THE EXECUTION OF A VIDEO
EDITING CONTROLLER

by
John D. Barbour

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE IN PARTIAL FULFILLMENT OF THE RE-
QUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1986

Copyright (c) 1986 John D. Barbour

Signature of Author . _
Departmént of Electrical Engincering and Computer Science

May 16, 1986

Certified by — - P

Glorianna Davenport
Thesis Supervisor

- Accepted by ..

Professor David Adler

Chairman, Undergraduate Thesis Committee

MASS- INSY.'TECH.
JUN 13 1995

UBrARIES

Archives




THE EXECUTION OF A VIDEO EDITING
CONTROLLER

by
John D. Barbour
Submitted to the Department of Electrical Engineering and Computer

Science on May 16, 1986 in partial fulfillment of the requirements for
the degree of Bachelor of Science.

Abstract '

The Experimental Video Workstation is a design project in computer-aided editing.
This paper focuses on the exccution software that controls the laser disc players, a
record deck, and a video switcher for frame accurate edits. It also discusses tlie chal--
lenges encountered by controlling live machinery with computer software.

Thesis Supervisor: Glorianna Davenport
Title: Lecturer, Film/Video Section, Department of Architecture



-3-
Dedication

To Jesus Christ, who got me through MIT alive. And I'd also like to thank all my
co-workers on the Experimental Video Workstation for their help on this project, and
Sherry Solden for making this stay at MIT a lot more fun.



-4-

Table of Contents

Abstract
Dedication

Table of Contents
List of Figures

I. System Overview

2. Program Input

2.1 Edit Decision List
2.2 SMPTE Timecode

3. Making the Edit

3.1 Setting it Up
3.2 Synchronization

3.2.1 The Problem

3.2.2 Compromising Perfection
3.3 The Edit Loop
3.4 Dealing with Real Machines

3.4.1 Doing it Simple

3.4.2 Adding Complexity

3.4.3 Making a Hard Problem Harder
3.5 Dealing with Non-Real Machines
3.6 The Program Structure

4. Conclusion
Appendix



Figure 1-1:
Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:

-5-
List of Figures

System Configuration

Edit Dccision List

Sample Control Sequence

How Sampling Rates Affect Accuracy
Synchronization Error

Structure of Execution Unit

10
13
14
16
20



-6-

Chapter 1

System Overview

The Experimental Video Workstation is a design project in building a personal-
ized video editing system. This will allow the artist who shoots the film or video
footage to edit the material himself in a computer-aided environment. The system is
divided into a few basic scctions: logging the video footage into a database, creating
the EDL (cdit dccision list), and then executing the EDL to create the final print. The
database consists of digitized film or video frames accompanied by any verbal descrip-
tion that the artist wishes to include. Each digitized frame represents a scgment of the
film or video footage, and this information helps the artist decide what edits to make.
With this information, the edit decision list can be constructed and then stored for
future use and modification. The latter section is the one of primary concern to this
paper. The system is set up with an HP-Bobcat, a Dec-Pro, an Asaca Multiviewer, an
Asaca Video Switcher, 2 Sony 1000A, Laser Disc Players (I.DP), and a Sony BVU-820
Record Deck. A Multiviewer is a device that allows the editor to view up to thirty-two
frames of footage at once. These devices are configured as seen in Figure 1-1. The
logging database and the edl manager are run on the Bobcat, while all the machine

control and execution software run on the Dec-Pro.

The entire system was sct up as a simulation of a future design goal. The

software, in this case, was written for the specific machines that were available, but the



-7-

Figure 1-1: System Configuration

]
MULTIVIEWER RECORD DéCK I
| o
. o
—»f g |
L— - — - —» V,v ,
—> g—- - - - —» g—— > |
COLOR BARS — — > g |
] BLACK — - —» R | |
L _
- 4 '
vidco signal ~—— - - ____*______ v
_— contzol line [
TV
DEC-PRO
—> BOBCAT




.8-
futurc goal for the system is to accommodate any arbitrary device. The system was set
up in this way because of the availability of the equipment. Much of the equipment
was donated to the project, and many of the design decisions were directly affected by
the equipment available. The Dec-Pro was used for machine control since it had the
required. number of serial ports available. The Bobcat would have been selected to
handle the entire project, but the hardware for using the serial ports was not available.
These machines were chosen primarily for the fact that they ran a UNIX operating
system, and this would allow the system to be portable. The language used for the
software was C. This is an improvement from the programmer’s point of view, since it
provides a higher level language rather than the traditional use of assembly language.
The code can be easily understood by others, allowing for simplified modifications

and improvements.

