execute Trying Region for Proces_s l>
else if idem= 2 then <Execute Trying Region fo.r Process 1>

.
else if ident = N then <Execute Trying Region for Prows N>
<critical region>
if ident = I then <Execute leawng Region for Process I>
else H ident = 2 then <Execute le,Q,;ing Region for Process J:>

else if ident = N then <Execute Leming R',egion for Process N>·
goto loop,

•.

Figure 4.2 - Construction of a Symmetric Solution From an Asymmetric Solution.

D-iscusslon - ote that this result, coupled with Theorem 3.14, shows a sense in

which weak general semaphores are strictly more "'po,werfuJ' than weak bin.ary

semaphores. Dijkstra \[DIJKS66) cfaims that general semaphores are ''superfluous,"

given binary semaphores as primitives. At least for weak semaphores, if we are

ooncemed about the properties of symmetry and no memory in our solution, this is

not the case. Tbls also 1e:xplains why any attempt t-o implement weak generaJ

sernaphores with weak binary semaphores, such as that in [SHA W74], .must either

introduce asymmetry, violate the "no memory" pr•operty, or fail.

The operatiron of the so.lution in Figure 4J may be visualized in the following

way: Think of the semaphore variable s·em as being a bag that contains a number of

pebbles. If both processes are in the noncritical region, the.a th _ number of pebbles

in the bag is 2•cycfe - 1. To enter the critical region, a process must remove cycle

pebbles from the bag by exec1Jting cycle P(sem) operations in the trying region.

Mutual xclusion is therefore ensured, since the[':e is always one Jess than the number

of pebbles needed for both processes to enter the critical region simultaneously. In

the teaving region, a process increments cycle and then returns cycle+ 1 pebbl.es to

the bag. Thus , each time the leaving region is execut d, cycle is increased by one:t

and the total number of pebbles is increased by two. Note that the fact that the

total number of pebbles is con tantly increasing ensures that a process may not

starve at the weak P(rem) operation in the trying region while the other process

r,epeatedly executes critical regions.

Ignoring for the momen.t the P(wait) operatioa in the trying region, since a

process, for example process l, cannot starve a the P(sem) operation while process 2

.repeatedly executes critical regmo.os, the only way for process I to remain forever in

the trying region is if it continuaHy loops back to tloop. Since process I r,emoves a

pebble from the bag each ti.me around th.e loop, process 2 must be repeatedly adding.

• 83

pebbles o the bag and a 1so repeatedly incrementing cycle. Now whee process I

entered the trying region, it recorded th:e value of cycfe in its local va.riabt.e smecycfe~

Each time a round the loop. it checks to see if the current value of c,cle exceeds

sm.-ecyde b more than LIMIT. If so, then process 2 has gotten ntoo far ahead' of

process I. Upon noticing this, process 1 sets the global variable haltfiag and its local

variable //,aft to one. When process 2 .sees that hafrflag is on~ instead of continuing

to execute critic.al regions, 1t performs. a P(wait). Process. I is now free to er:iter the

critical region at wilt The local variable / hal.1 is used so that process I does not

itself become hal'ted because halffiag is one. When process 1 executes the leaving

region, it resets haftflag to ZJetOt and signals process 2 with a V(wmt).

The interesting and novel reature or this. sob1ti.on is the way m which

continually increasing he number of pebbles in the bag prevents a pr,ocess from

starving at a weak P operation. Note that this means that no a priori bound m.ay

be placed on the length of time a process may spend in the trying region. indeed, as

the system ages, · he length of the trying and leaving region protocols becomes longer

and longed Thus this solution: is not in NBW. although it is in SYM n NM.

• 84 ..

weak general sema.phore sem,wait lnUlaJly l,, O;
global cyd~ halt/lag lnHlal1y 1, O;

(Program Executeil by Process i (1:::; i < 2))

local s(J)'tCyc/e. c--0unt, /halt initially 0, 0, Oi

loop·: < nonc:ri lical regiorf>
savecycle :c CJCle.

tloop: P(sem);
counr := count+ l;
ii count = cycle then goto crit;
If lhalt - l then geto 1/oop.
if cycle - savecyde > LIMIT then begin

lza/rflag := l;
!halt:= 1

end~
if halt/lag= 1 A /halt== 0 then P(wmt);
goto rloop;

crit: <critical region>
cycle ·:- cycle + l;
If /halt = 1 then beg.in

/halt:= O;
l1oltf/4g := O;
V (waU)

end;
Cor s,avecycle := cycle·+ l step -1 until 1 do V(sem);
count := savecycle := O;
goto loop.

Figure 4.3 Two-Process Solution with Weak Gene£a1 Semaphores

• 8S

5. A Corr,ectness Proof

In Example 4.1, the mutua1 exclusjon system of Figure 2.3 was proposed as a

blocked-set general semaphore solutfon, in NBW n SYM n NM, to the starvation~free

mutual exclusion problem. In thiS- chapter this :solution win be proved c-0rrect. It is

eft to the reader to verify that if the bl,ocked•set general :semaphore operations are

re placed with b toe k ed-iset binary semaphore operations~ then the arguments to be

presented in this chapter hold essentially unchanged.

The most outstanding feature of the proof is its length, and this is the reason

why correctness proofs for other soluti.ons proposed in this thesis have been omitted.

It is surprising what lengthy formulas seem to be necessary to prove a handful of

proper ies abou a short. pmgram. The presentation of the proof has been guided by

the philosoph that as much as possible, the portions of the proof that actually

contain intuifon about the operation of the solution should not be obscured by

tedious detaUs of v,erification that might weJl be performed by a machine. For this

reason~ the proof has been divided between this 1chapter and the Appendix. This

chapter contains the portions of he proof in which intuition is required, and the

remaining mechanfoa~ details are given in the Appendix.

Due to a lack of well-established techniques for pr,o,ving properties ,or parallel

programs, a detailed discussion of the three techniques we wm be using is

prerequisite o the proof ·tself. The three t,ech.niques are the induc/,ion principle, the

86 -

well foundPd set method, and the parallel program homomorphism method. The

induction principle and the we]-founded set method are adaptations of techniques

used in (KELLE76] and (KWONG78]. The notion •Of a parallel program

homomnrphism is hinted at in [OOEPP76]. Parallel program homo.morphisms allow

us to abstrnc away from irrelevant d tails, and it .i,s this property that permits a

clean separation of the mechanical verification parts of the proof from the more

important,. intuitive parts.

The outline for this chapter is as follows: Before we may prove anything

about the mutual exclusion system of Figure SJ, we must first perform a translation

from the algorithmic notation of Figure 5,.1 to the graphical notation of the mutual

excl 1sion system model. The induction principle wm be used to prove that the

system has the mutual exclusion property, and the welt-founded set method will be

used to, 'prm,e the system r,ee. from .indefinite pas ponement.. The proors that th.e

syst,em has the mutual e:xdusion property .and is Cree fr.om indefinite postponement

are quite easy. To, verify that the system is deadlock-Cree and starvation free is

much harder. Freedom foom deadlock is proved with the help of a rather lengthy

im•arian/7 '!hich is a predica e true for all reacha:b e states. lnt"uition must be used

to constnict this invariant7 howe\•er once constructed, the actua1 proof of invariance

is strictly mech;1nical, and is left to the Appendix. To simpliry the priC.of that the

system is s arv-ation~free we wiJ, ose a parnUel program homomorphism to eliminate

details that obscure he properties of interest.

5 l Informal Discussion of Morris' Solutio

Befor,e proceeding i\1ith the formal discussion, let us examine informaHy the

o·peration of the system of Figure 5J. Execution of this system proceeds in two

phases. In phase one,, the semaphore m is zero, and processes exit the non.critical

region, enter the trying regjon, and fitter down to the P(m) operation, where they

become blocked. In phase two the .semaphore a is zero; preventing new arrivals

_, 87 -

blo,cked~set 1i1eneral serna.phore a, ,b, m initially I 1, Oi
Riobal counr I, count2 initially O O~

(Program Executed by 'Process 1)

loop: < noncri tiC'al region>
P(b)i

cmmtl := count/+ l;

V(b);

P(a),

P(b);

counr17 countl :- ,count/ - I, count2 + l
if countl > 0 the·n begin

V(b);

V(a)

end else beKin

''(b);

V(m)

ead;

P(m)·

<critical regiott>
counll := co·un.12 - , ;

if co,rmt2 > 0 then V(m) else V(a)t

goto loop-,

Figure 5. l - M,orri.s'' Solution to the Starvation-free Mutual El:clusion Problem

- 88 -

from pa,ssing the P(a) ,operation in tlie trying ragjon. ,Processes waiting at th.e P(m)

operation are allowed to enter the critical region onewby-one. When there are no

more processes waiting at the P(m), phase one begins again. Thus mutual exclusion

is maintained by the semaphore m.

The most interesting aspect of this solution is. the way in which freedom from

star-vation is achieved. The key ideas are the foHowing: (l) As l,ong as processes

continue to execute; the system will ,continue to alternate between phases one and

twoi (2) The sys,rem can only switcm £mm phase one to phase two if the set of

processes, blocked on the ,semaphore b has recendy been emptied. System execution

chang s from phase on.e to phase two at the instao1 a ,process at the conditional

statement in the trying region discovers that countl = 0. The hardest part of the

solu ion. to understand is why a process discovering tha counll = 0 may conclude

that the set of processes blocked on the semaphore b has recen.tly been emptied, and

hence tha it is safe to allo,w processes to execute in the critical region ..

5 .. 2 Morris Solution Presented in the Parallel Program Mod1el

Figur,e 5.9 at the ,end of this chapter disp.lays the graph for the ith process in

the mutual exc]:usion system that resu1ts when the program of Figure 5.1 is

translated into graphical form. Throughout his cha.pter, we will refer to this mutual

exclusion system as%

The set. Si ,of g]obal variables for E contains two variables, c:ountl and count2'.

There are nine synchronization variables in 'z! the thr,ee semaphore variables a, b,

m, and the correspond'ng s t variables a._bl, .:t...eni b_bl, b_en.,, m_bl, m_en. The ith

p,rocess has one local variable, loc_i. The inifa[state for l: assigns the value zero to

an local variable.st aU global variables, and semaphore variable m. Semaphore

variables a and b hav,e initial alue one, and all set variables have initial value 0,

The graph for the ith process in :C contains 34 + 7N transitions, where N is

the mun er of processes in the system. Howe\·er, for our purposes it wilJ never be

necessary to dfatinguish between the N transitions that model the nondetermjnistic

selection of a process from the blocked set in a V o,peration. For this reason, in

each V operation, hese N transitions have aU been giv,en the same name. The

names for the transitions in the ,graph for process i in E are: NGT_i, TTl_j', ... ,

TT30_i CT_; and l Tl i1 ... , , L T9_i. Transitions NCT i and CT_i conn,ec.t the

noncritical regi n to the trying region, and the critical region to the leaving region,

respective y. Transitions TTl_i, ... , TT30_i are the. trying region transitions ('1TT'•

stands for t•trying transition''') and transitions L Tl _i ... , L T9_; are the leaving region,

trans" t'ons {'LT • for 0 1 a\ring transitton11
). Because of tbe symmetry ,of the system,

we ,; iU usu •. Uy not be int rested in distingujshmg between transitions in different

processes. It wm therefore be con enient to speak, for exampte of 'trans"tion TT3"

as if ther were only one such transition, rather than one in each. process. Used in

this wa , the phrase "transit' on. TT311 means, roughly, ntransitio.n TT3-i, £or some

process t'.

Due to, space considerations, statement labe1s have been omitted from

transi ions LT 4_i, L T5_i, L 7 _i, and l TS_i in Figure 5. 9(h). However, since these

trnnsittons are part of V operations,. it should be obvious what the labels should be.

There · re twenty-seven places in the ith. process. The noncritical place is

NCP _i and the er i tical place is CP _f. The trying region pla,ces are numbered

TP l_i, ...• TP2O_i, and the leaving region p.faces ar LPl_i, ... , LP5 .. J. It will be

,convenient to assign names to various important sets of places, and this is done in

Figure 5.2. The names of the-Se sets are supposed to be somewhat mnemonic; their

meanings are as follows: NCR and CR' stand for u,noncritical region.11 and 'critical

region',, rt:5pectively. TPi is he ith place in the trying region, and LPi is the ith

- 90 -

place in the leaving region. TR and LR stand for "trying region" and "leaving

region'\ respective,y. MUTEX J and MUTEX2 stand for 11mutuaUy exclusive regionsn

one and t \'O. It wm be seen la er that at most one process at a time can be at a

place in the set MUTEXI. and .similarly for MUTEX2. WA/TA and WA/TM are the

sets of places where processes wait to pass the P(a) and P(m) operations,

respecti ·elyT and WAITBJ and WAITB2 ar,e the sets of places where proccesses wait

to pass the two P(b) operations.

It wiU be convenien to introduce the following notation~ If Eis an express.ion

invoh•ing ariabJes or names ,of places in a paraUel program, then let [E](q) denote

the value obtained by e aluating the expression E in state q. For example, if

q(,1) 1 and q(b) = 2, then [a + b)(q) = l If I is a set of places, and i is a

process nu,nber then define the predicate l[i at Sl(q) to be true iff the token for

process l is n a place in I in state q. AJso, let [l(q) denote the totai number of

tokens residing at places in S in state q. Let en(a) abbreviate the expression "a > 0

v a_en ¢ 0" and similarly for en(b) and en(m). Note that if [en(a)](q) is true., then

the semaphore a is "enabled" in state q in the sense that either a process at the

blocked-place for a P(a) is enabled to proceed, or a process arriving at the input

place to a P(a) may comph?te the P operation withou becoming blocked. FinaUy, if

P is a set variable then let [card)](q) be the number of elements, in the set q(")-

5.3 Mutual Exclusion

Now hat the problem of nomenclature is out of the way, we may begin

proving properties of I. The first proof technique we will use is caHed the induction

principl~ for pro ing invariant assertions about the state or a parallel program. An

assertio,n is simp]y a predicate on states. If r is a parallel program, and if P is a

predica e o er ~r, then we say that P is invariant for r iff P(q) is true for any

reachable state q. The induction principle is presented here in a form essentially

identical to that of [KELLE76]; where it is argued that the induction principle for

NCR = {NCP _1, NC:P 2, ... , NCP _NJ

CR = icP _l, CP _2~ ... , CP _.NJ

TPi = {TPi_l1 TPi._Z, ... , TP(./VI, fer l < i ;:S 20

LPi = ILPi_l LPL2, ... , LPi_.Nl, for l < i < 5

TR= ul21 TPi

LR - u7 =l LPi

/t,f UTEX I = U~ =J TPi

MUTEX2 = U~ ~ TPi U TPI 7

WAJTA = TP6 U TP7

WAIT.if= TP19 U TP10

WAJTBJ = TP2

W AJTB2 = TP8 U TP9

Figure 5.2 - Useful Names for Various Subsets of (PE

- 92 -

prmring properties of paralle] programs is a natural generalization or the inductive

assertion technique of [FLOYD67] for proving properties of sequential programs.

Induction Principle · let r be a par.al 'cl program with initial state q1 ,

and let P be a predicat over Gr, If P(q1) is true, md if l'(q) implies

Pf. nx 1(q, r)) for ail q e 1flr and aH · r e :Jr enabled in state q, then P is

satisfied by an:y reachabJe state of r.

We can apply the induction principle immediately to prove that Z ha.s the

mutual exclusio.n property. In this and subsequent discussions, phrases such as

'
1[B](q) is true" and "B is true in state q'1 will be used interchangeably, to avoJd

unpieasant repetition ..

Proor

Cl aim S. l · The system I has the mutuai eJiclusion property.

Let sum abbreviate

exd1 = (sum> 0-+ -,en(m})

exc/2 = sums; 1

the
.

express1on +

excl .3 :._ m < I A card(m_en) < 1 A (m > 0 -.. m_m = $21,)

Let

Then we claim that [excl] is invariant fort. Note that if this is true, then Z .has the

mutual exdusion property, since the invarianoe of [erc/J implies the invariance of

[CR < I]. The invariance of 1(exc~ wiU be proved by the induction principle. Note

that ~e are unable to use the induc.tion principle to prove the invariance or
0 CRI < 1 J directly; we have bad to strengthen the predicate before the proof will go

through.

- 93 -

It is obvious that fe.xc~(q1) . is true. Let q be a state satisfying [exc/J, let t be a

transitjon enabled in state q and define q' = n.xr(q, 1). We must show that

[exd](q') ·s rue. Consider first excl1. Since [exciji(q) is true, then the only

transitions t that could possibly make excl 1 false in state q' are TT28 and TT30.

