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ABSTRACT: 

This report contains a description of all current functions and features ( with many 
examples) of the programs CTENSR and ITENSR which are available with 
MACSYMA. CTENSR is a standard Component TENSoR manipulation system which 
means that geometrical tensor objects are represented as arrays or matrices. Tensor 
operations such as contraction or covariant differentiation are carried out by actually 
summing over repeated (dummy) indices with DO statements. ·ITENSR, is a unique 
Indicial TENSoR manipulation system which is implemented by representing tensors as. 
functions of their covariant, contravariant and derivative indices. Tensor operations such 
as contraction or covariant differentiation are performed by manipulating the indices 
themselves rather than the components to which they correspond. The programs are 
connected in the sense that one can obtain an expression in ITENSR and have the 
corresponding expression generated in the CTENSR format automatically. 
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2 MACSYMA 

1.1 Tensor Manipt4ation Programs- Introduction 

MACSYMA implements symbolic tensor manipulation of two distinct types: 
component tensor manipulation and indicial tensor manipulation. 

Component tensor manipulation means that geometrical tensor objects are 
represented as arrays or matrices. Tensor operations such as contraction or covariant 
differentiation are carried out by actually summing over repeated (dummy) indices with 
DO statements. That is, one explicitly performs operations on the appropriate tensor 
components stored in an array or matrix. 

lndicial tensor manipulation is implemented by representing tensors as functions of 
their covariant, contravariant and derivative indices. Tensor operations such as 
contraction or covariant differentiation are performed by manipulating the indices 
themselves rather than the components to which they correspond. 

These two approaches to the treatment of differential, algebraic and analytic 
processes in the context of Riemannian geometry have various advantages and 
disadvantages which reveal themselves only through the particular nature and difficulty 
of the user's problem. However, one should keep in mind the following characteristics of 
the two implementations: 

Component Tensor Manipulation (CTENSR) 

i) The representation of tensors and tensor operations explicitly in terms 
of their components makes CTENSR easy to use. Specification of the metric and 
the computation of the induced tensors and invariants is straightforward. 

ii) Although all of MACSYMA's powerful simplification capacity is at hand, a 
complex metric with intricate functional and coordinate dependencies can easily 
lead to expressions whose size is excessive and whose structure is hidden. In 
addition, many calculations involve intermediate expressions which swell 
causing programs to terminate before completion. Through experience, a user 
can avoid avoid many of these difficulties. 

lndicia/ Tensor Manipulation (ITENSR) 

i) Because of the special way in which tensors and tensor operations are 
represented in terms of symbolic operations on their indices, ~xpressions 
which in the component representation would be unmanageable can sometimes 
be greatly simplified by using the special routines for symmetrical objects in 
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ITENSR. In this way the structure of a large expression may be more 
transparent. 

ii) On the other hand, because of the the special indicial representation in 
ITENSR, in some cases the user may find difficulty with the specification of the 

· metric, function definition, and the evaluation of differentiated "indexed" 
objects . 

3 

. These two tensor manipulation packages, CTENSR and ITENSR, are available to the 
MACSYMA user on the TENSOR directory. To use the functions in these files, the user 
can load them in by doing 

LOADFILE(CTENSR,F ASL,TENSOR); --- for component tensor manipulation. 

LOADFILE(ITENSR,F ASL,TENSOR); --- for indicial tensor manipulation 

Both of these packages enable the user to specify a metric and compute the basic 
geometrical objects of interest. These routines were written primarily for research in 
gravitation theory. However, they can also be of use in other areas of physics where 
Riemannian geometry is applied owing to their generality. 
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1.2 Component Tensor Manipuation- Basic FL11Ctions 

To use CTENSR the user does LOADFILE(CTENSR,FASL,TENSOR). The basic function 
is called 

TSETUP() which automatically loads the CTENSR package from within MACSYMA (if it is 
not already loaded) and then prompts the user to make use of it. The user is first 
asked to specify the dimension of the manifold. If the dimension is 2, .3 or 4 then the 
list of coordinates defaults to [X,Y], [X,Y,Z] or [X,Y,Z,T] respectively. These names 
may be changed by assigning a new list of coordinates to the variable OMEGA 
(described below) and the user is queried about this. Care must be taken to avoid 
the coordinate names conflicting with other object definitions. Next, the user enters 
the metric either directly or from a file by specifying its ordinal position. As an 
example of a file of common metrics, see TENSOR;METRIC FILE. The metric is stored 
in the matrix LG. Finally, the metric inverse is computed and stored in the matrix UG. 
One has the option of carrying out all calculations in a power series. 

A sample protocol is begun below for the static, spherically symmetric metric 
(standard coordinates) which will be applied to the problem of deriving Einstein's 
vacuum equations (which lead to the Schwarzschild solution) as an example. Many of 
the functions in CTENSR will be displayed for the standard metric as examples. 

( C2) TSETUP(); 
Enter the dimension of the coordinate system: 
4; 
Do you wish to change the coordinate names? 
N; 
Do you want to 
1. Enter a new metric? 
2. Enter a metric from a file? 
3 . Approximate a metric with a Taylor series? 
Enter 1, 2 or 3 
l; 

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General 
Answer 1, 2, 3 or 4 
1; 
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Row 1 Column 1: A; 

Row 2 Column 2: XA2; 

Row 4 Column 4: -D; 

. Matrix entered. 
Enter functional dependencies with the DEPENDS function or /N/ if none 
DEPENDS([A,D],X); 
Do you wish to see the metric? 
Y; 

[ A 0 
[ 
[ 2 
[ O X 
[ 
[ 
[ 0 0 
[ 
[ 0 0 

0 

0 

2 2 
X SIN (Y) 

0 

Do you wish to see the metric inverse? 
N; 

0 ] 
] 
] 

0 ] 
] 
] 

0 ] 

] 

- D ] 

The other functions and features in CTENSR are now listed below. 
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CHRISTOF(arg) computes the Christoffel symbols of both kinds. The arg determines 
which results are to be immediately displayed. The Christoffel symbols of the first 
and second kinds are stored in the arrays LCS[i,j,k] and MCS[i,j,k] respectively and 
defined to be symmetric in the first two indices. If the argument to CHRISTOF is LCS 
or MCS then the unique non-zero values of LCS[i,j,k] or MCS[i,j,k], respectively, will 
be displayed. If the argument is ALL then the unique non-zero values of LCS[i,j,k] 
and MCS[i,j,k] will be displayed. If the argument is FALSE then the display of the 
elements will not occur. The array elements MCS[i,j,k] are defined in such a manner 
that the final index is contravariant. For the standard metric one has: 
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(C3) CHRISTOF(HCS); 
A 
X 

(E3) t1CS = ---
1, 1, 1 ··2 A 

1 
(E4) "cs = -

1, z, z X 

1 
(ES) "cs = -

l, 3, 3 X 

D 
X 

(E6) HCS = ---
1, 4, 4 Z D 

X 
(E7) "cs = - -

z' z' l A 

COS(Y) 
(ES) "cs = ------

z, 3, 3 SIN(Y) 

2 
X SIN (Y) 

(E9) t1CS = - ---------
3, 3, l A 

(ElO) HCS = - COS(Y) SIN(Y) 
3, 3, 2 

D 
X 

(Ell) HCS = ---
4, 4, l 2 A 
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DIAGMETRIC if TRUE causes special routines t~ compute all geometrical objects (which 
contain the metric tensor explicitly) by taking into consideration the diagonality of 
the metric. Reduced run times will, of course, result. Note: this option is set 
automatically by TSETUP if a diagonal metric is specified. 

