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l.Introductlon. We describe a property of Boolean functions of n variables which 
implies lower bounds on the size of all Boolean formulas for functions with· the 

n . 
property. Let Ck be the Boolean function "congruent to zero modulo k" of n 

arguQ1~nts, that is, Ck(xt,···,xn) iff ri=JXi = 0 (mod k). We show that Ck has the 
property and conclude that there is a constant € > 0 such that any Boolean formula for 

Ck over the full basis of binary and unary Boolean operations (/\, v, ..,, EB, NAND, 
etc.) is of length exceeding m log(n/k) for all k ~ 3 and all n. There are formulas for 

C4 of length asymptotic to n log2n, so our bound is achieved to within a constant 
multiple in this case. 

The logarithm of the minimum length of a formula for a Boolean function gives 
the minimum time, i.e., depth, of a combinational circuit computing the function. This 
remark provides some technological motivation for our results. The ·depth of formulas 
is also related to the space and parallel time of computations and so is of basic concern 
in the theory of computational complexity; see [Pat 76, McC 78a, 78b, Bor 77) for 
further discussion. 

General counting arguments allow one to conclude that most Boolean· functions 
of n variables require formulas of size asymptotic to 2n /log2n [RiS 42, Lup 60, Kri 61). 
The largest lower bound provable for explicit examples however is proportional to 
n2 /log n ·by Neciporuk [Nee 66].1 Although Neciporuk's method yields lower bounds 
for many explicit examples {cf. P.at 76, 77), no symmetric' function possesses the property 
which implies Neciporuk's lower bounds. Hodes and Specker [HoS 68] provide another 
general property of functions which implies nonlinear lower bounds on the length of 

-formulas, and Hodes [Hod 70] demonstrates that it is widely appiicable.2 For example, 
Hodes' and Specker's results imply that formulas for all but sixteen of the 2n+ 1 
symmetric Boolean functions of n variables grow nonlinearly in n [Khr 76, Pat 76,77). 

Our main theorem resembles that of Hodes and Specker. We . essentially show 
that any function which can be defined by a "small" formula can be restricted to a 
"la,rge" subset of its variables so that the resulting restricted formula is equivalent to the 

sum modulo two of a subset of its variables. Since er and indeed almost all 
symmetric functions do not have such large simple restrictions, they cannot have small 
formulas. Comparing our results to Hodes' and Specker's in the most interesting case of 
symmetric functions, we note that their theorem yields nonlinear lower bounds 
whenever ours does, but their bounds are much smaller. 3 Indeed, our bounds of n(n 
log n) are the largest lower bounds on formula length known for any symmetric Boolean 
function. (We remind the .reader that a(n) = O(,S(n)) iff tJ(n) = O(a(n)) iff lim inf 
a(n)/f3{n) > 0.) · 
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In the next section we state the main theorem giving lower bounds and apply it 

to Ck and a related example. In Section 3 we derive a corollary which is easily 
applicable to arbitrary symmetric functions and then prove that all but a vanishing 
fraction of symmetric functions require formulas of length O(n log n). Section 4 
contains the proof of the main theorem. In the final Section 5, we compare known 
upper and lower bounds on formula length and mention some open. problems . . 
2.The Lower Bound. Boolean formulas over the full unary-binary basis are constructed 
from variables and constants (0 and 1) possibly using any of the unary and binary 
Boolean connectives (/\, v, -,, $, NAND, etc.). Let L(O, the length of the formula f, be 
the number of occurrences of variables (not constants) in f. Let var(O be the set of 
variables that appear in f. Formulas f and g are equivalent, denoted f = g, iff f and g 
define the same function on var(O u var(g). Every Boolean formula g is easily shown 
to be equivalent to a Boolean formula f constructed from variables and constants using 
only the two connectives $ ("exclusive or") and /\ ("and") such that f contains exactly 
the same number of occurrences of each variable as g. In particular L(g) = L(O, so 
without loss of generality we henceforth consider Boolean formulas constructed from 
variables and constants using only $ and /\. 