Howe ·er, since e.xcf 3 ·s true in state q, firing TT28 or TT30 from state q is

guaranteed to make en(m) false in the resul ing sate q'. Hene-e excl 1 is true in

state q'.

No ', excl 2 can only be false in state ,q' if sum = [in state q and TT28 or

TT30 is fired. Bu since excl 1 is true in state q. [sum = l](q) implies [-,en(m)](q).

which neans thi TT28 and Tl30 cannot be enabled •hen sum = I.

Final y excl 3 can be false in state q; only ff transition LT4 or LT5 is fired

from state q. However, for either ,of these ransitioo to be enabted in state q, we

must have sum = in s ate q and henc-e [e,1(m)l(q) must be true. Now,

[,en(m]{q) ·s by definition true iff [m = 0 " m_en = 0](q) is true Therefore,

firing LT4 r LTS causes ,either [m = ll(q') to be true or [card(m_en) = l](q') t,o

be true, respectively. In either case exd3 is true in state ,,,' and the Claim is proved.

I

The predicate [exc/1 was rather sjmple,, and the proof or its invariance was

eas ,, since it was easy for us to see that only a few transitions in E c-ould affect 'its

truth. To prove · hat I is deadlock- and s arvation~free w·u require a much more

complicated predicate,, the invariance of which implies the m\•ariance of exd. In the

Appendix " e wm se,e that nearl aU transitions in l: can affect tbe tluth of this

predicate and it therefore wouid be better if the large number of cases were

checked by machine, instead of by hand.

- 94 -

5.4 Freedom From Inddinite Postponement

It was noted tha the induction principle is a natural parallel program

generaliza ion of the isducti 1e assertion technique of [FLOYD67) for proving

properties ,of sequential programs. The well-founded set method presented in this

section can be considered a natura1 para1lel program generalization of Floyd's

technique for proving termination of sequential programs. The version presented

here is not only 11seful for proving that an execution .sequence is finite, but may be

applied to infinite execution .sequences as weH. Fo.r exa·mple, we wm show that no

process in a system of ,processes may fire an infinite number of transitions without

lea ing an acyclic part of its graph. This in turn will be used to show that E is free

from indefinite postponemen.t.

Versions of the well-founded set m.ethod similar to this ,one may be found in

[KELLE76] and (K WO 078].

Well-Founded Set Method • Let r be a parallel program and ('W, <) a

well-founded set (one hat has no infinite dec.reasing chains). Let a be a

finite or infinite execution sequence for r, with corresponding state

sequence q(fl 1 Le f: tJr ~-> W, and P be a predicate over ~ such

that for all states q, and all transitions I enabled in state q, if P(q) and

l' n.xt(q, 1)) are true then J{nxt(q, t)) < ft..q). Let 'U be the set of all

j ~ k such tha ft.qi+Jl < J{q}· Then either \l is finite, or there exists

j 2:-. k .such that P(q jl is false.

An important special case that we shall encounter is when rw, <) IS the

natural numbers under the usual ordering.

- 95 -

As an app ication of the well-founded set method, we wiJl now prove that Z is

free from indefinite postponement. ·we wiU make use of the following obvious

result for which a proof is given o.nly to illustrate the use of the well-founded set

method.

Observation 5.2 - Let r be a system of N processes, and let ;: be an

acyc ic subgraph ,of the graph for the ith process,. Then there is no .infinite

execution sequence a from some state q0 for r, containing infinitely many

transitions for process i, such that if q(II J ... is the state :sequence

,corresponding to «1 then. for all j > 0 the t,oken for process i is at a place

in :a in state qj

Proor ~ Suppose there were such a sequence o:. Let W - d'f, the set of places i.n

the graph for process i. Since Z is a direc ed acyclic graph. we may define an

ord ring < on W as follows: If P' and p' ,are pfaces in r, then

(1) p < p' if p' is a predecessor of pin ! .

(2) p and p' are incomparable under < if either p or p is not in Z

Let P(_q) · e true jff the t,oken for process i js at a place jn Z in state q, and define

/{q) = p if the token for process iis at pla,ce p in state q. It ·s dear, if q is a state

I is a transition for p.rocess i enabled in state q, and q' = nxt(,q, t)), that P(q) a.nd

.P(q') imply that /f,q') < /f..q). By the weU~founded set meth.od, if a contains

infinitely many transitions for process l, then there exis1s j > k such that P(..r1 j) is

false. This is a contradiction and he Observatton is proived. fi

Claim 5.3 - t ~s free from indefinite postponement.

Proof - Suppose n.ot. Then there is a valid infinite initial execution sequence a for

- 96 -

l!, with corresponding state sequence 1q(f/J ... , such that for some le and alJ j > k no

process is in the critical region in state qj Since the number of processes is finite,.

there must be some pr,ooess i, such that a contains infinitely many transitions for

process i. Now, by the structure of the graph foli process i in. a mutual. exclusion

system, a process that executes infinitely ptany transitions without entering th.e

critic.,, re,gion must eitheli' remain forever in the oying region, or forever in the

leaving region. But since the trying and leaving regions of E are acyclic, process i

may not remain forelfer io the trying region or forever in the leaving region,, by the

pre,·ious Observation. This is a contradiction, and the Claim is proved.

5. 5 Freedom From Deadloc'k

We have seen that I bas the mu.tual exclusion property and is free from

indefinite postponement. In this sectiont we wiU show that E is deadlock .. free. This

will be done by showing that from any reachable state, we can construct an

execution se,quenc.e that remov,es aU processes from the trying and leaving regions.

The key property we need for this is that in any reachable state of 'I with at least

one process in either the trying or leaving region, there is some process in ieither the

trying or lea\·ing region that has an enabled transition.

To pro ·e this p.roperty we win pmve the in ariance or a rather lengthy

pr dicate (inv which encompasses most of the interesting, statemeRts about l: that

can be fonnulated as im,ariant assertions. The reason this predicate is so

complicated is that ~t is not possibte to use the 'induction principle to prove very

many short statemen ,s of interesting properties of z. Instead, these short statements

must be strengthened by conjoining additional. tierm.s before the proof will go

through.

The constru tion of the invariant [inr] is based on the following observation:

the reachable states of ~ may be classified aooordrng ·to the configuration of tokens,

on the graph. Although the (act that there are twenty-se\fil places in the graph for

the ith process implies that there are 27N different ctmfigurations o,f tokens, for our

purposes large classe-s of configurations may be regarded as 0 equivalentu, reducing the

total. number of 11different'1 configurations to thirteen. The classification. of the

reachabie states into these thirteen categories was reached by .a pr,ocess of trial and

error, reg ui ring the use of intuition about the operation of the system Z.. A

classification of states into less than thirteen categories is too weak for our purposes.

The thir een categories are defined by the predicates [con/;], for l S i :S 13, wkere

the expressions con[;. are gh1eo in Fjgure 5.3.

Note that the [con~•] are pairwise disj.om4 meaning that no sta.te c.an satisfy

more than one of the (con[;]. If we can show (which we will), that every reachable

state q satisfies exact y one of the (con[;] then it is interesting to see that the mutual

exclusion propejty of l: is immediate. This is because a process can. be in the criti.cal

region in sta e q on]y if (conf1i](q) is true. However, this means that ICRI = 1 in

state q, and hence there can never be more than one process in the critical region in

any reachable state.

Corresponding to the predicates [con[;], which define the thirteen ca.tegories of

reachable states.,. are thirteen additional predicates (vbls,t which describe the values

of the variables .or I in each of the categories. That is, if q is a reachable state that

sat isfics (con[j] for some i, then q also satisfies (vbls 1]. 'Stated another way, we assert

the im·ariance of the pre-dicate (v~~J (con/1 A vbls;)]. The expressions vbfs; are

defined in Fgure 5.4. Tae exp.reS'Sion procnorcounted abbreviates 3'i(i at WAJTBI A i

E b_en). The quan ifier used here, as well as any others we wiU use, ranges over

process numbers, and is hence bounded by N.

conf1 = ~IIUTEXJI = 0 /\ IMUTEX~ - 0 A ITPJ6} = 0 A ITP161 = 0 A

lCRI - 0 A llRI = 0

conf1 = ~\IUTEXJJ = l A ~VUTEX]I = 0 A ITPl6' - 10 A ITPJ'~ = 0 l\
ICRI - 0 tdLR = 0

c:on/3 2 !M'UTEXII == 0 A WAITAJ > 0 A IW.41TB21 = 0 /\ 1AfUTEX21 = I /\
ITP16j = 0 A ITPlc§1 ·= 0 A ICR,j -- 0 A llRji --- 0 A ITPI~ == 0

con/4 = ~YUTEX~ = 0 A IWAITAj > 0 A 1IWAITB21 = 0 A 1MUTEX"1 = 0 A

ITP16l = l A ITP/61 = 0 A ICRI = 0 A ILRI = 0

c,on/5 = ~UTEX/j = 0, A iWAlTAJ = l /\ tWAITB2\ = 0 .A !M'UTEX.21 = 0 A

ITPI61 = 1 A ITPlb1 - 0 A ICRI = 0 A fLRI = 0

con/6 = IMUTEXII = l A jWAITAj > 0 A IWAJTBil = 0 /\ ~UTEX21 = 0 A

ITP161 = h A ITP:l~ = 0 A ICRI - 0 llRI = 0

con/7 = IMUTEXII = 0 /\ IWAl'TAI = 1 A IWAJTB21 = 0 A JMUTEX~ = 0 A

ITPJ61 = 0 A ITPJ~ - 0 A \CR]1 = 0" ILR!, = 0

conf'rJ = ~UUTEXI == 0" IWAJTA] = 0 A IWAJTB21 = l A lJIIU-TEX21- 0 A

ITPJ6) = 0 A ITPia, - 0 A ICRl = 0 A ILRI = 0

con/9 = l,MUTEXJ = 0 A WA/TAJ= 0 A l1WAJTB~ = 0 A jMUTEX21 = I A

ITPI,6j = 0 A ITPJb1 = 0 A ICRI - 0 A '1,RI = 0 A ITPJ~ == 0

conf1o = IWAITB21 = 0 A IM'UTEX21 = 0 A fTPJ6f - 0 A ITP181 = I I\

\CRI = 0 A ILR] = 0

con/11 = IWAJTBll = 0 I\ ~~UTEX2\ = 0 A ITPJ~ ~ 0 A ITPI~ - 0 A

l1¥AITMJ > 0 I\ ICRI = 0 A IL.RI= 0

conf12 = IJYAITB.21 = 0 I\ IMUTEX2! = 0 A TPl"1 = 0 A ITP1h1 - 0 A

ICR! = l A llRI = 0

conf1J = 1IWAITB2I = 0 A jMUTEX.21 - 0 A ITP/61 = 0 A fTPld1 = 0 A

. ICR = 0 A 1£RI - I

Figure 5.3 Reachable States. of .:E Cfassiied Ioto Thirteen Categories

.. 99 -

vbls 1 = -OWAITB2j = 0 ➔ (en(a) I\ ~WAITAI = 1 ➔ procnotcounted))) I\

(jWAITB21 = l ➔ (-.,.en(a) A (lWAJTAl = 0 ➔ procnotco11r11ed))) I\

OWAITMl > 0 ➔ (IWAITBJj + tWAJTAj + IWAITB21 > 0)) /\

en(b I\ -,en(m)

rbfs2 = (IWAITB21 = 0 ➔ en(a)) A (IWAITB~ = 1 ~ -,en(a)) I\ -..en(b) A

-.en(m)

~·bis 3 - -,en(a) I\ -,en(b) /\ en(m)

vbls4 = (IWAITA\ = 1 ➔ pracnotcounted) A -.en(a) A en(b) I\ -,en(m)

~-b!s5 = -,procnotcounted I\ -,en(a) I\ en(b) A . en(m)

l 0bls6 = --.en(a) A -,m(b) A ..,en(m)

vbls7 = -.procnotcQunted A en(a) A en(b) I\ -,m(m)

1·bls8 = -.procnotcounted A en(a) A en(b) A en(m)

~•bls9 ::: -,en{a) I\ ~en b) I\ -,en(m)

vbls Jo :::::: ~W UTEX JI = 0 ➔ en(b)) A

(~VUTEX 11 = I ➔ -ien(b)) A -,en(a) A - en(m))

vbls1 J = (~WUTEXJI = 0 ➔ en(b)) A

,(jMVTEXJI = 1 ➔ -,en(b)) A -,en(a) I\ en(m))

ri:bts12 = (jWUTEXJl = 0 ➔ en(b)) I\

(~'1 UTEX II = 1 ➔ -.en(b)) A -,en(a) A "len(m))

vbls13 = <ittuTEXJI - 0 ➔ en(b)) A

(jM'UTEXll - I -+ -,en(b)) I\ '"'en(a) A -,en(m)) A

qLP4) > 0 IW AJTMI > 0) A O.LP.S) > 0 ➔ IW AIT~ - 0)

Figure 5.4 - The Expressions l'bls;

~ 100 -

Befolie a proof by the induction principle will go through. it is neces-sary to

f uther strengthen the invariant by oon ·oining the predicate [aux1 where

mu ~ aux 1 A auxi A ... A aux21, and the definitions of the aux; are given ·n

Figure 5.'.5. The predicates [aux 1L, , [auA"3L and [au.r J'ol• ... , (aux I 3] express

relationships that are true in any system that uses blocked«t semaphores.. The

predicates [auA:"4}1 ••• t (aux9] 'State that no e~ecution sequence may contain two ·

consecuti e P operations on the same semaphore without an intervening V operation.

This is why the general semaphores may be repfaced with binary semaphores without

any d,e rimentai effect. The remainder of the [aux11 express some mut:ual exclusion

conditions that are enforced by the system, and also relate the values of the variables

count I and coun12 to the positions of tok,ens.

The ••t·wo-ph.ase" nature of the execution of the system is reflected in the

definitions of the thirteen ,categories. During phase one, the system state satisfies

one of [con/1], ... , (con/1,o} System states, duliing phase two ar,e ,characterized by

the predicates (conf111, ... ~ [con/111- Before the sys,tem :state may change from

phase one to phase two, the system must enter a state satisfying (,con/10].

Transitio.ns between states in t:be varfous categories are made in such a way that a

state satisfying [conf1o] can only be entered by pasting through a state satisfying

[con/ 8) in which there were no processes blocked at the first P(b) in the trying

region.. This is he key pr,operty that makes the system starvation~free.

Claim S 4 - The predicate (inv] is invariant for E, where

Proor - by the induction principle is given in the Appeo.dix. All the intuition about

the system E has gone into the construction of the predicate (inv]I, what remains is

simply tedious erffication that could be done by machine. If one has a good

intuitive understanding of the system?, the invariance of [in.•] should seem plausible

aux 1 = a > 0 ➔ (a...en = 0 A a_bl = 0)

aux 2 = b > 0 ➔ (b_en = 0 A b_bl = 0)

mtXJ == m > 0 ➔ (m_en = 0 A m_bl= 0)

au.t4 - a .< 1

aux5 ::::: b < 1

a11x6 ~ m < I

aux 7 = card(t1_,en) < 1

auxa == card(b:_en) < l

aux 9 = card(m_en) < 1

aux 10 .::.. Vi(i at TP7 ·+-+ (i e CLbl v ; e a....en))

aux JI = Vi i at TP2U TP9 +-+ (i e b_bl v i e b_en))

aux J z = W(i at TP10 ..,,, (i ·e m_bf v i e m'.-en))

«wr J 3 = ...3i(i E a_bl A i E a_en)

aux 14 = "'"13i(i E b_bl A i e b_en)

aux15 - -..3i(i E m_bl A i e m....cen)

aux J 6 = iWAJTB21 < 1

aux 17 = ~'llUTEXll < l

aux J.8 = coum J = I TPjJ + ITP~ +]TP~ + tTPA1 + IT~1 + ITP/~ + lTPJ JI
au:x J 9 = WU at TP4U TPJ 1 ~ loc_i = co.untJ)

aux20 = rount2 = ITP/41 + ITPlJI + ITP16f + Tl'1Ji + !ITP181 + ITPI'~ +
ITPl~ + ICRI + ILPJI + ILP21

aux 21 = Vi(i at TPJ JULP2 ➔ loc_i - countZ,

Figure .5. 5 - Auxiliary lnYariants

- 102 -

at this point wi bout th,e proof i." the Appendix. I

W,e are now in a posi ion to pr,ove that t is deadlock-free.

Claim 5-. S - If q is a reachab e state for I:, such that no proces-s is in the

critical region in state q, but at leasi ,one process is in the trying or leaving

region in state ,q,. then there is a transition enabled in state ,q for some

process in the trying or leaving region.

