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Abstract 

BRAND x is a simple representation language implemented as a pure extension of LISP. BRAND x provides 
the following additional facilities over LISP: Unique and ca11011ica/ strncturcs, properly lis1s for all objects, labels 
for all objects. and a syntax to express each of these, supported by a reader and printer. BRA. D xis intended as 
an "assembly language" for representation languages, attempting to provide facilities generally found useful in 
the simplest manner, without any strong commitment to specific representational conventions. 
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1. Introduction 

The past decade has seen the introduction of numerous programming languages and representational lan
guages specifically intended for use by the Al community. The early seventies saw the introduction oflanguages 
(e.g., PLANNER, CONNIVER, QA4) which incorporated higher level data structures, novel invocation and control 
structures, context mechanisms, and rule-like representations of knowledge [8, 14, 13]. Later research, focusing 
on problems of the meaning of representations. has led to a new group of languages ( e.g., KRL, FRL, KU ONE) 

emphasizing the structure of representations, multiple descriptions and viewpoints. "frame-like" systems, and 
procedural attachment [2. 12, 16). Despite the promise and even popularity of these languages, most AI 

programs continue to be written in that robust standby which precedes the above by a decade, USP. 
The attraction of I.ISP continues to be its great simplicity and mutability. allowing any user to build fea

tures of more power and incorporate them within the language. The contrasting weakness of each of the above
mentioned languages is that they make representational and control commitments which, although appropriate 
to some applications which guided the development of the language, later appear arbitrary or wrong for other 
potential uses. To successive generations of Al researchers, it continues to seem more attractive to implement 
their own language extensions on top of LISP than to accept a complete package of conventions provided (or 
imposed) by the more recent language designers. l lowcver, some generality docs exist among the facilities 
that have been repeatedly invented. It is obviously desirable to provide as powerful a set of such facilities as 
possible. without overstepping the bounds of commitment which make the resulting language unacceptable. 

BRAND x has been designed and implemented with these observations as the guiding principle. Its im

mediate predecessor is the XLMS language of Hawkinson [7], which has been used by the authors and their 
colleagues both as a data base and as the implementation medium of OWL [9, 15). BRAND x was inspired by 
the observation that many of the facilities provided by XLMS appeared merely to duplicate features already 
adequately provided by LISP, suggesting that its function could be greatly simplified by implementing instead a 
limited. general set of extensions to LISP. 

The authors arc sometimes asked if they can explain in a simple way the advantage of implementing a 
semantic network in BRAND x over implementing it directly in LISP. Typically, a semantic network is a difficult 
data stnicture to read and print in LISP. It has backpointers which create circular strucutures, and it is so 
strongly interconnected that given any piece of it to print, LISP print functions often print the whole network. In 
LISP. the traditional way to meet these difficulties is to make every node of the network an atomic symbol, with 
the network links on its property list. Given an atom, LISP will print just its name, not tracing down the property 
list, and thus not looping through the whole network. There arc at least four difficulties with this solution. 
First, these node atoms take up quite a bit of memory space. This space can be reduced somewhat if the atoms 
arc not made unique in memory, but then one cannot refer to a node by typing in its atom name. Second, 
if user programs create new network nodes, the nodes arc typically given names such as GO 001, G0002, etc. 
These names do nothing to improve the intelligibility of the semantic network. Third, because the standard 
I.ISP printer will print only the name of a node, the programmer must generally write a set of special purpose 
print functions to print just those links which are desired. Such code must be carefully written to avoid printing 
semantic network loops. Finally, there is no declarative notation which the programmer can use to make the 
task of inputting a semantic network easy. 1bc programmer may again write special functions for this purpose. 
Typically, the input notation as defined by these functions will differ from what is generated by the special
purpose print functions. Thus, the application may lack USP's useful ability to read back whatever can be 
printed. In BRAND X, we provide the user with an alternative to using atoms for nodes and we deal with the 
above difficulties in a general manner. lbe essence of the solution is to make it possible for data structures 
other than atoms to be unique and to have properties. These then become an alternative to atomic symbols for 
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representing nodes. A systemat,ic approach to reading and printing all data structures is then provided. Other 
features and conventions for building semantic networks may also be useful, but the authors do not want to be 
committed to them at the implementation language (BRAND X) level [10). 

2. Overview 

BRAND Xis implemented as an extension of LISP (MACLISP [11]), and thus completely includes its facilities, 
and supports the following additional features: 

a. unique and canonical list structures- providing a data base facility in which expressions may be 
identical when composed of the same subexpressions, 

b. unii>ersa! property /ists-pcnnitting the attachment of property /value pairs to any object in the 
language, 

c. labels-providing an abbreviation for convenient reference to complex expressions, 
d. an extended LISP notation-allowing a convenient mechanism for reading and printing any USP 

and BRAND x structures. 
e. triples-a special. compact data type having three components (especially for the support of 

OWL), which is optionally present in the language. 

The rest of this section gives a brief introduction to the concepts underlying the above features, and the 
rest of this report lists the available functions which support the features. 

2.1 Equality, Identity, Uniqueness and Composed Objects 

111c traditional definition of equality holds that two objects are equal if they are indistinguishable by any · 
known test. In that case, of course, one may as well speak of just one object, although various paradoxes based 
on that interpretation have been suggested. In computation, however, the above definition of equality is not the 
one usually favored. This is because computer models of the real world often pcnnit tests of distinguishability 
which arc artifacts of the implementation. ·Typically, computer implementations can distinguish objects based 
on their address in the memory of the computer; thus. two otherwise-equal objects may be distinguishable by 
being at different addresses. For example, although we would like to think of the two numbers 999 and 999 
as equal, some LISP implementations find them distinguishable under the EQ predicate, which tests equality of 
address. 

One standard solution to the undesirable nature of strict equality is to distinguish between identity

true indistinguishability- and equality-now taken to mean indistinguishable in the real world, even though 
distinguishable in the implementation. LlsP's EQ and EQUAL predicates capture these notions of identity and 
equality. respectively." The distinction between identity and equality is important not only for very significant 
efficiency considerations, but also because the ability of programs to cause side-effects permits them to distin
guish among EQUAL but non-identical (non-EQ) objects. 

