
MIT/LCS/TM- 167

COMPUTER PROGRAMS FOR RESEARCH

IN

GRAVITATION AND DIFFERENTIAL GEOMETRY

Richard Pavelle

Michael Wester

June 1980

Computer Programs for Research in Gravitation and Differential Geometry
(chapter 11 of the MACSYMA REFERENCE MANUAL)

Richard Pavelle
Lincoln Laboratory

Massachusetts Institute of Technology
Lexington, Massachusetts 02173

Michael Wester•
Department of Mathematics
University of New Mexico

Albuquerque, New Mexico 87131

June 4, 1980
ABSTRACT:

This report contains a description of all current functions and features (with many
examples) of the programs CTENSR and ITENSR which are available with
MACSYMA. CTENSR is a standard Component TENSoR manipulation system which
means that geometrical tensor objects are represented as arrays or matrices. Tensor
operations such as contraction or covariant differentiation are carried out by actually
summing over repeated (dummy) indices with DO statements. ·ITENSR, is a unique
Indicial TENSoR manipulation system which is implemented by representing tensors as.
functions of their covariant, contravariant and derivative indices. Tensor operations such
as contraction or covariant differentiation are performed by manipulating the indices
themselves rather than the components to which they correspond. The programs are
connected in the sense that one can obtain an expression in ITENSR and have the
corresponding expression generated in the CTENSR format automatically.

KEY WORDS: MACSYMA, algebraic manipulation, computer science, general
relativity, gravitation, tensor analysis, differential geometry.

• Part of this research was carried out when one of us (MW) was a Research Staff
Member at the Laboratory for Co_mputer Science, MIT during the summer of 1979.

This research was supported in part by the United States Department of Energy and
under contract No. E(ll-1)-3070 and in part by the National Aeronautics and Space
Administration under grant No. NSG 1323.

MACSYMA TABLE OF CONTENTS i

Chapter 1 Tensor Manipulation . 2

l. 1 Tensor Manipulation Programs- Introduction . • . . 2
1.2 Component Tensor Manipulation- Basic Functions •• .• ••• 4
1.3 Component Tensor Manipulation- Auxiliary Functions • • . 11
1.4 Component Tensor Manipulation- Alternate Gravity Theories 15
1.5 lndicial Tensor Manipulation 16
1.6 lndicial Tensor Manipulation- Basic Functions • 17
1. 7 lndicial Tensor Manipulation- Simplification Functions • • 25
1.8 lndicial Tensor Manipulation- Property Assignment Functions 28
1.9 lndicial Tensor Manipulation- Property Display Functions 31
l. 10 lndicial Tensor Manipulation- Property Removal Functions 32
l. 11 lndicial T ensol' Manipulation- Indexing Functions • . 33
1.12 lndicial Tensor Manipulation- ITENSR --> CTENSR • . . • . 35
1.13 Acknowledgments • .••• 38

FUNCTION,VARIABLE, and OPTION INDEX••• •

2 MACSYMA

1.1 Tensor Manipt4ation Programs- Introduction

MACSYMA implements symbolic tensor manipulation of two distinct types:
component tensor manipulation and indicial tensor manipulation.

Component tensor manipulation means that geometrical tensor objects are
represented as arrays or matrices. Tensor operations such as contraction or covariant
differentiation are carried out by actually summing over repeated (dummy) indices with
DO statements. That is, one explicitly performs operations on the appropriate tensor
components stored in an array or matrix.

lndicial tensor manipulation is implemented by representing tensors as functions of
their covariant, contravariant and derivative indices. Tensor operations such as
contraction or covariant differentiation are performed by manipulating the indices
themselves rather than the components to which they correspond.

These two approaches to the treatment of differential, algebraic and analytic
processes in the context of Riemannian geometry have various advantages and
disadvantages which reveal themselves only through the particular nature and difficulty
of the user's problem. However, one should keep in mind the following characteristics of
the two implementations:

Component Tensor Manipulation (CTENSR)

i) The representation of tensors and tensor operations explicitly in terms
of their components makes CTENSR easy to use. Specification of the metric and
the computation of the induced tensors and invariants is straightforward.

ii) Although all of MACSYMA's powerful simplification capacity is at hand, a
complex metric with intricate functional and coordinate dependencies can easily
lead to expressions whose size is excessive and whose structure is hidden. In
addition, many calculations involve intermediate expressions which swell
causing programs to terminate before completion. Through experience, a user
can avoid avoid many of these difficulties.

lndicia/ Tensor Manipulation (ITENSR)

i) Because of the special way in which tensors and tensor operations are
represented in terms of symbolic operations on their indices, ~xpressions
which in the component representation would be unmanageable can sometimes
be greatly simplified by using the special routines for symmetrical objects in

MACSYMA 1.1 Tensor Manipulation Programs- Introduction

ITENSR. In this way the structure of a large expression may be more
transparent.

ii) On the other hand, because of the the special indicial representation in
ITENSR, in some cases the user may find difficulty with the specification of the

· metric, function definition, and the evaluation of differentiated "indexed"
objects .

3

. These two tensor manipulation packages, CTENSR and ITENSR, are available to the
MACSYMA user on the TENSOR directory. To use the functions in these files, the user
can load them in by doing

LOADFILE(CTENSR,F ASL,TENSOR); --- for component tensor manipulation.

LOADFILE(ITENSR,F ASL,TENSOR); --- for indicial tensor manipulation

Both of these packages enable the user to specify a metric and compute the basic
geometrical objects of interest. These routines were written primarily for research in
gravitation theory. However, they can also be of use in other areas of physics where
Riemannian geometry is applied owing to their generality.

4 MACSYMA

1.2 Component Tensor Manipuation- Basic FL11Ctions

To use CTENSR the user does LOADFILE(CTENSR,FASL,TENSOR). The basic function
is called

TSETUP() which automatically loads the CTENSR package from within MACSYMA (if it is
not already loaded) and then prompts the user to make use of it. The user is first
asked to specify the dimension of the manifold. If the dimension is 2, .3 or 4 then the
list of coordinates defaults to [X,Y], [X,Y,Z] or [X,Y,Z,T] respectively. These names
may be changed by assigning a new list of coordinates to the variable OMEGA
(described below) and the user is queried about this. Care must be taken to avoid
the coordinate names conflicting with other object definitions. Next, the user enters
the metric either directly or from a file by specifying its ordinal position. As an
example of a file of common metrics, see TENSOR;METRIC FILE. The metric is stored
in the matrix LG. Finally, the metric inverse is computed and stored in the matrix UG.
One has the option of carrying out all calculations in a power series.

A sample protocol is begun below for the static, spherically symmetric metric
(standard coordinates) which will be applied to the problem of deriving Einstein's
vacuum equations (which lead to the Schwarzschild solution) as an example. Many of
the functions in CTENSR will be displayed for the standard metric as examples.