Proof - Since q is a :reachable state for :E, by Claim 5.4 we know that [in,](,q) is

true. W,e sp1it the proof into cases,. depending upon which one of the predicates

l[conf; A •1bls1] is true in state q. Since we wiU be ooncemed in the sequel only with

the single given state q, no confusion can result if we omit the square~bracket

notation. Thus we will write 0 conf1 is truer to rnean '1conf1](q) is truen.

Case 1: conf1 A .,b/s 1 is true. No~. if there are any processes anywhere in the

trying or leaving regions. e1,;cept at TPJ, WAITBJ,, WiUTB2, WAJTA. or WAITM,

then we are done, since those processes always ha e enabled transitions. Otherwise1

vbls 1 implies that en(t,) is true. meaning that either b > 0 or b_en # 0.

Subcnse I a: If b_en ::/= 0, then by aux 11 we know that

Ji(i e b_en A i at TP2UTPV}. This, in turn implies, that a. process at TPZ o,r TP9

is ,enabled.

Subrase lb: If b > 0, then by aux2 we know that b_en = b_bl = 0, and hence

I TP2UTPq = 0 by aux/ J· If there is a process at either TP'l or· TP8 then that

p_rocess is enabled, ,other 'lise jTPlUWAITBIUWAITB~ ~ 0. Since we assume

that there is at least one process in the trying or leaving region in state q, this

means that there must be a. proc-ess at either WAITA or WAITM. Since it follows

from r1bls I tha WAJTM > 0 implies W,4JTA > 0, we conclude that WAITA > O.

- 103 -

Since jJVAJTB.21 = 0, we know that en(a) is true by vbls J· Therefore. either

a > 0 or a._en i# 0. If a > 0, then by aux l and aux J(j, there is a process at

TP6 and hat process is enabled. If o_en ,', 0, ITP71 > 0 by aux U> and

therefor a process .at TP7 is enabled.

Cose· 2.: coif2 A ;;bls2 is true. By confi, jMUTEXIJ > 0. A prooess at MUTEXI

always h" s an enabled tran si ion.

Cose J: conf3 A vbls3 ·s tru.e. By conf3, jMUTEX21 > 0. A process at MUTEX2

alw:t 'S has an enabled transition.

Case 4: con/4 A vbls4 is true. By c:onf4, ITP/6] = 1. A process at T/'16 always has

an enabled transition.

Case : con/5 I\ vbls5 is true. By c-on/5, l'TP16j = L A process at Tl'/6 always has

an enabled transit.ion.

Case 6: con/6 A 1'bls6 is true. By con/6,, IMUTEXJI = l. A process at MUTEX I

ah ·ays ha an enab]ed transition.

Case 7~· con{ 7 I\ Pbls7 is tru.e. By ~bfs7t en(a) is true, which in tum implies that

either a > 0 or a_en 'ji:- 0.

Subcase la: H a> 0 then a....en = 0 A tLbl = 0 by aux 1, and conf7 impti.es

fVAITAl - 1. By aux1o we have that ITP61 = 1, and hence :a pr,ocess at TP6 i.s

enab~ed.

Subrase lb: If a_en #, 0 then TP7 > 0 by (IUAJO and hence a process at TP7 is

enabled.

Case 8: conf 7 A ,bis 7 is true. By vbls7t en(b) is true, which. in turn, implies that

either b > 0 or b_en 7' 0.

Subcas-e 8a: If b > 0 then b_en = f2I A b_bl = 0 by auxi, and con/a implies

I JVAITB21 = 1. By aux 11 we have that liTP~ = 1, and hence a process at TP8 is

enabled.

Subcase 8b.~ If b_en #, 0 then ITPJI + ITP~ > 0 by aux11, and hence a process

at Tfl or TP9 is enabled.

Case 9: con/9 A l'bfs9 is true. By con/9 we know that IMUTEXJl = 1, and a

process at Jf UTE'X2 always has an enabie.d transition.

Care JO: conf10 I\ ,;bls10 is true. By con/10 we know that 1TPI.S, = 1, and a

process at TP/8 is always enabled.

Cose II: conf11 A rbl:s11 is true. By vblsn we know that en(m) is true, which in

turn implies that either m > 0 or m_en #, 0.

Subcase 1 I a: If m > 0 then m_en = 0 and m~bl - 0 by aux 3, and con/ 11
implies IW AITMl > O. By oux:i i we have that I TP'I~ > 0:, and hence a proc,ess

at TP/9 is enabled.

Subcase J lb: If m_bl ~ 0 tneo ,TPZ~ > 0 by aux1i, and h.ent-e a process .at

TP20 is enabled.

Case /2: con/12 A l1bls12 is true. This case does not arise, since the truth of

con{ 12 is in contradiction. with our assumption that no process is in the critical

region in state q.

Case 13: conf13 A flbls I 3 is true. By con/13, we krmw that i£Ri > 01 and a process

at LR always has an enabled transition.

- 105

Since any reachable s a e must faH tJnder on of Cases 1-13, the Claim is proved.

CI a· m 5. 6 The system l: is deadlock free.

Proof - Let q be an arbitrary reachab e state for :Z:. We will show that ll is

deadlockefree by constructing an execution sequence a [rom q, such that there are no

processes in he tryiug or leavmg region in state nxr(q, o:).

Define a:o = A. ow suppose for some i::: 0, that«; is an execution sequence

from q. If there are no processes in the trying or leaving regions in state nxt(q, a 1>•
then set a: = a:i and ,ve are done. Otherwise, by Claim S.5, there is a prooess in the

t ying or le~wing region with an enab]ed transition t. Define «;+/ == a;t;, This

,cons rue ion e\'entually terminat~ since ff it did not, that would imply the existence

of an execufon sequence in hich some process fires infinitely ma.n.y transitions

without exiting the trying and ieavrng regions; a contradiction with the fact that the

tryjng and lea ing regions ia ? are acyclic.

5.6 Freedom From Starvation

At his point we contd use the well•founded set method dir-ect1y on. the system

l: to prove that there are no execution sequenc-es in which starvation occurs.

Hmi.·,ever if , e were to perform the pr,oof in this "ay, we would ,quickly encounter

difficuJt due to the large number of details vhich would obscure the important

pojnts of the proof. Examples of such details are the exact values or variables and

semaphores. The property of freedom frnm starvation is a statement about th

mo ment of tokens during an execution sequence; th. exact "alues or ·semapbores

and variable (: re only important inasmuch as they serve to determine the movement

of the tokens. I wou d be better if we could suppress such detail from our proof.

The notion of a parallel program homomorphism serves this purpose.

• 106, -

5.6.1 Parallel Program Homomorphisms

A parallel program homomorphism rrnm a parallel program r to a second

paraHel program r' is a mapping from the state set of r to the state set of r '. This

mapping has the property that initial executcon sequences are preserved: for any

initial e11ecution sequence a of r, therie is a corresponding initial execution sequenc

a' of r ·. Howe er, since the paraUel program homomorphis.m in general maps many

states of T int,o a single state of r ', the sequence « • may be shorter than u. The

usefulness of :parallel progra01 homomorphisms derives from the fact that they allow

us to nabstract" away from irrelevant details of r, and focus ou.r attention on r ', in

which the properties of interest are cqore clearly displayed.

DdhuUon 5,. 7 ~ Let r and r · be parallel prngrams. A mapping h from

CJr to fl'r • is a parallel program homomorp'nism if the following hold;

(1) If q1 is the initial sate for r. and q~ is the initial state for r ·,
then ll(q1) = q~.

(2) fo,r any reachable state q and transition t for r enabled in state

q, if h(n:Xr(q r)) ,' h(q) then there exists an unique transition r'

in r · such that h nxt(q, I)) = rur(h(q), t').

Definition 5.8 ~ Let h be a paraUel program homomorphism from r to

r ~. Define the mapping imageh from initial execution sequences of r to

initial e1:ecution sequences of r' as foJlows:

(l) image1,(A) = A

(2) Suppose « is an initial ,execution sequence for r, q = nxt(q1 , a),

and I is a transitlon enabled in state q. Then:

(a) Ir h(nxt(q, 1)) = h(q), then imageh(at) = imageh(a).

(b) U h(n.xt(q t)) ¢ h(q), then imageh(al) = image1,(a)t',

•

- 107 ~

where I' is the unique transition of r ' such that

h(nxr(q, 1)) = nxt(h(q), t').

Suppose h is a parallel program homomorphism friom r tor·. Suppose P and

R ar• predicates on execution sequences of r and r ·,. respectively., such that if• is

an initial execut'on sequence for r then R(imageh(a)) implies P(«). The "parallel

program homomorphism method'' simply states that if we can show that every initial

execution sequence for r I satisfies ~' then we know that every initial execution

seq u nee for r sa tisfie P. This is the idea we wm use in pr,oving that E' is

s,ta nation-free.

Figure 5.6 sho s the graph of a oew paraHe, program /J., whlc:h is a
11condens:ed11 \•ersion of I:, in the sense that unimportant details of the execution of l:

are suppressed in 6. Note that 4 ·s not a system o,f processes.. Arter defining a

pnraU 1 program homomorphism h from :I to 4, we wiU be able to replace proors of

proper ies of i by simpler proofs of corresponding properties of .6.. Another benefit

of this approach .is that a clean :separation may be made between the intuitive parts

or th proof presented in this section, and the mechanical detaHs, which are left. to

the App nd · x.

The ari bles of 11 are ncr, tpl, waitbl, mutexJ', waita, waitb2, mutex.2, tpl6,

tp/8, waitm er Ir and pnc. The places ,of /l are CPl, CP2, CP3, CP4, CP5, CP6,

CP7 and CP8. The initial state r1 for 4 ,(we will us.e the letter 11
," to denote states,

and "u11 to denote transitions or A) .assigns the value one to places CPI and CPS, the

\lalue N to he. variable ncr:, and the value zero to aU other places and variables.

Each horizon a . bar in igure S.6 stands for one or more transitions ,of A,. and is

labeled to correspond with the list of statement labels in Figure .5.7. For ex.ample,

the horizontal bar labeted *'la'• in Figur,e SJ, actually stands for seven distinct

. l08 -

transitions whose statement labels a['le "'la-I" to 'la•7' i.n Figure 5.7.

Figure 5.8 defines a mapping h from states of l: to states of 4. Note that if q

is a state of I, thee the values of the variables n·crt tpl, ... ,of 4 in state h(q) ,equal

the number of processes whooe tokens ar,e at places in NCR, TPI, ... , respectively, in

X. This renects the idea that only the configuration of tokens is important in

proving freedom from starvationi the exact values of variables and semaphores are

unimportant.

In any reachable state of 6., there are two tokens o.n the g,rapn. One token is

ah ti ys on ph,ce CPS. The firing of transitions 8 a-l or Ba~ 2 models a process in l!

leaYing the noncritical region and entering the trying region. The second token m A

is. always on one of places CP1-CP7 in A. Th position of this, token r,eflects which

of the con[; is true in l!.

Clai 5.9 - The mapping h is a paraHel pro,gram homomorphism from J;

to 4 .

Proo(· is in the Appendix.

It is important, if we are to use 4. ·to discuss the starvation properties of z,
that he 'mapping imageh preserve infinite execution sequences. This is the content

of the next Claim.

Olaim 5.10 - If a: is an infinite initial. ex.ecution sequence for E, then

im°'ge1,(a) is. also infinite.

Proof T Suppose • = 'o'.J ... is an infinite initial exe-eution sequence for E, with

corresponding state -sequence <l(fl'J ... • Then., since there are ,only a finite number of

processes in l:1 there must be an i such tha.t p.rooess i has infinitely many transitions

- 109 -

31,

'le

- 110 -

la I: when wana > 0 A wailbl = 0 do (wuilat waitb2) := (waita l, 1)

la-2: when rpl > 0 A mute:xl = 0 do (tpl, mutexl) ~= (tpl -- I, 1),

la-3: when waitbl > 0 A mu,cxl == 0
do (wai.rbl, muted) := (woitbl - 1, l)

la-4: when waltbl = l A m1ute.x2 = 0 do (waitb2:, mutex1) := (0,. I)

la-S: when mutexl = l A "'l(woita = 0 A waitbl - ,0 A waitbZ = 0)
do (mut,e.xJ'., waita) := (0, wtlita + I)

la-6: when murexl = l A tp16 = 0 A

.... (waitbl = 0 A waila ~ l A wai,b2 = 0) do (mutex2, (pl(i) := (0, 1)

la-7: when tp/6 = I do (tpl6, wailm) := (0, waitm + I)

lb: when mutex2 = 1 A tp16 - 0 A waitbJ = 0 A waita = l I\
waitb2 = 0 do mutex2t tpl6) := (Ot I)

l c: when mutex/ = 1 A waita = 0 /\ waltbl == 0 A waitbZ = 0
do (mute.xi, waita) := (0, I)

2a-1: when tpl > 0 A murexl = 0 d.o (tp/, muta n ;,= (tpl - l, I)

2a-2: when waitbl > 0 A mut-exl = 0
do (waitbl, mute__xJ) := (wairbl - 1, I)

2b: when rp/6 = 1 do (tpl6, wairm) == (~ waitm + I)

Ja: hen waila = 1 A wairb2 = 0 do (waita, waitbJ) := (0, I)

3b-1~ when tpl > 0 A murex/ = 0 do (tpl, mutal) :~ (tpl - 1, 1)

Jb-2: when waitbl > 0 A mutex.I .~ 0
do (w.aitbl, mute.xi) := (waitbl - 1)

4a-l: when waitb2 = l A mute.xi= 0 do (waitbl, mutex1) := (0, l)

4a-2: when tp/ > 0 /\ mutexl - 0 A tp18 ~ 0
do (tpJ, mutex}) := (tpl - 1, 1)

4a-3· when wairbl > 0 I\ mute:xl = 0 /\. tpl 8 9'- 0
do (waitbl, mural) := (waitbl - I, 1)

4a-4: when mutex/ = I do (mural, waita) .:= (Ot waita + l)

4a-5: when mute.x2 = 1 A tp18 = 0 do (mutex2, tp18) :- (,0, 1)

Figure 5.7 • Statement Labels for Trans.ftions ,of 6

- 111 -

4b: when tpl 8 = 1 do (tp/ 8, wailm) := (O. waitm + l)

4c-l: when tpl > 0 /\ mutexl = 0 /\ tpl8 = 0
do (tp/ mutexl) := (Ip/ - 1 l)

- C•.2: when wailb/ > 0 /\ m.ute.xl = 0 A tp/8 = 0
do (wait.bl mil'le:xl) := (waitb,J - I, 1)

Sa-1: when tpl > 0 A murexl = 0 do (tpl, mutexl) := (tp.l - 1,, I)

Sa-2; when waitbl > 0 A mutexl = 0
do (waitbl, murexl) .= (waitbl -- I, I)

5a]: when mure:d = l do (mu1exl, waita) := (0, waita + I)

5b: when wairm > 0 A er= 0
do (waitm, er) := (wail"! - l, 0

6a-l: wh.en tpl > 0 A mute.xi = 0 do, (tp/, mute.xi):,:: (tp'l - I,, I)

6a-2: when woitbl > 0 A mute.xi = 0
do (waitbl, mute.xi) ~= (waitbl - l, l)

6a . : when mutexl - l do (mutexf, waita) .= (0, waita + l)

6b: when er= l /\ Ir = 0 do (er Ir) .= (0, 1)

7a-1: when tpl > 0 I\ mural= 0 do (tpl, mute.xi)·= (Ipl - 1, 1)

7a-2; when waltbl > 0 /\ mutexl = 0
do (waitbl, m.utexl, pnc) := (waitb,J - l, I, 0)

ap3: when murexl = 1 A r«+•aitbl = 0 do (mu.texl, waifa) := (0, wait'a + l)

7a-4: when mutex/ = 1 A wa.itb.1 > 0
do (nrntexl, wait,a, pnc) := (O. wni(a + l,, 1)

7b: when Ir = 1 /\ wailm > 0 do (Ir, ncr) := (0, ncr + 1)

7c: when Ir= 1 A waitm = 0 A (mutexl > 0 v (waita = 1 ➔ pnc = I))
do (Ir, .ncr) := (0 ncr +)

7d: when Ir= l /\ wairm = 0 /\ mutexl = 0 A waita = 1 A. pnc = 0
do (/r, ncr) := (0,. ncr + 1)

a-1: when na > 0 do (ncr, tpl) ,:;:; (ncr - l, .tpl + 1)

Sa-2: when ,pl > 0 do, (tpl,, waitbl) := (tpl - 1, waitbl + I)

Figure 5.7 - Statement Labels for Transitions, of 4 (cont.)