DIM is the dimension of the manifold with the default 4. The command DIM : N will reset 
the dimension to any other integral value. 

EINSTEIN(dis) computes the mixed Einstein tensor after the Christoffel symbols and Ricci 
tensor have been obtained. If the argument dis is TRUE, then the non-zero values 
of the mixed Einstein tensor G[i,j] will be displayed where j is the contravariant 
index. RATEINSTEIN[TRUE] if TRUE will cause the rational simplification on these 
components. If RATFAC is TRUE then the components will also be factored as the 

. following example, for the standard metric, demonstrates: 

(C40) EINSTEIN(TRUE); 

(E40) 

0 X - A O + 0 
X 

G = --------------
1, 1 

z 
2 A O O X - A 0 

XX X 

z 
A O X 

2 
X - A D D X + 2 A D D - 2 A D 

X X X X 

(E41) G = -------------------------------------------------------
2, 2 2 2 

4 A D X 

2 2 

2 A O D X - A D X - A O O X + 2 A D D - 2 A D 
XX X X X X X 

(E42) G = -------------------------------------------------------
3, 3 2 2 

4 A O X 
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(E43) 

1.2 Component Tensor Manipulation- Basic Functions 

2 
A X+A -A 

X 
G = - ------·------
4, 4 2 2 

A X 

MACSYMA 

LRICCICOM(dis) computes the covariant (symmetric) components LR[i,j] of the Ricci 
tensor. If the argument dis is TRUE, then the non-zero components are displayed. 
For the standard metric one finds (with RATFAC:TRUE): 

(CZ4) RATFAC :TRUEI 

(CZ5) LRICCICOH(TRUE); 

(EZ5) 

(EZ6) 

(EZ7) 

2 
2 A D D X - A D 

X X X 

2 
X - A D D X - 4 A D 

X X X 

LR = - --------------------------------------------
1, 1 2 

4 A D X 

2 
A D X - A D X - Z A D + 2 A D 

X X 
LR = - --------------------------------z, 2 2 

2 A D 

2 2 
(AD X - A DX - 2 A D + 2 AD) SIN (Y) 

X X 
LR = - ------------------------------------------

3, 3 2 
2 A D 
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z 
2 A O D X - A D X - A O D X + 4 A D D 

XX X X X X 
( E28 ) LR = -- -------------------------------------- - ----

4, 4 z 
4 A D X 

MOTION(dis) computes the geodesic equations of motion for a given metric. They . are 
stored in the array EM[i]. If the argument dis is TRUE then these equations are 
displayed. 

OMEGA is an option which assigns a list of coordinates to the variable. While normally 
defined when the function TSETUP is called, one may redefine the coordinates with 
the assignment OMEGA:Ul,j2, ... jn] where the j's are the new coordinate names. A 
call to OMEGA will return the coordinate name list. Also see the function TSETUP 
above. 

RATFAC(fa/se) is a switch which, if TRUE, causes the Ricci, Einstein, Riemann, and Weyl 
· tensors and the Scalar Curvature to be factored automatically. Clearly, this should 

only be set for cases where the tensorial components are known to consist of few 
terms. 

RIEMANN(dis) computes the Riemann curvature tensor from the given metric and the 
corresponding Christoffel symbols. If dis is TRUE, the non-zero components R[i,j,k,I] 
will be displayed. All the indicated indices are covariant. As with the Einstein 
tensor, various switches set by the user control the simplification of the components 
of the Riemann tensor. If RATRIEMAN[TRUE] is TRUE then rational simplification 
will be done. If RATF AC is TRUE then each of the components will also be factored. 

RICCICOM(dis) This function first computes the covariant components LR[i,j) of the Ricci 
tensor. Then the mixed Ricci tensor is computed using the contravariant metric 
tensor. If the value of the argument to RICCICOM is TRUE, then these mixed 
components, RICCl[i,j] (the index i is covariant and the index j is contravariant), will 
be displayed directly. otherwise, RICCICOM(F ALSE) will simply compute the entries 
of the array RICCl[i,j] without displaying the results. 



10 1.2 Component Tensor Manipulation- Basic Functions MACSYMA 

SCURVA TURE() returns the Scalar Curvature as the trace of the mixed Ricci tensor. 
With RATF AC:TRUE this invariant will be factored. 

WEYL(dis) computes the covariant Weyl conformal tensor. If the argument dis is TRUE, 
the non-zero components W[i,j,k,I] will be displayed. otherwise, these components 
will be computed and stored. If the switch RATWEYL[TRUE] is set to TRUE, then 
the components will be rationally simplified. If RATF AC is TRUE then the results will 
be factored as well. The following example illustrates the use of the function for an 
elementary metric which is chosen to be conformally flat. 

(C7) LG; 
[ A 0 0 0 0 ] 
[ ] 
[ 0 A 0 0 0 ] 

[ ] 

(07) [ 0 0 A 0 O 1 
[ 1 
[ 0 0 0 A 0 ] 
[ 1 
[ 0 0 0 0 A ] 

(CS) DEPENDENCIES; 
(08) [A(T)] 

(C9) RATWEYL:TRUE; 
(09) TRUE 

(ClO) WEYL(TRUE); . 
THIS SPACETIHE IS CONFORMALLY FLAT 
Time= 94320 msec. 
(010) DONE 
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1.3 Component Tensor Manipuation- Auxiliary Fuictions 

CHECKDIV(tensor) computes the covariant divergence of the mixed second rank tensor 
(whose first index must be covariant) by printing the corresponding n components of 
the vector field (the divergence) where n = DIM. If the argument to the function is G 
then the divergence of the Einstein tensor will be formed and must be zero. In 
addition, the divergence (vector) is given the array name DIV. 

COGRAD(function,name) computes the covariant GRADient of a scalar function allowing 
the user to choose the corresponding vectorname as the example under 
CONTRAGRAD illustrates. 