(C2) TSETUP();
Enter the dimension of the coordinate system:
4;
Do you wish to change the coordinate names?
N;
Do you want to
1. Enter a new metric?
2. Enter a metric from a file?
3 . Approximate a metric with a Taylor series?
Enter 1, 2 or 3
l;

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4
1;

MACSYMA 1.2 Component Tensor Manipulation- Basic Functions

Row 1 Column 1: A;

Row 2 Column 2: XA2;

Row 4 Column 4: -D;

. Matrix entered.
Enter functional dependencies with the DEPENDS function or /N/ if none
DEPENDS([A,D],X);
Do you wish to see the metric?
Y;

[A 0
[
[2
[O X
[
[
[0 0
[
[0 0

0

0

2 2
X SIN (Y)

0

Do you wish to see the metric inverse?
N;

0]
]
]

0]
]
]

0]

]

- D]

The other functions and features in CTENSR are now listed below.

5

CHRISTOF(arg) computes the Christoffel symbols of both kinds. The arg determines
which results are to be immediately displayed. The Christoffel symbols of the first
and second kinds are stored in the arrays LCS[i,j,k] and MCS[i,j,k] respectively and
defined to be symmetric in the first two indices. If the argument to CHRISTOF is LCS
or MCS then the unique non-zero values of LCS[i,j,k] or MCS[i,j,k], respectively, will
be displayed. If the argument is ALL then the unique non-zero values of LCS[i,j,k]
and MCS[i,j,k] will be displayed. If the argument is FALSE then the display of the
elements will not occur. The array elements MCS[i,j,k] are defined in such a manner
that the final index is contravariant. For the standard metric one has:

6 1.2 Component Tensor Manipulation- Basic Functions MACSYMA

(C3) CHRISTOF(HCS);
A
X

(E3) t1CS = ---
1, 1, 1 ··2 A

1
(E4) "cs = -

1, z, z X

1
(ES) "cs = -

l, 3, 3 X

D
X

(E6) HCS = ---
1, 4, 4 Z D

X
(E7) "cs = - -

z' z' l A

COS(Y)
(ES) "cs = ------

z, 3, 3 SIN(Y)

2
X SIN (Y)

(E9) t1CS = - ---------
3, 3, l A

(ElO) HCS = - COS(Y) SIN(Y)
3, 3, 2

D
X

(Ell) HCS = ---
4, 4, l 2 A

MACSYMA 1.2 Component Tensor Manipulation- Basic Functions 7

DIAGMETRIC if TRUE causes special routines t~ compute all geometrical objects (which
contain the metric tensor explicitly) by taking into consideration the diagonality of
the metric. Reduced run times will, of course, result. Note: this option is set
automatically by TSETUP if a diagonal metric is specified.

DIM is the dimension of the manifold with the default 4. The command DIM : N will reset
the dimension to any other integral value.

EINSTEIN(dis) computes the mixed Einstein tensor after the Christoffel symbols and Ricci
tensor have been obtained. If the argument dis is TRUE, then the non-zero values
of the mixed Einstein tensor G[i,j] will be displayed where j is the contravariant
index. RATEINSTEIN[TRUE] if TRUE will cause the rational simplification on these
components. If RATFAC is TRUE then the components will also be factored as the

. following example, for the standard metric, demonstrates:

(C40) EINSTEIN(TRUE);

(E40)

0 X - A O + 0
X

G = --------------
1, 1

z
2 A O O X - A 0

XX X

z
A O X

2
X - A D D X + 2 A D D - 2 A D

X X X X

(E41) G = ---
2, 2 2 2

4 A D X

2 2

2 A O D X - A D X - A O O X + 2 A D D - 2 A D
XX X X X X X

(E42) G = ---
3, 3 2 2

4 A O X

8

(E43)

1.2 Component Tensor Manipulation- Basic Functions

2
A X+A -A

X
G = - ------·------
4, 4 2 2

A X

MACSYMA

LRICCICOM(dis) computes the covariant (symmetric) components LR[i,j] of the Ricci
tensor. If the argument dis is TRUE, then the non-zero components are displayed.
For the standard metric one finds (with RATFAC:TRUE):

(CZ4) RATFAC :TRUEI

(CZ5) LRICCICOH(TRUE);

(EZ5)

(EZ6)

(EZ7)

2
2 A D D X - A D

X X X

2
X - A D D X - 4 A D

X X X

LR = - --
1, 1 2

4 A D X

2
A D X - A D X - Z A D + 2 A D

X X
LR = - --------------------------------z, 2 2

2 A D

2 2
(AD X - A DX - 2 A D + 2 AD) SIN (Y)

X X
LR = - --

3, 3 2
2 A D

MACSYMA 1.2 Component Tensor Manipulation- Basic Functions 9

z
2 A O D X - A D X - A O D X + 4 A D D

XX X X X X
(E28) LR = -- -------------------------------------- - ----

4, 4 z
4 A D X

MOTION(dis) computes the geodesic equations of motion for a given metric. They . are
stored in the array EM[i]. If the argument dis is TRUE then these equations are
displayed.

OMEGA is an option which assigns a list of coordinates to the variable. While normally
defined when the function TSETUP is called, one may redefine the coordinates with
the assignment OMEGA:Ul,j2, ... jn] where the j's are the new coordinate names. A
call to OMEGA will return the coordinate name list. Also see the function TSETUP
above.

RATFAC(fa/se) is a switch which, if TRUE, causes the Ricci, Einstein, Riemann, and Weyl
· tensors and the Scalar Curvature to be factored automatically. Clearly, this should

only be set for cases where the tensorial components are known to consist of few
terms.

RIEMANN(dis) computes the Riemann curvature tensor from the given metric and the
corresponding Christoffel symbols. If dis is TRUE, the non-zero components R[i,j,k,I]
will be displayed. All the indicated indices are covariant. As with the Einstein
tensor, various switches set by the user control the simplification of the components
of the Riemann tensor. If RATRIEMAN[TRUE] is TRUE then rational simplification
will be done. If RATF AC is TRUE then each of the components will also be factored.

RICCICOM(dis) This function first computes the covariant components LR[i,j) of the Ricci
tensor. Then the mixed Ricci tensor is computed using the contravariant metric
tensor. If the value of the argument to RICCICOM is TRUE, then these mixed
components, RICCl[i,j] (the index i is covariant and the index j is contravariant), will
be displayed directly. otherwise, RICCICOM(F ALSE) will simply compute the entries
of the array RICCl[i,j] without displaying the results.

10 1.2 Component Tensor Manipulation- Basic Functions MACSYMA

SCURVA TURE() returns the Scalar Curvature as the trace of the mixed Ricci tensor.
With RATF AC:TRUE this invariant will be factored.