- 112 -

(/,(q))(ncr) = ~~\rCRj + ILP6J + ILP~l(q)

(lt(q))(tpl) = UTPJl)(q)

(l,{q))(woirbl) = [IWAJTBlll(q)

(l,{q))(mr,tex J) = []MUTEXJO(q)

(h(q))(waira) = [IWAITAj](q)

(II q))(wairbZ, = [IWAJTB21).{,q)

(l,(q))(mutex2) = (~W'UTEX.23(q)

{l,(q))(tp'f 6) = l[ITP161](q)

(h(q))(tp18) = (ITPJ~J(q)

(/t(q))(waUm) = [IWAJTJUl](q)

(ll(q))(cr) = UCRJ + I TP2'Jfl(q)

(h(q))(lr = [jl.RU(q)

(11(q))(pnc) = if (conf13 I\ procnotcounredj(q) then 1 else 0

(/i(q)}(Cf'l) = if (,con/1 V conf2 V conf1 V con/4 V r:on/r,](q) then I l!lse 0

(h(q))(CP2) = if lmn/5l(q) then I else 0

(11(q))(CP3) = ir (conf 7J(q) then I else 0

(h(q))(GP4) - if (conf8 v conf9 v confujj(q) then 1 else, 0

(l,(q))(CP5) = if (con/11](q) then 1 else 0

(/,(q))(CPS) = if (conf1 ,z](q) then 1 else 0

(h(q))(CP7) = if (con/13](q) I.hen 1 else 0

(h(q))~CP8) = 1

•

m a. Since the trying and leaving regions in the graph for process i are acyclic,

proe-ess i must pass from the noncritical region to, the trying regio.n infinitely orten in

a. There mus therefore be an infinite sequ.en.ce O < k1 < k2 < ... , such that for

all j > 1 process .i is in the noncritical region in state q,., and process i is in the
. ""J

trying. region in state qki+/- Define fj j = .seq(o., O, kj,. Sin.ce (h(qk
1
+J))(ncr) =

(l,(qk _))(ncr) - I =,I:-- (h(qk))(ncr), there must be a uniquely determined transition uj
J J

of A such that ima,geh@ /k} = image1,(fJ}u; Since there ar,e infinitely many

m mbers ki there are jnftnitely many corresponding "J in image1,(o.), and hence

tmag,e.1,(~) is infinite. ff

5.6.2 Proof of Freedom From Starvatien

:Ve v ill no prnve several pwperties (Claims 5.11-5.18} of the paraUel program

A. Each of the.se properties impHes the truth of a corresponding property ,of Z,

h:owe\•er the properties ar,e much easier to state and verify for 4. . Claims 5J 1 and

5.12 describe some simple invariants on he state of .A. Claims S 1 J and 5.14 are

statements about 4 that imply the 'two-phaseui nature or the execution of E.. Claims

5.1 5-5.18 show hat in any infinite executi.on sequence for Z, no process ,can wai.t

forever at any of the P operations in?'. In. view of the finite delay pr,operty and the

fact that the trying and leaving regions in 1 are acyclic, this implies that :E is

starvation-(ree

Claim 5~11 - [CP' I + CP'2 + CP3 + CP4 + CPS + CPS + CP7 = I] is

invariant for A.

Proor - by the induction principle. Note that (r1)(CP1) = 1. and (r1)(CP,) - 0 fo·r

2 < i < 7. It is easy to verify that no trans'tio.o of A chang,es the total number of

tokens on places CPI-CP7.

- 114 -

Cla."m S.12 (ncr + tpl + waitbl + waita + waitb2 + mutex1' + tp/6·

+ tpl 8 + wai.rm + er + Ir = N] is invariant for 4.

Proof - by the induction principle is, easy. D

Claim 5.13 - Let a = uou 1 ... be an infinite initial exe<:ution sequence for

4 with corresponding state sequence '(l'J Let P1(r) be the predicat

[CP l + CP2 + CP3 + CP'4 = 1- and let Pi(r) be the predicate

[CPS + CP6 + CP7 = l]. Then for .any k > 0:

(a) there exists an a> le such that P1(r,) LS true; and

(b) there exists an a' > k such that P2 r a') is true.

Proof • or both statements (a) and (b) is by the weH~founded set method.

(a) If .PJ<rk) is true then],et a= k. Otherwise, by Claim 5.11 we know that Pfrk)

js true. Let (Nt <) b the well-founded set consisting of the natural numbers under

the usual ordering. and define the fun.ction f from ClA to N by~

/{r) = [N(N+l)7 - (waitm + (N+l)cr + (N+l)2/r + (N+l)3ncr +
(N+l)4rp/ + (N 1)5w,aitbl + (N+l)6mutexl + (N+l)7 waita)](r)

B T Claim 5.12, ft.r) ~ 0 for a 1 .reachabte sta.tes r. By examination of the

la bes of the transit' ans ,of 4, it is straightforward to er.ify that for any state r, and

tr·ms:tion u for A enab ed in state r1 Pi,r) and P2(nxt(r, u)) imply that

/{nxt(r, n)) < /{r). By the we1l-founded set method there must the1efore ,exist

a > k such that Pi(r a> is false. Uut by Claim 5.12 this means that P1(r a) is true.

Th.us (a) is pro ed.

(b), The argument for (b) is entirely .anatogous, witll the roles of Pi and Pi

interchanged, and the function f defined by:

- 115 -

/(r) = [N(N+l)7 - (tpl + (N+l)waitbl + (N+l)2mutv:1 + (N+l),3watra

+ (N+t) 4waitb2' + (N+l) 5mutex2 + (N+I)6(tpl6+tpl8) +
(N+l)7 waitm)](r) ii

Claim :5 .14 below is a somewhat strengthened version of Claim S.ll.

Claim 5~14 - In the situation of Claim 5.13, for any k > 0:

(a) there exists an a· ·2: k. such that [CPI + CP3](r a) = 1; and

(b) there exists an a'~ k such that [CP5J(r a·) = I.

Preof - (a) By Claim 5JJ~ we may select a and b, with k < b < a. such that

P2(rl) and P1(r 0) are true, where the predicates P1 and Pi are defined as in Cl.aim

5.13. Since every path in the gra.ph of /J. from places CP5-CP7 to places CP1-CP4

must pass through either place CPI or CP3, we may choose a so that

{CPl + GP3](r a> is true. (b) By Claim 5.13~ we may select ai and ll, w.ith

k < b' < a' such that P1(rb•) and Pi(r a ') are true. Since every path in the graph

of 11 from places CPI ~P4 to places CP5-CP7 must pass th.ro~gb place CP5, we may

choose a' such that [CP5](r 0 •) = I. ffl

Claim 5.15 - In the situation of Claim 5.13, for any k there is an a 2:; Ir.

such that (r dJ(wairbl)= O.

Proof - We split the proof into cases depending upon which of

(r k)(CP l) ... • (rk)(CP7) equa1s one.

Case l : (rk)(CP I) = I. By Claim 5.14,. tsere is a b > k su.ch that (rl,.l(CP5) = I.

Exam in a ion of the g rap~ of 4. shows that for this to occur, u O must be either the

transit ion labeled " b" or '1 lcr in Figure S.6, for some number a. with k < a < b~

But for either transition I lb1
~ or "le" to be enabled in state , a requires that

- 116

Case 2: (CP2 + CP3}(r,,.) = 1. .By Claim SJ 4,. there is a b >: k such that

(rb)(CPS) === l. Examina'tion of the graph of 4 shows that for this to occur, u0

must be c:me of the transitions, labeled "lb'\ "k", or ".Jat, for some aJ, with k S a<

h. Bt1t then for ua to be enabled io state r a requires (r a)(waitb2) = O.

Case J: (C1P4 + CPS + CP6 + OP7](rk> = 1. By Claim 5.14, the.re exists a k.' > k

such that [CP + CP3](rk') = 1. But then. either tbe arg.ument of Case 1 or Case 2

~pplied wi ,h k; in place of k shows the existence or a>. k', with (r;J(wmtb2) = 0.

m

Proor ·

Claim 5.16 - In the situation. of Claim 5.B, for any ,k there is an a~ k

such that (r J(writa) - 0.

Cose /: [CPl + CP2 + CP3](r1c) = L By Claim S.14 there exis,ts b > k such that

(rb)(CP5) = I. This can only happen if U.a--J is the transition labeled la11 in Figure

5.6, for some mnnber o, with k <a< b. Bµt this means that (r J(waita) = 0.

Case 2: (CP4 + CPS CP6 + CP7J(rk) = l. By CJaim 5.14, there exists k' > k

s.uch that [CPl + CP3](rk,) = l. Application of the argulllent of Case 1 with

k = k' now shows the existence of o 2 k' with (r;0)('waita) O. I

Cla1.m 5.17 · In the situation of Claim 5.13. for any k there is an a > k

such that (r 0)(waitm) = 0.

- 117 ·-

Proor ~

Case l: [CP5, + CP6 + CP7](r1c) - l. By Claim 5.14, there exists b > k with

[CPI + CP3](rb) = l. But this means that Ua is either the transition labeled n7c"

or "7d" in Figure 5.6. for some number a, Ytith k ===• a < b. For either transition
0 7c', or "7d11 to be enabled in state r a it must be the case that (r J(waitm) = 0.

Case 2: [CPI + CP2 + CP8 + CP4J(rJ) = 1. By Claim 5.14, there exists .k' > k

with (r.zf)(CPS) = I. Application of the argument ,of Case I with k replaced by k;

no,, sho•\ ·s the existence of a~ k' with (r J(waitm) = 0. II

Proo.f -

Claim 5.18 - In the situation of Claim 5.13, for any k there is an a~ k

such that (r a)(wnirbl) = 0.

Case l: [CPI J(r k) = 1. By Oahn 5.1~ there exists b > k. with (CPS](rt,) = I. This

means that ua is •either the transition labeled lb' or f, 1cu in Figur•e 5•.6, for some

number a~ wi h k < a< b. For either of these trans.itions to be enabled, we must

have (r
0
)(wqiJb/) = 0.

Case 2: [CPS + CP6 + CP7](rk) = 1. By Claim S.14, the.re e,dsts k' > k with

[CPl + CP'3](rk·) = l. We may assume, without loss ,of generality" that k' is the

least such number.

Subcose 2a: 1£ (CP3](rk•) = , then there must be an a, with k < a< k' suc.h

that u a is the transition labeled 117dn in Figure 5.6. Fo.r transition r17d" to be

enabled, it must be the case that (r a)(wailbl) = O.

Subcase 2b: If in.stead, [CPll(rt) = 1, then application of the argument of Case

I~ wi h k r·eplaced by k'. 5hows the existence of a> k' with (r J(waitbl) = 0.

Case J: [CP2 + CP3 + CP4](rk) = I. By Claim 5.14, there exists kf>t > k wit.h

[CP5](rk") = 1. AppUca ion of the argument of Case 2 with k repla.ood by k" now

sho'ws the e:xistenoe of a> k" such that (r J(wmtbJ) = O. I

Claim 5.19 - The mutua~ exclusion system l: is starvation-free.

Proof' - Suppose not. That i.s1 suppose there is a valid mrinite initial execution

sequence a for %, , ith corresponding state sequence f(f// ... , such that:

(I) Th ere e,; ists a process i sue h th at for all k > 0, there is an a > .k and an

«· > k with: proces i in the critical region in s:tate 'la and process i not in

he critical region in sta:te qa•· and

(2) There is a process i' and a k' > 0, such that £or aU J > k' process i' is in

either the trying or leaving region in state qi

Now « must contain only a finite numb~r of transi.tions for process f. If this

were not true, hen process f could no be in the trying or leaving regio.n for all j 2

k', since th.ese r·egions are acyclic. Since a is. assumed valid, there must be some n . .
such th.at for aU j > n, process i' has no em1bled· transition in state 'lj This in turn

implies that for aU j > n the token for process i' is at one of the four plaoes TP 2,

TP7, TPS', or TP2:0 in state qi

Let fJ = image1z(a.). Since a contains infinitely many transitions for prooesses

m the trying and leaving regions, fJ is infinite by Claim S. l O. Su p,pose ,IJ has

corresponding state sequence '<Fl Thent by Claims S.15-5.18, for any m there

·exist a1, ai, a3, and "' ~ m such that (ra,)(waitbl) = (r0 }(wsi1bZ) -

(r a)(waita) = (r a)(waitm) = O. But by the definition of h, this implies the
J '

existence of a j,, a i, a J• and a:, > n,. with [TPl)(qa,cJ - l TP7.l(qa,) =
- l 1

- U9 -

[TP9](q·a,) - (TP20)(qa·') =1 0. This is a contradiction. and we conclude that a J - . 4

cannot exist and hat E is starvation-free. I

5. 7 Conclusion

That the system of Figure 5.9 is a solution t~ the starvation-free mutual

exclusion problem is a direct consequence of Claims 5.1,, .5.3, S.6, and 5.19.

"'oonc-ritfoal pla:ee

wh,en b>O
do b:,.b-1

120 -

TTlJ when 'b--0
do h_hI:--h..blU{i}

when iE:h, __ 1tm
do b...:en:.,h_en-{i}

do loc..i:•counU

Figure 5.9'(:-1) - Morris Solufon in Graphical Forn

when b..bl"';
·do h:•b+l

when a)O
do a:-aa-1

- 121 -

, TI'6J

•

Tr.8.J

do countl:'"locj+t

VCb)

· hen ~b..hl
do (b...hl, h..Jln};=

Cb.J>l-{ }, b_.enU{l})

when fbJ>l
do (h...bl, b_en):-

(b..bl-{N }, b_!HIU{N})

P{a}

when a=O
do a...bl:,.,a_blU{i}

when i(a_en
do a_en:•a_en-H}

Fip1re .. 9{b) - ~·1< rfr,' Sn1uti()n in Grnphi.cal Form

when 1,.)0
do k••h-l

- 122 -

'l'TllJ

P(b)

whn b:O
do b_bl,-b,..blU{i}

when iEb_en
do b_en:ab_en-{i.}

do loc.J,=cwntl

do countl:-JooJ-1

Figure 5.9(c) - . forris Se>h1tion in Grnphical Form

- 123 -

d.o oouot2:=focJ+l

\!ihen CO'lmtDl.'I w& en corunil::=O

whe11 b....hl,.,
doh. fHl

when a .. bl .. -
do a::aa+l

- 124 -

TT19.J

V(b)

•
•

when l E-:b.J>,1
do {b_hl, h_cn)="'

(b_bl-{lJ, b_enUf J)

w&en 20 .. J>l
d,o (b..bl, b...1en):;

(b_bI-{2}1 b_enU{2}}

when Nfb...bl
do {b...bl, b_en)~

(hJ>l- {N}, b...enU{N})

when Ha...hi
ifo {a..Ll, a..:enh-

(a..bl-{l }, a_enU{l})

when 2E:a..,h]
do (a...b], a_enh•

(a..bl-{2}1 a...;enU{2})

when Nfa_bl
do (a...bl,, a_e;n):;;o

(a...bl {N}, ~eaU{ rJ)

Figure 5.9(e) - J forri •· Soh11ion_ in Graphical Form

when b_bl=;
do h;;,h+l

when m.J>}e fJ
do m:sm+l

- i25

Tl'M...i

V(b}

V(ml

•

when ltll_bl
do (bJ>l, b_en)~

0:i .. 1>1-{1}, b_enU{l})

whe 2Eb_bl
do (b._b]~ b_on }:-

(b...bi-{2 }, b_on.U[2})

when NEb_bl
d.o (b..bl. b_cn).,.

(b_bl-{N}, :b_enU{N})

when lEm..bl
do (mJ> , m..e11>:a

(mJ>l-[l}, m....eaU{l})

when 2,Em_bl
d.o {m..b I m...en}r-:

• un_bl-{2.}, m_enU{2})

-when ~m..hl
do (m_bl, Dl..JlAi):.o

(m_bl-{ }1 m_enU{N})

Figure 5.9 f) •).forris' • ol.ution in Grnphical Form

when m>O
do m~-m-1

'TT28j

- 126 -

CPJ

1Cm}

when m-0
do m...bl:»rn...b,1U{i}

when iErn_et1
do m_en:=m_en-{i}

1 c ltical place

wh.en true

do loc.i!=OOttnt2

do (cound, locJ)::
OocJ-1, 0)

figure 5. 9(g) - 1 1orris, Solution in Graphical Form

- 127 -

h,cn count2>0

VCm} "V(a)

LT4-_i LTI_i

l·igt1ft" 5.9(h) - ~ orri Solution fo Graphic:tl Form

- 128 -

6. Summary and Conclusion

In this chapter, the accomplishments of this thesis will be summarized, and

then some poosible directions for further s udy wiU be outlined.