CONTRAGRAD(function,name) computes the CONTRAvariant GRADient of a scalar function 
allowing the user to choose the corresponding vectorname as the example below for 
the standard metric illustrates. 

(Cl2) OEPENOS(F,X); 
(012) 
(Cl3) COGRAD(F,Gl)I 
(Cl4) LISTARRAY(Gl); 

(014) 

(C15) CONTRAGRAD(F,G2)1 
(Cl6) LISTARRAY(G2); 

(016) 

[F(X)] 

[F , 0, O, O] 
X 

F 
X 

[--, 0, 0, 0] 
A 

DELETEN(list,n) returns a new list consisting of list with the nth element deleted. 

DSCALAR(function) computes the tensor d'Alembertian of the scalar function once 
dependencies have been declared upon the function. For the standard metric one 
has: 
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(Cl6) DEPENDS(P,X); 
(D16) 

(Cl7) FACTOR(DSCALAR(P)); 

[P(X)] 

2 ADP X +AD P X - A· 0 P · X + 4 AO P 
XX XX X X X 

(D17) 

2 
2 A D X 

MACSYMA 

FINDDE(array,n) returns a list of the unique differential equations (expressions) 
corresponding to the elements of the n dimensional square array. Presently, n may 
be 2 or 3. DEINDEX is a global list containing the indices of array corresponding to 
these unique differential equations. For the Einstein tensor (G) given above, which is 
a two dimensional array, FINDDE gives the following independent differential 
equations: 

(Cl9) FINDDE(G,2); 
2 

(D19) [Q X - A D + D, 2 A D D X - A O X - A D D X + 2 A D D 
X XX X X X X 

(CZO) DEINDEX; 
(020) 

2 2 
- 2 A D , A X + A - A] 

X X 

[[l, l], [2, 2], [4, 4]] 

NTERMST(f) gives the user a quick picture of the "size" of the doubly subscripted 
tensor (array) f. It prints two element lists where the second element corresponds 
to NTERMS of the components specified by the first elements. In this way, it is 
possible to quickly find the non-zero expressions and attempt simplification. 

RAISERIEMANN(dis) returns the contravariant components of the Riemann curvature 
tensor as array elements UR[i,j,k,ll These are displayed if dis is TRUE. 
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RINV ARIA NT() forms the Kretschmann invariant obtained by contracting the tensors 
R[i,j,k,l]*UR[i,j,k,I]. This object not automatically simplified since it can be very large. 
For the standard metric, however, the invariant is small and easily factor ed. One 
finds: 

(C20) FACTOR(RINVARIANT()); 

2 2 
(020) (4 A D D 

2 4 2 
X - 4 A D D 

X X 

2 4 2 
D X - 4 A A D D D 

X X X X X X X 

2 44 34 22 24 22 22 

+AD X +2AA DD X +A DD X +8A DD X 

X X X X X X 

242 44 34 24 444 

+ 8 A D X + 16 A D - 32 A D + 16 A D )/(4 A D X ) 

X 

4 

X 

TRANSFORM(matrix) will perform a coordinate transformation upon an arbitrary square 
symmetric matrix. The user must input the functions which define the transformation 
as in CS below. The following example considers the transformation from Cartesian 
to spherical coordinates: 

(CS) OIN:31 

(C6) OHEGA:[X,Y,Z]S 

(C7) LG:NATRIX([l,0,0),(0,1,0],[0,0,l]); 

[ 1 0 0 ] 
[ ] 

(D7) [ 0 1 0 ] 
[ ] 
[ 0 0 1 ] 
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(CS) TRANSFORH(LG)I 

TRANSFORH # 1 
X*SIN(Y)*SIN(Z); 
TRANSFORM# 2 
X-SIN(Y)*COS(Z); 
TRANSFORM# 3 
X*COS( Y); 

(C9) '* a substitution which reduces the transformed matrix*' 

EV(X,COS(Y) = SQRT(l-SIN(Y)A2),SIN(Z) = SQRT(l-COS(Z)A2),RATSIHP); 

[ 1 0 0 ] 
[ ] 
[ 2 ] 

(D9) [ 0 X 0 ] 
[ ] 
[ 2 2 ] 
[ 0 0 X SIN (Y) ] 

MACSYMA 
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1.4 Component Tensor Manipulation- Alternate Gravity Theories 

BDVAC() generates the covariant components of the vacuum field equations of the 
Brans- Dicke gravitational theory. There are two field equations. The components of 
the second rank covariant field tensor are represented by the array 8D2. The scalar 
field equation requires the user to input the name of a scalar and declare its 

. functional dependencies. This field equation is represented by the scalar BOO. 

INVARIANT 1 () generates the mixed Euler- Lagrange tensor ( field equations) for the 
invariant density of R"'2. The field equations are the components of an array named 
INVl. 

INVARIANT2() generates the mixed Euler- Lagrange tensor (field equations) for the 
invariant density of LR[i,j]*UR[i,j]. The field equations are the components of an 
array named INV2. 

BIMETRIC() generates the field equations of Rosen's bimetric theory. The field equation$ 
are the components of an array named ROSEN. 
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[1.5] lncicial Tensor Manipuation 

In ITENSR a tensor is represented as an "indexed object" . This is a function of 3 
groups of indices which represent the covariant, contravariant and derivative indices. 
The covariant indices are specified by a list as the first argument to the indexed object, 
and the contravariant indices by a list as the second argument. If the indexed object 
lacks either of these groups of indices then the empty list [] is given as the 
corresponding argument. Thus, G([a,b],[c]) represents an indexed object called G which 
has two covariant indices (a,b), one contravariant index (c) and no derivative indices. 

The derivative indices, if they are present, are appended as additional arguments to 
the symbolic function representing the tensor. They can be explicitly specified by the 
user or be created in the process of differentiation with respect to some coordinate 
variable. Since ordinary differentiation is commutative, the derivative indices are sorted 
alphanumerically. This canonical ordering makes it possible for MACSYMA to recognize 
that, for example, T([a],[b],i,j) is the same as T([a],[b],j,i). Differentiation of an indexed 
object with respect to some coordinate whose index does not appear as an argument to 
the indexed object would normally yield zero. This is because MACSYMA would not know 
that the tensor represented by the indexed object might depend implicitly on the 
corresponding coordinate. By modifying the existing MACSYMA function OIFF in ITENSR, 
MACSYMA now assumes that all indexed objects depend on any variable of 
differentiation unless otherwise stated. This makes it possible for the summation 
convention to be extended to derivative indices. It should be noted that ITENSR does not 
possess the capabilities of raising derivative indices, and so they are always treated as 
covariant. 