WEYL(dis) computes the covariant Weyl conformal tensor. If the argument dis is TRUE,
the non-zero components W[i,j,k,I] will be displayed. otherwise, these components
will be computed and stored. If the switch RATWEYL[TRUE] is set to TRUE, then
the components will be rationally simplified. If RATF AC is TRUE then the results will
be factored as well. The following example illustrates the use of the function for an
elementary metric which is chosen to be conformally flat.

(C7) LG;
[A 0 0 0 0]
[]
[0 A 0 0 0]

[]

(07) [0 0 A 0 O 1
[1
[0 0 0 A 0]
[1
[0 0 0 0 A]

(CS) DEPENDENCIES;
(08) [A(T)]

(C9) RATWEYL:TRUE;
(09) TRUE

(ClO) WEYL(TRUE); .
THIS SPACETIHE IS CONFORMALLY FLAT
Time= 94320 msec.
(010) DONE

MACSYMA 11

1.3 Component Tensor Manipuation- Auxiliary Fuictions

CHECKDIV(tensor) computes the covariant divergence of the mixed second rank tensor
(whose first index must be covariant) by printing the corresponding n components of
the vector field (the divergence) where n = DIM. If the argument to the function is G
then the divergence of the Einstein tensor will be formed and must be zero. In
addition, the divergence (vector) is given the array name DIV.

COGRAD(function,name) computes the covariant GRADient of a scalar function allowing
the user to choose the corresponding vectorname as the example under
CONTRAGRAD illustrates.

CONTRAGRAD(function,name) computes the CONTRAvariant GRADient of a scalar function
allowing the user to choose the corresponding vectorname as the example below for
the standard metric illustrates.

(Cl2) OEPENOS(F,X);
(012)
(Cl3) COGRAD(F,Gl)I
(Cl4) LISTARRAY(Gl);

(014)

(C15) CONTRAGRAD(F,G2)1
(Cl6) LISTARRAY(G2);

(016)

[F(X)]

[F , 0, O, O]
X

F
X

[--, 0, 0, 0]
A

DELETEN(list,n) returns a new list consisting of list with the nth element deleted.

DSCALAR(function) computes the tensor d'Alembertian of the scalar function once
dependencies have been declared upon the function. For the standard metric one
has:

12 1.3 Component Tensor Manipulation- Auxiliary Functions

(Cl6) DEPENDS(P,X);
(D16)

(Cl7) FACTOR(DSCALAR(P));

[P(X)]

2 ADP X +AD P X - A· 0 P · X + 4 AO P
XX XX X X X

(D17)

2
2 A D X

MACSYMA

FINDDE(array,n) returns a list of the unique differential equations (expressions)
corresponding to the elements of the n dimensional square array. Presently, n may
be 2 or 3. DEINDEX is a global list containing the indices of array corresponding to
these unique differential equations. For the Einstein tensor (G) given above, which is
a two dimensional array, FINDDE gives the following independent differential
equations:

(Cl9) FINDDE(G,2);
2

(D19) [Q X - A D + D, 2 A D D X - A O X - A D D X + 2 A D D
X XX X X X X

(CZO) DEINDEX;
(020)

2 2
- 2 A D , A X + A - A]

X X

[[l, l], [2, 2], [4, 4]]

NTERMST(f) gives the user a quick picture of the "size" of the doubly subscripted
tensor (array) f. It prints two element lists where the second element corresponds
to NTERMS of the components specified by the first elements. In this way, it is
possible to quickly find the non-zero expressions and attempt simplification.

RAISERIEMANN(dis) returns the contravariant components of the Riemann curvature
tensor as array elements UR[i,j,k,ll These are displayed if dis is TRUE.

MACSYMA 1.3 Component Tensor Manipulation- Auxiliary Functions 13

RINV ARIA NT() forms the Kretschmann invariant obtained by contracting the tensors
R[i,j,k,l]*UR[i,j,k,I]. This object not automatically simplified since it can be very large.
For the standard metric, however, the invariant is small and easily factor ed. One
finds:

(C20) FACTOR(RINVARIANT());

2 2
(020) (4 A D D

2 4 2
X - 4 A D D

X X

2 4 2
D X - 4 A A D D D

X X X X X X X

2 44 34 22 24 22 22

+AD X +2AA DD X +A DD X +8A DD X

X X X X X X

242 44 34 24 444

+ 8 A D X + 16 A D - 32 A D + 16 A D)/(4 A D X)

X

4

X

TRANSFORM(matrix) will perform a coordinate transformation upon an arbitrary square
symmetric matrix. The user must input the functions which define the transformation
as in CS below. The following example considers the transformation from Cartesian
to spherical coordinates:

(CS) OIN:31

(C6) OHEGA:[X,Y,Z]S

(C7) LG:NATRIX([l,0,0),(0,1,0],[0,0,l]);

[1 0 0]
[]

(D7) [0 1 0]
[]
[0 0 1]

14 1.3 Component Tensor Manipulation- Auxiliary Functions

(CS) TRANSFORH(LG)I

TRANSFORH # 1
X*SIN(Y)*SIN(Z);
TRANSFORM# 2
X-SIN(Y)*COS(Z);
TRANSFORM# 3
X*COS(Y);

(C9) '* a substitution which reduces the transformed matrix*'

EV(X,COS(Y) = SQRT(l-SIN(Y)A2),SIN(Z) = SQRT(l-COS(Z)A2),RATSIHP);

[1 0 0]
[]
[2]

(D9) [0 X 0]
[]
[2 2]
[0 0 X SIN (Y)]

MACSYMA

MACSYMA 15

1.4 Component Tensor Manipulation- Alternate Gravity Theories

BDVAC() generates the covariant components of the vacuum field equations of the
Brans- Dicke gravitational theory. There are two field equations. The components of
the second rank covariant field tensor are represented by the array 8D2. The scalar
field equation requires the user to input the name of a scalar and declare its

. functional dependencies. This field equation is represented by the scalar BOO.

INVARIANT 1 () generates the mixed Euler- Lagrange tensor (field equations) for the
invariant density of R"'2. The field equations are the components of an array named
INVl.

INVARIANT2() generates the mixed Euler- Lagrange tensor (field equations) for the
invariant density of LR[i,j]*UR[i,j]. The field equations are the components of an
array named INV2.

BIMETRIC() generates the field equations of Rosen's bimetric theory. The field equation$
are the components of an array named ROSEN.

16 MACSYMA

[1.5] lncicial Tensor Manipuation

In ITENSR a tensor is represented as an "indexed object" . This is a function of 3
groups of indices which represent the covariant, contravariant and derivative indices.
The covariant indices are specified by a list as the first argument to the indexed object,
and the contravariant indices by a list as the second argument. If the indexed object
lacks either of these groups of indices then the empty list [] is given as the
corresponding argument. Thus, G([a,b],[c]) represents an indexed object called G which
has two covariant indices (a,b), one contravariant index (c) and no derivative indices.