An assignment, A, over a set of variables, V, is a partial map from V into (0,1}; 
dom(A) f V is the set of variables on which A is defined, i.e., the variables which A 
fixes. The eccentricity, ecc(A), of an assignment A is the excess of 1 's over O's in the 
assignment, that is, ecc(A) = IA-1(1)1 - IA-1(0)1. A is central if ecc(A) is zero or one. 
Given a formula f and an assignment A, the restriction, ~A, is the formula obtained by 
substituting A(x) for each occurrence of x in f, where x ranges over dom(A). If A is 
central and dom(A) ~ var(O, then ~A is called a central restriction of f. 

The dimension, dim(O, of f is the cardinality, lvar(OI, of var(O. The formula f is 
affine iff f is equivalent to some formula of the form EBW $ c where c t {0,1} and W f 

var(O. The theorem below shows that any Boolean formula of n variables, all of whose 
affine central restrictions have small dimension, has length O(n log n). More precisely, 
let the affine diameter, diam(O, of f be the largest dimension of any affine central 
restriction of f. 

Lower Bound Theorem. There is an t > 0 such that for any Boolean formula f with n 
variables 

L(O ~ tn log(n/diam(O). 



November 10, 1980 3 Length of Formulas 

The theorem immediately applies to formulas for er, To see this, note that 

the only affine restrictions of ek either are of dimension one or are equivalent to 

constant functions of dimension less than k, so diam(Ck) < k. Therefore, 

. n 
Example I . L(Ck) > tn log(n/k). 

As another example, consider n = km variables Xij for l~i~k, l~j~m and refer to 

the variables with second index j as· the jth block of variables. Let Pj denote · the mod 2 

sum of the jth .block, namely, Pj = E:B~=txij, and let fk,m be the function 

C4 (Pt,•··,Pm) of n variables. It is not hard to see that no restriction of a formula for 

fk,m which contains variables from three or more blocks is affine. Hence diam(fk,m) 
~ 2k, so 

Example 2. L(fk,m) z tkm log(m/2) for t as in the Lower Bound Theorem. 

We remark that choosing k = nl-6 still yields O(n log n) lower bounds on 
L(fk,m) even though fk,m has "large" affine diameter nl-6. This is an example where 
Hodes' and Specker's results do not apply. 

To establish an upper bound on L(e4), let :x denote Boolean variables x1·, ... ,x0 . 

Construct formulas Do(x) and D1(x) for the low order and second lowest order 
· n 1 · 1 

digits of the binary representation of :£i=txi as follows. Do(x1) = x1 and D1 (x1) = 

0. Let y denote Xn+l,···,x2~· Then 

2n 2n 
Do (x,y) = EB i= 1xi, and 

2n n n n n 
Dt (x,y) = Dt (x) e D1 (y) e (Do(x) e Do(Y)). 

n 2n n n 
Hence L(Do) = n, and L(D1 ) = 2(L(D1) + L(Do)). This recurrence implies that 

n n 
L(D1 ) ~ n log2n when n is a power of two. Now a formula for C4 · is 

NOR(Do,01), so L(C4) ~ n(l + log2n) when n is a power of two. For arbitrary n, 

one can obtain a formula for e 4 of length nrlog2nl + 2n - if log2n1, so 

Proposition I. L(C4) < nr 1 + log2nl for all n. 

Since L(fk,m) ~ L(Cf)·L(pj) and L(pj) = k, we also have 
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Proposition 2. L(fk,m) is asymptotically at most km log2m. 

So the lower bounds on L in Example 1 for k = 4 and in Example 2 are 
achievable to within a multiplicative factor. 

3.Lower Bounds For Symmetric Functions. For any Boolean formula f of dimension 
n which defines a symmetric function, there is by definition a characteristic function, 

Xr,{0, ... ,n} ➔ {0,1}, such that f(x1, .. ,,x0 ) = Xf(l:i=txi>· 

Lemma. If Xf(Ln/2J) "# Xr(Ln/2J+2), then L(f) ;:: tn log(n/2). 