A second standard solution is to adopt a convention and mechanism for uniqueness, in which objects 
intended to be equal arc indeed made EQ- i.e., objects arc made unique according to the equality criteria, so 
the system pcnnits .thc existence of only the single unique representative of an (equivalence) class of EQUAL 
objects. Lisp's interning mechanism perfonns essentially this function for atomic symbols. This solution is 
motivated by the desire to use EQ as the standard equality test, for the reasons cited in the last paragraph. 

*Both are defined more technically, of course. EQ is defined a~ identity of address, and EQUAL is defined as a r~rsive test which 
checks for the identity of primitive objects and the equality of constituents of compound objects. EQUAL is further modified so 
that equality of numbers is tested by identity of type and numerical equality (x - y = 0) of the values. 
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The additional effort needed on input to create or find the unique object implied by the one actually input is 
more than rewarded by the possibility of efficient algorithms based on the assumption that some class of EQUAL 
objects is indeed unique (EQ) (6). 

The case of LISP's handling of atomic symbols deserves investigation in its own right, as a guide to how 
interning is to be viewed in general. Suppose we intend LISP atomic symbols to be the same whenever they are 
spelled the same. Then the desired equality test on LISP atomic symbols is SAME PNAMEP, which is true just if 
its two arguments are atomic symbols which are spelled identically. The LISP reader, using the system-provided 
INTERN function, chooses a unique instance of a!I symbols with the same spelling and assures that that same 
instance is read each time a symbol of the same spelling is input• l11is assures that (ordinarily) all instances 
read of the same-spelled symbol are EQ-thus, atomic symbols are unique. 

To understand how we might define uniqueness for composite objects, consider in detail the ideal nature 
of the INTERN function. Formally, INTERN is a function which maps atomic symbols to atomic symbols such 
that its result is the representative of the equivalence class into which its argument falls when the set of atomic 
symbols is partitioned by the function SAMEPNAMEP. If USP interned all atomic symbols, we would say that 

• atomic symbols arc unique (with respect to EQ) under the predicate SAME PNAMEP. 
We take all objects to have certain characteristics known as criteria!. These arc the characteristics used by 

the partitioning predicate of an interning scheme. For example, the spelling of an atomic symbol (the sequence 
of characters in its written form) is criteria!; but other characteristics such as its value, properties, and address 
arc not, in the above interning scheme. 

BRAND x introduces two new list data types with different criteria for uniqueness: UL I STs (Unique LISTs) 
and CLISTs (Canonical L 1ST s). The fundamental interesting characteristic of these types is that: 

• ULISTs are unique (with respect to EQ) under the condition that their critcrial components 
(CAR and CDR) arc identical (EQ), and 

• CLISTs arc unique (with respect to EQ) under the condition that their criteria! components 
(CAR and CDR) are equal (EQUAL). 

BRAND x also provides :i new data type TRIPLE, and notions of uniqueness and canonicity for it. A triple 
is a compound object with three criteria) parts, its ILK. TH, and CUE. Just as ULISTs and CLISTs are defined 
for list structure, BRAND X defines UT RI PL Es and CTR I PLEs.t 

Other MACLISP data types (arrays and hunks) arc co~sidcred innately unique and canonicat.t 

3. Constructor and Selector Functions 

3.1 List Structure 

Corresponding to LISP's CONS, BRAND X additionally provides UCONS and CC0NS to create new ULISTs 
and CLISTs. As a convenience, other functions which form unique and canonical list structure are also 
provided. 

•Even this has exceptions. as LlSP's INTERN actually stores its representative instances in an OBLIST or OBARRAY, of which 
multiple versions may be maintained. In addition. some USP functions can create atomic symbols without interning them. To add 
to the possible confusion, USl''s definition of EQUAL unfortunately yields false when two symbols arc SAMEPNAMEP but not EQ. 

tBRANO X exists in versions which either include or do not include support for triples. The following documentation is for the 
vcr.;ion including triples, but it notes where differences arise in the non-triple version. 

fToere is no reason why notions of uniquenes.s and canonicity could not be extended to these other structured objects as well, but 
this was deemed unnecessary and is not currently done. 
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UCONS xy 

Creates (or finds) the unique ULIST whose CAR is (EQ) x and CDR is (EQ) y. If both arguments 
arc canonical, the corresponding CLIST is returned instead. The arguments are not altered, ex· 
cept under the control of the flags CCONS, UATOM, and UNUMBER, described below. Except for 
these circumstances, the standard form LISP conditions, that { EQ X { CAR { UCONS X Y}}) 
and ( EQ Y ( CDR ( UCONS X Y))), arc satisfied. 

CCONS x y 

Creates (or finds) the canonical CLIST whose CAR EQUALS x and whose CDR EQUALS y. 

Because the criteria! components of a canonical structure must be canonical, canonical copies of 
any non-canonical arguments must be used to form the new structure (sec CANON I CAL, below). 
Therefore, it is not in general true that ( EQ X ( CAR ( CCONS X Y))) and ( EQ Y { CDR 
(CCONS X Y})). 

ULIST XJ,·· · ,Xn 

Makes a UL IS T of its arguments by repeated application of UCONS. 

ULIST* XJ, ... , X11 

Makes a LILI ST just as ULI ST. except that the list ends with the final CDR being x" rather than 
NIL. ULIST• is to ULIST as I.ISP's LIST* is to LIST. Note that {ULIST* x y) is the same 
as (UCONS x y), and that (ULIST* x) is the same as x, except for possible conversions due 
to the flags CCONS, UA TOM, or UN UMBER. 

*ULI ST arglist 
Applies the function ULIST to its single argument, which becomes the list of arguments to 
ULIST. 

* U LI ST* arglist 
Applies the function ULIST* to its single argument, which becomes the list of arguments to 
ULIST*. 

CLIST X1 , ... , Xn 

Makes a CL IST of its arguments by repeated application of CCONS. 