The laser disc players were used as the input devices for the video material.
They provided the benefit of quick, random access to material and a simple serial in-
terface. The record deck was used for recording the final output of the edit as
specificd by the ed! with the discs as input. These devices were also connected to the
multiviewer and when practical were controlled through this device. The multiviewer
allowed for viewing more than one frame of the vidco input at any bne time, and the

video switcher was used for wipes and dissolves to add variety to the editing

capabilities.



-9-

Chapter 2

Program Input

2.1 Edit Decision List

The execution software was developed to read in an EDL and then perform it on
the machines to record a final edit. The purpose of an EDL is to store the decisions
made by the cditor as a permanent record. This way another recording could be made
automatically without having to make the decisions all over again. The repeatability
of the EDL is its strong point. With a flexible EDL maintenance program, even small
changes can be handled with a minimum of hassle. The idea of storing cdit decisions
in a file allows them to be portable between systems, which accept the same data for-
mat. Other than just having compatible file systems, the information needs to be stan-
dard as well. The CMX format is the most common industry standard and therefore,
was the reason it was chosen for this system. The format is set up as ASCII characters,
and not binary; this avoids problems with byte swapping or different sized integers
when changing computer environments. A sample CMX EDL can be seen in Figure
2-1. The EDL contains a list of events specified by an event number and all the
specific information about which devices are to be used for input, what type of tran-

sition is to be made, and the exact timecodes for the source footage and record points.



Evt Dev AsY Trans Dur Source In Source Out Pecord In Record Out

901 991 B C 01:28:54:19 01:29:11:28 0©1:81:00:00 01:01:17:09
881 @v2 B D 01:00 061:27:11:15 ©01:27:14:85 ©01:91:17:89 81:01:19:29
002 062 B c 81:28:17:01 01:28:26:87 01:91:19:29 91:081:29:85
003 AUX B c 81:26:25:24 01:26:27:12 ©1:01:29:85 81:01:38:23
804 082 A2V C 01:26:49:21 0@1:26:49:29 01:01:30:23 81:91:40:01
8vS @01 A1 [» 01:25:00:09 91:25:21:17 01:81:409:01 81:02:01:089
686 002 A1 C 01:29:34:85 01:29:59:29 01:02:01:09 01:82:27:83
887 ge1 v c 81:25:80:89 ©81:25:21:17 01:01:48:01 81:02:01:89
Be7 BB2 v WoGe 01:00 01:29:34:85 ©1:29:59:29 01:02:01:69 01:82:27:03
868 BL B C 00:00:00:09 00:08:05:00 01:09:55:00 01:02:30:09
512 981 B C 00:00:00:00 00B:00:00:90 BVY:09:00:00 008:006:90:00

Figure 2-1: Edit Dccision List

2.2 SMPTE Timecode

Timecode is an industry standard set up by SMPTE (Society of Motion Picture
and Television Engineers) to index video footage. Each frame of videotape is indexed
by a timecode which is expressed in hours, minutes, seconds, and frames. This allows
for precise access to each frame of video and audio material. These timecodes are then
used in the EDL for the exact specification of frames. This allows the editor to be as
accurate asx he desires when choosing his edit points. Unfortunately standards never
cover everything; video discs have yet another method for accessing individual frames.
They are indexed by frame numbers for one-half hour of material, from 1 to 54000.
These numbers then have to be transformed into virtual timecodes for use in the EDL.
When reading each event from the EDL, it is necessary to convert each timecode into
a frame number for accessing an individual frame from a laser disc player, as well as

for mathematical computation and comparison with other values.



-11-

These methods for indexing the video medium are a mixed blessing. Timecodes
have the advantage of offering the editor the information pertaining to how long his
production is; but unfortunately, it is very difficult to perform arithmetic operations
upon them directly. Conversely, frame numbers offer the flexibility of computation
but do not immediatcly display standard time information pertaining to duration with-
out performing a minor calculation. For total flexibility within this system, each
timecode is stored in a structure that breaks apart the components of the input time
code and creates a frame number, as well as the character represcntations of both the
timecode and frame number. The other input information from the EDL includes the
exact device to be used, the audio and video channels selected for the edit, and the
type of transition to be used: cut, wipe, or dissolve. All this information will be

needed in the future for smooth operation.