6.1 Summar)' of Acco111plishments

This thesis set out to investigate the rela.tive "power" of semaphore

synchronization primitives, with respect to ·their ability to implement starvation free

mutual exclusion. Before his investigation could be perfor.med, it was necessary to

provide precise definitions of the different types ,of semaphore primiti.ves. and of the

starvation-free mutual exclusion problem. For this purpose . the parallel program

model of co nputation was in roduced. Certain parallel programs, which model a

number of concurrently executing sequential processes communicating via shared

memory tocations and synchronizing with semaphore operations were identified and

given the name "systems of processes". Four different types of semaphore primitives

were defined using the s stem of processe.s model.

Systems of prooesse-s with a particular structur could be regarded as modeling

several sequential processes attempting o synchronize access to critical regions.. For

these systems which we called mutual exclusion systems, the properties of mutual

exclusion, freedom from deadlock, rr,eedom fr,om indefinite pos.tponem.ent,. and

freedom from starva tlon were defined. Since these four properties seemed to capture

the essence of the intuitive idea of starvation.free mutuaJ exclusion, we defined a

- 129 -

so)u.tion. to the stanation~free mutual exclusfon probl.em to be a mut.ual exclusion

system with these properties.

After completing the underlying definitions, it became possible to proceed with

the forma i in vesti ga tion. The first discovery was. that semaphore operations are not

needed to solve the starvation-free mutual exclusion problem - global variables with

"atomic11 read and write operatioss are powerful enough by themselves. Because af

this7 it was found to be impossible to learn anything about the relative power of

semaphore primitives, untess further restrictions were imposed on the class of mlltual

,exclusion systems. The properties of symmetry and busy~waiting wer•e identified and

given precise definitions.. It was proved that the classes of symmetric mutual

exdusion systems and mu ual eidusion systems with no busy-waiting contain no

semaphore~fre.e sofotions to the starvation-free mutual exclusion problem.

A number of "negative0 results about weak semaphore solutions to the

starvation-frree mutual exclusion problem were pr,oved jn Chapter]. These r,esults,,

coupled with the ·•-positive" results of Chapter 4, show th.at weak semaphores are

indeed nweaker" in a certain Siense than blocked-set sem.aphores. l,n addition, it was

s ho·w n tha u Rder ,certain conditions, weak binary semaphores .are strictly J.ess

powerfl1l than. weak general semaphores.

In Chapter S a blocked-set semaphore solution to the starvati.on•frce mutual

exdusfon problem was proved corriect. There appeared to be no ·short, elegant way

to perform this proof. On the contrary, rather long formulas, and tedious

verifica ion of many cases were re.quired. What made the proof manageable was the

use of the induction prinriple and the noition of a parallel program homomorphism to

make a clean separation of the mechanical parts of the proof from the intuitive

parts.

- 130 -

6.2 Directions for Further Study

There are a number of ways in which the work presented in this thesis might

be improved upon or extended. We will first ,examine some possible improvements,

and then take a look at extensions.

6. 2. l Possible lmprovem·ents

One place where imprn,ement might be made :is in notation. A. times during

the writing of this thesis, there seemed to be just too many thmgs to name. This

problem, which seems to be common to other attempts: at formal modeling of

concurrent processes, may be due to the fact that all di5cussion takes place at a very

low level at which. each minute step of every process must be exp1icidy represented

(and nam d). o convenient way has been discovered to raise the level of discussion

to a higher level, with consequent reduction in the number of details. It is difficult

to tell how much of tbe complexity is inherent in the highly interactive nature of the ,

computa ions being discussed and how much could be avoided through better

techniques.

There is no good reason why the finite de.lay property and the fact that a

process may have noncritical regio115, that do not terminate should be intertwined in

the definition .of alid execution sequences. The fact that in this thesis he critical

and noncritical regions ha e been 'collapsed" down to a single place leads to this

uoii tt•i i e combination of two unrelated notions,, Intuitively, the finite delay

property applies to pmcesses with nontrivi.a] critical and noncdtical regions. Perhaps

a formulation of the mutual xclusio.n pmblem that somehow retained the idea that

critical and noncritical regions in g,eneral have more than one place would admit a

better definition of valid execution sequences.

- lll ~

The definition of systems or processes and mutual exclusion systems by making

syntactic restrictions on paraUel program graphs is not ,entirely satisfactory. Since

graphs are not very ''nice" to work with. these restrictions did no,t turn out to be

espeeiaUy elegant. Perhaps there is a cleaner formulation of the model that avoids

some of these problems. It is interesting to not,e that the results pro,ved in Chapter 3

seem t,o express truths tha. are somewhat independent of the details of the model

used.

6.2.2 Possible Extens··e s

Ther,e are a number or questions. left unanswered by the work presented here.

The most ob,.,ious ones invoi.ve straightforwaro extensions of the results proved i.n

Chapter 3.

(1) It is unknown whether there is a symmetric solution, using weak general

semaphores and with no memory, to the starvationwfree mutual exclusion problem for

more than two processes.

(2) lt ,, ould also be interesting to examine semaphore-free solutions in more detail.

Unaos\•,1ered questions he.re are: Ho,w many gJobal variabtes are required to

implement starvation free mutual exclusion for N processes? It is. not difficult to

show that two proc-esses requJre at least two Yariabtes,, and it seems in uitive that the

number of ,rariables should increase monoton·cany with the nllmber of processes, but

how can this be proved? Semaphorepfree so ution.s must be asymmetric.

Consequently, such so,lutions are .always presented in ••parameterized' form, that Js,

the program r-un by process. i depends upon. the number i. The question ar:ises: must

these soiu ions also be pa"ameterize.d by the total number or processes N as well? It

seems as hough it might be possible to use the 'loc:k•step'' constructi.on to prove that

this must be the case. For th.e "lock-step ,construction to be applicable to

asymn etric solutions requires increasing the number of processes in the system large

- 132 -

enough to '*match-up'1 initial segments of execution sequences for various proc-esses.

0) Intuitively, weak semaphores, shoufd be the "weakest" at implementing,

starvation-free mut.ua] exclusion b]ocked-set semaphores somewhat "stronger'' a.nd

blocked-quelle semaphores the 11strongest1
• This intuition is borne out by the fact

that in each of the solutions presented in this thesis,, weak semaphore operations, may

be replaced by blocked-set operations, and blocked-set operations may be replaced by

blocked 5 queue operations, and the solution remains correct. However, it is not at all

clear that this is true in generat The reason is that replacing semaphore operations

in the manner described,. restrkts0 the set of execution sequences of the system in a

certain sense. While it can be shown that the new mutual exclusion system has the

mutual exclusion property, is free from indefinite postponement, and is

starvation free if these properties heM for the original system, it is not so obvious

how to show that "restricting'' the set of ,execution sequences 0£ a mutual exclusion

system does not introduce the possibility or deadlock. Thus, based on the results of

this thesis, e are unable to justify our intuition that weak, blocked .. set and

blocked~queue semaphores may be linearly ordered by their expressive power.

(4) There are other unanswered questions that are not quite so ,clearly defined. For

example, when are two definitions of semaphore operations 0 equivalent0 ? This

question is important in determining the generality of the results or th.is thesis. An

interesting possibility for future research, which might answer this question, is th

development of what might be caHed a theory of spec.ification and .implementation of

parallel programs. In such a theory. synchroniz..ation behavior would be specified by

a parallel program, along with some additional restrictions on the set of execution

sequences of th.at program. These additional restrictions may be necessary since

ther,e are interesting constraints, such as the finite delay property, on the execution

sequences of a parallel program that cannot be enforced within the parallel pr,og,ram.

~ 133, -

A seco,nd paraUel program would be said to implemenr the abstract beha.vior

specified by the first if there were a suitable parallel program homomorphism from

the second pr,ogram to the first. This idea is quite simHar to the notions or
"abs ract" synchronization primitives and then' implementations discussed m

(DOEPP76].

One of the goals of such a theory would be the ability to treat synchronizati.on

constructs as primitjve at ,one levet of abstraction, and to consider their possible

implementations at another level. For example, at one level. i might be 11seful t,o

consider several possible implementations of weak semaphore operations,, and to prove

that the imp]ementatioos actuaUy satisfy the specifications of the behavior of weak

semaphores. At a higher level, it should be possible to treat weak semaphores as

primi ives and lll5 them to imp emen.t starvation-free mutual exclusion. At y, t a

higher level, the s arvation•free critical regions would themselves be used as

primitives, perhaps for implernenti.ng a more ,complicated synchronization scheme,

such as hi rarchica.t locks in a database system.. It should be possible to tr,eat ea.ch

of these differ nt levels of abstraction with the same methods.

6.3 Conclusio,n

The major con ribution of this thesis is that it brings the murky issues of

ufairness' often mentioned in the synchronization li.terature into sharper focus. The

a tempt at precise definitions of the var"ous types of semaphores, while perhaps

impe.rfect helps to clear up confusion that bas resulted from informal. discussion... In

the literature, many pa,ges hav,e been, and con inue to be spent i.n arguments over

whether one program solves or does not sotve a particular synchronization problem.

Often such argu1nents a e useless, since precise specifications are lacking, for the

synchronization problem itself and for what it means to "solve'' that problem. It is

hoped that tbfa thesis makes a small step toward the resolution of this difficulty.

7. Appendix

The purpose of this Appendix is to give details, of the proofs of Claims 5.4 and

5.9, which state that the predicate [imi] is invariant for E, and that the mapping h is

a parallel program homomorphism from E t.o 6..

7 l Philosoph)1 of the Presentation

There is an unfortunate difficul y that arises with proofs, about programs, and

especial]. with proofs about puallel programs. In ordinary mathematics, the proof

o,f a theorem simultaneously provides both an argument for the correctness of the

theoren1t and intuition into why the theorem is corr,ect In proving properties of

programs, often aU or most of the intuition about why the program is correct goe-S

into co11structing, the set ,of statements to be pro, red. Once thjs set ,of statements has

been constructed, the proof of the program simply cons·st:s ,of the listing ,0£ the set of

statements, and an often lengthyt mechanical verlfication of their truth. The result

is that the understanding of the program has been divorced from the actual

correctness arg:ument.

This is the case with the proofs to be presented here. The constructions of the

im,•ariant (inv], the par~Jlel program A, and the mapping h requir,e an understanding

of the operntion ,of the system l:. Once i.nv, A, and h have been constructed, what

remains to be performed is simply a tediouSt mechanical verification. It is necessary

to, perform this verification to make sure that in~ 4, and ii' have been defined

• 135 -

conecH hm e,·,er his -verification. is something that may be performed by a

machine, and is not at aU interesting to read.

The 'inductive step in he proof of the invariance of [.r'nt1] is divided into,

thirteen mnjor subproofs, oorrespondiog to each of the thirteen disjuncts of inv.

Each major subproof is divided into· forty-one minor subproofs, conesponding to the

fort -one transitions in the graph for the {th process in E. This results in a total of

fiv hundred thirty~three statements to be Yerlfied. Most of these statements are

tri ial to prm.•e, however the difficulty, at least for a human verifier, is not in the

actual production of he proofs of the statements but in differentiating the

s atements hat are trivial to prove from the ones that really require substantial

inferences.

I, th is Appendix, the foUowi.ng phiJosophy is therefore adopted to guide the

presentn ion: Due to the large number of casest the only way to raise the reader's

le,·e] Clf confidence in the proof to an acceptable leYel is for him to actually verify

each of the sta ements eithe.r by hand or by machine. An acceptable level or

confidence wm not b achieved simpiy by read"ng a plioof. The arguments here are

therefore intended not to comprise a complete nreadable" proof. but to indicate

where major inferences are re.quired; making it a reasonably short step to a complete

formai verification with a suitable the-0rem-proving program.

7 ~2 Proo€ Outline

RecaH hat a pmof by the induction pdnciple of the in arianoe of the

predicate [inv] requires: (Ease) that [inv] be shown ta hod in the initial st.ate; and

(Induction Step a proof that inr ho]ds in state nxf(q1 r), under the assumption that I

is enabied in s, ate q and that ,·nv ho1ds in state q. The mapping h can be sho,wn to

be a parnlld program homomorphism fro1.11 t to tJ. by: (Base) showing that h(q1) -

r r and (Ind1 ct ion Step) shov.•ing, uader the assumption that I is enabled in state q,

- 136 -

e 'th<'r hat h(q) = IJ(nxr(q, r),) or that there xis s a un·que u such that h(nxt{q, t))

== r,.xt(lr(q) rl). The similar stmcture of the proof of the ·nvariance. of [invJ and the

proof that h is a paraUel program homomorphism from }: to 4 makes it possible for

them to be performed simuitaneousl1y.

The base or o,th proofs is trivial; that is, it is easy to see that [;nv](91), and

that l,(q1) = 'r We will therefore concentrate our efforts on the indu.ction step

oni . ..

Let Ebe an expression. that defines a predicate [EJ on states. We wm say that

a transition I affects E ff I affects any of the places or variables appearing in E.

RecaU tha~ in~ = v~!J (conf; I\. vbls;) A aux. There are comparathrel_y few

transitions that affect aux and it , iU therefore be convenient to treat separately the

pan of the proof inv,oking aux. This .is done in Section 7.3. where it is proved that

ff [aux](q) is rue, and , is enabled in state q, then [aux](nxt(q, t)) is true. Many

more transitions affec v~~/ (con{; A ~bis,), and therefore for the proof that this

predicate is true in state n.xt(q, 1) to be foasible, some £urther organization. is

.required .

As discussed in Chapter 5, a state q satisf ing [inv] must satisfy exactly one of

con/ 1, ... conf1 J· Firing a trnnsition in E may be viewed as a progression from a

conf'gurntion of tokens in one of the thirteen categories to a coofig,uration in

another. If we kno"•• for example that s,tate ,q satisfies [con/ 11 then in proving that

[in~](,q) implies [in l(nxt(q, 1)), we may use information about the configuration of

tokens in state q to reduce the number of transitions ,t hat must be considered. For

example, inc no processe-s are in the leaving region m any state q that satisfies

[con/1], we need not be concerned about any transitions tin the leaving region, since

these ransirions cannot be enabled if [ccmf1), is true, and hence the implication to, be

prmred is ri vial.

- 137 -

\Ve di •de the proof into thirteen major subproofs, corresponding to each of

the thirteen different e-onfiguratfons of tokens. In the ith subproof, we assume that

q is a state satisfying [conf; A i;bfs; I\ aux}, an~, attempt to show that if I is an

arbitrary transi ion enabled in state q, then nxt(q, .t) satisfies '(v}~, (confi /\ .,b/s1)].

Note tha to do this, we need only show that nxt(,q, t) satisfies [con{; I\ vb·ls;] for

some l < i < 3. It wiU not e important to distinguish between transitions in

different processes and since there are forty-one ransiHons in the graph for each

process, we have the forty-one minor subproofs mentioned above.

l ote lrn t ir in addition we show that either lr(q) = h(nxt(,q, 1)), or there is a

unique transition u of !J. such that h(nxt(q,. t)) = nx1(h(q), u)7 then we will have also

shown ha I, is a paraUel pmgram homomorphism from? to '1.

7 .3 lnducti e Step for the Auxiliary Invanants

In this section? we , •ill show that if q is a state satisfying (inv], t is a transition

enab ed in state q, nnd q' = nxt(q, t), then '[aux](q') is true. This will be done in

the fo lm1.-ing way: Recal that ,aux = ,aux I I\ ••. A aux 2'/- Let us say that r

falsifies au~·i if l[auxl](q') is falise. ote that a transition cannot falsify aux; unless it

affects it. Treating ,each aux; as a s.eparate 1case, we will list the transitions that

:1ffect aux,- , and show for each one that auxi is not faJsified.

(1) Cose au. -1: The only transitions that aftect the variables a, a_en, or a_bl and

hence he onl, ransitions that affect aux 1 are rra, TT9, TTIO, TT21, L T7, and LTS.

a Transition TT8 can only cause a to become iero., and therefore cannot falsify

aux 1.

(b) T rnnsition T9 is nab]ed only if q(a) = 0, and hence even though firing it

causes a_bl to be nonempty, q'(a) = 0 and hence aux I is true in state q'.

(c), Trnnsi ion TTlO ·sonly enabled if a_en is nonempty in state q. By (aux1J(q)

this means that q(a) = 0 and hence that q'(a) = O, since TTI01 does not

- 138 -

affect a.

(d Since transit"ons JT22 and LT,8 do not change the value of a ,or the total

number of elements in tLbl U q_en, they do .not fa]sify aux 1.

(e) Transi ion TT21 is enabled only if conf4 c<Jnf5 ,or t:rmf6 is true in state q.

This in turn means that ,ei her 11bls4, -Jb/s5, o.r ,t,ls6 .is true in. state q, and

hence that [,en(a)](q) is true. Since TT2l is enabled only if q(a_b/)1
- 0t even

thm gh TT21 increments, a, i·t does not falsify aux 1, smce q'(a_bl) =
q'(a_en) = 0 .