CLIST• XI,··· , xn 

Makes a CLIST of its arguments, whose final CDR is Xn. Sec ULIST* for more details. 

*CLIST arglist 
Explicit list of arguments version of CLIST. See *ULIST. 

•cusr• arg/ist 
Explicit list of arguments version of CLIST*. See *ULIST*. 

The selector functions for unique and canonical list structure are simply LJSP's CAR and CDR. 

3.2 Triples 

7 

The data type TRIPLE, provided in some versions of BRAND x, is a three-component structure, whose 
components arc called ILK, TIE, and CUE. The following functions compose and decompose such objects: 
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TRIPLE ilk tie cue 
Creates a non-unique, non-canonical triple whose three components are ilk, tie, and cue. 

UTRIPLE ilk tie cue 
Creates (or finds) the unique TRIPLE with components each EQ to the given arguments. The 
flag CCONS, if non-NIL, causes CTRIPLE to be used instead. The flags UATOM and UNLIMBER 
have the same effect as for UCONS. 

CTRIPLE ilk tie cue 
Creates (or finds) the canonical TR I PLE with components each EQUAL to the given arguments. 
Because the components of canonical structures must be canonical, the CANON I CAL versions of 
the three arguments arc used. 

ILK triple 
This function returns the ILK component of a triple. ·111e function +ILK has the same effect but 
performs no error checking." 

TIE triple 
This function retrieves the TIE component of its argument. +TIE may be used more efficiently 
if the argument is known to be a triple. 

CUE triple 
This function retrieves the CUE component of its argument. +CUE exists for the same effect 
without error checking. 

3.3 Control Flags 

The following flags control whether unique lists (and triples) are fanned at all or always made canonical, · 
and whether atomic symbols and numbers must be interned before being used as components of unique 
structures. 

CCONS 
If this flag is non·N IL, UCONS always acts like CCONS-this eliminates ULISTs from BRAND X. 

UATOM 
If this flag is non-NIL, then INTERNcd versions of all atomic symbol arguments are used by 
UCONS-this eliminates the use of non-interned atomic symbols from unique list structure. 

UNLIMBER 
If this flag is non·N IL. then NI NTE RNcd (see below) versions of all numbers are used by 
UCONS-this assures that all numbers appearing in unique structure arc also unique. 

Each call to UCONS, CCONS, UTRIPLEand CTRIPLE causes the created cell to be added under the CAR-
1 (inverse CAR) property of its CAR (ILK, in the case of triples). This structure is necessary to maintain unique· 
ness and canonicity, and is also often useful for other indexing and scarchi~g applications. The function CAR-1 
retrieves the list of objects so indexed under its argument. 

CAR-1 object 
Retrieves the list of objects whose CAR (or ILK) is known to be object. These will typically 
be only unique or canonical objects, because others are not cross-indexed by the creation func· 
tions. 

•in the rurrenl implementation. the ILK is in fact the CAR of the MACLISP structure used to represent triples. 'Thus.· ( CAR triple) is 
identical with (ILK triple), and this fact may be useful for writing efficient algorithms. It is better programming practice, however, 
to use ILK or +ILK when a triple is involved, because of the desire for data abstraction. 
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4. Unique and Canonical 

The functions UNIQUE and CANON I CAL arc provided to return the unique and canonical versions of their 
inputs. Listed here are 

1. the BRAND x types to which each function applies, 
2. the components of those types considered criteria! by the function, 
3. the equality predicate used on objects of that type, and 
4. a description of the resulting value returned by the function. 

4.1 UNIQUE 

atomic symbol print name SAME PNAME P 
Atomic symbols arc made tiniquc by the LISP primitive INTERN. 'Ibc representative clement of 
the equivalence class under SAME PNAME Pis the first symbol seen with that name. 

number type and value EQUAL 
Numbers arc interned by NI NT E RN, which uses a hashing scheme defined by BRAND x and also 
used by the property list mechanism. 'Jbe representative is the first number of that type and 
value which is NINTERNed. 

LIST or ULIST CAR and CDR EQ-CAR-CDR 
Yields the unique ULIST (or CLIST if the components are canonical or the flag CCONS is 
nonNIL) fanned of the CAR and CDR of the input. If the input is a ULIST, it is unchanged. [fa 
LI ST, its CAR and CDR are UCONSed. The representative element cannot be EQ the first LI ST 
made unique because BRAND x implements LI STs and UL IS Ts as different LISP data types. 

TRIPLE orUTRIPLE ILK, TIE and CUE EQ - ILK- TIE-CUE 
Yields the unique UTRI PLE (or CTRI PLE if the components arc canonical or if the flag CCONS 
is non-NIL) formed of the ILK, TIE and CUE of the input. If the input is a UT RI PLE, it is itself 
returned. If it is a TRIPLE, its components arc combined by UTRI PLE. 

CLIST or CTRIPLE self EQ 
CLISTs and CTRIPLEs arc innately unique because there is no mechanism for forming other 
copies of them-EQUAL implies EQ. 

other self EQ 
Hunks. arrays, and other LISP data types are considered to be unique, forming singleton classes 
under the chosen equivalence relation. A relatively straightforward extension of the ideas used 
for the creation of unique list structure could also be applied to hunks and arrays, but this has 
not been done in BRAND x. 

4.2 CANONICAL 

atomic symbol print name SAME PNAME P 
Atomic symbols are made canonical by the LISP primitive INTERN. The representative element 
of the equivalence class under SAME PNAME P is the first symbol seen with that name. This is the 
same as under UNIQUE. 

number type and value EQUAL 
Numbers arc interned by NI NT E RN, which uses a hashing scheme defined by BRAND x and also 
used by the property list mechanism. The representative is the first number of that type and 
value which is NI NTE RNcd. This is the same as under UNIQUE. 
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LIST,ULIST,orCLIST CAR and CDR EQUAL 
The canonical representative of any fonn of list is a CLIST. The canonical fonn of a CLIST 
is itself. That of a LIST or ULIST is the CCONS of the CANONICAL versions of its CAR and 
CDR. Note that this may require the complete copying of LI ST or ULI ST structure into CLIST 
structure. CLISTs are easily recognized in the implementation, so that EQUAL tests can be 
perfonned by EQ and canonicalization is trivial. 