Proof. The reader can easily verify that no central restriction of f which has 
three or more variables can be affine, viz., diam(f) ~ 2. The bound on L(O now 
follows immediately from the Lower Bound Theorem. D 

Symmetric Function Lower· Bound Theorem. There is an E > 0 such that for every 
formula f of dimension n which defines a symmetric function, if Xf(k) "# Xr(k+2) for 
some k, 0 ~ k ~ n - 2, then 

L(f) ;:: ED log min(k,n - k). 

Proof. Assume without loss of generality that k ~ n/2. Let A be any 
assignment such that ldom(A) n var(f)j = n - 2k and A(x) = 0 for all x E dom(A). Now 
X~A (j) = Xr(j) for 0 ~ j ~ 2k = dim(~A), so applying the Lemma above to ~A yields 

L(~A) z t2k log(2k/2). 

Therefore, at least one of the 2k variables of ~A occurs E log k or more times in ~A, 
and a fortiori also occurs that often in f. 

By choosing d.om(A) to be the n - 2k most frequently occurring variables in f, 
we conclude that each variable in dom(A) occurs at least E log k times in f, so 

L(O z (n - 2k)E log k + L(~A) ;:: (n -2k)E log k + 2kE log k = En log k. o 

Let T k be the threshold k function of n vari~bles, that is, 

Tk(x1,···,xn) = 1 iff 'ri=lXi ;:: k. 

Since XTk(k) = 0 and XTk(k + 2) = 1, we have 

Example 3. L(Tk) z rn log min(k,n - k). 
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More generally, there are exactly 4.z2b symmetric functions f of n variables such 
that Xf(k) = Xf(k + 2) for all k, b ~ k ~ n - b. The preceding Theorem implies a 

bound of ED log b on length of formulas for the remaining zn+l - 4.22b symmetric 
functions. Choosing any o, 0 < o < 1, and b = on, we have: 

Corollary. The minimum formula length for all but 0(2n+ 1) of the 2n+ 1 symmetric 
functions of n variables is O(n log n). 

Finally, we note that the Symmetric Function Lower Bound Theorem also 
applies to nonsymmetric functions f as long as Xf(k) and Xf(k+2) are well defined, i.e., 
as long as 

for m = k,k+2. For example, the length of formulas for any function which agrees with 

T~n/2J on arguments of weight Ln/2J and ln/2J + 2 is n(n log n). 

4.Proof of the Lower Bound. The Lower Bound Theorem follows directly from the 
Main Lemma below. The proof of the Main Lemma requires four elementary lemmas 
which are presented first. 

Let f, g be formulas. We call g an affine variant of f iff f EB g is affine. A 
formula f is an ,-formula if no variable in f occurs more than r times; f is r-minimal 
with respect to some property of formulas if f is an r-formula and L(f) is minimal 
among the r-formulas with the property. (Note that L(f) s r·dim(f) for any r-formula 
f, but this condition does not imply that f is necessarily an r-formula.) 

Affine Variant lemma. Let g be an affine variant off. For all assignments A, 

' . 

(i) nA is affine if glA is affine, and 

(ii) if for some r ~ 1, g is an r-minimal affine variant of f and 

dom(A) ~ var(g), then dim(~A) - dim(glA) = dim(f) - dim(g). 

Proof(i) The formula f EB g is affine by hypothesis, hence ~A EB glA is affine. 
If also glA is affine, then adding the two together gives the affine function ~A-

(ii) var(g) ~ var(f), for if not, substituting constants for the variables m g 
which do not appear in f yields a shorter affine variant which 1s an r-fonhula, 
contradicting the r-minimality of g. The result follows easily. □. 
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An assignment B is an extension of A if B extends the partial function A. Let 
dom(B,A) denote dom(B) - dom(A), the set of new variables fixed by B. 

Conjunction lemma. Given a central assignment A and a formula f such that nA = g /\ 
h, where g and h are affine, there is a central extension B of A such that dom(B,A) ~ 
var(~A), ~B is affine, and dim(~a) ~ dim(nA)/3. 