The derivative indices, if they are present, are appended as additional arguments to
the symbolic function representing the tensor. They can be explicitly specified by the
user or be created in the process of differentiation with respect to some coordinate
variable. Since ordinary differentiation is commutative, the derivative indices are sorted
alphanumerically. This canonical ordering makes it possible for MACSYMA to recognize
that, for example, T([a],[b],i,j) is the same as T([a],[b],j,i). Differentiation of an indexed
object with respect to some coordinate whose index does not appear as an argument to
the indexed object would normally yield zero. This is because MACSYMA would not know
that the tensor represented by the indexed object might depend implicitly on the
corresponding coordinate. By modifying the existing MACSYMA function OIFF in ITENSR,
MACSYMA now assumes that all indexed objects depend on any variable of
differentiation unless otherwise stated. This makes it possible for the summation
convention to be extended to derivative indices. It should be noted that ITENSR does not
possess the capabilities of raising derivative indices, and so they are always treated as
covariant.

The following functions are available in the tensor package for manipulating indexed
objects. At present, with respect to the simplification routines, it is assumed that all
indexed objects are completely symmetric in their lists of covariant indices and
symmetric in their lists of contravariant indices. This can be overridden by setting the
variable ALLSYM[TRUE] to FALSE which will result in no symmetry assumptions in these
two sets of indices. However, the simplification routines may no longer operate
completely.

In what follows, general indexed objects will be denoted by tensor!, tensor2,
The symbols LI, L2, ... denote lists which are arguments to indexed objects. Optional
arguments are enclosed in angle brackets.

MACSYMA

1.6 lndicial Tensor Maniptjation- Basic Flllclions

CHR 1 ({i,j,k]) yields the Christoffel symbol of the first kind via the definition

(g·k. + g·k· - g .. k)/2 · I ,J J ,t I J,

17

. To evaluate the Christoffel symbols for a particular metric, the variable METRIC
must be assigned a name as in the example under CHR2.

CHR2({i,J1[k]) yields the Christoffel symbol of the second kind defined by the relation

CHR2([i,j1[k]) = gks (gis,j + gjs,i - gij,s)/2

As an example we consider a conformally flat metric and find the Christoffel
symbols of both kinds:

(C7) DECLARE(E,CONSTANT)I

(C8) HETRIC(G)I

(C9) COHPONENTS(G([I, J], []), E([I, J], [])*P([], []))I

(ClO) COHPONENTS(G([],[I,J]) ,E([],[I,J])/P([],[]))I

(CU) SHOW(G([I,J],[]));

(011) P E

I J

(Cl2) SHOW(G([],[I,J]));

I J
E

(012) ·
p

(Cl3) SHOW(FACTOR(CHRl([I,J,K])));

P E + P E - P E
, I J K ,J I K ,K I J

(013) ------------------------------
2

18 1.6 lndicial Tensor Manipulation- Basic Functions

(C30) SHOW(FACTOR(CHR2([I,J],[K])));
XI K

E (P . E - P E - P E)
, Xl I J , I Xl J , J Xl I

(031) - ---
2 p

MACSYMA

COMPONENTS(tensor,exp) permits one to assign an indicial value to an expression exp
giving the values of the components of tensor. These are automatically substituted
for the tensor whenever it occurs with all of its indices. The tensor must be of the
form T([...],[...]) where either list may be empty. Exp can be any indexed expression
involving other objects with the same free indices as tensor. When used to assign
values to the metric tensor wherein the components contain dummy indices one must
be careful to define these indices to avoid the generation of multiple dummy indices.
Removal of this assignment is given to the function REMCOMPS described below.

The example under DEFCON (C9 - 012) demonstrates the use of the COMPONENTS
function to define an algebraically special metric and also shows how the null
property of the vector field can be given with the property assignment functions.
The example above under CHR2 gives the basic syntax used in the COMPONENTS
statement.

CONTRACT (exp) carries out the tensorial contractions in exp which may be any
combination of sums and products. This function uses the information given to the
DEFCON function. When using CONTRACT, exp must be fully expanded. Also see the
function METRIC and the example under DIM.

COVDIFF(exp,vl,v2, ...) yields the covariant derivative of exp with respect to the
variables vi in terms of the Christoffel symbols of the second kind (CHR2). In order
to evaluate these, one can use EV(exp,CHR2).

(C3) ENTERTENSOR();
Enter tensor name: A;
Enter a list of the covariant indices: [I,J];
Enter a list of the contravariant indices: (K];
Enter a list of the derivative indices:[];

K
(03) A

I J

MACSYMA 1.6 lndicial Tensor Manipulation- Basic Functions 19

(C4) SHOW(COVDIFF(X,S));
K %1 K %1 K K %1

(D4) - A CHR2 - A CHR2 + A + CHR2 A
I %1 J S %1 J IS I J,S "1 S I J

DIFF(exp,vl,nl,v2,n2, ...) is the usual MACSYMA differentiation function which has been
expanded in its abilities for ITENSR. It takes the derivative of exp with respect to

. vl nl times, with respect to v2 n2 times, etc. For the tensor package, the following
modifications have been incorporated (also see the function UNDIFF): ·

1) the derivatives of any indexed objects in exp will have the variables vi
appended as additional arguments. Subsequently, all derivative indices will be
sorted.

2) th~ vi may be integers from 1 up to the value of the variable DIM[4]. This
will cause the differentiation to be carried out with respect to the vith member of
the list COORDINATES which should be set to a list of the names of the coordinates,
e.g., [x,y,z,t] . If COORDINATES is bound to an atomic variable, then that variable
subscripted by vi will be used for the variable of differentiation. This permits an
array of coordinate names or subscripted names like X[l], X[2],... to be used. If
COORDINATES has not been assigned a value, then the variables will be treated as
in 1) above.

3) one may now differentiate the determinant of the metric tensor. Thus, if
METRIC has been bound to G then DIFF(DETERMINANT(G),K) will return
2*DETERMINANT(G)*CHR2([%i,K1[%i]) where the dummy index has been
appropriately chosen.

DIM is the dimension of the manifold with the default 4. The command DIM : N will reset
the dimension to any other integral value. The following example demonstrates the
contraction property of the Kronecker delta.

(C4) CONTRACT(KDEL TA([A], [B])*KDELTA([B], [A]));
. (D4) KDELTA([], [])

(C5) EV(X,KDELTA);
(D5) 4

20 1.6 lndicial Tensor Manipulation- Basic Functions MACSYMA

ENTERTENSOR(<name>) is a function which, by prompting, allows one to create an
indexed object called name with any number of tensorial and derivative indices.
Either a single index or a list of indices (which may be null) is acceptable input (see
the example under COVDIFF).

GEODESIC(exp,name) enables the user to cause undifferentiated Christoffel symbols and
first derivatives of the metric tensor vanish in exp. The name in the GEODESIC
function refers to the metric name (if it appears in exp) while the connection
coefficients must be called with the names CHRl and/or CHR2. The following
example demonstrates the verification of the cyclic identity upon the Riemann tensor
using RENAME while also showing the use of the GEODESIC function.