TRIPLE. UTRIPLE orCTRIPLE ILK, TIE and CUE EQUAL 
The canonical representative of any fonn of triple is a CTR IPL E. The canonical fonn of a 
CTRIPLE is itself. That ofa TRIPLE or UTRIPLE is the CTRIPLE of the CANONICAL versions 
of its ILK, TIE and CUE. Note that, as for list structure, this may require the extensive copying 
of TRIPLE and UTRIPLE structures. EQUAL tests on CLISTs may also be perfonncd by EQ. 

other self E Q 

Hunks. arrays, and other LISP data types arc considered to be canonical as well as unique, 
forming singleton classes under the chosen equivalence relations. A relatively straightforward 
extension of the ideas used for the creation of canonical list structure could also be applied to 
hunks and arrays, but this has not been done in BRAND x. 

4.3 Interning of Numbers 

The function NI NTE RN is used to intern numbers in BRAND x. NI NTE RN guarantees that any two 
NINTERNcd numbers of the same LISP type (i.e., FIXNUM, FLONUM, or BIGNUM) will be EQ. Under control of 
the UN UMBER flag, numbers may be automatically interned when used as part of any suucturc in the BRAND x 
notation. 

5. Predicates 

BRANO x provides a number of predicates to test objects for their types. The most general of these is 
BRAND-X-OBJECTP. which returns NIL except for BRAND x objects, for which it returns the type of the 
object. The first group of predicates test their argument for being of a particular type or types. The next 
arc general tests for the uniqueness or canonicity of their argument. Finally, the predicate KNOWN is used to 
dctcnninc if a structure of a given fonn is already present in the BRAND x database. 

5.1 General Type-Testing Predicates · 

BRAND-X-OBJECTP object 
Yields NIL for any argument unless it is one of the BRAND X types ULIST, CLIST, TRIPLE, 
UTRIPLE, or CTRIPLE (the latter three only in BRAND x with triples). In this case, the atomic 
symbols listed above arc returned, as an indication of the value. t\. generalization of LISP's 
TY PEP function, which always returns the type of its argument, would be (OR (BRAND-X
OBJECTP x) {TYPEP x) ). 

UCONSP object 
This predicate tests.whether its argument is a unique cons cell (ULIST). 

CCONSP object 
This predicate tests whether its argument is a canonical cons cell (CL 1ST). 
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CUCONSP object 
This predicate tests whether its argument is either a unique or a canonical cons cell (ULIST or 
CLI ST). If true, it returns the atoms ULIST or CLI ST, respectively. It could be defined as { OR 
(AND (UCONSP x} 'ULIST} (AND (CCONSP x} 'CLIST}}, but is implemented more 
efficiently. In BRAND X without triples, this function is identical to BRANO-X-OBJECTP. 

The following predicates are defined only for BRAND x with triples: 

TRIPLEP object 
This function returns NIL for any object which is not a triple, and it returns one of the atoms 
TRIPLE, UTRIPLE, or CTRIPLE if its argument is a non-unique, unique, or canonical triple, 
respectively. 

NUTRIPLEP object 
This predicate tests whether its argument is a non-unique triple. 

UTRIPLEP object 
This predicate tests whether its argument is a unique triple. 

CTRIPLEP object 
lbis predicate tests whether its argument is a canonical triple. 

5.2 Tests for Unique and Canonical Structure 

11 

The predicates UNIQUEP and CANONICALP test whether their arguments arc unique and canonical 
· respectively. The meaning of these predicates is that any object which passes one would itself be returned by the 

functions UNIQUE and CANON !CAL. INTE RNP and NINTERNP arc special cases of these for atomic symbols 
and numbers. 

UNIQUEP object 
A predicate which dctennines whether its argument is unique. It is the case that (UNIQUEP 
(UNI QUE x}} is T. Also, for any object which passes this predicate, it is also the case that 
{ EQ x (UNI QUE x)). From this follows that atomic symbols are UN !QUE P just when they 
arc the representative of their equivalence class chosen by INTERN, numbers when chosen by 
NI NT E RN, LISP lists and non-unique triples are never unique, and all other objects are unique. 
Note that all canonical objects arc also unique, but not the other way. 

CANON ICALP object 
/\ predicate which dctcnnincs whether its argument is unique. It is the case that { CANONICALP 
{CANONICAL x)} is T. Also, for any object which passes this predicate, it is also the case that 
{ EQ x (CANONICAL x)) . Atomic symbols and numbers arc canonical if they arc unique, 
lists. unique lists (UCONSP), non-unique and unique triples (NUTRIPLEP and UTRIPLEP) are 
not canonical, and everything else is. 

INTERNP atomic-symbol 
Determines whether its argument is the canonical representative of its equivalence class chosen 
by INTERN. This function depends on the internal method used by MACLISP's INTERN func
tion. 
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NINTERNP number 
Determines if its argument is the canonical representative of its equivalence class chosen by 
NINTERN. 

5.3 KNOWN 

BRAND x provides a special form, KNOWN, for the convenient operation of testing to sec whether a unique 
or canonical BRAND x object of a certain form has already been created or not. TI1is form is also useful for 
testing the presence of properties and labels, which are described below. 