-12-

Chapter 3

Making the Edit

The editing process requires the control of asynchronous hardware. This adds
the challenge of controlling live machines that are not constrained within the same
environment as the sofiware.  Since things are moving through time, it is critical that

the software be able to keep the system under control at all times.

3.1 Setting it Up

Setting up an edit is not time critical, for the most part. The trouble starts when
it is time to perform the edit. The video output of the laser disc players and record
deck are hooked up through the multiviewer, but the control lines of the LDPs are
hooked directly to the Dec-Pro, this will become important later. All the remote
machine commands are accessed through a function called control. Control accesses
the Multiviewer, selects the proper device and then sends the appropriate command to
operate that device. Control was designed to be called with keyboard commands and
the user in mind. It pairs together the machine control with the video output control.
This means that whatever machine 1 is controlling, that is also the machine that is

producing the video output. A sequence of commands that would play device A and

device B would be the following:

This technique, however, does not provide the flexibility that is needed for per-

forming an edit sequence.



-13-

control(avtr);
control(play);
control(bvtr);
control(play);

Figure 3-1: Sample Control Sequence

Through this type of control flow, the switcher is set to the proper channel; and
the record deck is sct up for the proper audio and video channels. The devices are
then prerolled to their respective start positions. This preroll start point is five seconds
before the start of the edit desired. This allows time for the devices to get up to speed,
accurately spaced and locked to an external synchronization so the edit will be per-
formed properly. Once the devices are cued to the appropriate points, then the

program enters the time critical phase of making the edit.

3.2 Synchronization

3.2.1 The Problem

The start of the edit requires synchronizing the LDPs to the record deck.
Synchronizing is the process of putting the devices at a constant offset while they are
playing. The two in-points in the EDL have an offset that they should be at when the
edit starts. That offset is what the program tries to achicve during the preroll time.
Once this offset is achieved, the devices are locked and and they will stay at this offset
for the remainder of the edit, since both devices are gen-locked - servo-driven to
produce synchronous video. Testing to find out whether or not the two devices are at
the proper offset is the semi-complicated part. This is difficult because the machines

are moving rapidly through time. Accessing the frame number or timecode from a



-14-

device is time consuming and not instantaneous. This is where dealing with the real

world becomes a main consideration.

3.2.2 Compromising Perfection

The first sacrifice to be made is that of modularity. Calling functions through
control is very time consuming. The quickest thing to do is call the machines directly,
taking advantage of the fact that the LDPs are hard-wircd to the Dec-Pro. At least the
dclay within control is averted. Regrettably, the problem is not all-together avoided;
the record deck cannot be directly wired to the Dec-Pro because it requires an RS-422
serial interface instead of an RS-232 interface. The problem is that the RS-422 inter-

face operates at a rate four times that of the RS-232 interface.

|
R e B/ e t =t
| l | |
| | | i
| I | |
| | | I
| | | !
frame 3 framc 4 frame § frame 6 frame 7
| | | |
b 4 -
| | |
frame ! le— —pl I
‘boundary > I frame

Figure 3-2: How Sampling Rates Affect Accuracy
Although control can still be bypassed, the Multiviewer cannot be avoided. It is soon

discovered that even this set up cannot keep the system totally under control. The



..1 5-
delay is not anywhere ncar being negligible. It was determined by running a test loop
that accessed frames continually, that every eleventh frame was being skipped. This
means that the total cycle time is longer than one fmme in duration. Because of this
delay, the in-point will be missed, and as a result the edit aborts and tries again. See
Figure 3-2. .

Another problem encountered because of delay is precise synchronization. [If
the two recad statcmcnis cross a frame boundary then the offsets will differ by one
extra frame and will register an error, even though the devices are cued and running
correctly. Figure 3-3 demonstrates a situation where the devices are synchronized, but
Sample 2 registers an error while Sample 1 is correct. A tolerance factor must be
added in to allow for the mathematical function to operate properly in view of real
constraints, otherwise it will never believe that its job is done and wili continually
jump around trying to make the offsets match perfectly, even if they already do. This
overprecision is a problem when dealing with the real world. Arithmetically one can
be exact, but it may not always coincide with life. By trying to be exact, the system
jumps around overcompensating. This problem is amplified in laser disc players since
they are very responsive. But when the system allows for a slight tolerance, it performs

very quickly and still remains accurate.