(f) Transition L T7 is enabled only if con/ 13 is true in state q.. This in turn means

that I·bls JJ is true in st.a e q, and henoe that ,en(a) is false in state q.

Therefore a....en = 0 in state q and since m_bl m.ust be empty .for LT7 to be

enabled transition LT7 does not fa sify aux/-

(2) Case auxi: The onl transitions tha a(feet aux2 are TTI, TT2, TT3, TT6, TT7,

TTI 1,, TTl 2, TT1'3 TTI 9, TT20, TT24, and TT25.

(a) Firing e'ther TT I or Tll can only cause b to become zero, and hence cannot

fa . sify ,(JUX] •

(b) Trnnsition TT2 or TTI 2 is enabled only if q(b) = Ot and hence even though

firing one of , hem causes b_bl o become nonempty, q'(b) - 0, and hence

au,r2 is true in state q'.

(c) Tr.:msi ion TT3 or TTJ3 is enabJ1ed only if b_en is nonempty in state q. By

[aux2](q) this means that q(b) = 0 and hence q'(b) = 0, since neither TT3 or

TT 13 affec·ts b.

(d Since trnnsit ions TT7, TT20, and TT25, do not change the value of b or the

otal number of e ements in b_bl U b_en, hey do not falsiry aux 2.

(e Transiti,on T6 is ,enabted only if jMUTEJ'.JI = I in state q. E1:amination oi

im: r,e\·eals that this only oocurs wh.en en(b) is false in state q. Also TT 19 and

TT24 are enabled only if ~VUTEXJI = 1 in state q, which also, impJies that

~ 139 -

en(b) is false in state q. Since for TT6, TT I 9, or TT24 to be enabled in state

q requires that b_bl = 0, neither of these. transitions, can falsify a,ux 2·

(J) Case au.-ar3: This can ,only be affected by transitions TT28, TT29,. TT30 , LT4,,

and LTS,.

(a) Firing transt ion TT28 can only cause m to become zero, and therefo,re cannot

folsiry aux J·

(b) Trnnsition TT29 is enabled in state ,q only if q(m) = 0, and hence even though

firing · causes m_bl to become nonemp y, q'(m) ~ and hence aux3 is true

in sate q'.

(c) Transition LT5 is enabled in state q only if m_en is nonempty. By [aux 3)(q)

this means that q(m = 0 and hence q1(m) = 0, since LTS does not affect m.

d) Since TT30 does not change he value of m, or the total number or elements ·n

m_bl U m_e11, it does not fals·fy aux 3.

(e) Transitfon IL T 4 is enabled in sta e q only if conf1 J is true in state q. This

means that ¥bis 13 must be true in state q and hence en(m) is false. Thus

m_en is empty in sta e q. Since for L T4 to be enabled requires m_bl to be

emp in state q we ee tha l T4 cannot fa1sif aux .J·

(4) Case aux4: Transitions T 8t TT2l,, and LT7 affect aux4. Transition TTB

decrements a, and , herefor,e cannot fatsffy aux4. It is easi y verified by examination

of lm, that TT21 and LT7 are enabled only if en(a) is false in state q. But t.his

implies th, t q(a) ~ 0. Hence q'(a) = 1, and aux4 is not faisified by TT2l or LT7.

('1) Case mr : Transitions TTl, TT6, TTli, TTI 9,, and TT24 affect aux 5• The

ar,gumen s are simiiar to ho,se of case (4).

(6) Case aux6: Transitions TT28 and LT4 affect aux6. The arguments are similar

to those of case (4).

• 140 -

(7) Case aux7: Transitions TTl01 TT22,. and LTB affect the variabie £Len, and hence

affect aux7- Transition TTl 10 decreases the number of elements in <Len, and

therefore can.not falsify aux7. Examination of in~ shows that rr2·2 and LTS are

enabled in state q only if en(a) is false in state q, and hence only if q{,a....en) - ·0.

Since these transitions add exactly ·one element to a_en, they th.erefore cannot falsify

aux 7.

(8) Case aux 8: Transitions TT3 TT7 TT 131 TT20, and TT25 affect tb.e variable

b_en, and hence affect aux3. An: argument similar to that in case (7) shows that

these transit ions do, not fa I sify aux 8·

(9) Case aux9: Transitions TTSO and LT5 affect the variable m __ en, and hence affect

au~~9- An argument similar to that in case (7) shows that thes,e transitions do, not

falsify aux 9-

(10) Case au.r lo: T ra n.si tions TT 9, TT IO, TT22, and L TB af£ect aux 10- Transitions

TT22 and LT8 do, not change the elements in tt..en U a....bl, and hence do not falsify

mu.:1a Trnnsition TT9 ins rts a process number into a,_bl, but at the same time the

token for that process enters place TP7. 'Simi1a.r]y7 transition TTIO removes a process

number from a_en but at the same time remmres the corre.sponding token from TP7.

Thus transitions TT9 and TT 10 do not falsify aux J(J-

(11) Cose m.,x 11: Transitions TT2:, TT3, TT7; TT! 2, TT13, TT20, and Tl25 affect

aux 11. An argu m nt simiiar to that in case (I 0) shows that these transitions do not

fatsif y aux J 1.

(12) Co.re aux J 1: Transitions TT29, TT30, a.nd L TS affect aux I 2- An argument

similar to that in case (10) shows that these transitions do not falsify aux 12·

(D) Case aux 13: Transi ions TT9, TTl O, TT22, and l TB affect aux 13· Now,

transi ions TT22 and lT8 simply transfer a process number from a_bl to Q_en., and

therefore cannot falsify aux 1 J' Transition TTlO removes, an element from tt...en, and

therefore cannot falsif aux IJ either. Finally, TT9 ,cannot fa]siry au:x 1.1 either, since

by [aux1o](q) a process whose token is at pl.ace TPS in state ,q cannot have its

process number in a_en in state q.

(14) Case ar,x 14: Transitions. TT2, TT3, TT7, TT12, lT13, TT20, and TT25 affect

a11x14• An argument sim·tar to that of case (13) shows tha pone of these

transitions can falsify aux 14·

(1) Case aux 15: Transiti,ons TT291 TT30, and L T5 affect aux 1 ,- An argument

simitar ,o th. t of case (13) shows that none or these trruiskions can fa1.sif y aux 15.

(16) Cose aux 16: Transitions TT8, TT101
, and TT13 affect aux 16· Howeve,,

transition TTl 3 decreases the number of processes at WAITB2, and hence does, not

fo)sif_r aux 16. A'so, for transition TT.B, or TTlO to be enabl d, we musf have that

en(a) is false in sta·te q. Examination of inJJ reveals that this can only happen when

1 WAITB2I = 0 in state q, an.d hence TT8 and TTl O do not falsiry aux 16 either.

(l7 Case au.t17: Transitions TTl TT3:, TT6, and TT7 affect aux17• However

ransitions TT6 and TT7 decrease the number of processes at MUTEXI, and hence

cannot falsify aux 17· Afao, for transition TTt or TT3 to be enabled in state q, we

must have that en(b) is false in state q. Examina ion of in reveals that this can

onl · happen if IMUTEXJ\ = 0 in state q and hence TTl .and TT3 do .not falsiry

aux I 7 either.

(18) Case au .. 1a: Transitions Tl5, ... TT15 affec aux J8· Ho,wever, aux l8 is

o ,·icmsly not falsified by Hansi i:ons TTG, ... , TT 14, since these trans·tions change

- 142 -

neither I TP.fl + ... + !TPJ'JI nor the variable count I. Although transition TTS

inc eases ITPjJ + ... + ITPI II by one. for TT5 to be enabled .in state q means that

here is at least one proce.ss at TP4 in state q, and hence by (all.I' 19](q) we know

that loc_i = count/ in state q. Therefore firing TT5 .atso increases countl by onet

and does not falsify aux /8- Simifar]yt although TTl 5 decreases ITPjJ + ... + ITPI JI,
firing th.at transition also decreases counr I, and therefore does not falsi.fy mtx. I 8·

(19} Case orix.19: Transitions TT4 and TT14 affect wxl'J, but obviously do not

falsify it.

(20) Ca-se aux zo: The .argument here is similar to that of case (18).

(21) Case attx 21· The argument here is similar to that of case O 9).

7 .4 Remainder of the Inducti,e Step,

In he previous 5ection, , e showed that if q is a state satisfying [inv]. t is a

transition enabJed in state q. and q' = nxt(q, I), then q' satisfies, [auxl To complete

the proof of Claims 5.4 and 5. 9, we must show, under the same assumptions, that q •

satisfies [v~~! (con[; A .,bJs,)], and that elth:er h(q) = h(q1

), or there is a uniqu,e

trnnsi ion u of .6 such that h(q') = nxr(h(q), u). As previously mentioned, the proof

will be split into thirteen major ubprnofs, wher,e in the ith subproof the additional

assumption is made 1hat (cimf; A vblsj](q) is true. Each of these subproofs wiU be

dh ided into forty-one minor subproofs; one for each of the forty-one transitions in

the gmph for process i.

The sta emen s to be proved are summarized in tabular form in Figu.re 7. I.

There arc four cdumns ·o Figure 7.l. The "I DEX11 oobJmn assigns an identifying

index to each case for reference purposes. These indices are of th.e form Nl-T(-N2),

where Nl is a number from one to thirteen. indicating the major subproof to which

the case belongs, and the minor su bproor is indicated by T, which is a transition

- 143 -

name. The parentheses indicate that the third field N2 is optional. Th.is field is

present on] y when a further division m to subcase.s must be made; more wiU be said

about this belo""'·

To see how each row of the table indicates a statement to be proved, let us

use the roP with index 2-TI&.1 as an example. The index indicates that w ·. are to

assume that [con/2 A "'bls2 A oux](q) is true, and consider the firing of trans.it.ion

T 6.. The 11 Addit"onal Assumptions" co umn ,contains a set of add.itional assumptions

about the state q which we also make. In this ~ the additional assumptions are

that UIVAJTA] + IWAJTBJI + IWAITB21 > O](q) is true. Note that the rows with

indices 2-TT6-l and 2-TT6-2 represent a partitioning of minor subproof 2-TT6 into

two disjoint c.1sest defined by the nAdditional Assumptions' information.

The 11
- ew Conr co umn contains the entry "I', which indicates that we are

to show that, under hese assumption~ ir transition TTS is enabled in st.ate q and

q' = r1xt(q, TT6),1 then [con/1 I\ Pbls1](q') is true. Ir the '1New Conr1 coh•mn for

row 2-TT6-1 contained a hypen -'1 instead or a "I',, then we would be r,equired to

sho\Y ins e:td that transition TT6 could not be enabled in state q u.nder the stated

as-sump mns.

FinaUv, the transition of 4 named in the 1•A Trans0 column of Figure 7.1

indicates the unique transition u of /J. such that h(q') n:ct(h(q), u). In row

2-TT6- this transition is '*la-511
• The complete transition label .may be found by

looking up 11 la-S11 in Figure S.7. A hyphen in the u4 Trans' column indicates that

we ar to show ll(q) = h(q')~ and hence there is no corresponding transition u of A.

Note that many m·nor subproofs, for example l~TT4, are not listed i.n Figure

7 .1. This is because it is immediately obvious that transition TT4 cannot be enabled

in any s ate in which. con/1 is tru~ and therefore need not be considered further. A

- 144 •

Index ~ Conf /J,._ °frans Addi ionat Assumptions
1-NCT 1 8a·2
i-TTl 2 b-2
1-TT2 1 8a-2
l-TT3 2 la 3
1-TTS 1 la-1
1-TT9 1
1-TTlO 1 lawl
1-TTll 3 la-4
l-TTU 1
1-TTD 3, b-4
1-TT28
l•TT29 1
l-TT30
-LT9 1

2- CT 2 8a-1
2-TTl
2-TT2 2 Sa-2
2-TT.3
2-TT4 2
2-TT5 2
2-TT&-l 1 la~S IWAIT~WAITBJH-IWAITB21 > O
2-TT6-2 7 lcl IWAITAJ+IWAITBJ}+IWAITB.21 = 0
2-TT7-l la-5 !WAIT AJ+IW AITBil+IW AITB21 > 0
2-TT7-2 7 le-I !WAIT AJ+IW AITBJl+IW AJTB.21, = 0
2-TTS 2 la-l
2-TT9 2
2-TTI0 2 la-1
2-TTll
2-TT12 2
2-TTlJ . -
2-TT28
2-TT29 2
2-TT30
2-LT9 2

Figure 7.1 - Exhaustive List .of Cases

Index New Conf A Trans Ad di tional Assumptions.
3-. CT 3 8a-l
3-TTl
3-TT2 3 Sa-2
l-TT)
3-TT8
3-TT9 3
3-TTIO
3-TTl4 3
3-TT 5 3
3-TTl6 3
3-TT 1 3
3-TT18 3
3 TTl 9-1 4 la-6 IWAITAI t# l v IW AITBJI #- 0
3-TT19-2 5 lb-I \WAITAl = A IW AlTBJj = 0
3-TT20-1 4 la-6 IWAJT~ #- I V IW.4.lT.Bli =,! 0
3-TT20-2 5 1b-l IWAITAj-1 A IW AITBJJ = 0
3~TT23
3~TT28
3-TT29 3

3-TT30
3-LT9 3
4-NCT 4 Sal
4~TTl 6 iaw2
4-TT2 4 8a~2.
4-TTJ 6 la-3
4-TT8
4-TT9 4
4~TT10
4-TTll l la~7
4-TT22 l la-7
4TT28
4-TT29 4
4-TT30
4-LT9 4

Figu.re 7 .1 E,;hausti ve List of Cases (oon t.)

- 146 •

lndel New Conf 4 Trans Additional Assuml!!ians
5•NCT 5 8a-l
5-TTl 6 2a•l
S-TT2 5 8a~2
5'•TT3 6 2a-2
.5-TTS
5•TT9 s
5-TTIO
5•TT21 7 2b-l
5-TT22 7 2b~l
5-TT28
5-TT29 5
5 TT.30
5-LT9 5
6-NCT 6 8a-l
6-TTt
6-TT2 6 8a-2
6-TTl
6-TT4 6
6~TT5 6
6-TT6 4 lap5
6-TT7 4 la-5
6-TTS
6-TT9 6
6-TTI0
6•TT21 2 la-7
6-TT22 2 la~7
6-TT28
6-TT29 6
6~TT30
6,-LT9 6
7•NCT 7 Sa~l
7-TTl 2 lb~l
7TT2 7 Ba-2
7-TT3 2]t,..2

Figure 7.1 • Exhaustive List of Cases (cont.)

- 147 ~

Index New Conf l! Trans Additional As:sum!;!tiorn;
7-TT8 8 3a-l
7-TT9 7
7-TTI0 8 3aRi
7-TT28
7-TT29 7
7-TT30
7-LT9 7
8-NCT 8 8a I
8-TT 2 4c~l
8-TT2 8 8a-2
S-TT3 2 4c-2.
8-TTU 9 4a-l
S-TTl2 8
8-TTI. 9 4a.-1
8-TT28
8-TT29 8
8-TTJ0
8rLT9 8
9. CT 9 8a•l
9-TTl
9-TT2 9 Sa-2
9-TT3
9-TTI4 9
9-TT15 9
9-TT16 9
9-TTl7 9
9-TT18
9-TT23 9
9-TT24 10 4a~5
9-TT25 10 4a-5
9-TT28

•·
9-TT29 9
9-TT30
9-LT9 9

Figure 7.1 - Exhaustive List of Cases (cont.)

• 148 -

Index Ne, Conf 4 Trans Additional AssumQtion~
10-NCT 10 8a l
10-TTl 10 4a-2
10-TT2 10 Sa-2
O-TT3 10 4a 3

l0-TT4 10
10-TT5 IO
l~TT6 10 4a-4
10-TT7 0 4a4
10-TTS
10-TT9 10
10-TTIO
IO~TT26 11 4b--1
i0-TT27 1 4b-l
l0-TT28
t0-TT29 10
10-TTJ0
10-LT9 10
11-NCT 12 8a-l
11-TTl 11 5a~
ll-TT2 u Ba-2
I l•TT3• U. 5a-2
l 1-TT4 l
11-TT5 11
11-TT6 11 5a-J
ll-TT7 H 5.a•]
11-TTB,
ll-TI9 11
ll~TTIO
11-TT28 2 51,-1
1 l-TT29 . l
ll-TT30 12 5b-l
11-LT9 11
12-NCT 12 Sal
12-TTI 12 6a-

Figure 7.l ~ Exhaustive List of Cases (cont.),

- 149 -

Index ew Conf 4 Trans Additional Assum 12tions,
12-TT2 12 8a-2
12-TTJ 12 6a.-2
1.2-TT4 12
12-TT~ 1.2
12.:rrG 12 6a-J
2-TT7 12 6a-3

12-TTB
12-TT9 12
12-TT 0
12.-TT28
l2-TT29 12
12-TTJO
12-CRT 13 6b-l
12-LT9 12
13-NCT n Sa l
13-TTl 1 7a-l
13-TT2 13 Sa-2
I 3-TT3 13 7a-2
13-TT4 13
IJ-TT 13
13-TT6 u 1a-3
13-TT7 ll Ta-3
D-TTS
13-TT9 13
l)-TTlO
l3-TT28
l3-TT29 3
lJ~TT.O
lJ-LTl 13
lJ-LT 13
13-LT3 B
1J-LT4 11 7i,,,l
13-LTS ll 7b I
lJ LT6 13

Figure 7.1 - Exha:usti ve List of Cases (cont.)