KNOWN expression 
The expression is evaluated in an environment wherein none of the BRAND x functions which 
nonnally form new structures, add property values, or assign labels (sec below) is allowed 
to do so. Instead, each checks whether the requested formation, property, or assignment is 
already present. lf yes, the specified object is returned; otherwise. NIL. For example, ( KNOWN 

( CCONS 'A 'B)) will return T if and only if the canonical cons of 'A and 'B has previously 
been made. L!sP's backquute facility, as extended to BRAND x objects, is convenient for specify
ing the expression argument to KNOWN. Thus, the typical use of KNOWN is to check for the 
presence of some form. label. or properties in the same syntax in which they would be input: 
( KNOWN '(BALL , NUM &COLOR RED])." Note that this macro serves to check only BRAND 
x facilities supported in the BRANO x syntax; specifically, those functions which ultimately 
use UCONS. CCONS. UTRIPLE, CTRI PLE and ASSIGN- LABEL, and internal functions which 
cause properties to be added in response to input expressions. It docs not control other BRAND X 
functions nor basic LISP ones such as CONS.t 

6. Properties 

BRAND x extends the LISP notion of properties to all objects of the language, including all MACLISP data 
types and other BRAND x olJjects. Thus, any object may have a property list [1]. The functions GETP, GETPL, 
PUTP, REMP, PROPLIST, and SETPROPLIST arc extensions of and subsume the corresponding MACLISP func
tions GET, GETL, PUT PROP, REMPROP, PUST, and SETPLIST. GET PU is provided as an efficient alternative 
to GET PL. In addition, BRAND x supports two functions, ADDP and DE LP, which assume the convention that 
a property has a list of values rather than a single value. In this case new values arc added at the front of the 
list; if an existing value is again added, it causes that value to come to the front of the list, but is not duplicated. 
Attempts to use ADDP or DE LP on properties which do not have list values is in error. 

GET P item prop 
Retrieves the prop property of item, or NIL if it has none. This corresponds to LISP's GET. Note 
that although prop may be any object, searching of the property list is by EQ; therefore, typically 
only canonical objects should be used as property indicators. 

GETPL item list-of props 
Retrieves part of item's property list starting with the first property found that is among list-of 
props, or NIL if none is found. This corresponds to LISP's GE TL. 

•This syntax will be explained below. 

ttnternally, KNOWN establishes a CATCH tag, NO-ULIST-CREATION- TAG, and binds the variable *OO- NOT-CREATE-ULIST to T, 
then evaluates its argument in that environment When one of the above·mentioned functions detects a failure of the fonn to match 
ex isling structure, ii throws NIL. 
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GE TL 1 item prop1, • •• , propn 
A variable-argument version of GET PL. which avoids the need to create the list-of props list As 
implemented, this is most efficient when n is 1, which is a common case. 

PUT P item val prop 
Puts (or replaces) val as the prop property of item, and returns val. This corresponds to LISP's 
PUT PROP. 

REMP item prop 
Removes the prop property of item. The returned value is that part of the former property list 
whose CAR is the removed property, or NIL if the property was not present 

PROPLIST item 
Returns the whole property list of item, or NIL if it has no properties. This corresponds to LISP'S 
PUST. 

SETPROPLIST item prop/isl 
Sets (or replaces) the property list of item with prop/isl. This corresponds to LISP's SETPLIST. 
Note that this operation is generally poor programming practice, as it may destroy information 
on the property list of an item needed by some package independent of the one doing the 
SETPROPLIST. 
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As described above, ADOP and DELP manage properties with lists as their values. lbese lists are main
tained as non-duplicating, in reverse order of addition. Duplication is checked for by the predicate EQ, but 
under control of the UN UMBER and UA TOM flags, numeric and atomic symbol arguments may be made canoni· 
cal before they arc added or deleted. For example, if UNUMBER is non-NIL, then ( ADDP 'X 999 'P) done 
twice will leave only the single NINTERNed 999 among X's P properties. If UNLIMBER is NIL, however, the . 
same double addition would leave two (in MACLISP, where two instances of 999 are not EQ). 

ADDP item val prop 
Adds the value val to the prop property of item. That property must either already be a list or 
must not exist before the ADOP, or else this is an error. If val is a number or atomic symbol, its 
canonical instance may be used under control of the UNUMBE R and UA TOM flags. The new value 
is added at the front of the value list. but if that value is already present (by EQ), it is simply 
pulled to the front of the list The function returns the new list of values. 

DELP item val prop 
Deletes the value val from the prop property of item. That property must be a list or must 
not exist If val is not among the values, no action is taken. Comparison of val to the existing 
values is by EQ, except that if val is a number or atomic symbol, its canonical instance may be 
used under control of the UNLIMBER and UATOM flags. If the last value in a list is deleted, the 
corresponding property is removed. lbe function returns the new list of values (possibly NIL). 

A note on implementation: BRANO x properties for atomic symbols arc implemented using LISP's property 
list mechanism. Property lists for UCONS, CCONS, TRIPLE, UTRIPLE, and CTRIPLE objects arc included as 
one component of the internal representation of the object. Property lists for numbers are stored in a hash 
array which is also used by NI NTE RN; hashing is by SXHASH and comparison by EQUAL. Property lists for all 
other LISP objects, including ordinary CONS cells, are stored in a separate hash array. hashed by MAKNUM and 
compared by EQ. 
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7. Labels 

Any BRAND X object may be labeled. When printed, an object's label may (under user control) be printed 
instead of the object itself. 

ASSIGN- LABEL label item 

Assigns the label label to the object item. label must not already have been assigned to another 
object. 

REASSIGN-LABEL label new-object 
Assigns the label label to the object new-object and removes label as the label of whatever 
object it had been assigned to previously. In addition, an attempt is made to alter all accessible 
past uses of label to now use new-object instead of what label previously labeled. Note that 
this operation may have very undesirable side-effects and should be used only as a temporary 
measure, e.g., to correct the state of a data hasc. It is dangerous to use, because not all previous 
uses of label can be found and therefore those not found (e.g., in non-unique, non-canonical 
structure, in the CDR position of any structure} will continue to use the old object. 

LABEL-1 label 
Retrieves the object labeled by label, or NIL if the argument is not in fact the label of anything. 

GET- LABEL label 
Retrieves the object labeled by label, or creates a dummy object whose label is label if label 
labels no object 

*DUMMY- LABEL-CREATOR 
If this variable is NIL, BRAND x·s standard method is used for creating dummy label objects. 
In BRAND X with triples, a dummy label object is formed by { UTR I PLE label nil 'DUMMY

LABE L); in BRAND X without triples, by { UCONS label 'DUMMY-LABEL). In either of these 
cases, a value ofT is aJdcd as the DUMMY-LABEL property of the object. If the variable is non· 
NIL, it is a function of one argument (the label), which is called to create dummy label objects. 
Default is NIL. 