I
e N S S
I I
I !
| I
| !
i [ .
frame 3 | framc4 framcj$ frame 6 frame7
} L s FES B
l‘s;wnpl'.zl '4 sample 2
o M o

I l

frame 203 name 204 l frame 208 ﬁnmelzw frame 207

|
toundary

Figure 3-3: Synchronization Error

3.3 The Edit Loop

Once the devices are in sync, the program continually samples the frame num-
bers iooking for the one that begins the edit. The record function is then activated,
and the edit takes place. During the edit, the program continues to sample the frame
numbers inorder to find the end of the edit sequence; and when it finds the out-point,
the record function is terminated; and the devices are stopped. The next event is then

executed. This basic loop will now be examined more closely.

The edit loop is set up so that the only tasks performed are the reading of frame



-17-
numbers, the comparison of such to the in-points and out-points of the scquence, and
the activation of only those functions that are absolutely necessary. The loop is
designed so that if an inframe is missed or the devices do not synchronize, the edit
aborts and the program repeats the event. See Figure 3-2. The edit loop will try each

event a maximum of three times before aborting and procceding on to the next event.

3.4 Dealing with Real Machines

3.4.1 Doing it Simple

The primary design goal in executing the EDL is to bc completely frame ac-
curate. A further obstacle to overcome, beyond that of the frame sampling, is the
delay associated with controlling real machines. The length of time it takes a machine'
to respond to a command is again non-zero. This initial delay of start up is dealt with
by the synchronization routine. But after that there is still a need to call a function
well in advance of when it is desired. How far in advance then becomes the question.
An advantage that video has in this case is that it can be viewed and measured even
though it is moving at a high rate of speed. Each frame is tagged with a timecode or
frame number. This allows for viewing the recorded edit, frame by frame, to deter-
mine if it has been recorded correctly. Using the process of trial and error, edits were
executed and then inspected to see how much actual delay was involved, thereby
producing the appropriate offsets for a variety of functions. In particular, the switcher
was an interesting device, since each of sixty-four different wipes had a unique offset.
The presence of readable time code proved to be invinluable in allowing for a precise

measuring of a medium that sends a frame by every thirty-three milliseconds.



-18-

3.4.2 Adding Complexity

Once the system worked for one source, then it was possible for another source
to be added. Hooking in the sccond source was, for the most part, duplicating the
framework of the first section; except that it had a few more complications. An ad-
ditional picce of hardware was being added, the video switcher. This piece of equi-
pment also comes with a whole new set of functions to be incorporated. Not only that
but two more general 1§pcs of transitions must now be dealt with, wipes and dissolves.

These functions require a second source to operate in sync with the first source.

3.4.3 Making a ifard Problem Harder

Synchronization is the part that is hardest hit by adding the second device. This
means that within that five second preroll, a second device must be synchronized.
Since the first synchronization takes about cne to two seconds, this ieaves one or two
;econds before the devices are committed to the edit. The problem with the sampling
rate becomes worse. This time three devices are being sampled. Rather than degrad-
ing what is already bad enough, each synchronization of a disc is done individually
with the record deck. This works well since there is cnough time available during the
five second preroll scgment. The final test before the edit is the most complicated,
since three devices are to be sampled. This complication is minimized by the strategic
sampling method within each sync loop: the primary device first and then the record
deck; and in the sccond loop, the record deck first and then the secondary device next.
And when the final test is made, the order of the respective sampling is as follows: the

primary device, the record deck, and the secondary device.



3.5 Dealing with Non-Real Machines

At the other end of the spectrum, the problem of not having any device must
also be accounted for. Any direct signal input through the switcher is just as valid as
any signal provided by a machine hooked into the system. This system uses two sig-
nals -- color bars and black. Another possible origin of just a signal could be a live
camera. Commands such as play and stop suddenly have no meaning; and since the
Multiviewer is going to expect an acknowledgement for any command sent, the system
will come to a stand still since color bars and black will not return anything. This is
why before any source or record device command is sent, a check is made to make

sure there is a device available.

3.6 The Program Structure

The program structure consists of some basic loops for controlling each section
of the process. The general overview of this code can be seen in Figure 3-4 while the

entire program code is included in the Appendix.