(C2) EXP: RIEHANN([R ,S, T], [U])+RIEHANN([S, T ,R], [U])+RIEMANN([T, R,S], [U])I

(Cl) SHOW(EXP);
u u "6 u u "6 u

(03) - CHR2 - CHRZ CHR2 + CHR2 + CHR2 CHR2 + CHRZ
T S,R "6 R T S T R,S "6 S

u "5 u u "5
+ CHR2 CHRZ - CHR2 - CHR2 CHR2 - CHR2

"5 R S T S R,T "5 T SR

u "4 u u "4
- CHR2 CHR2 + CHRZ + CHRZ CHR2

"4 S R T R S,T

(C4) SHOW(GEOOESIC(EXP,CHR2));
u u u

(04) - CHR2 + CHRZ + CHR2

"4 T

u
- CHR2

R S

u
- CHR2

T R

u

R T,S

+ CHRZ
T S,R T R,S S T,R S R,T R T,S

(CS) SHOW(RENAHE(EXP));
(05) 0

S T,R

u

INDEXED(tensor) must be executed before assigning components to a tensor for which a
built in value already exists as with CHRl, CHR2, RIEMANN. See the example under
RIEMANN.

MACSYMA 1.6 lndicial Tensor Manipulation- Basic Functions 21

KDELTA(Ll,L2) is the generalized Kronecker delta function with LI the list of covariant
indices and L2 the list of contravariant indices. KDEL T A([i],[j]) returns the ordinary
Kronecker delta. The command EV(EXP,KDELTA) causes the evaluation of an
expression containing KDELTA([],[]) to the dimension of the manifold (see the
example under DIM).

(C3) KOELTA([A,B,C],[R,S,T])S

(C4) SHOW(EV(X));
R S T T S

(D4) - KDELTA (KDELTA KOELTA - KDELTA KDELTA)
A B C B C

R T S S T
- KDELTA (KOELTA KDELTA - KDELTA KDELTA)

B A C A C

S T T S R
- (KDELTA KDELTA - KDELTA KOELTA) KDELTA

A B A B C

LC(L) is the permutation (or Levi-Civita) tensor density which yields 1 if. the list L
consists of an even permutation of integers, -1 if it consists of an odd permutation,
and O if some indices in L are repeated.

METRIC(name) specifies name as the metric name by assigning the variable
METRIC:name. In addition, the contraction properties of the metric name are set up
by executing the commands OEFCON(name), DEFCON(name, name, KOEL TA). See, for
example, the example under RIEMANN.

RATEXPANO(exp) is the fastest way to expand products and powers of sums of indexed
objects generated by ITENSR within MACSYMA.

RENAME(exp, <count>) returns an expression equivalent to exp but with the dummy
indices in each term chosen from the set (%1, %2, ...], if the optional second argument
is omitted. Otherwise, the dummy indices are indexed beginning at the value of
count. Each dummy index in a product will be different. For R sum, RENAME will

22 1.6 lndicial Tensor Manipulation- Basic Functions MACSYMA

operate upon each term in the sum resetting the counter with each term. In this way
RENAME can serve as a tensorial simplifier. In addition, the indices will be sorted
alphanumerically (if ALLSYM is TRUE) with respect to covariant or contravariant
indices depending upon the value of FLIPFLAG. If FLIPFLAG is FALSE then the
indices will be renamed according to the order of the covariant indices otherwise
according to the order of the contravariant indices. It often happens that the
combined effect of the two renamings will reduce an expression more than either
one by itself.

(C41) SHOW(EXP);
%4 %5 %6 '1.7 "3 u XI "2

(D41) 6 G CHR2 CHR2 CHR2 CHR2
Xl "4

(C4Z) FLIPFLAG;
(D42)

"4 "5
- 6

(C43) SHOW(RENAHE(EXP));

"6 "7
6

%2 X3

u
CHR2

XI "2

FALSE

%5 %6 "7 R

"1 "3
CHR2 CHR2

"3 "5 "4 "6

%2 %5 %6 %7 "4 U "1 %3
(D43) 6 G CHR2 CHR2 CHR2 CHR2

%1 %2 %3 "4 "5 %6 %7 R

"4 15 "6 %7 U
• 6 G CHR2

(C44) FLIPFLAG:TRUEI

(C45) RENA11E(D42);
(D45)

(C46) [FIRST(D42),LAST(D42)]1

0

"1
CHR2

%3 "4

13
CHR2

%2
CHR2

"7 R

"2
CHRZ

'l.7R

MACSYMA 1.6 lndicial Tensor Manipulation- Basic Functions

(C46) SHOW(RENAHE(X));
%1 %2 %3 %4 u u

(046) [G G CHRZ CHR2 CHR2 CHR2
%1 %6 %2 %3 %4 R %5 U

%1 %2 %3 %4 %6 %7 u
- G G CHRZ CHR2 CHRZ CHRZ]

%1 %6 %2 %3 %4 R %5 %7

23

RIEMANN(Ii,i,k1[h]) yields the Riemann curvature tensor in terms of the Christoffel
symbols of the second kind (CHR2). The following notation is used:

h h
RIEMANN = - CHR2

h %1
- CHR2 CHR2

h
+ CHRZ

i j k i k,J %1 j i k i j,k

h %1
+ CHR2 CHR2

%1 k 1 j

Suppose the name specified by the value of METRIC corresponds to a tensor which has
been given some structure via the COMPONENTS command. In order to evaluate an
expression involving the Riemann tensor and incorporate this given definition of the
metric explicitly into the result, the user can do expression, EVAL as the following
example for the weak field metric demonstrates:

(CS) INOEXEO(CHRZ)I

(C6) DECLARE(E,CONSTANT)I

(C7) HETRIC:GI

(Cll) COHPONENTS(G([H,N],[]),E([H,N],[])+2*UcP([H,N],[]))I

(C9) COMPONENTS(G([], [H, N]), E([], [H, N])-Z*L*P([], [H,N]))I

(ClO) SHOW(G([I,J),[]));
(010) 2 L P + E

I J I J

· 24 1.6 lndicial Tensor Manip.ulation- Basic Functions

(Cll) SHOW(G([],[I,J]));

(011)
I J I J

E - 2 P L

(Cl2) (RATVARS(l),RATWEIGHT(l,l),RATWTLVL:1)1

(Cl3) RIEHANN([S,U,N],[Y])S

(Cl4) 'X,EVALI

(C15) SHOW(CANFORH(CONTRACT(RENAHE(RATEXPAN0(%)))))1

'Xl y
(015) - E LP + E

S U,"1 N

XI y
L p + E

N S,%1 U

"1 y .
p

%1 U,N S

%1 y

L

• E P · L
'Xl N,S U

MACSYMA

SHOW(exp) displays exp with the indexed objects in it shown having their covariant
indices as subscripts and contravariant indices as superscripts. The derivative
indices are displayed as subscripts, separated from the covariant indices by a comma
(see the ·example above).