Proof. We have 

G = EBP EB EBR EB c and H = $Q EB $R EB d 

where P, Q, R are disjoint subsets of var(~A) and c,d t {0,1}. Let B1, B2, B3 be central 
extensions of A fixing additionally the variables of QuR, PuR, PUQ respectively. Each 
of nB· for i=l,2,3 is affine and 

l 

var(nB
1
) u var(~a2) u var(na3) = PuQuR = var(nA). 

Hence, for some i, dim(nai) ~ dim(nA)/3. D 

Partition lemma. Given sets S1, S2, ... , St, let T be the elements which occur in two or 
more of the Si· That is, 

T = Ui<j~t (Si n Sj)· 

Then there exists a partition {X,µ} of {l, ... ,t} such that if L = UitX Si and M = Uitµ Sj, 
then IL n Ml ~ ITl/2. 

Proof. The proof is by induction on t. The case t=l is trivial. Given S1, ... , St, 
St+l' we have by induction a partition {X,µ} of {l, ... , t} and sets L, M, and T satisfying 
the lemma. We now define a partition {X',µ'} of (1, ... , t+l} as follows. 

Let TL = (St+l n L) - T and TM = (St+l n M) - T. Assume without loss of 
generality that ITMI ~ ITLI and define X' =XU {t+l}, µ' = µ. Now let 

M' = U· , S· = M 
Itµ 1 ' 

and let T' be the elements which appear two or more times among S1, ... , St+ 1 · Note 
that T' is the disjoint union of T, TL, and TM. 

Since ITMI ~ ITrJ, at least half the elements in T' - T are in TM· Also since L 
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n M ~ T, the hypothesis implies that at least half the elements in T are in L n M. But 
TM u (L n M) s; L' n M' by definition. Hence at least half the elements in T' are in 
L' n M'. o. 

Beta Lemma: There exist constants a > 0, a > 1 such that if we define f3(r) = 
(at!Crt1 where Cr = (

2
~j);r is the Catalan number, then 

(i) f3(r) = a/}:~~1 (f3(r)f3(r-s))·1 for r > 1, 

(ii) f3(r) s (1 - 15cx)/6 < 1 for r ~ 1, 

(iii) fJ(r) s (1 - 5a)/(l - 5a + 4r). 

Proof (i) · The Catalan numbers satisfy the convolution property 

r-1 
Cr = rs= 1 CsCr-s 

[Knu 73, Section 2 . .3.4.4) from which the corresponding property (i) of fJ follows 
immediately. 

(ii), (iii). Moreover, Cr is asymptotic to dr·3/24r for some fixed d>0 [Knu 73, Section 
2.3.4.4]. This estimate makes it obvious that for any sufficiently small ex one can choose 
a value for a which guarantees (ii) and (iii). Suitable values are a = 1/30 and a = 360. 
D 

Main Lemma: Let f be an r-formula with r ~ 1, and let Ao be a central assignment. 
There exists a central extension A of Ao such that ~A is affine, dom(A,Ao) s; v~r(O, 
and 

d_im(~A) ~ f3(r)·dim(nAo>· 

Proof of Main Lemma. The proof is by course-of-values induction on r. Hence 
we assume r ~ 1 and that the lemma holds for all r'-formulas with r' < r. To show the 
lemma holds for all r-formulas, we proceed using a course-of-values subinduction on 
L(O. Hence we consider some r-formula f and some central assignment Ao, and further 
assume that the lemma holds for all r-formulas of length less than L(O. 

Suppose that g is an r-minimal affine variant of nAo and L(g) < L(O. Then by 

the subinduction hypothesis, there is a central extension A of Ao satisfying the lemma 
for g. ~A is affine by the Affine Variant Lemma (i). Moreover, 
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dim(~A) = dim(glA) + (dim(nA
0

) • dim(g)) 

~ ,S(r)·dim(g) + (dim(nAJ - dim(g)) 

~ ,S(r)·dim(~Ad 

Length of Formulas 

by Affine Variant Lemma (ii) 

by induction 

since f3(r) < 1 by Beta Lemma (ii). 

This shows the lemma holds for f using the same A. 