UGL 
Returns all Undefined Global Labels. A utility function which finds all those atomic symbols in 
the current OBAR RAY which label a dummy label object. 

Included here is a short discussion of a number of problems which can arise in the use of labels. These 
problems are not easily solved, and arc solved not at all or only badly by the current implementation of BRAND 

x. This section, in small font, may be skipped by all but the cogniscenti and those suspecting labels as the source 
of their unexplainable troubles. 

The intent of a label is to be simply an abbreviation for the object it labels. If labels were used only after the 
object they labeled was created. and if labels were never reassigned. then these problems would not arise. However, 
because of the possible need for mutual recursive reference in dala structures. and because of lhe more frequent need 
to refer to something in an interactive environment before having completely defined it. labels do get used before they 
are assigned. The implementor of a system must choose some representation for an unassigned label and must decide 
how such an object can be used. One possible choice is to ban all use of such objects. but this fails the criteria outlined 
above and is also difficult to implement in a language like LISP, in which information hiding is impossible. Another 
choice allows reference to these objects but not an examination of their components. This would permit the use of 
unassigned labels in constructing olher objects, but would prohibit asking for, say, the CAR of such an object. This 
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is also impossible to implement in LISP. and any attempt to enfor<:e such· conventions systematically would be very 
expensive; many algorithms can be significantly speeded up if they need not handle a special case of unassigned labels 
because the implementor knows that the test already in use in the algorithm will also succeed or fail appropriately for 
these. Therefore. RRAND x pem1its the examination of the representation of unassigned labels, which have the structure 
described above under the definition of *DUMMY-LABEL -CREA TOR. 

The use of labels before they are assigned creates other very serious problems: 
I. If an object and an unassigned label are both used to construct other objects, and then if that label is 

assigned to that object. then there is in general no good way lo ass.ure that all previous uses of the two 
will indeed refer to the identical object. Thus. formerly-made references to the label will not be EQ to 
formerly-made references to the object This could be fixed only by an elaborate indexing mechanism 
which keeps track of the use of all unassigned labels, or by an allernative mechanism which scans the 
entire data base for uses of the label (references to its dummy object) and replaces them with the actual 
object An alternative. possibly available on different computer architectures. would be to define EQ 
to follow data indirections ("hidden pointers") before making address comparison tests. but this is not 
generally feasible. This problem is easily avoided (as it is in the current BRAND x implementation) if 
the label is unused before its assignment: then. the dummy object is never created. If the label has 
been used. but the object to which it is assigned has not yet been created, the problem is also avoidable 
if the object can be created "on top of' the dummy object representing the label. This is done in the 
current RRAND x whenever it can be; it fails if the underlying LISP data types of the in tended object 
and the dummy object are distincl-e.g .. if a formerly used dummy label (whose default is created as 
a UCONS or UTRIPLE, with underlying LISP data type HUNK4). is then assigned lo a LIST. 

2. Canonicalization of data structure can fail because some identity that depends on label assignment may 
not be known when it is computed. For example, (CLIST 'A 'B 'C) and (CCONS 'A (GET
LABEL 'FOO)) may appear to have lillle in common; yet, if (ASSIGN-LABEL 'FOO (CCONS 'B 
'C) ) is later done. the two expressions are seen to be identical. However, the second canonical structure 
was created before this was known. and cannot be simply made to be EQ to the first. The same problem 
also appears when labels are used as a mechanism for creating circular structures. For instance, after 
(ASSIGN-LABEL 'FOO (CCONS ' BAR (GET-LABEL 'FOO))). we have a new structure whose 
CAR is BAR and whose CDR is itself. Repeating this operation with different labels will create distinct 
such structures. although of course there should be only one because it is canonical. The solution to this 
problem is extremely hard. requiring a fast algorithm for identifying isomorphic structures and possibly 
a complete traversal of the data base any time a circular structure is formed. 

8. Notation 

One of the powerful simplicities of LISP is that, on the whole, any object may be printed out in such a 
way that it can later be reconstituted by reading in that printed representation.* Tnis notion is preserved and 
extended to DRANO X objects. 

8.1 Lists, Ulists, and Clists 

Our goal has been to preserve LISP syntax as much as possible. Therefore, LISTs and CONScs may be 
formed as in IJSP: 

reading ( A . B} is equivalent to evaluating ( CONS 'A 'B }, and 
reading ( A B C} is equivalcntto evaluating ( LIST 'A 'B 'C ). 

UL IS Ts and CL IS Ts are written in a manner similar to LIS Ts, but with square brackets instead of parentheses. 
Thus, 

reading [A . BJ is equivalent to evaluating ( UCONS 'A 'B }, and 

•This is not completely true. as some data types (e.g., arrays in MACLISP) have no printed representation. and furthennore, circular 
structures (those which include themselves as a pan) cannot nonnally be printed. 



16 BRAND X MANUAL 

reading [ A B C] is cqu~valcnt to evaluating ( UL! ST 'A 'B 'C). 
UL! STs, when they are composed of non-unique components, arc shown in the appropriate mixture of paren
theses and square brackets. Thus, for example, 

reading [ A . ( B)] is equivalent to evaluating ( UCONS 'A ' ( B) ) . 
Canonical structures must always be composed only of canonical substructures; thus, their printed repre
sentation is free of parentheses. In contrast with the above ex~ple, 

(CCONS 'A '(B)) yiclds[A B]. 

8.2 Triples, Utriples, and Ctriples 

In a manner analogous to lists. a notation is defined for triples. The fundamental triple notation looks like a 
list of three clements, the ILK, TIE and CUE, but with an asterix between the ILK and TIE. Thus, 

reading ( A *B C) is equivalent to evaluating (TRIPLE 'A 'B 'C) . 

Similarly, 
rcading[A*B C] iscquivalcnttoevaluating(UTRIPLE 'A 'B 'C), 

and CTR! PLEs are formed when each component of a UTRI PL Eis canonical: Note that in a BRAND x without 
triples, the astcrix has no special significance and, for example, ( A *B C) would be read as a list of two atoms, 
A*B and C. 