UNDIFF(exp) returns an expression equivalent to exp but with all derivatives of indexed
objects replaced by the noun form of the DlFF function. Its arguments would yield
that indexed object if the differentiation were carried out. This is useful when it is
desired to replace a differentiated indexed object with some function definition
resulting in exp and then carry out the differentiation by saying EV(exp, OIFF).

MACSYMA 25

l. 7 lncicial Tensor Manipuation- Simplification F &.n:tions

ALLSYM(true) if TRUE then all indexed objects are. assumed symmetric in all of their
covariant and contravariant indices. If FALSE then no symmetries of any kind are
assumed in these indices. Derivative indices are always taken to be symmetric.

CANFORM(exp) simplifies exp by renaming dummy indices and reordering all indices as
dictated by . symmetry conditions imposed on them. If ALLSYM is TRUE then all
indices are assumed symmetric, otherwise symmetry information provided by
DECSYM declarations will be used. The dummy indices are renamed in the same
manner as in the RENAME function. When CANF0RM is applied to a large expression
the calculation may take a considerable amount of time. This time can be shortened
by calling RENAME on the expression first. Also see the example under 0ECSYM.
Note: CANF0RM may not be able to reduce an expression completely to its simplest
form although it will always ret~rn a mathematically correct result.

CANTEN(exp) simplifies exp by renaming (see RENAME) and permuting dummy indices.
CANTEN is restricted to sums of tensor products in which no derivatives are
present. As such it is limited and should only be used if CANF0RM is not capable of
carrying out the required simplification.

CHANGENAME(o/d,new,exp) will change the name of all indexed objects called old to
new in exp. Old may be either a symbol or a list of the form [name, m, n] in which
case only those indexed objects called name with m covariant and n contravariant
indices will be renamed to new.

CONMET0ERIV(exp,tensor) is used to simplify expressions containing ordinary
derivatives of both covariant and contravariant forms of the metric tensor (the
current restriction). For example, C0NMETDERIV can relate the derivative of the
contravariant metric tensor with the Christoffel symbols as seen from the following:

(C8) SHOW(G([],[A,B],C))I

(D8)
A B

G
,C

26 1. 7 lndicial Tensor Manipulation- Simplification Functions

(C9) SHOW(CONHETDERIV(X.G));
UB A XI A

(D9) - G . CHR2 - G
XI C

B
CHR2

%1 C

MACSYMA

FLIPFLAG(fa/se) if FALSE then the indices will be renamed according to the order of the
covariant indices otherwise according to the order of the contravariant indices. The
function influences RENAME in the following way: If FLIPFLAG is FALSE then RENAME
forms a list of the covariant indices as they are encountered from left to right (if
TRUE then of the contravariant indices). The first dummy index in the list is renamed
to ¼l, the next to %2, etc. Then sorting occurs after the RENAMEing (see the
example under RENAME).

FLUSH(exp,tensorl,tensor2, ...) will set to zero, in exp, all occurrences of the tensori that
have no derivative indices.

FLUSHD(exp,tensorl,tensor2, ...) will set to zero, in exp, all occurrences of the tensori
that have derivative indices.

FLUSHND(exp,tensor,n) will set to zero, in exp, all occurrences of the differentiated
object tensor that have n or more derivative indices as the following example
demonstrates.

(C3) SHOW(A([I]. [J. R],K, R)+A([I].[J, R,S].K, R.S));

(D3)

(C4) SHOW(FLUSHND(D3,A,3));

(04) . .

J R S J R
A + A

I.KR S I.KR

J R
A

1,K R

FLUSHlOERIV(exp,tensor) will set to zero, in exp, all occurrences of tensor that have
exactly one derivative index.

MACSYMA 1. 7 lndicial Tensor Manipulation- Simplification Functions 27

LORENTZ(exp, <tensor!, tensor2, ... >) imposes a generalized Lorentz condition on exp
replacing by zero those tensori which have a derivative index identical to a
contravariant index. If no tensori are specified, this process will be performed on all
indexed objects in exp (see the example under MAKEB0X).

MAKEBOX(exp,tensor) will display, with the symbol [], all occurrences of the flat-space
d'Alembertian operator acting upon tensor in exp. The name of the flat-space metric
appears in the argument to the function. In the following example EIN is the weak
field approximation of the Einstein tensor for the metric which is given and L is

. small.

(C56) SHOW(G([I,J)));

(D56)

(C57) SHOW(EIN);
"1 %2 I J

(D57) - E P L - P
,%1 %2

P L + E
I J I J

E

•"l "2

I J
L + p

%1 "2 I J
E E L

"1 I "2 J "1 I "2 J "1 I "2 J .
+E P l+P E L-P E E L

•"l "2 •"l "2 •"l "2

(C58) SHOW(LORENTZ(",P));
%1 %2 I J "1 "2 I J

(058) - E P L + P E E
,,n %2 ,"1 "2

L

"l I "2 J
- P E E L

,"1 "2
(C59) SHOW(HAKEBOX(",E));

I J I J %1 I "2 J
(D59) -(JP ~+[]PE L - P E E L

,"1 "2

28 MACSYMA

1.8 lncicial Tensor Manipulation- Property Assigrnent Fmctions

COORD(tensor 1,tensor2, ...) gives tensori the coordinate differentiation property that the
derivative of contravariant vector whose name is one of the tensori yields a
Kronecker delta. For example, if COORD(X) has been done then DIFF(X([],[l]),J) gives
KDEL TA([l],[J]). COORD is a list of all indexed objects having this property.

DECLARE(object,property) allows the specification of certain properties upon the object.
For example, we can specify that an indexed object is independent of all coordinate
variables. Whereas DIFF(W([],[l,J]),K) normally results in W([],[l,J],K), with the
command OECLARE(W,CONSTANT) given, the result of the differentiation will be 0.
Similarly, one can declare a vector to be null (see the example under the OEFCON
function).

DECSYM(tensor, m, n, [covl,cov2, ...], [contrl,contr2, ... }) declares symmetry properties for
tensor of m covariant and n contravariant indices. The covi and contri are
pseudofunctions expressing symmetry relations among the covariant and
contravariant indices respectively. These are of the form symoper(indexl, index2, ...)
. where symoper is one of SYM, ANTI or CYC and the indexi are integers indicating
the position of the index in the tensor. This will declare tensor to be symmetric,
antisymmetric or cyclic respectively in the indexi. symoper(All) is also an allowable
form which indicates all indices obey the symmetry condition. For example, given an
object B with 5 covariant indices, OECSYM (B,5,3,[SYM(l,2),ANTl(3,4)),[CYC(ALL)])
declares B symmetric in its first and second and antisymmetric in its third and fourth
covariant indices, and cyclic in all of its contravariant indrces. Either list of
symmetry declarations may be null. The function which performs the simplifications
is CANFORM as the example below illustrates.