Hence we can assume that f is an r-minimal affine variant of ~AO' In particular, 

we have f = ~Ao and var(O n dom(Ao) = fd. 

Express fas EB~=lFi where no Fj has $ as its main connective. Clearly no Fi is 
affine since otherwise (EBj;,!iFj) is an affine variant of f, contradicting the minimality of 
f. Hence, each Fj equals Oj I\ -Hj, and furthermore the minimality of f ensures that 

neither of the formulas Gi nor Hi are equivalent to constant functions. 

. . 

We define a partition of each set var(F j) into four sets as follows: 

global(Fi) = var(Fi) n (Uj;,!i var(Fj)); 

joint(Gj,Hi) = (var(Gi) n var(Hi)) - global(Fi); 

own(Hi) = var(Hi) · (joint(Gi,Hi) U global(Fi))· 

Let global = Ui global(Fj), joint = Ui joint(Gj,Hj), and own = Ui (own(Gi) u 
own(Hi)). So var(O is the disjoint union of global, joint, and own. 

The following four cases, defined solely in terms of the cardinalities of var(O, 
global, joint, and own, are obviously exhaustive. Let n = dim(O. 

Case I : n ~ . 1/,S(r). In this case we can take any central extension A of Ao 
such that dom(A, Ao) ~ var(O and dim(nA) = 1. Any formula in a single variable is 
necessarily affine. 

Case 2: jgloball 2: 2an. Noting that global equals the set of variables which 
occur in two or more of the sets var(Fj), we apply the Partition Lemma to the sets 
var(Fj), i= 1, ... , k, and obtain a partition (>.,µ} of {l, ... , k} such that 
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Now f is equivalent to L EB M where L = EBit~ Fi, M = EBitµ Fi· We use the fact that 
all the variables of var(L) n var(M) must occur fewer than r times in each of L, M, to 
invoke the Main Lemma successively on the two parts. For 1 s s s r - 1, let Vs be the 
set of those variables of var(L) n var(M) which occur exactly s times in L (and hence 
at most r - s times in M). For some t, 

IV ti ~ t3(r)n/(13(t)/3(r-t)) 
since 

~1 ~1 · 
rs=l IVsl = lvar(L) n var(M)I ~an = l:s=l ~(r)n/(tJ(s)tJ(r-s))] 

by Beta Lemma (i). 

Let B be any central extension of Ao with dom(B,Ao} = var(f) - Vt, and let L' = 
Lie, M' = MIB• Thus var(L') = var(M') = Vt· The Main Lemma applied to the t­
formula L' yields an extension B' of B such that L 1B' is affine and 

dim(M'IB') = dim(L'IB') > 13(t)·dim(L') ~ tJ(r)n/tJ(r-t). 

The Lemma applied to the (r-t)-formula M1B' yields an extension A of B' such that 

MlA is affine and dim(M1A) ~ 13(r-t)·dim(M1B') ~ 13(r)n. Since (L EB M)IA = ((L'IB')IA) 
EB (M1A) and is clearly affine, and dim((L EB M)IA) = dim(MlA) ~ t,(r)n, we have 
concluded the proof of Case 2. 

Case 3: Uointl ~ 3an. 

Each variable in joint occurs in exactly one Fi, and at least once but strictly 
fewer than r times in Gj and in Hj, We will restrict to a subset of these variables. and 
then apply the induction hypothesis for smaller values of r. 

Let ui = ijoint(Gi,Hi)I. As in Case 2, there is some tj, 1 $ ti $ r - 1, such that if 
Vi is the set of variables in joint(Gi,Hj) that occur exactly ti times in Gj (and ·hence at 
most r-ti times in Hi) then 

Let Bo be any central extension of Ao fixing all the variables in var(O - Ui Vi, 
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and let F( = FilBO' G( = Gda
0

, H( = HilBo- G{ is a ttformula and H( is an (r-ti)• 

formula. 

We now proceed in k stages. At the ith stage, we find a central extension Bi of 

Bi-1 such that F{IBi is affine and dim(F(IBj) ~ uif3(r)/(3a). 