8.3 Labels 

Labels are assigned by using the syntax 
( <label> = <expression>) or [ <label> = <expression>]. 

For example, 
[AN-EXAMPLE= THIS IS AN EXAMPLE] 

assigns to the canonical four-list [THIS IS AN EXAMPLE] the label AN -E XAMPLE. 
A label is used by prefixing it with an exclamation point in the syntax. Thus, after the last example, 

[NOW. !AN -EXAMPLE] 
is entirely equivalent to 

[NOW THIS IS AN EXAMPLE], 
and will be printed in the shorter form. • 
8.4 Properties . 

LISP docs not provide any explicit syntax for the assignment or display of properties. In BRAND x, within 
the square brackets or parentheses used in writing an expression, the criteria! expression may be followed by 
any number of property assignment clauses. Each is of the form: 

an ampersand(&), followed by the property indicator, followed by any number of values. 
The values arc added (via ADDP) so that they appear in the order given in the syntax. Thus, if [BALL 1] has 
no COLOR property to begin with, then after 

[BALL 1 &COLOR RED GREEN BLUE], 
we have 

(GETP '[BALL 1] 'COLOR}=> (RED GREEN BLUE). 
To support effective optional cross-indexing in the data base. BRAND x permits the specification of both 

forward and reverse properties at the same time. To specify a reverse property link, follow the initial ampersand 
and property by a second ampersand and property, before the values. For example, after 

[BALL 2 &COLOR &HAVING-THIS-COLOR RED WHITE], 
we have 
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(GETP '[BALL 2] 'COLOR}=> (RED WHITE),and 
(GETP 'RED 'HAVING-THIS-COLOR}=> ([BALL 2]). 

17 

In LISP, an expression such as ( . X) is syntactically invalid, as it appears to CONS nothing onto X. In 
BRAND X, however. we interpret that fonn as equivalent to just x: This provides a syntactic means of attaching 
properties (and labels as well) to any BRAND x object. For example, we use the following notation to attach 
POSSIBLE-VALUES to COLOR: 

[. COLOR &POSSIBLE-VALUES 
RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET] 

8.5 Anaphora 

We often find it convenient to refer to parts of an expression as that expression is being written. In 
specifying the representation of a frame in a semantic network, for example, we may need to refer to the subject 
role of the frame in close proximity to our specification of the expression representing the frame itself. For 
example, 

[RUN INTO TROUBLE &ROLES 
[SUBJECT [RUN INTO TROUBLE] 

&C PERSON]] 
to indicate that run into trouble has a subject role and that whatever satisfies that role must also satisfy the 
characterization person. Note that, after the above, 

(GETP '[RUN INTO TROUBLE] 'ROLES) 
yields 

([SUBJECT [RUN INTO TROUBLE]]). 
It is undesirable to have to repeat the expression [ RUN INTO TROUBLE] each time a role of that frame is to 

be specified or referred to. Instead, BRAND x allows us to write 

[RUN INTO TROUBLE &ROLES 
[SUBJECT : &C PERSON)], 

which is read identically with the expanded fonn above. Here, the colon (:) acts as an anaphor, referring to the 
critcrial expression which is one level of parentheses or brackets out from the appearance of the colon. 

DRANO x supports a general facility for anaphora, expressed via successive colons not separated by space. 
The number of colons specifics the number of levels of parentheses and brackets to move out to find the 
anaphor being referred to. For example, the ( PERSON : : ) in 

[RUN INTO TROUBLE &ROLES 
[SUBJECT : &C (PERSON ::)]], 

stands for ( PERSON [RUN INTO TROUBLE]). 
Spaces arc n01mally insignificant in DRANO x except to delimit atomic symbols. In the case of colon 

anaphora, however, spaces may not be placed between the colons. Thus, in the above, if we had written 

( PERSON : : ) 
instead, it would have been read as 

•The rationale for this is that MACIJSP's LISP function. which forms successive conses of its arguments (e.g., ( LIST• 'A 'B 
'C) is equivalent to ( CONS 'A ( CONS • B 'C)), which is of course ( A B . C )), yields just its single argument if given only 
one argument. 
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{PERSON (SUBJECT (RUN INTO TROUBLE]] (SUBJECT (RUN INTO TROUBLE]]). 
When writing non-unique list structure, the colon anaphor is not only a convenience but more essential, 

because rewriting an expression cannot create uniquely the same one as a previous instance. Thus, if we wished 
to fonn a structure like that of the simpler example above. but from non-unique lists. we could write 

(RUN INTO TROUBLE &ROLES 
{SUBJECT : &C PERSON)), 

which is not equivalent to the fully written-out version 

{RUN INTO TROUBLE &ROLES 
{SUBJECT {RUN INTO TROUBLE) &C PERSON)), 

because the two expressions ( RUN INTO TROUBLE) are not EQ in the second case. 
Anaphora provide a fo1m of local labeling. 1ney also pcnnit the printing of circular structures, and are 

capable of extension to pcnnit reading of all such structures as wen: 

8.6 Syntax 

To recapitulate the syntax of BRAND x fonnally. we present an extended BNF description: 

<x-expr> : : = <Lisp - atom> I (<x -expr- body>) I [<x-expr- body>] 
<label-spec> I <colon-anaphor> I <quoted- form> 
<backquoted- form> I <convna-form> 

<x-expr- body> ::= {<label:x-expr> =} <crite r ial -expr> {<prop- specs>}• 

<criterial-expr> :: = {<x-expr>}• {.<x- expr>} 
<ilk: x- exp r>•< tie: x-exp r> <cue: x - expr> 