The following functions are available in the tensor package for manipulating indexed 
objects. At present, with respect to the simplification routines, it is assumed that all 
indexed objects are completely symmetric in their lists of covariant indices and 
symmetric in their lists of contravariant indices. This can be overridden by setting the 
variable ALLSYM[TRUE] to FALSE which will result in no symmetry assumptions in these 
two sets of indices. However, the simplification routines may no longer operate 
completely. 

In what follows, general indexed objects will be denoted by tensor!, tensor2, .... 
The symbols LI, L2, ... denote lists which are arguments to indexed objects. Optional 
arguments are enclosed in angle brackets. 
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1.6 lndicial Tensor Maniptjation- Basic Flllclions 

CHR 1 ({i,j,k]) yields the Christoffel symbol of the first kind via the definition 

(g·k. + g·k· - g .. k )/2 · I ,J J ,t I J, 
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. To evaluate the Christoffel symbols for a particular metric, the variable METRIC 
must be assigned a name as in the example under CHR2. 

CHR2({i,J1[k]) yields the Christoffel symbol of the second kind defined by the relation 

CHR2([i,j1[k]) = gks (gis,j + gjs,i - gij,s )/2 

As an example we consider a conformally flat metric and find the Christoffel 
symbols of both kinds: 

(C7) DECLARE(E,CONSTANT)I 

(C8) HETRIC(G)I 

( C9) COHPONENTS(G([ I, J], []), E([ I, J], [ ])*P([], [ ]))I 

(ClO) COHPONENTS(G([ ],[ I,J]) ,E([ ],[I,J])/P([ ],[]))I 

(CU) SHOW(G([I,J],[])); 

(011) P E 

I J 

(Cl2) SHOW(G([ ],[I,J])); 

I J 
E 

(012) · 
p 

(Cl3) SHOW(FACTOR(CHRl([I,J,K]))); 

P E + P E - P E 
, I J K ,J I K ,K I J 

(013) ------------------------------
2 
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(C30) SHOW(FACTOR(CHR2([I,J],[K]))); 
XI K 

E (P . E - P E - P E ) 
, Xl I J , I Xl J , J Xl I 

(031) - -----------------------------------------
2 p 

MACSYMA 

COMPONENTS(tensor,exp) permits one to assign an indicial value to an expression exp 
giving the values of the components of tensor. These are automatically substituted 
for the tensor whenever it occurs with all of its indices. The tensor must be of the 
form T([ ... ],[ ... ]) where either list may be empty. Exp can be any indexed expression 
involving other objects with the same free indices as tensor. When used to assign 
values to the metric tensor wherein the components contain dummy indices one must 
be careful to define these indices to avoid the generation of multiple dummy indices. 
Removal of this assignment is given to the function REMCOMPS described below. 

The example under DEFCON (C9 - 012) demonstrates the use of the COMPONENTS 
function to define an algebraically special metric and also shows how the null 
property of the vector field can be given with the property assignment functions. 
The example above under CHR2 gives the basic syntax used in the COMPONENTS 
statement. 

CONTRACT ( exp) carries out the tensorial contractions in exp which may be any 
combination of sums and products. This function uses the information given to the 
DEFCON function. When using CONTRACT, exp must be fully expanded. Also see the 
function METRIC and the example under DIM. 

COVDIFF(exp,vl,v2, ... ) yields the covariant derivative of exp with respect to the 
variables vi in terms of the Christoffel symbols of the second kind (CHR2). In order 
to evaluate these, one can use EV(exp,CHR2). 

(C3) ENTERTENSOR(); 
Enter tensor name: A; 
Enter a list of the covariant indices: [I,J]; 
Enter a list of the contravariant indices: (K]; 
Enter a list of the derivative indices:[]; 

K 
(03) A 

I J 
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(C4) SHOW(COVDIFF(X,S)); 
K %1 K %1 K K %1 

(D4) - A CHR2 - A CHR2 + A + CHR2 A 
I %1 J S %1 J IS I J,S "1 S I J 

DIFF(exp,vl,nl,v2,n2, ... ) is the usual MACSYMA differentiation function which has been 
expanded in its abilities for ITENSR. It takes the derivative of exp with respect to 

. vl nl times, with respect to v2 n2 times, etc. For the tensor package, the following 
modifications have been incorporated (also see the function UNDIFF): · 

1) the derivatives of any indexed objects in exp will have the variables vi 
appended as additional arguments. Subsequently, all derivative indices will be 
sorted. 

2) th~ vi may be integers from 1 up to the value of the variable DIM[ 4]. This 
will cause the differentiation to be carried out with respect to the vith member of 
the list COORDINATES which should be set to a list of the names of the coordinates, 
e.g., [x,y,z,t] . If COORDINATES is bound to an atomic variable, then that variable 
subscripted by vi will be used for the variable of differentiation. This permits an 
array of coordinate names or subscripted names like X[l], X[2],... to be used. If 
COORDINATES has not been assigned a value, then the variables will be treated as 
in 1) above. 

3) one may now differentiate the determinant of the metric tensor. Thus, if 
METRIC has been bound to G then DIFF(DETERMINANT(G),K) will return 
2*DETERMINANT(G)*CHR2([%i,K1[%i]) where the dummy index has been 
appropriately chosen. 

DIM is the dimension of the manifold with the default 4. The command DIM : N will reset 
the dimension to any other integral value. The following example demonstrates the 
contraction property of the Kronecker delta. 

( C4) CONTRACT(KDEL TA([A], [B] )*KDELTA( [B ], [A])); 
. (D4) KDELTA([ ], []) 

(C5) EV(X,KDELTA); 
(D5) 4 
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ENTERTENSOR(<name>) is a function which, by prompting, allows one to create an 
indexed object called name with any number of tensorial and derivative indices. 
Either a single index or a list of indices (which may be null) is acceptable input (see 
the example under COVDIFF). 

GEODESIC(exp,name) enables the user to cause undifferentiated Christoffel symbols and 
first derivatives of the metric tensor vanish in exp. The name in the GEODESIC 
function refers to the metric name (if it appears in exp) while the connection 
coefficients must be called with the names CHRl and/or CHR2. The following 
example demonstrates the verification of the cyclic identity upon the Riemann tensor 
using RENAME while also showing the use of the GEODESIC function. 