Stage i: Since G( is a tj•fo~mula, 1 ~ ti < r, we apply the induction hypothesis 
to G( and B1.1 to · obtain a central extension Bj' such that Gi1B-' is affine and 

1 

dim(G(la() ~ fj(ti)·dim(Gi'). Since H( is an (r•tj)•formula, r-ti '.< r, we apply the 

induction hypothesis again to Hi1B{ to obtain a central extension B( such that Hi1B( is 

affine and dim(H(IB() ~ fj(r-ti)·dim(H{la{). The restriction of an affine function is 

affine, so G(IB-'' affine. Hence, by the Conjunction Lemma there exists a central 
1 

extension Bj of B( such that Fi1B• is affine and has dimension at least dim(Fi1B-'')/3. 
1 1 

In calculating the dimension of Fila·, we make use of the fact that var(F{) = var(G{) = 
1 . 

var(H{) = Vi. We have ' -

dim(H·1B-'') > t3(r-t')-dim(H·1a-') = t3(r-t·)·dim(G·1a.,) 11 - 1 11 1 11 

Then 

dim(F(lai) ~ dim(Hi1B()/3 ~ Ui/3(r)/(3a). 

Now let A = Bk, the central assignment obtained after the final stage. Note that 

~A = $~=1 F(IBi' and so ~A is affine. Moreover, 

dim(~A) = !i dim(Fi1ai) ~ !i uit3(r)/(3a) = Uolntl·t3(r)/3a ~ t3(r)n 

by the defining condition for this case. This concludes the proof of Case 3. 

Case 4: lownl ~ (1 - 5a)n and n > l/t3(r). 

In this case, we will find a central extension B of Ao such that dom(B) ~ var(f) 
and ~B is functionally independent of some non-empty subset V of its variables. Let 

yield = IVl and cost = yield + ldom(B,Ao)I, If yield ~ t3(r)·cost, then we can find a 
central extension A of B satisfying the Lemma for f. 

To see this, let g be the restriction of ~B obtained from some arbitrary 
assignment to V. Note that g is equivalent to ~B since ~ does not depend on V. Also, 
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var(O is the disjoint union ,of -dom(B,Ao), V, and var(g); in particular, dim(O = cost + 
dim(g). Now L(g) < L(f) since V is non-empty, so by the subinduction hypothesis there 
is a central extension A of B such that glA is affine, dom(A,B) ~ var(g), and dim(glA) 

z t3(r)·dim(g). But ~A is equivalent to g!A, so ~A is also affine. Moreover, var(~A) is 
the disjoint union of var(glA) and V since dom(A) n V = flJ, Therefore, 

dim(~A) = dim(gjA) + yield 2 IJ(r)·dim(g) + IJ(r)·cost = IJ(r)·dim(f), 

as required. 

Thus, to complete the proof, we need only describe how to determine B and V. 

Let gi = lown(Gi)I, hi = lown(Hi)I, Without loss of generality, we can assume gi 

2 hj, We note that l:i gi 2 jownlf2. 

For each i, we have two strategies which can remove the dependence of f on a 
subset of either own(Gi) or own(Hi)· We will show below that at least one of these 
always has · an adequate yield/ cost ratio for some i. 

. Strategy A: This strategy is applicable only if there is a central extension of Ao 
fixing only var(O and making Hi equivalent to 0. Find a minimal central extension B 
of Ao for which HilB = 0, var(Hi) !:;; dom(B) ~ var(f), and dom(B) n own(Gi) is as 
small as possible among such extensions. Since Fi = Gi /\ Hi, we have FilB = 0, and so 
~B is independent of any remaining variables of own(Gi)· Thus V is own(Gj) - dom(B). 