(C4) EXP:A([K,J, I],[])+A([K, I,J],[])+A([J,K, I],[])+
A([J, I,K],[])+A([I,K,J],[])+A([I,J,K],[])S

(CS) SHOW(EXP);
(05) A + A + A + A + A + A

(C6) ALLSYM;
(06)

KJI KIJ JKI JIK IKJ IJK

TRUE

MACSYMA 1.8 lndicial Tensor Manipulation- Property Assignment Functions 29

(C7) SHOW(CANFORH(EXP));

(D7)

(C8) ALLSYH:FALSES

(C9) DECSYH(A,3,0,[ANTI(ALL)],[])I

(CIO) DISPSYH(A,3,0);

6 A
I J K

(D l O) [[ANTI, [[1, 2, 3]], []]]

(Cll) SHOW(CANFORH(EXP));
(D11) 0

(C12) REHSYH(A,3,0)1 .

(Cl3) DECSYH(A,3,0,[CYC(ALL)],[])I

(C14) SHOW(CANFORH(EXP));
(D14) 3 A + 3 A

IKJ IJK

DEFCON(tensor 1, <tensor2,tensor3>) gives tensor 1 the property that the contraction of a
product of tensor 1 and tensor2 results in tensor3 with the appropriate· indices. If
only one argument, tensorl, is given, then the contraction of the product of tensorl
with any indexed object having the appropriate indices (say tensor) will yield an
indexed object with that name, i.e. tensor, and with a new set of indices reflecting
the contractions performed. For example, if METRIC:G, then DEFCON(G) will
implement the raising and lowering of indices through contraction with the metric
tensor. CONTRACTIONS is a list of those indexed objects which have been given
contraction properties with DEFCON.

The following example for an algebraically special metric shows how the null
· property of a vector field may be assigned as well as demonstrating that more than
one DEFCON assignment can be given for the same indexed object.

(C4) DECLARE(E,CONSTANT)I

(CS) DEFCON(E)I

30 1.8 lndicial Tensor Manipulation- Property Assignment Functions MACSYMA

(C6) OEFCON(E,E,KDELTA)I

(C7) DEFCON(L,L,W)I

(C8) W(ll,l2):=0I

(C9) COMPONENTS(G([P, Q], []), E([P ,Q],[])+2*H*L([P], [])*L([Q], []))I

(ClO) COMPONENTS(G([], [A,B]) ,E([],[A,B])-2*~L([],[A])*L([],[B]))I

.(C 11) SHOW (G ([I, J], [])) ;
(D11)

(Cl2) SHOW(G([],[I, J]));

(012)

(Cl3) HETRIC(G)I

2 L L H + E
I J I J

I J I J
E - 2 L L H

(Cl4) CONTRACT(RENAHE(EXPAND(G([I,J],[])*G([],[J,K]))))I

(Cl5) SHOW(%);

(015)

(Cl6) DISPCON(ALL);

K
KDELTA

I

(D16) [[[E, E, KDELTA], [El], [(L, L, W]], [[G, 6, KDELTA], (G])]

MACSYMA 31

. 1.9 ·1ndicial Tensor Manipuation- Property Display Fu,ctions

DISPCON(tensorl,tensor2, ...) displays the contraction properties of the tensori which
were given to DEFCON. DISPCON(All) displays all defined contraction properties as
the example under DEFCON illustrates.

DISPSYM(tensor, m, n) displays symmetries declared by DECSYM as a list of lists or
returns (] if there are none (see the example under DECSYM). The first element of
the inner list is one of the atoms SYM, ANTI or CYC. The second element is a list of
lists of the index positions that have this property in the covariant indices of tensor.
The third element is the same except that it is for the contravariant indices.

32 MACSYMA

1.10 lncidal Tensor Manipulation- Property Removal F lllCtions

REMCOMPS(tensor) unbinds all values from ·tensor which were assigned with the
COMPONENTS function.

REMCOORD(tensorl,tensor,Z ...) removes the coordinate differentiation property from the
tensori that was established by the function COORD. REMCOORD(ALL) removes this
property from all indexed objects.

REMCON(tensorl,tensor,Z ...) removes all the contraction properties . from the tensori.
REMCON{ALL) removes all contraction properties from all indexed objects.

REMSYM(tensor,m,n) removes all symmetry properties from tensor which has m covariant
indices and n contravariant indices.

MACSYMA 33

1.11 lndicial Tensor Manipulation- Indexing FlllCtions

COUNTER determines the numerical suffix to be us.ed in generating the next dummy
index. It may also be used to set the counter to any value (see the example under
INDICES).

DUMMY() increments COUNTER and returns as its value an index of the form %n where n
is a positive integer. This guarantees that dummy indices which are needed in
forming expressions will not conflict with indices already in use (see the example
under INDICES).

DUMMYX is the prefix for dummy indices (see the example under INDICES).

INOICES(exp) returns a list of two elements. The first is a list of the free indices in exp
(those that occur only once). The second is the list of the dummy indices in exp
(those that occur exactly twice) as the following example demonstrates.

(C3) SHOW(RIEHANN([I,J,K],[L])*RIEMANN([A,B,C],[D]));
D D "2 D D "2

(03) (- CHR2 - CHR2 CHR2 + CHR2 + CHRZ CHR2)

A C , B "2 B A C A B, C "2 C A B

L L %1 L L "l
(- CHR2 - CHR2 CHR2 + CHR2 + CHR2 CHR2)

I K,J %1 J I K I J,K %1 K I J

(C4) INDICES(");
(04)

(C5) COUNTER;
(05)

(C6) COUNTER:111

(C7) °C3;
D

(07) (- CHR2
A C,B

[[D, C, A, B, L, K, I, J], ["2, "l]]

2

D "13 D D "13
- CHR2 CHR2 + CHRZ + CHRZ CHR2)

"13 B AC A B,C "13 C A B

34 1.11 lndicial Tensor Manipulation- Indexing Functions MACSYMA

L L "12 L L %12
(- CHR2 - CHR2 CHR2 + CHRZ + CHRZ CHR2)

I I(, J "12 ·J I K I J,K UZK I J

(C8) DUHHYX;
(D8) "
(C9) DUHHYX :&S

(ClO) °C3;
D D &15 D D &15

(010) (- CHR2 - CHRZ CHRZ + CHRZ + CHRZ CHRZ)

A C,8 &15 B AC A B,C &15 C A B

L L &14 L L &14
(- CHR2 - CHR2 CHR2 + CHRZ + CHR2 CHRZ)

I K,J &14 J 1 K 1 J,K &14 K 1 J

MACSYMA 35

1.12 lndiclal Tensor Manipuation- ITENSR --> CTENSR

GENERATE(eqn) converts an ITENSR equation eqn to a CTENSR assignment statement.
Implied sums over dummy indices are made explicit while indexed objects are
transformed into arrays (the array subscripts are in the order of covariant followed
by contravariant indices of the indexed objects). The derivative of an indexed
object will be replaced by the noun form of OIFF taken with respect to OMEGA
subscripted by the derivative index. The Christoffel symbols CHRl and CHR2 will be
translated to LCS and MCS respectively and if METRICCONVERT[TRUE] is TRUE
then all occurrences of the metric with two covariant (contravariant) indices will be
renamed to LG (UG). In addition, DO loops will be introduced summing over all free
indices so that the transformed assignment statement can be evaluated by just doing
EV(...). The following examples demonstrate the features of this function.