( C2) EXP: RIEHANN([R ,S, T], [U])+RIEHANN([S, T ,R ], [U ])+RIEMANN([ T, R,S], [ U ])I 

(Cl) SHOW(EXP); 
u u "6 u u "6 u 

(03) - CHR2 - CHRZ CHR2 + CHR2 + CHR2 CHR2 + CHRZ 
T S,R "6 R T S T R,S "6 S 

u "5 u u "5 
+ CHR2 CHRZ - CHR2 - CHR2 CHR2 - CHR2 

"5 R S T S R,T "5 T SR 

u "4 u u "4 
- CHR2 CHR2 + CHRZ + CHRZ CHR2 

"4 S R T R S,T 

(C4) SHOW(GEOOESIC(EXP,CHR2)); 
u u u 

(04) - CHR2 + CHRZ + CHR2 

"4 T 

u 
- CHR2 

R S 

u 
- CHR2 

T R 

u 

R T,S 

+ CHRZ 
T S,R T R,S S T,R S R,T R T,S 

(CS) SHOW(RENAHE(EXP)); 
(05) 0 

S T,R 

u 

INDEXED(tensor) must be executed before assigning components to a tensor for which a 
built in value already exists as with CHRl, CHR2, RIEMANN. See the example under 
RIEMANN. 
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KDELTA(Ll,L2) is the generalized Kronecker delta function with LI the list of covariant 
indices and L2 the list of contravariant indices. KDEL T A([i],[j]) returns the ordinary 
Kronecker delta. The command EV(EXP,KDELTA) causes the evaluation of an 
expression containing KDELTA([],[]) to the dimension of the manifold (see the 
example under DIM). 

(C3) KOELTA([A,B,C],[R,S,T])S 

(C4) SHOW(EV(X)); 
R S T T S 

(D4) - KDELTA (KDELTA KOELTA - KDELTA KDELTA) 
A B C B C 

R T S S T 
- KDELTA (KOELTA KDELTA - KDELTA KDELTA) 

B A C A C 

S T T S R 
- (KDELTA KDELTA - KDELTA KOELTA) KDELTA 

A B A B C 

LC(L) is the permutation (or Levi-Civita) tensor density which yields 1 if. the list L 
consists of an even permutation of integers, -1 if it consists of an odd permutation, 
and O if some indices in L are repeated. 

METRIC(name) specifies name as the metric name by assigning the variable 
METRIC:name. In addition, the contraction properties of the metric name are set up 
by executing the commands OEFCON(name), DEFCON(name, name, KOEL TA). See, for 
example, the example under RIEMANN. 

RATEXPANO(exp) is the fastest way to expand products and powers of sums of indexed 
objects generated by ITENSR within MACSYMA. 

RENAME( exp, <count>) returns an expression equivalent to exp but with the dummy 
indices in each term chosen from the set (%1, %2, ... ], if the optional second argument 
is omitted. Otherwise, the dummy indices are indexed beginning at the value of 
count. Each dummy index in a product will be different. For R sum, RENAME will 
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operate upon each term in the sum resetting the counter with each term. In this way 
RENAME can serve as a tensorial simplifier. In addition, the indices will be sorted 
alphanumerically (if ALLSYM is TRUE) with respect to covariant or contravariant 
indices depending upon the value of FLIPFLAG. If FLIPFLAG is FALSE then the 
indices will be renamed according to the order of the covariant indices otherwise 
according to the order of the contravariant indices. It often happens that the 
combined effect of the two renamings will reduce an expression more than either 
one by itself. 

(C41) SHOW(EXP); 
%4 %5 %6 '1.7 "3 u XI "2 

(D41) 6 G CHR2 CHR2 CHR2 CHR2 
Xl "4 

(C4Z) FLIPFLAG; 
(D42) 

"4 "5 
- 6 

(C43) SHOW(RENAHE(EXP)); 

"6 "7 
6 

%2 X3 

u 
CHR2 

XI "2 

FALSE 

%5 %6 "7 R 

"1 "3 
CHR2 CHR2 

"3 "5 "4 "6 

%2 %5 %6 %7 "4 U "1 %3 
( D43) 6 G CHR2 CHR2 CHR2 CHR2 

%1 %2 %3 "4 "5 %6 %7 R 

"4 15 "6 %7 U 
• 6 G CHR2 

(C44) FLIPFLAG:TRUEI 

(C45) RENA11E(D42); 
(D45) 

(C46) [FIRST(D42),LAST(D42)]1 

0 

"1 
CHR2 

%3 "4 

13 
CHR2 

%2 
CHR2 

"7 R 

"2 
CHRZ 

'l.7R 
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(C46) SHOW(RENAHE(X)); 
%1 %2 %3 %4 u u 

(046) [G G CHRZ CHR2 CHR2 CHR2 
%1 %6 %2 %3 %4 R %5 U 

%1 %2 %3 %4 %6 %7 u 
- G G CHRZ CHR2 CHRZ CHRZ ] 

%1 %6 %2 %3 %4 R %5 %7 

23 

RIEMANN(Ii,i,k1[h]) yields the Riemann curvature tensor in terms of the Christoffel 
symbols of the second kind (CHR2). The following notation is used: 

h h 
RIEMANN = - CHR2 

h %1 
- CHR2 CHR2 

h 
+ CHRZ 

i j k i k,J %1 j i k i j,k 

h %1 
+ CHR2 CHR2 

%1 k 1 j 

Suppose the name specified by the value of METRIC corresponds to a tensor which has 
been given some structure via the COMPONENTS command. In order to evaluate an 
expression involving the Riemann tensor and incorporate this given definition of the 
metric explicitly into the result, the user can do expression, EVAL as the following 
example for the weak field metric demonstrates: 

(CS) INOEXEO(CHRZ)I 

(C6) DECLARE(E,CONSTANT)I 

(C7) HETRIC:GI 

(Cll) COHPONENTS(G([H,N],[ ]),E([H,N],[ ])+2*UcP([H,N],[ ]))I 

( C9) COMPONENTS( G( [ ], [H, N]), E([], [H, N ])-Z*L*P([ ], [H,N] ))I 

(ClO) SHOW(G([I,J),[])); 
(010) 2 L P + E 

I J I J 
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(Cll) SHOW(G([ ],[I,J])); 

(011) 
I J I J 

E - 2 P L 

(Cl2) (RATVARS(l),RATWEIGHT(l,l),RATWTLVL:1)1 

(Cl3) RIEHANN([S,U,N],[Y])S 

(Cl4) 'X,EVALI 

(C15) SHOW(CANFORH(CONTRACT(RENAHE(RATEXPAN0(%)))))1 

'Xl y 
(015) - E LP + E 

S U,"1 N 

XI y 
L p + E 

N S,%1 U 

"1 y . 
p 

%1 U,N S 

%1 y 

L 

• E P · L 
'Xl N,S U 

MACSYMA 

SHOW(exp) displays exp with the indexed objects in it shown having their covariant 
indices as subscripts and contravariant indices as superscripts. The derivative 
indices are displayed as subscripts, separated from the covariant indices by a comma 
(see the ·example above). 