Strategy B: This strategy is applicable only if there is a central extension of Ao 
fixing only var(Hi) u dom(Ao) and making Hi equivalent to 1. Find a maximal s.et V ~ 
own (Hi) for which_ there is a central extension B of Ao satisfying HilB = 1 and 
dom(B,Ao) = var(Hi) - V. Since ~B is independent of V, the yield is M and the cost is 
dim(Hi)-

We begin our analysis by noting that since f is r-minimal, no subformula of f is 
equivalent to a constant. Hence there is an extension B' of Ao such that HilB' = 0. Let 
d(Hi) be the least integer for which there is an extension B' of Ao such that 

dom(B',Ao) = var(Hi), HilB' = 0, and 

-d(Hj) ~ ecc(B') ~ d(Hj) + 1. 
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Suppose Strategy A is applicable and B is the assignment required in the strategy. 
Let B' be the restriction of the partial function B to dom(Ao) u var(Hi)· Since B is 
minimal central such that HilB = 0, it must be that ecc(B') equals either -d(Hi) or d(Hi) 
+ 1, and the variables in dom(B,B') are the minimal number which serve to extend B' to 
a central assignment. Hence, 

Since B is defined to fix as few variables from own(Gi) as possible, either dom(B) n 
own(Gi) = fd or own(Gj) - dom(B) = var(f) - dom(B). Therefore, 

yieldA = jown(Gi) - dom(B)I = min(gi, n - dim(Hi) - d(Hi)), and 

cost A = dim(Hj) + d(Hj) + yield A = min(gi + dim(Hi) + d(Hi), n). 

If Strategy A is not applicable, let yieldA = 0 and costA = n, so the preceding formulas 
for cost A and yield A always hold. 

If yield Al cost A ~ fJ(r) for some value of i, then Strategy A succeeds. 

In any application of Strategy B, IVI ~ min(hi, d(Hi) - 1). To see this, let V' be 
any subset of own(Hi) such that IV1 = min(hi, d(Hj) - 1), and let B' be any central 
extension of Ao with dom(B') = dom(Ao) u (var(Hj) - V'.). Let C be an arbitrary 
assignment with dom(C) = V'. Then 

= -ldom(C)I 

~ ecc(B'uC) 

~ ldom(C)I + 1 

= min(hi, d(Hj) - 1) + 1 

< d(Hj) + 1. 

trivially 

since B' is central 

since B' is central 

By the minimality condition in the definition of d, Hil(B'uC) = 1. This holds for any 
such C, so HilB' = 1, and HilB' does not depend on the variables in V'. Since Strategy B 
chooses V as large as possible, we have M ~ IV1 ~ min(hi, d(Hj) - 1 >. as desired. 
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Eliminating V from the expression of cost for Strategy B, we get 

yielda ~ min(hi, d(Hi) - 1) 
' 

and 

Costa = dim(Hi)· 

If Strategy B is inapplicable, let yieldB = 0 and costB = dim(Hi). Note that in this case 
d(Hj) = 0, so the preceding formulas for yieldB and costB always hold. 

If yield Bl costa ~ f3(r) for some value of i, then Strategy B succeeds. 

We prove by contradiction that there exists an i for which either Strategy A or 
Strategy B succeeds. Assume neither Strategy succeeds for any i. Since Strategy A 
fails, yield A/ cost A < 13. (We omit the argument r from fJ in the remainder of this 
analysis.) So for all i 

Since Strategy B fails, yieldB/costB < (3, so for all i 

Let m = jglobal u joint! s 5an. Counting up the sizes of the various sets and 
using the conditions for this case, we get 

(3) d(Hj) s dim(Hi) s m + hi s n - rj gj s n - jownl/2 s (1 + 5a)n/2. 

From (3) and (2), we get 

Using (3), (4), the fact that {3n > 1, and Beta Lemma (ii), we get 

(5) dim(Hj) + d(Hi) s (1 + 5a)n/2 + m + 1 + {Jn 

< (1 + 15a)n/2 + 213n s (1 - f3)n. 

Assuming the "min" in (1) equals its second argument contradicts (5). Hence, the first 
argument is always the smailer, and (1) gives 
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Therefore, 

(7) (1 - 13)(1 - 5a )n/2 s (1 - 13)1ownl/2 s (1 • 13)Ii Si < 2l3Ii dim(Hj) < U3rn 

since no variable occurs more than r times in all. Now (7) yields an immediate 
contradiction with Beta Lemma (iii). 