<prop-spec> : : = &<prop: x- expr> {&<prop: x- expr>} {<val: x-expr> }+ 

<label - spec> :: = l<x-expr> 

<colon-anaphor> ::= {:}+ 

<quoted-form> ::= '<x-expr> 

<backquoted - form> :: = '<x-expr> 

<comma-form> : : = ,<x-expr> 

•Technically. the formation of truly circular expressions presents some difficulties more severe than those encountered in forming 
struCUJrcs that are circular through property attachment~. For example, in forming the structure [ A [ B : ]) (whose CADADR is 
EQ to itself). we appear to need the whole structure before we can form its suhstructurc. Although partly-succcs.~ful tricks such as 
those involving the creation of circular structure by use of labels can be used here as well, BRAND X does not now support an 
input syntax for circular structures of the kind in which an expression is its own subexpression. If such an expression is formed 
(e.g.. by RPLACA). however. the printer will print it with anaphora. 
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In the above, we have used brqces ( { ... } ) to indicate optional phrases, • and + as superscripts on optional 
phrases to indicate zero or more and one or more permitted repetitions, respectively. Metasyntactic variables 
arc in angle brackets ( < ... > ); such a variable of the form <name:type> is an expressive variant of just <type>
thus, (prop:x-expr> is merely <x-expr> with a suggestion of its meaning as a property descriptor. Spaces are 
not significant, except as separators and as noted above between successive colons in colon anaphors. Note that 
although any x-expr is acceptable as a label, by convention we will use only atomic symbols. Quotation is as in 
LISP, so that 'X is a convenient abbreviation of (QUOTE X). 

Backquoted fonns and comma forms require a little explanation because, although they are commonly 
used in MACLISP, they are not innately part of LISP. They provide a facility for abbreviating programs which are 
to construct structures of a particular form. For example, the form 

'(AB (C ,D) ,E (F G)) 

is read as 
(LIST 'A 'B (LIST 'CD) E '{F G)). 

Variable parts of such a stmcturc arc preceded by a comma. Other parts are quoted if they arc constants or 
formrd up by the appropriate BRAND x operation." 

9. Reading and Printing 

The USP reader and printer have been thoroughly "hacked" by BRAND x to produce reasonable behavior. 
Nevertheless. most normal LISP uses of reading and printing should continue to work. 

ll1c most significant change in reading is the assignment of special meaning to numerous characters which 
;1re treated as alphabetic in LISP. The characters [, ], &, ! , =, : and (for BRAND x with triples), • must be typed . 
preceded by a slash(/) if they are to be taken alphabetically. 

The function ABSORB is provided to permit the compilation of BRAND x data structures from a file.t 

ABSORB any-forms 
ABSORB simply ignores any number of arguments. It is like a variable-number-of-arguments 
QUOTE, intended to quote "top level" data items. 

The BRAND x printing functions use a combined set of functions which have the ability to perform "pretty 
printing", checking for anaphora, and selective printing of the labels and properties of objects as well as their 
criteria) parts. These printing facilities arc controlled by a number of flags. 

BRAND- X-T0PLEVEL -PRINl object(optional stream) 

This function prinl 's object onto stream or the standard output if NIL, under control of the flags 
below. This is also the function used by LISP's "top level" read-eval-print loop for BRAND x. 

*PRINT-PROPS 
If non-NIL, the top level printer will show the properties of an object being printed. Default 
is T. Only those properties which have lists as values and which arc not among *NOPRINT 
PR0PS are printed. 

•eurrently. the use of nested backquoted expressions fails to work correctly. Thus, for example, one cannot write • (A B ,C 
'(,D}}. which could be used to· represent (LIST 'A 'BC (LIST D}). 

tThis is actually due to an error in the MACLISP compiier. which ~mes that quoted forms at "top level" in a file can have no 
effect: it therefore throws them away. Writing these as arguments to ABSORB merely protects them from this fate. 
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*NOPRINT-PROPS 
/\ list of propcny indicators which arc not to be used to print properties even if •PR I NT
PROPS is non-NIL. Default includes properties used internally by I.ISP and BRAND x, such as 
EXPR and LABEL. 

*PRINT-STM-PROPS? 
If non-NIL, the top level printer will print the properties of non-unique, non-canonical objects 
as well. Default is NIL. 

*PRINT-SYMBOL-PROPS 
If non-NIL, the top level printer will print the properties of atomic symbols. Default is T. 

*PRINT-LABELS 
A variable which controls whether PRINT nonnally prints the label of an object or the object 
itself. If non-NIL, the label is printed. Default is T. 

*PROPERTIES-OF-INTEREST? 
NIL. ALL. or a list of property indicators which arc to be printed within nested structures (not 
only at top level). Default is NIL, and the effect of this flag is overridden by •NOPR INT-PROPS 
and *PRINT -STM-PROPS. 

•PRINT-ALL-ANAPHORA? 
If non-NIL. then circularity will be represented by anaphora in print-out at all places. If NIL, 
printing will be significantly faster (one, rather than two passes), but a structure like ( A • ( B 
( : ) ) ) will be printed less clearly because the one-pass printer will begin with ( A B ... ) 
before realizing that a new list must start with B to provide a reference point for the anaphor. 
Default is T. 

*DELIMIT-TRIPLE-INDICATOR? 
If non-NIL, the • delimiting the ILK and TIE of a triple is surrounded by spaces. Otherwise 
not. Default is NIL. 

10. Using Brand X, and Relation to Other Lisp Packages 

BRAND x is built using LSB [5], the Layered System Building package, which is not needed by it at run
time. A BRAND X without LSB may be invoked by : BX in ITS, a BRAND X with I.SB by : BXLSB, and a BRAND X 

with I.SB and the OWL definitions and support [41 by : BXOWL. 
BRAND x supports the use of the LOOP iteration macro facility by providing the following paths: 

{LOOP FOR X BEING INFERIORS OF Y DO .•• ) 

is equivalent to 
{LOOP FOR X BEING EACH CAR-1 OF Y DO •.. ), 

which is in turn equivalent to 

(DO ((XX (GETP Y 'CAR-1) (CDR XX)) (X)) 
( ( NULL X)) 
(SETQ X (CAR XX)) 
... ) 
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The INFERIORS (or INFERIOR) path is special purpose, to help enumerate those objects "under" another. 
The second form is general, allowing any property indicator to be substituted for CAR-1. For much more 
functionality and details, refer to the documentation on the LOOP package [3]. 
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