UNDIFF(exp) returns an expression equivalent to exp but with all derivatives of indexed 
objects replaced by the noun form of the DlFF function. Its arguments would yield 
that indexed object if the differentiation were carried out. This is useful when it is 
desired to replace a differentiated indexed object with some function definition 
resulting in exp and then carry out the differentiation by saying EV(exp, OIFF). 
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l. 7 lncicial Tensor Manipuation- Simplification F &.n:tions 

ALLSYM(true) if TRUE then all indexed objects are. assumed symmetric in all of their 
covariant and contravariant indices. If FALSE then no symmetries of any kind are 
assumed in these indices. Derivative indices are always taken to be symmetric. 

CANFORM( exp) simplifies exp by renaming dummy indices and reordering all indices as 
dictated by . symmetry conditions imposed on them. If ALLSYM is TRUE then all 
indices are assumed symmetric, otherwise symmetry information provided by 
DECSYM declarations will be used. The dummy indices are renamed in the same 
manner as in the RENAME function. When CANF0RM is applied to a large expression 
the calculation may take a considerable amount of time. This time can be shortened 
by calling RENAME on the expression first. Also see the example under 0ECSYM. 
Note: CANF0RM may not be able to reduce an expression completely to its simplest 
form although it will always ret~rn a mathematically correct result. 

CANTEN(exp) simplifies exp by renaming (see RENAME) and permuting dummy indices. 
CANTEN is restricted to sums of tensor products in which no derivatives are 
present. As such it is limited and should only be used if CANF0RM is not capable of 
carrying out the required simplification. 

CHANGENAME(o/d,new,exp) will change the name of all indexed objects called old to 
new in exp. Old may be either a symbol or a list of the form [name, m, n] in which 
case only those indexed objects called name with m covariant and n contravariant 
indices will be renamed to new. 

CONMET0ERIV(exp,tensor) is used to simplify expressions containing ordinary 
derivatives of both covariant and contravariant forms of the metric tensor (the 
current restriction). For example, C0NMETDERIV can relate the derivative of the 
contravariant metric tensor with the Christoffel symbols as seen from the following: 

( C8) SHOW(G([ ],[A,B ],C) )I 

(D8) 
A B 

G 
,C 
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(C9) SHOW(CONHETDERIV(X.G)); 
UB A XI A 

(D9) - G . CHR2 - G 
XI C 

B 
CHR2 

%1 C 

MACSYMA 

FLIPFLAG(fa/se) if FALSE then the indices will be renamed according to the order of the 
covariant indices otherwise according to the order of the contravariant indices. The 
function influences RENAME in the following way: If FLIPFLAG is FALSE then RENAME 
forms a list of the covariant indices as they are encountered from left to right (if 
TRUE then of the contravariant indices). The first dummy index in the list is renamed 
to ¼l, the next to %2, etc. Then sorting occurs after the RENAMEing (see the 
example under RENAME). 

FLUSH(exp,tensorl,tensor2, ... ) will set to zero, in exp, all occurrences of the tensori that 
have no derivative indices. 

FLUSHD(exp,tensorl,tensor2, ... ) will set to zero, in exp, all occurrences of the tensori 
that have derivative indices. 

FLUSHND(exp,tensor,n) will set to zero, in exp, all occurrences of the differentiated 
object tensor that have n or more derivative indices as the following example 
demonstrates. 

( C3) SHOW(A([ I]. [ J. R],K, R )+A( [ I].[ J, R,S ].K, R.S)); 

(D3) 

(C4) SHOW(FLUSHND(D3,A,3)); 

(04) . . 

J R S J R 
A + A 

I.KR S I.KR 

J R 
A 

1,K R 

FLUSHlOERIV(exp,tensor) will set to zero, in exp, all occurrences of tensor that have 
exactly one derivative index. 
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LORENTZ(exp, <tensor!, tensor2, ... >) imposes a generalized Lorentz condition on exp 
replacing by zero those tensori which have a derivative index identical to a 
contravariant index. If no tensori are specified, this process will be performed on all 
indexed objects in exp (see the example under MAKEB0X). 

MAKEBOX(exp,tensor) will display, with the symbol [], all occurrences of the flat-space 
d'Alembertian operator acting upon tensor in exp. The name of the flat-space metric 
appears in the argument to the function. In the following example EIN is the weak 
field approximation of the Einstein tensor for the metric which is given and L is 

. small. 

(C56) SHOW(G([I,J))); 

(D56) 

(C57) SHOW(EIN); 
"1 %2 I J 

(D57) - E P L - P 
,%1 %2 

P L + E 
I J I J 

E 

•"l "2 

I J 
L + p 

%1 "2 I J 
E E L 

"1 I "2 J "1 I "2 J "1 I "2 J . 
+E P l+P E L-P E E L 

•"l "2 •"l "2 •"l "2 

(C58) SHOW(LORENTZ(",P)); 
%1 %2 I J "1 "2 I J 

(058) - E P L + P E E 
,,n %2 ,"1 "2 

L 

"l I "2 J 
- P E E L 

,"1 "2 
(C59) SHOW(HAKEBOX(",E)); 

I J I J %1 I "2 J 
(D59) -(JP ~+[]PE L - P E E L 

,"1 "2 
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1.8 lncicial Tensor Manipulation- Property Assigrnent Fmctions 

COORD(tensor 1,tensor2, ... ) gives tensori the coordinate differentiation property that the 
derivative of contravariant vector whose name is one of the tensori yields a 
Kronecker delta. For example, if COORD(X) has been done then DIFF(X([],[l]),J) gives 
KDEL TA([l],[J]). COORD is a list of all indexed objects having this property. 

DECLARE(object,property) allows the specification of certain properties upon the object. 
For example, we can specify that an indexed object is independent of all coordinate 
variables. Whereas DIFF(W([],[l,J]),K) normally results in W([],[l,J],K), with the 
command OECLARE(W,CONSTANT) given, the result of the differentiation will be 0. 
Similarly, one can declare a vector to be null (see the example under the OEFCON 
function). 

DECSYM(tensor, m, n, [covl,cov2, ... ], [contrl,contr2, ... }) declares symmetry properties for 
tensor of m covariant and n contravariant indices. The covi and contri are 
pseudofunctions expressing symmetry relations among the covariant and 
contravariant indices respectively. These are of the form symoper(indexl, index2, ... ) 
. where symoper is one of SYM, ANTI or CYC and the indexi are integers indicating 
the position of the index in the tensor. This will declare tensor to be symmetric, 
antisymmetric or cyclic respectively in the indexi. symoper(All) is also an allowable 
form which indicates all indices obey the symmetry condition. For example, given an 
object B with 5 covariant indices, OECSYM (B,5,3,[SYM(l,2),ANTl(3,4)),[CYC(ALL)]) 
declares B symmetric in its first and second and antisymmetric in its third and fourth 
covariant indices, and cyclic in all of its contravariant indrces. Either list of 
symmetry declarations may be null. The function which performs the simplifications 
is CANFORM as the example below illustrates. 