We conclude that Strategy A or Strategy B succeeds for some i, completing this 
case and the proof of the Main Lemma. o 

Proof of Lower Bound Theorem: Let f be a Boolean formula on n . variables. 
Let r = t2L(f)/nj, and let Ao be a central assignment with 

dom(Ao) = {x I x occurs more than r times in f}. 

Since ~Ao is a.n r-formula, by the Main Lemma there is a central extension A of 

Ao such that ~A is affine, dom(A) f var(O, and 

(8) dim(~A) 2 13(r)·dim(~Ad· 

By the choice of Ao, (r+l)·[dom(Ao)I s L(O, so 

(9) dim(~AJ = n - jdom(Ao)I 2 n - L(O/(r+l) 2 n/2. 

Also, 

(10) fJ(r) 2 2/Kr 

for some K > 1 using the asymptotic estimate for Cr given in the proof of the Beta 
Lemma. Hence, from (8), (9), (10), we get 

Solving for r, we obtain 

(11) r 2 log(n/dim(~A))/log K. 

Therefore, 
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L(f) ~ rn/2 

~ en log{n/dim(~A)) 

~ rn log(n/diam(f)) 

15 Length of Formulas 

by choice of r 

by (11) where t = 1/(2 log K) 

by definition of diam(f). □· 

5.Conclusions and Open 
1

Problems. The conditions we have developed above for 
deducing lower bounds on length of formulas apply to many. explicit examples but have 
their most interesting applications in the case of symmetric Boolean functions. Earlier 
results of Hodes and Specker [HoS 68] imply that except for sixteen functions, the 
length of formulas for symmetric functions of n variables grows nonlinearly in n.4 The 
results in this paper show that all but a vanishing fraction of the symmetric functions 
require formulas of length n(n log n). These are the strongest known lower bounds on 
length of formulas for any symmetric functions. 

Polynomial upper bounds on the length of formulas for symmetric functions were 
first obtained by Khrapchenko [Khr 72] and Meyer and Vilfan [Vil 72). The smallest 
currently known upper bound is o(n3.37) by Peterson [Pet 78) following earlier work of 
Pippenger [Pip 74] and Paterson [Pat 77}. The constructions used to achieve the upper 

bounds are extensions of the construction given in Section 2 of formulas for C4. 
It remains an open problem to improve these bounds. We note three particularly 

challenging instances of this general problem. 

The construction of formulas for cg extends in an obvious way to yield 

formulas of length O(n(log n)P-1) for c
2
np but even for cf the best upper bound we 

can obtain is n(n2). 

Problem 1. Is L(Cf) = o(n2)? 

The Lower Bound Theorem above does not apply to threshold functions with 
bounded threshold, although Hodes' and Specker's theorem yields very slowly growing 
nonlinear bounds (cf. Note 3). For fixed k, Khasin [Kha 69) and Pippenger [Pip 

n 76,KlP 77] have shown that L(Tk) = O(n log n). 

n 
Problem 2. Is L(T 2) = o(n log n)? 

The best currently known upper bound on length of formulas for the majority 

. function Trn/2J is the same as for arbitrary symmetric functions. 

n 
Problem 3. Is n log n = o(L(T Ln/2J))? 
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Notes. 

l.A slightly larger lower bound of n(n2) is due to Khrapchenko [Khr 71] for the special 
basis of operations /\, v, -., but our results are concerned with formulas in which all 
binary operations may appear. 

2.Vilfan (Vil 72, 76) extends Hodes' and Specker's results to multivalued logic with 
arbitrary (not necess~rily binary) operations and concludes for example that formulas 

for er grow nonlinearly in n using d-valued logic for k > di. 

3. Vilfan [Vi 72) notes that the nonlinear lower bounds of Hodes and Specker can be 
shown to be O(n log*n) where log•n is the least integer m such that 

2 

22. (height m) ~ n. 

4. The sixteen functions are all of the form 

for a,b,c,d t {0,1 }. Each of these obviously has a formula of length at most 3n. 
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