Index
13-LTI-l
ll-LT7-2
13-LT7-3
13-L TS-1
13-LT8p2
1.3 LTS-3
13-LT9'

New Conf
I
2
7
I
2
3
13

6, Trans.
7c•I
7c•l
7d-l
7c-E
7c-1
7d-1

- 150 •

Additiona] Assumptions,
~fUTEXlll = 0 /\ OWAITA) = 1 ➔ procnou:o.unte(/J
IMUTEXI > 0
IMUTEX JI = 0 A ,wAITAI _;; 1 A procnotcounted
l,MUTEX.ll 0 I\ OW AITA} = 1 _., procnolcounred)
iMllTEXII > 0
jMUTEXll = 01 I\ W ..4/T Al = I /\ -.procnotco,mted

Figure 7.l - Exhaustive List of Cases (cont.)

- 51 -

similar obser •ation holds for all other mjssing cases.

The ·erifica ion for each row in Figure 7.1, hat [conf)(q') is true for the

numb r j indicated in he "Ne,, Conr' ,column, is triv'a1. It is a o not d.ifficult to

"'erif · for each case that e· her h(q) - h(q') or h(q') = nxr(h(q) u) "'nere u is the

transition indicated in the '4 Trans' co umn. Consequently, these two arguments

are left to the reader. The only part of the argument for each case that requires

substantial inference is showing that (vbls)(qr) is, true for the number j indicat d in

the "New Coar• column. These arguments are presented below

1 -NCT:

1-TTl:

l-TT2;

l-TT3:

Transition NCT does not affect ~bls1.

Of he terms in vb.fs1, namely \WAITAj IWAITBI~ IWAITB21, IWAJTMI

en(a), en(b), en(m), procnotcounted, the only one th.at is affected by

- 1 is en(b). If we can .show that f-,en(b)J(q') is true, then the truth

of vbls 2 in state q' follows directly from the truth or ~bis I in state q:.

and he fact that only en(b) is affected by TTl . Now1 fo.r TT l to be

enabled in state q, we must have q(b) > O. Because (auxz](q) and

[aru· 5](q) are true, we kno Y that q(b) = 1, and that q(b_en) ;_ 0.

s ·nce q'(t,) = q b) - 1 = 0:1 w,e ha e that [en(b)](q') is true.

The ont terms in vbls 1 affected by TT2 are procnot,counled and

I W AITB JI. Now, TT2 increments I W AITBJ~ and therefore ~W AITB ll +
IWAJTA] + IWAITB21 is gr,eater han zero in state q'. Also, althou,gb

firing TT 2_i move-S the token for process i to W AITB I, this can not

fa]sify procnotco11nted,, since TT2 does not change b_en1 and by

[aux 11](q), the number i is not 'n b_en in state q.

Of the enns in ·vblf 1, the only one af(, cted by TT3 is en(b). Howe er

TT3 can be enab]ed in state q only if .q(b_en) ~ 0. But by (aux2](q)

and [aux8](q) we know that there is exactly one element in b __ en in

1-TTS:

l-TT9:

1-TTlO:

1-TTl 1:

I-TT12·

1-TTlt

- 152 -

state q and that q,(b) = 0. Since firing TT3 removes an element from

b_en, we have that [en(b))(q'') is true. The truth of vbJs2 in state q'

now fo, lows frotn the truth of 11bls 1 in state q and the fact tha.t only

en b) is affected by TT3.

Since aux J and aux4 are uue in state q by hypothesis, and since for

TIS to be enabled io. state q requires q(a) > 0, it must be the case

hat q(a) = l and q(a_en) = 0. Since TTS decrements a, [~en(a)}(q')

is true. In addi Ion, by :[aux 16](q) and [~bis 1](,q) we know that

IWAITB.21 = 0 in state q. Since firing TTS increments IWAlTB."4 we

know th3t IWAITB,t1, = 1 in stat q'. Since TT8 affects only the terms

en{a) and IWAITB21, it is, clear that rvbf:s1 is true in state q'.

Transition :T9 does .not affect ·vbls 1.

The fact that en(a) is false •n state q' foHo,ws from [aux 1];(,q),

[aux 7](q) and from the fact that for TTl0 to be enabled i.n state q

requires q(a....en) ~ 0. Th.e riest of th argument is identical to case

l-TT8.

For TTl l to be ,enabled in state q, it mu,st be the case that q(b) > 0

and IWAJTB.21 > 0 in state q. Hence, by [vbl.r1](,q) it mus be that

[-,en(a) I\ en(.b) A -,en(m)](q) is true. Sinoe TTI I does not affect eri(a)

or en(m), we o · ly need o show that en(b) is false in state q'. But this

follows from [aux 2 I\ aux,5 (q) as in case 1-TI 1.

Transition TTI 2 does not affect 11bfs1.

For TT 13 to be enabled in state q, it must be the case that

q(b_en) ~ 0 and IWAITB.21 > 0 in sate q. Hence, by ['lbls1](q) it

must be tha [-,e:n(a) I\ en(b) A ~en(m)J(q) is true. Since TTl 3 does

not affect en(a) or en(m), we only need to show that en(b) is false in

state q'. But this follows from [aux l I\ aux9](q) as io case l-TT3.

1-TT28:

l-TT29:

l-TT30:

l-LT9:

2- CT:

2-TTl:

·2-TT2:

2-TT3:

2TT4:

2-TTS:

2-TT6-l:

~· 153 -

Impossible since TT28 cannot be enabled in state q if (-,en(m)](q) is

true.

Tr nsition TT29 does not affect ~bis 1.

Impossible since TT20 cmnnot be enabied in state q if (...en(m)](q) is

rue.

Transition L T9 does not ,affec '1bfs /

Traasition NCT does not affect ~blsz.

Impossible ·since TTl cannot be enabled in state q if [,en(b)](q) is true.

Trnnsi ion TT2 does not affec vblsJ

Impossible since TT3 cannot be enabled in state q if (-,m{b)J(q) is true.

Tran ition TT4 does not affect vbfsi,

Tninsition TT5 does not affect vbls2-

\Ve must shmv hat '[vbls 1J(q') is true Note first that since TTG

increment-s bJ en(b) is true tn s,tate q'. Transition TT6 increments

IWAJT.4~ and so IWAITBJI IWAITAl + IWAITB2j is greater than zero

·n state q'. Transition TT16 does no affe t en(m) en(a), or 1WAITBl1.

It therefore remains to be shown that l1W AJTB~ = 0 -+

(IWAJTAI = l procnorcoumed)) and IWA1TB2l l ➔ QliVAITAJ == 0

~ procnotcounted)) are true in state q'.

By he assumption distinguishing case 2-TT6 1 from 2-TT6 2,

one of IWAITAJ, IW.41TBJj, or IWAJTB.21 > 0 in state q. If

IWAITB21 > 0 in state q, and hence in state q', then since

U1¥AJTA□(q') > 0 [Pbl.s:1](q') is satisfied. Otherwise, if 0WAITB21](q)

= 0, then there are t o cases: either UWAJTAU(q) > 0 or □ WAITAJ1(q)

= 0. In t 1e firs case, [Pbls1](q') ·s sa "sfied since UWAJTAl](q') > l.

In the second case, it must be that IWAJTBII > 0 in state q. By the

truth of aux 1 J in state q, and the £act that for T -6 to be enabled in

2-TT6-2:

2-TTS:

2-TT9:

2-TTl0:

2~TT11:

2~TTl2:

2-TTIJ•:

2-TT28:

2 TT29:

2 TT30:

2-LT9:

3-NCT~

:\-TTI:

- 1:54 -

state q requires q(b_t,I) = 0, we know- that [procnotcounted](q') is true.

Hence [Pbls1](q') 1s true.

We must show that [bl17](t) is true. The truth of en(a), en(b),, and

-,en m) in state q' is easily shown as in case 2•TT6,.I. Since

I W AJTB II = 0 in state q by the a,ssumpdon distinguishing case

2•TT6-2, and TTG does not affect IWAITBJ~ we have that

[-,procnolc,ou nted](q ') is true, and hence I 11bl17}(q') is true.

Firing TT7 adds an element to b_en, so we know tha (en(b)](q') 1s

true. Since TT7 can be enabled only if q(b_bf) ,':- 0, we know from

(aux 11}(q) d1at. IWAIT-BJI + IWAITB2' > 0, in state q. Provmg that

Phis I is true in state q• may now be done as .in caie 2-TT&-I .

This case is similar to I• TT8.

Transition TT9 does not arfect vbls2-

This case is similar to 1-TTlO.

Imposs•b1e since TTl l cannot be enabled in state q if [-.en(b)](q) is

true.

Transition TTl 2 does not affect ,;bis 2,

Impossible since TT13 cannot be enabled in s.tate q if [~e11(b)](q) is

true.

Impossible since TT28 cannot be enabied in state q if [..,en(m)](q) is

true.

Transition TT29 does not affect 11bls,2-

Impossible since TT30 cannot be enabled in state q ir [m(m)](q) 1s

true.

Transition T9 does no,t affect 11blsz.

Transition NCT does not affect vbl.s3.

lJnpossible since TTI can.not be enabled in state q if (en(b),](q) is true.

3-TT2:

J TT.:

3-TT8:

3 TT9:

3-TTl0:

l-TT14;

J~TT15:

]-TT 6:

3-TT 7:

3-TT18:

]-TTl9-l :

J-TTi 9-2:

3-TT20:

- 155 -

Transition TT2 does not affec· vbls J-

Impossible since TT3 cannot be enabled in state q if [-,e,r(b)](q) is true.

Impossible since TT8 cannot be enabled in state q if [-,en(a)l(q) is true.

Transition TT9 does not affect vbls J-

impossible since TTS cannot be enabled in state q if [-,en(a)](,q) is true.

Transi ion TT14 doei not affect vbls3.

Transition --- 15 does not affect ~b/sj-

Transjtion TTI 6 does not affect vbls J

Transition TT 7 does not affect ~·bl.s).

Tr, nsition TT18 doe.s not affe t ~·bis J

The truth of [~•bis 3}(q) implies that en(a) and en(m) are false .in state

q~ and these terms are no affected by TT , 9. The truth of [- en(b)](q')

may be established by an argument sim"lar to that of case 1-TTl. If

IWAITA) ~ L in state q, then [vbls4J(q') follows eas'ly. If IWAITBll ~

0 in state q, then by the truth of aux 11 in sta e q, and the fact that

for TT 19 to be enabled in state q requires q(b_b/) = 0, we know that

procnolcounted is rue in state q and hence in state q'.. Ther,efore

[~•?! s 4 }(q ') is true.

We may establish [-ien(a} A en(b) A ..,en(m)](q') as, in c.ase l~TTI 9-l.

Since IWAITBII = 0 in state q· and hence in state q', we know that

procnotcoumed is false in state q', and therefore that [vbls5J(q') is true.

For TT20 to e ,enabled in state q, it must be the case that q(b_bl) ~

0. By the truth of aux 11 in state q, and because [conf3J(q) implies

hat IWAJTB.21 - 0 fo state qt we have that. Vi((i et TP1) H i e b_bf)

is true in state q. The effect of firing TT20 is to .remove an element

from b_bl and transfer it to b_en. But this means that procnolcounted

is true in state q'. The remainder of the proof of [~bls4J(q') is done as

J~TT23:

3-TT28:

3-TT29:

l TTJO:

3•1. T9:

4-NCT:

4-TTl:

4~TT2:

4-TT3:

49 TT8:

4-TT9:

4 TTIO:

4-TT21 :

4-TT22:

4~TT28:

4-TT29:

4-TT30:

- 156 •

in case 3-TTl 9-1.

Impossible, because con/3 true ins ate q means that IMUTEX21 = I m
state q. By the truth of au.:x 18 in state q. we know that therefore

q(countl) > 0, and hence TI23 cannot be enabled in state q ..

Impossible because TT28 cannot be enabled in state q if {~en(m)](q) is

true.

Transition TT:29 does, not affect vbls3.

Impossible because TT30 cannot be enabled in state q if £ ... en(m)J(q) is

true.

Transition T9 does o.ot affect vbls3•

Tr nsition NCT does no affect ~bls4.

Vedfying [-,en(b)](q') may be done as in case 1 TTl.

Transition TT2 does not affect vb/s4-

Verifying [en(b)){q') may be done as in case l~TT3.

Impossible since ITS cannot be enabled in state q if [-,m(a)](q) is true.

Transition TT9 does not affect vbls4•

Impossib]e since TTIO ,cannot be enabled in state q ff (-,en(a)](q) is

true.

Procnorcounted is not affected by TT21. Sin.cc TT21 increments a, we

hu·e that en(a) ss true in state q'. Finally, IWAITAI > 0 iR state q by

amf4, and is .not affected by TT2I.

Similar ·to case 4-TT21, e.xcept th.at [en(a))(q) is verified by noting

that TT22 adds an efoment to tt_en.

Impossible sine TT28 cannot be enabled in s.tate q if [en(m)](q) is

true.

Transition TT2'9 does not affect V:bfs4,

Impossible since TT301 cannot be enab,ed in state q if [..,en(m)l(q) is

4-LT9:

5-NCT:

5 TTI :

5-TT2:

5-TT3:

5~TTS:

5-TT9:

5-TTIO:

5-TT21:

5-TT22:

-TT28;

5-TT29:

5-TTl0:

S-LT9:

6-NCT~

6-TTI:

&~TT2:

6-TT3~

6-TT4:

6-TTS:

6-TT6:

- 157 -

tru,e.

"I ransition LT 9 does not affect vbls 4•

Transition NCT does not affect Fbfs5.

We may verify [... e,r(b)](q') as in case 1.-TTI.

Transition TT2 does not affect vbls5•

We ma vedfy (... en(bH(q') as in case l-TTJ.

Impossible since · 8 canno, be enabled in state ,f ff (en(a)l(q) is true.

Transition TT9 does not af~ect ,bl:r5.

Im.possible since TTlO cannot be enabled in state q if [-,en(a)](q) is

true.

Since TT21 increments a, (en(a)](q1) is true.

Since TT21 adds an element to ,tt..en, [en(a)](q') is true.

ImpossibJe since TT28 cannot be enabled in state ,fJ if [-,en(.a)](q) is

true.

Transition TT29 does not affect "bls5.

ImpossiMe since TT30 cannot be enabled in state q if [-,en(m)](q) is

true.

Transiti.on l T'9 does not affect vbfs5.

Transition NCT does not affect rt1bls6.

Impo5sib]e since TT I cannot be enabled in state q ff [-.m(b)](q) is true.

Transition TT2 does not affect vbls6.

Impossible since TT3 cannot be enab]ed in state q if [..,erz(b)](q) is true.

Transition TT4 does not affect vbls6.

T rn nsi tion ITS does not affect vbls 6

Since TT6 increments b, en(b) is true in state q'. Since conf6 is true in

s a.te q we know that IWAIT Al > 0 in state q and hence that

IWAITA\ > l in state q'. Ther•efore wi/$4 is true in state q'.

6-TT7.:

&-:TTS:

6-TT9:

6-TTl0:

6-TT21:

~TT22:

6-TT28:

6-TT29:

6-TT3O:

6-LT9:

7-NCT:

7 TTI.:

7-TT2:

7~TT3:

7-TTS:

7-TT9:

7-TTlO:

- 158 ~

Similar to case 6-TT6 except that [en(b)J(q') is true because TT7 adds

an element to b_en.

Impossible since TT8 cannot be enabled in state q if (,en(a)](q) is true.

Transition TT9 does not affect wils6.

Impossible since TTlO cannot be enabled in state ,q if [... en(a)](q) is

uue.

IWAJTB21 = 0 in sate q and is not affected by TT21. Smee TT21

increments a, en(a) is true in state q ..