(C4) EXP:A([K,J, I],[ ])+A([K, I,J],[ ])+A([J,K, I],[])+ 
A([J, I,K],[ ])+A([I,K,J],[ ])+A([I,J,K],[ ])S 

(CS) SHOW(EXP); 
(05) A + A + A + A + A + A 

(C6) ALLSYM; 
(06) 

KJI KIJ JKI JIK IKJ IJK 

TRUE 
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(C7) SHOW(CANFORH(EXP)); 

(D7) 

(C8) ALLSYH:FALSES 

(C9) DECSYH(A,3,0,[ANTI(ALL)],[])I 

(CIO) DISPSYH(A,3,0); 

6 A 
I J K 

( D l O) [ [ANTI, [[ 1, 2, 3]], [ ]] ] 

(Cll) SHOW(CANFORH(EXP)); 
(D11) 0 

(C12) REHSYH(A,3,0)1 . 

(Cl3) DECSYH(A,3,0,[CYC(ALL)],[])I 

(C14) SHOW(CANFORH(EXP)); 
(D14) 3 A + 3 A 

IKJ IJK 

DEFCON(tensor 1, <tensor2,tensor3>) gives tensor 1 the property that the contraction of a 
product of tensor 1 and tensor2 results in tensor3 with the appropriate· indices. If 
only one argument, tensorl, is given, then the contraction of the product of tensorl 
with any indexed object having the appropriate indices (say tensor) will yield an 
indexed object with that name, i.e. tensor, and with a new set of indices reflecting 
the contractions performed. For example, if METRIC:G, then DEFCON(G) will 
implement the raising and lowering of indices through contraction with the metric 
tensor. CONTRACTIONS is a list of those indexed objects which have been given 
contraction properties with DEFCON. 

The following example for an algebraically special metric shows how the null 
· property of a vector field may be assigned as well as demonstrating that more than 
one DEFCON assignment can be given for the same indexed object. 

(C4) DECLARE(E,CONSTANT)I 

(CS) DEFCON(E)I 
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(C6) OEFCON(E,E,KDELTA)I 

(C7) DEFCON(L,L,W)I 

(C8) W(ll,l2):=0I 

( C9) COMPONENTS( G( [ P, Q], []), E([ P ,Q],[ ])+2*H*L( [ P], [] )*L([Q], [] ))I 

(ClO) COMPONENTS(G([ ], [A,B]) ,E([ ],[A,B])-2*~L([ ],[A])*L([ ],[B ]) )I 

.( C 11 ) SHOW ( G ([ I, J], [ ] ) ) ; 
(D11) 

( Cl2) SHOW( G( [],[I, J])); 

(012) 

(Cl3) HETRIC(G)I 

2 L L H + E 
I J I J 

I J I J 
E - 2 L L H 

(Cl4) CONTRACT(RENAHE(EXPAND(G([I,J],[])*G([],[J,K]))))I 

(Cl5) SHOW(%); 

(015) 

(Cl6) DISPCON(ALL); 

K 
KDELTA 

I 

(D16) [[[E, E, KDELTA], [El], [(L, L, W]], [[G, 6, KDELTA], (G])] 
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. 1.9 ·1ndicial Tensor Manipuation- Property Display Fu,ctions 

DISPCON(tensorl,tensor2, ... ) displays the contraction properties of the tensori which 
were given to DEFCON. DISPCON(All) displays all defined contraction properties as 
the example under DEFCON illustrates. 

DISPSYM(tensor, m, n) displays symmetries declared by DECSYM as a list of lists or 
returns (] if there are none (see the example under DECSYM). The first element of 
the inner list is one of the atoms SYM, ANTI or CYC. The second element is a list of 
lists of the index positions that have this property in the covariant indices of tensor. 
The third element is the same except that it is for the contravariant indices. 
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1.10 lncidal Tensor Manipulation- Property Removal F lllCtions 

REMCOMPS(tensor) unbinds all values from ·tensor which were assigned with the 
COMPONENTS function. 

REMCOORD(tensorl,tensor,Z ... ) removes the coordinate differentiation property from the 
tensori that was established by the function COORD. REMCOORD(ALL) removes this 
property from all indexed objects. 

REMCON(tensorl,tensor,Z ... ) removes all the contraction properties . from the tensori. 
REMCON{ALL) removes all contraction properties from all indexed objects. 

REMSYM(tensor,m,n) removes all symmetry properties from tensor which has m covariant 
indices and n contravariant indices. 
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1.11 lndicial Tensor Manipulation- Indexing FlllCtions 

COUNTER determines the numerical suffix to be us.ed in generating the next dummy 
index. It may also be used to set the counter to any value (see the example under 
INDICES). 

DUMMY() increments COUNTER and returns as its value an index of the form %n where n 
is a positive integer. This guarantees that dummy indices which are needed in 
forming expressions will not conflict with indices already in use (see the example 
under INDICES). 

DUMMYX is the prefix for dummy indices (see the example under INDICES). 

INOICES(exp) returns a list of two elements. The first is a list of the free indices in exp 
(those that occur only once). The second is the list of the dummy indices in exp 
(those that occur exactly twice) as the following example demonstrates. 

(C3) SHOW(RIEHANN([I,J,K],[L])*RIEMANN([A,B,C],[D])); 
D D "2 D D "2 

( 03) ( - CHR2 - CHR2 CHR2 + CHR2 + CHRZ CHR2 ) 

A C , B "2 B A C A B, C "2 C A B 

L L %1 L L "l 
( - CHR2 - CHR2 CHR2 + CHR2 + CHR2 CHR2 ) 

I K,J %1 J I K I J,K %1 K I J 

( C4) INDICES("); 
(04) 

(C5) COUNTER; 
(05) 

(C6) COUNTER:111 

( C7) °C3; 
D 

(07) (- CHR2 
A C,B 

[[D, C, A, B, L, K, I, J], ["2, "l]] 

2 

D "13 D D "13 
- CHR2 CHR2 + CHRZ + CHRZ CHR2 ) 

"13 B AC A B,C "13 C A B 
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L L "12 L L %12 
(- CHR2 - CHR2 CHR2 + CHRZ + CHRZ CHR2 ) 

I I(, J "12 ·J I K I J,K UZK I J 

(C8) DUHHYX; 
(D8) " 
(C9) DUHHYX :&S 

(ClO) °C3; 
D D &15 D D &15 

(010) (- CHR2 - CHRZ CHRZ + CHRZ + CHRZ CHRZ ) 

A C,8 &15 B AC A B,C &15 C A B 

L L &14 L L &14 
(- CHR2 - CHR2 CHR2 + CHRZ + CHR2 CHRZ ) 

I K,J &14 J 1 K 1 J,K &14 K 1 J 
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1.12 lndiclal Tensor Manipuation- ITENSR --> CTENSR 

GENERATE(eqn) converts an ITENSR equation eqn to a CTENSR assignment statement. 
Implied sums over dummy indices are made explicit while indexed objects are 
transformed into arrays (the array subscripts are in the order of covariant followed 
by contravariant indices of the indexed objects). The derivative of an indexed 
object will be replaced by the noun form of OIFF taken with respect to OMEGA 
subscripted by the derivative index. The Christoffel symbols CHRl and CHR2 will be 
translated to LCS and MCS respectively and if METRICCONVERT[TRUE] is TRUE 
then all occurrences of the metric with two covariant (contravariant) indices will be 
renamed to LG (UG). In addition, DO loops will be introduced summing over all free 
indices so that the transformed assignment statement can be evaluated by just doing 
EV( ... ). The following examples demonstrate the features of this function. 