(C 11) SHOW (X) ;

L K I I J
(011) G = F A (C B + D) E

I J K L

(Cl2) GENERATE(X);
(012) G : SUH(SUH(SUH(F A (SUl1(C B , K, 1, 0111) + D) E

L I, J K K, I

I, 1, DIM), J, 1, DIM), L, 1, DIM)

(C4) SH0W(T([I),[J]));

(04)

(CS) SHOW(C0VOIFF(X,K));
J Xi

J
T
I

J J
(05) - T CHRZ + T + CHRZ T

(C6) HETRICC0NVERT;
(06)

Xl I K I,K Xl K I

TRUE

I L, J

36 1.12 lndicial Tensor Manipulation- ITENSR --> CTENSR

(C7) GENERATE(H([l,K],[J])=D5);

(07)

FOR I THRU DIH DO (FOR J THRU DIH DO (FOR K-THRU DIH DOH
I, K, J

- SUH(T HCS , U, 1, DIH) + DIFF(T , OHEGA)
Xl,J 1,K,Xl l,J K

+ SUH(HCS T , "1, 1, DIH)))
Xl, K, J I, Xl

(CB) HETRIC(G)S

(C9) 05,CHRZS

(ClO) SHOW(X);
%1 %3 J

G T (G - G + G)
Xl K Xl,I I K,X3 I X3,K

(010) - --
2

J xz "1
G T (G - G + G)

I K XZ,U Xl K,XZ U XZ,k J

+ -- + T
J I,K

MACSYMA

MACSYMA 1.12 lndicial Tensor Manipulation- ITENSR --> CTENSR

(Cl l) GENERATE(H([I,K],[J]):010);
(Dll)

FOR I THRU DIH DO (FOR J THRU DIH DO (FORK THRU DIH DOH

- SUH(SUH(UG T (DIFF(LG , OHEGA)
%1, %3 %1, J K, %3 I

I, K, J

- DIFF(LG , OMEGA) + DIFF(LG , OHEGA)), %1, 1, DIH), %3,
I,K %3 I,%3 K

1, DIH)/2 + SUH(SUH(UG T (DIFF(LG , OHEGA)
J, %2 I, %1 K, %2 %1

· - DIFF(LG , OHEGA) + OIFF(LG , OMEGA)), U, l, OIH), %2,
%1, K %2 %1, %2 K

1, DIH)/2 + OIFF(T , OHEGA)))
I, J K

37

38 MACSYMA

[1.13] Acknowledgments

These program systems, first begun in 1973, have undergone several stages of
development during the last 7 years. One of us (RP) wishes to thank Alexander
Doohovskoy, David Grabel, Richard Zippe! and especially Richard Bogen for their efforts
in coding the routines described above. In addition, thanks are extended to the many
staff members of the laboratory of Computer Science (past and present) who

. contributed such a great deal to the current state of this projecl

MACSYMA

ALLSYM (true) 25*

BDVAC () 15*
BIMETRIC O 15*

CANFORM (exp) 25*
CANTEN (exp) 25*
CHANGENAME (old,new,exp) 25*
CHECKDIV (tensor) 11 *
CHRl ([i,j,k)) 17*
CHR2 ([i,j),[k]) 1 7*
CHRIST OF (arg) 5*
COGRAD (function,name) 1 h
COMPONENTS (tensor,exp) 18*
CONMETDERIV (exp,tensor) 25*
CONTRACT (exp) 18*
CONTRA GRAD (function,name) 11 *
COOR□ (tensorl ,tensor2, ...) 28*
COUNTER 33*
COVDIFF (exp, v 1, v 2, ...) 18*

INDEX

DECLARE (object,property) 28*
DECSYM (tensor, m, n, [covl,cov2, ...], [contrl,contr2,. ..]) 28*
DEFCON (tensorl,<tensor2,tensor3>) 29*
DELETEN (list,n) 1 h
DIAGMETRIC 7*
OIFF (exp, v 1,n 1, v2,n2, ...) 1 9*
DIM 7* , 19*
DISPCON (tensorl,tensor2, ...) 3h
DISPSYM (tensor, m, n) 3h
□SCALAR (function) 11 *
DUMMY O 33*
DUMMYX 33*

EINSTEIN (dis) 7*
ENTERTENSOR (<name>) 20t

FINDOE (array,n) l 2t
FLIPFLAG (false) 26*
FLUSH (exp,tensor l ,tensor2,. ..) 26*

i

ii

FLUSH 1 DERIV (exp, tensor) 26*
FLUSHD (exp,tensorl,tensor2,. ..) 26*
FLUSHND (exp,tensor,n) 26*

GENERA TE (eqn) 35*
GEODESIC (exp,name) 20*

INDEXED (tensor) 20*
INDICES (exp) 33*
INVARIANT 1 0 15*
tNV ARIANT2 0 15*

KDELTA (Ll,L2) 21*

LC (L) 2h

INDEX

LORENTZ (exp, <tensorl, tensorZ ... >) 27*
LRICCICOM (dis) 8*

MAKEBOX (exp,tensor) 27*
METRIC (name) 21*
METRICCONVERT: [TRUE] 35
MOTION (dis) 9*

NTERMST (f) 12*

OMEGA 9*

RAISERIEMANN (dis) 12*
RA TEINSTEIN: [TRUE] 7
RATEXPAND (exp) 2h
RATFAC (false) 9*
RATRIEMAN: [TRUE] 9
RA TWEYL: [TRUE] 10
REMCOMPS (t.ensor) 32*
REMCON (tensor 1,tensor2,. ..) 32*
REMCOORD (tensor 1,tensor2, ...) 32*
REMSYM (tensor,m,n) 32*
RENAME (exp, <count>) 2h
RICCICOM (dis) 9*
RIEMANN (dis) 9* , 23*

MACSYMA

MACSYMA

RINV ARI ANT O 13*

$CURVATURE O 1 O*
SHOW (exp) 2~

TRANSFORM (matrix) 13*
T~ETUP O ~

UNOIFF (exp) 2~

WEYL (dis) 1 O*

INDEX iii