IWAJTB21 = 0 in state q, and ·s not affected by TT22. Since TT22

adds an elemeat to a_en , en(.a) is true in :state q.

Impossible sinc-e TT28 cannot be ,enabled in state q if [,en(m)](q) is

true.

Transition TT29 does not affect vbls(r

Im.possible since TT30 cannot be enabled rn state q if [-,en(m)](q) 1s

Transition L T9 does n.ot affect vbfs6.

Transition NCT does not affect l'bls7.

We ma_ verify [... en(b)](q') as in case -TTL Also, by [con/ 7](q),

jWAJTB21 = 0 in state q and is not affected by TT2. Since en(a)i is

true in state q and is not affected by TT2 we have that 1rbls 2 is true :in

state q'.

Transition TT2 does not affect vbls 7.

The argument is identical to that of case 7-TTI, except that

[-,m(b)J(q') is verified as in ,case I Til

We may verify [-.en(a)J(q') as in case l~TI8.

Transition TT9 does not affect vbls1

We may verify [-,ell(a)]
1
(q') as in case 1-Ttl0.

7-TT28:

7-TT29:

7-TT30:

7-LT9:

8,-NCT:

8~TT1:

8-TT.2:

8•TT3:

8-TTU:

8-TT12:

8-TTD:

8-TT28:

8-TT29:

8-TT30:

8~LT9:

9- CT:

9-TT:

9TT2:

9-TTJ:

'9-TT14:

- l59 ~

Impossible since TT28 cannot be enabled in state q if (~en(m)](q) is

tne.

Transition TT29 does not affect ,bfs7-

, mpossible since TT30 can.not be ,enab ed in: state q if (-,en(m)](q) 1s

true.

Transition L T9 does not affect Pbls7.

Transition NCT does not affect vbls9.

We may erify (-,en(b)],(q') as in case 1-TTI. Also, IWAITB21 = l in

sta e q by [conf9](q), and TTl does no,t affect IWAITB~,. Hence

[,.,b/s 2](q') is, true.

Transition TT2 does not affect l1bls9.

The argumen is iden· ical to ha of case 8•TI1 except that

[-.en(b)](q') is ver.ified a:s in case 1-TTl

We may verif [-,en(b)l(q') as in case 1-TTll

Transition TT12 doe~ not affoct l>bls9.

,ve may verif [-en(b)J(q') as in. case l~ITB ..

Impossible since TT28 cannot be enabled in state q if [-,en(.m)](q) 1s

true.

Transition TT29 doos not affect vbls8·

Impossible since TT3O cannot be enabled in state q if (-,en(m)](q) 1s

tn:e.

Transition LT9 does not affect vbfss.

T rnnsition CT doe-S not affect 'i'bls9-

lm ossib1e sin e TT l cannot be enaMed in state (J if [-,en(b))(q) is true.

Transition TT2 does not affect •bls9-

lmpos.sibJe since TT3 cannot be enabled in state q if [~en(b)](q) is true.

Transition TTl 4 does not affect Pbls(}

•

'9~TT15:

9 TT16·

9-TT17:

9-TT18:

9~TT23:

9-TT24:

9-TT25:

9-TT28:

9-TT29:

9TT30:

9-LT9:

10-NCT:

10-TTl~

H}TT2:

10-TT3:

10-TT4:

10-TT5:

- 160 -

Trnnsitioo TTl 5 does not affec vb/s(J

Transition TTI 6 does not affect ~bfs9-

Transition TT 7 does not affoct ~bls9-

It is impossible for TTl,8 to be enabled in state q,. since (con/9J(q)

implies 1[~WUTEXJI + IWAITA] + WA/TB~ = OJ{q), and hence

,[aux 1aJ(q) implies that q{countl) = 0.

Transition TT23 doe-S not affect: 11bfs()

~\JUTEXJI ~ 0 in state: q, and is not affected by TT24. We may

•erif • [en(b)](q') using [aux2l(q) and [aux5}(q) .

The argument is identical to tha of case 9·-TT24, exoept that

[en(b)1(q') is verified using I aux;J(q) and (.ouxa](q).

Impossible since TT28 cannot be enabled in state q if (-,en(m)](q) is

true.

Transition TT29 does not affect vb/s9-

ImpossibJe since TT30 cannot be enabled in state q if [... en(m)](q) 1s

tn1e.

Transition LT9 does not affect vbls9-

Transition NCT does not. affect vbls /()'

By [bis ioJ(q) and [aux I 7](q), TTI can only be . nabled if

IJIUTEX/j = 0 in. state q. Firing TTl then increments]MUTEXJ).

w·e may sho~ that en(b) is false in state q' with an argument like that

in case l-TT L

Traos'-tion T 2 does not affect fbls JC>

The argument is identical to that of case l 0-TTI, except that

(~en(b)],(q') i:s verified as in case 1-TTl

Ticansi ion TT4 does not affect vbls10·

Transition TTS does not affect vbls J.(J

l0-TT6:

10-TT7:

10-TTS:

10-TT9:

10. TTIO:

10-TT26:

l(). TT27:

10-TT28:

. 0..TT29:

10-TT:lO.

10-LT%

11-NCT:

11-TTl·

ll-TT~:

ll~TT3:

t-TT4:

11-TT :

ll-TT6~

H-TT7:

ll~TTS~

ll-TT9:

11-Til0:

~ 161 -

Although TT6 decrements IAfUTEXJ~ it also makes en(b) true in state

q', and henc (vbls10J(q 1
) is true.

Similar argument o that of case 10-TT6.

Impossible since TT8i cannot be enabled in s ate q ff (... en(a)](q) is trne.

Trans· ion TT9 does not affect vbfs10-

lmpossible since TTIO cannot be enabled in. state q if [,en(a)](q) is

rue.

Since TT26 increments m, en(m) is true in sta.te q'.

Since TT27 adds an element to m_en1, ,en(ni) is true in state. q'.

Impossible since TT28 cannot be enab~ed in state q if [-,en(m)](q) is

true .

ransition ,T2:9 does not affect llbls1o-
Impossible since TT30 cannot be enabled in state q if l[..,en(m)](q) is

trne.

Transition l T9 does not affect .•b/1 /rt

Transition NCT does not affect •bis 11.

The argument for this ,case is similar to that of ,case 10-TTl.

Transition TT2 does not a(fect vbls1 J·

The argument for this case is simifar to that of case IO-TTJ.

Transition TT4 does not affect vbls 11.

T nmsition TTS does not affect vbls 1 /·

The argument for 1h:is case is similar to that •of case IO-TT6.

The argument for this ca~ is similar to that of case l O-TT7.

Impossibl.e since 8 cannot be enabled in state q ff [..,en(a))(q) is true.

T ransitim TT9 does not affect ,;bis 11.

I n poosible since TT l O cannot be ,enabled in stare q if [-, en(a) 1(q) 1s

rue.

I l-TT28:

11~TT29:

ll TT30:

1 l~LT'9;

12-NCT:

l2@TT1:

l2-TT2:

12-TTJ:

12-TT4:

12~TT5:

12~TT6:

12~TT7:

12-TTB;

12-TT9:

12wTTlO:

12-TT28:

12-TT29:

12-TTJO:

12-LT9:

lJ-NCT:

13-TTl~

13-TT2:

- l6.2

We may verify [-.,en(m)](q') using. [aux3](q) and [a.ux6 (q).

Transition TT29 does not affe~t rbls 11•

,ve may verify [... e-n(m)](q') using [aux;)(q) and (au.r9](q),.

Transition L 9 does. not affect vbls 11.

Tra.nsifon NCJ does not affect ibis 12

The argument for this case is similar to that or case 10-TTl.

Transition TT2 does not affect vbls11

The argument for this case is simifa1r to that of case 10-TTl.

Transition TT4 does not affect .,b/s1i·

Transition TT5 does not affect ~b1s1i-

The argument for this case is siR1ilar to that of case 10-.TT6.

The ;ugument for this case is similar to that of case 10-TT7.

Impossible since TIS cannot be enabled in state q if [-,en(a)](q) is true.

Transition TT91 does not affect vbls12.

Impossible since TrtO canno,t be enabled in st.ate q if [- en(a)](,q) is

Jmpossible since TT28 cannot be enabled in state q if [-,en(m)](q), is

true.

Transition TT29 does no,t affect vbls /2·

Impossible since TT30 cannot enabled in state q if [,en(m)](q) 1s

true.

Sin,ce ILP4j = 0 and ILPJl = 0 in state q, and this is .not affe.cted by

ORT, ,bit 13 is true in state q.

Transition L T9 does not affect l1bfs 12·

Transi ion NCT does not affect vbls J 3-

The argumen for this case is similar to that of case 10-TTl.

Transition TT2 does not affect vbls13.

IJ-TIJ:

13-TT4:

13-TT5~

13-TT6:

3-TT7:

13-TTS:

13~TT9:

13-TTI0~

1J-TT28:

13-TT29:

I. -TTJ(}.

I J-LTl:

l3-LT2:

13 LT3.

J-LT4:

13-LT5:

13-LT6:

13-L T7-l:

- 163 -

The argument for this case is similar to that of' case 10-TTJ.

Transition TT4 does not .affect Fbfs13.

Transition TT5 does not affect vbls13•

The argument for this case is similar t,o that of case 10-TT6.

The argument for this case is similar to that of case I 0-TT7.

Impossible since TT8 cannot be enabled in state q if [~en(a)J(q) is true.

Transi ion TT9 does not affec vbls 13.

Impossible since TTl01 cannot be enabled in state q if [... en(a))(q) is

true.

Impossible si.ace TT28 cannot be enabled in ·state q if [-,e,r(m)J(q) is

true.

T ra nsi tion TT2 9· does not affec vbl's 13.

Impossible since TT30 cannot be enabled in state q if [-,en(m)](q) is

trne.

Transition L n does not affect ~bis l 3.

Transition LT2 does not affeC't vbfs JJ·

Even though 1£P4j becomes. positiv,e m state q', by the truth of

[aru·,20J(q) and [cont13)(q) we know that for LT3 to be enabled in

state q requires IWAJTMI > 0 in state q, and therefore in state q'.

Hence [lib! s13J(q') is true.

Sine LT4 incr,ements m, en(m) ·s true in state q'.

Since LT5 adds an element to m:...err, en(m) is true in state q'.

Even hough ILPJl becomes positive in state q' by the tluth of

m1x2o](q), and [conf13](q) we know that for LT6 to be enabled in

stat q requires IWAJTM[- 0 in s·tate q, and therefore in state q'.

Hence i•bls.1 J' is true in state q ••

Since LT7 increments a, en(a) is rue in state q'. By the assumptions

- 164 -

defining this case, UTEX~1 = 0 in state q, and hen.oe en(b) is true in

state q. Since en(b) is not affected by LT1, en(b) is true in state r(as

wel. ·1wAITB2I = 0 in state q, and is no• afiected by LT7. For LT7

to be enabled in state q' we must. ha e ILP51 > 0, and hence I W AITM:j

= 0 in state q, and in state q'. Under these conditions, [vbl11J(q ') is a

direct consequence of (fbls I 3](q).

Since by the assumptions. defining this case, lftlUTEXJ11 >· 0,, we know

from [vbls I 3]1(q) and [aux 17}(q) tha en(b) is false in state q. Since

,cn(b) is not affected by LT7, it is false in state q' as well. That

IWAJTB.21 = 0 .and en ,a) a1e true in state .q' may be argued as in ,case

13~L TT-1.
-

13-L T7-J; . Since by the assumptions defining this. case, procno1cou111ed is false in

state q, and since procnotcounied is not affected by LT7 t it is raise in

s ate q' as welt That en(b) and en(a) are true in state q' may be

argued as in case 13-TTI-l.

1 l-LT8-1: Similar to case 13-LTI-l, except that en(a) is true in state q because

LT,8 adds an element to t1-en.

13-LT8-2:

1J•LT8-?.:

13-LT9:

Similar to case B-LTI-2, except that en(a) is true in state q because

LTS adds an element o a_en.

Similar to case 13 LTI-3, except hat ,en(a) is true in sta'te q because

LTS adds an element to a._er,.

Transition LT9 does not affec vbls1;3-

[BRIN72a]

[BRIN72b]

[13URNS79)

(COFFM73]

[COURT71]1

[COURT72]

(DOEPP76]

(DIJKS68]

[DIJKS71]

[DUKS65]

Referencies

Brinch Hansen, P., "A Comparison of Tw·o Synchronizing
Concepts,'' Acta Informatica l (1972)1 pp. 190-199.

Brinch Hansen, P., 11Structured Multiprogram.ming," CACM 15,7'

0 972), pp. 574-578.

Burns, J.E., et al., "'Data Requirements for lmptemen.tation or
N-Process Mutual Exdusion Using a 'Single 'Shared Var.iable,n
Ge-0rgia Institute of Technology Report GIT-ICS-79/02, May

1979.

Coffman. E.G., and De11ning, P.J., Operatin1 System The.m·;y;
Pren tree Han, 197 3.

Courtois, P.J .,. F. Heyman.s, D. Paroas, •concur.rent Control with

'Readers and 'Writers',n CACM 14, 10 (1971), pp. 667-668.

Courtois, P.lt F. Heymans,_ D. Pamas., 'Comments on 'A

Comparison of Two Synchronizing Concepts· by P.B. Hansen', 1

Acta Informatica l (I 9'72), pp. 375•376.

Doeppner, T.W., 1'0n Abstractions of Parallel Programs,.H Eighth

ACM S,xm_J)ooiurn on Theory of Computation," 19761 pp. 65-72.

Dijkstr~ E.W., 1'Cooperating Sequential Processes," in
Programming Languages. F. Oenuys (Ed.), Academic Press, 1968,

pp. 43-112.

Di jks t a, E.W.,, "Hierarchical Ordering ,of Sequential Processes,"

Acta Informatici:t, 1, (1972), pp. l Is~ 138.

Dijkstra, E.W. 11Solution o(a Problem JD Co.ncurrent

(FLOYD67]

[HABER.72)

[BABER75]

[HABER.76)

[HOAR.E74]

[HOLT70]

[KELLE76J

[KNUTH66J

(KOSAR73]

[KWONG78J

Programming Control, 1 CACM 8,9 U 965), p. 569.

'Assigning Meanings to Programs,' in Math~m.atical Aspects of

Computer Science,, American Math. Soe., 1967.

Habermann, A.N.J 'Synchronization of' Communicating Processes,"

CACM 15, l (1972), pp. 171-176.

Habermann . A.N., Path Expressions," Camegi~Mellon Univcrsity1

1975.

Habermann, A.N ., 11Review or Article by Leon Presser on

Multiprogramming Coordination,' ComJuting Reviews 29,788

(April 1976) pp. 150-151.

Hoare, C.A.R., 'Monitors: An Operating System Structuring

Concept," CACM 17,IO {1974), pp. 549-557.

Holt, A., and Commoner, F,7 "Events and Conditions1
, Record of

th~ Project MAC Conference OR Concurrent Systems and ParaHel
C-0m putation, J unCt 1970 .PP l-52,

KeUer, R.M., HFormal Vetification of Parallel Programs/• CACM

19,7 (July 1976), pp. 371-384.

Knuth,. D.E., ••Additional Comments on. a Problem in Concurrent

Programming Control,'1 CACM 9,5 (1.966), PP'• 321·322.

K:os.araju, S.R.1 'Limitations of Dijkstra's ,Semaphore Primitives

and Petri Nets, 1 Johns Hopkim University Computer Science

Report No. 2 5, 19? J.

Kwo,ng, Y.S. 11LiveJocks in Parallel Programs," Mc. Master

University Technical Report 78-CS-15.

[LAJ\il P07 4]

[LIPT073J

[MILLE77]

[OWICK75]

[PRESS75]

[SHAW74]

[WODON72]

~· 167 -

Lamport, L., 'A ew Solution of Dijkstra's Concuuent
Programming Problem," CACM 17.8 (1 '974), pp. 453455.

Lipton, R.J,; iron Synchronization Primitive Systems,.' PhD thesis,
Cunegie-MeUon University., (197 3).

Mmer, R.E. and C.K. Yap,. uFo.rmal Specification and Analysis of

Loosely Connected Processes,' IBM Research. Report· RC6716,

(1977).

Owicki, S.S., 11Axiomatic Proof T 1echnique.s for Parallel Programs,U
PhD thesis, Cornell University, (1975).

Presser, Leon, 1 Multiprogramming Coordination," Computing

Surveys 7tl (March 1975), pp. 21-44.

Shaw. A.C., The Logical Design of O~rating Systems, Prentice
HaU, 1974, p. 78.

W,odon, P., 1'Stin Another Tool for Synchronizing Cooperating
Processes.' Camegie-MeHon Univ,ersity Report, O 972).