( C 11 ) SHOW ( X) ; 

L K I I J 
(011) G = F A (C B + D) E 

I J K L 

(Cl2) GENERATE(X); 
(012) G : SUH(SUH(SUH(F A (SUl1(C B , K, 1, 0111) + D ) E 

L I, J K K, I 

I, 1, DIM), J, 1, DIM), L, 1, DIM) 

(C4) SH0W(T([I),[J])); 

(04) 

(CS) SHOW(C0VOIFF(X,K)); 
J Xi 

J 
T 
I 

J J 
(05) - T CHRZ + T + CHRZ T 

(C6) HETRICC0NVERT; 
(06) 

Xl I K I,K Xl K I 

TRUE 

I L, J 
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(C7) GENERATE(H([l,K],[J])=D5); 

(07) 

FOR I THRU DIH DO (FOR J THRU DIH DO (FOR K-THRU DIH DOH 
I, K, J 

- SUH(T HCS , U, 1, DIH) + DIFF(T , OHEGA ) 
Xl,J 1,K,Xl l,J K 

+ SUH(HCS T , "1, 1, DIH))) 
Xl, K, J I, Xl 

(CB) HETRIC(G)S 

(C9) 05,CHRZS 

(ClO) SHOW(X); 
%1 %3 J 

G T (G - G + G ) 
Xl K Xl,I I K,X3 I X3,K 

(010) - ----------------------------------------
2 

J xz "1 
G T (G - G + G ) 

I K XZ,U Xl K,XZ U XZ,k J 

+ ------------------------------------------ + T 
J I,K 

MACSYMA 
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(Cl l) GENERATE(H([ I,K],[J]):010); 
(Dll) 

FOR I THRU DIH DO (FOR J THRU DIH DO (FORK THRU DIH DOH 

- SUH(SUH(UG T (DIFF(LG , OHEGA ) 
%1, %3 %1, J K, %3 I 

I, K, J 

- DIFF(LG , OMEGA ) + DIFF(LG , OHEGA )), %1, 1, DIH), %3, 
I,K %3 I,%3 K 

1, DIH)/2 + SUH(SUH(UG T (DIFF(LG , OHEGA ) 
J, %2 I, %1 K, %2 %1 

· - DIFF(LG , OHEGA ) + OIFF(LG , OMEGA)), U, l, OIH), %2, 
%1, K %2 %1, %2 K 

1, DIH)/2 + OIFF(T , OHEGA ))) 
I, J K 

37 
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ALLSYM ( true) 25* 

BDVAC () 15* 
BIMETRIC O 15* 

CANFORM ( exp) 25* 
CANTEN ( exp) 25* 
CHANGENAME (old,new,exp) 25* 
CHECKDIV ( tensor) 11 * 
CHRl ([i,j,k)) 17* 
CHR2 ([i,j),[k]) 1 7* 
CHRIST OF ( arg) 5* 
COGRAD ( function,name) 1 h 
COMPONENTS (tensor,exp) 18* 
CONMETDERIV (exp,tensor) 25* 
CONTRACT ( exp) 18* 
CONTRA GRAD ( function,name) 11 * 
COOR□ ( tensorl ,tensor2, ... ) 28* 
COUNTER 33* 
COVDIFF ( exp, v 1, v 2, ... ) 18* 

INDEX 

DECLARE (object,property) 28* 
DECSYM (tensor, m, n, [covl,cov2, ... ], [contrl,contr2,. .. ]) 28* 
DEFCON (tensorl,<tensor2,tensor3>) 29* 
DELETEN (list,n) 1 h 
DIAGMETRIC 7* 
OIFF ( exp, v 1,n 1, v2,n2, ... ) 1 9* 
DIM 7* , 19* 
DISPCON (tensorl,tensor2, ... ) 3h 
DISPSYM (tensor, m, n) 3h 
□SCALAR ( function) 11 * 
DUMMY O 33* 
DUMMYX 33* 

EINSTEIN (dis) 7* 
ENTERTENSOR (<name>) 20t 

FINDOE (array,n) l 2t 
FLIPFLAG ( false) 26* 
FLUSH ( exp,tensor l ,tensor2,. .. ) 26* 

i 
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FLUSH 1 DERIV ( exp, tensor) 26* 
FLUSHD (exp,tensorl,tensor2,. .. ) 26* 
FLUSHND (exp,tensor,n) 26* 

GENERA TE ( eqn) 35* 
GEODESIC ( exp,name) 20* 

INDEXED ( tensor) 20* 
INDICES ( exp) 33* 
INVARIANT 1 0 15* 
tNV ARIANT2 0 15* 

KDELTA (Ll,L2) 21* 

LC (L) 2h 

INDEX 

LORENTZ (exp, <tensorl, tensorZ ... >) 27* 
LRICCICOM (dis) 8* 

MAKEBOX (exp,tensor) 27* 
METRIC (name) 21* 
METRICCONVERT: [TRUE] 35 
MOTION (dis) 9* 

NTERMST ( f) 12* 

OMEGA 9* 

RAISERIEMANN (dis) 12* 
RA TEINSTEIN: [TRUE] 7 
RATEXPAND (exp) 2h 
RATFAC (false) 9* 
RATRIEMAN: [TRUE] 9 
RA TWEYL: [TRUE] 10 
REMCOMPS ( t.ensor) 32* 
REMCON ( tensor 1,tensor2,. .. ) 32* 
REMCOORD ( tensor 1,tensor2, ... ) 32* 
REMSYM (tensor,m,n) 32* 
RENAME (exp, <count>) 2h 
RICCICOM (dis) 9* 
RIEMANN (dis) 9* , 23* 
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RINV ARI ANT O 13* 

$CURVATURE O 1 O* 
SHOW (exp) 2~ 

TRANSFORM ( matrix) 13* 
T~ETUP O ~ 

UNOIFF (exp) 2~ 

WEYL (dis) 1 O* 

INDEX iii 