-20-

Figure 3-4: Structure of Exccution Unit

PROGRAM

DECLARATION OF VARIABLES AND FUNCTIONS
SET UP INITIAL ENVIRONMENT
MAIN LOOP

INPUT EVENTS FROM EDIT DECISION LIST (EDL)
STATE VARIABLE FOR EDL
EDL EXECUTION LOOP

AUDIO AND VIDEO CHANNEL SELECTION
IF SINGLE SOURCE CUT

ASSIGNMENT OF DEVICES

SET IN- AND OUT-POINTS

CUE DEVICES TO THE START POINTS
SET SWITCHER CHANNELS

START AND SYNCHRONIZE DEVICES
PERFORM THE EDIT

ELSE TWO SOURCE WIPE OR DISSOLVE

ASSIGNMENT OF PRIMARY AND SECONDARY DEVICES
SET IN- AND OUT-POINTS
CUE DEVICES TO THE START PCINTS
SET SWITCHER FUNCTION - DISSOLVE OR WIPE,
DURATION AND/OR WIPECQODE
SET SWITCHER CHANNELS
START DEVICES AND SYNCHRONIZE PRIMARY DEVICE
SYNCHRONIZE SECONDARY DEVICE
PERFORM THE EDIT AND
ACTIVATE THE SWITCHER FUNCTION

NEXT EVENT

NEXT SET OF EVENTS

END OF EDIT DECISION LiST




21-

Chapter 4

Conclusion

A major simulation of the Experimental Video Workstation was taken to the Na-
tional Aésociation of Broadcasters Conference in April 1986. It was displayed with the
intention of presenting a design idca for manufacturers of video equipment to con-
sider in the future. As the video industry is heavily inundated with computers, the
project has demonstrated its potential as a usable system. [t has also elucidated the
challenge for applying computer control to the video editing process. The future work
of this project rests in providing flexibility to control any arbitrary device used in the

editing process.



/* J. BARBOUR 4-1-86 */

/* FILM/VIDEO MEDIA LAB */

/®

* This version performs a simple edit within 1 frame at the start of
* the edit.

*/

#define SCOPE

#include <{stdio.h>
#include <fzntl.h>
#include <gened.h>
#include <funcs.h>
#include "global.h"

#include "include/ldpcmds.h"

/*

* This structure is created to maintain timscodes and all its
* permutations: frame numbers and character strings.

*/

struct

{
int
int
int
int
char
char

long
}s

reftime

hour;

min;

sec;

frame;
tcno[10];
frameno[10];
frm;

/* This structure is created to hold one event 1ine of the edl */

struct line

{
int
char
char
char

struct
struct
struct
struct

eventno;
device[4];
av[4]:
shot[5];

reftime dur;
reftime qin;
reftime qout;
reftime rin;

/*
/*
/*
/*

/*
/*
/*
/*

The event number */

The source device */

The audio and video channel select */
The type of shot: cut, wipe,

dissolve */

Duration of wipe or dissolve */
Source in-point */

Source out-point */

Record in-point */



-23-

struct reftime rout; /* Record out-point */
}:
johnblock(filename)
char  *filename[20]; /* Filename up to 19 characters long */
{
int result;
int i, j,» k, x, u, y; /* counters for loops */
int a, v;
char linebuf[85]; /* safe buffer to read in edl line */
int edllen = 79; /* edl line length determined by input
* file */
int fd;
int Toop, start; /* variables used to determine what edl

* lines have been executed */
long atol();

long getframe(); /* get frame number from the laser
* discs */
long rvgetframe(); /* get timecode from the record vtr */
long tece(): /* convert timecode to frame number */
long convert(); /* convert timecode from input string
* to frame number */
long ftotc(); /* convert frame to timecode */
long avm(); /* set audio and video modes */

/* CONTROL CODES */
/‘

* These control codes are used to send the appropriate characters
* to the 'control’' function

*/

static TBYTE play[2] = ('c'};
static TBYTE recdev[Z] = {'a’'
static TBYTE cue[2] = {'
static TBYTE getin[2] =
static TBYTE getout[2] =
static TBYTE pause[2] =
static TBYTE slow[2]
static TBYTE fast[2]
static TBYTE stop[2]
static TBYTE quit[2]
static TBYTE edit[2]
static TBYTE frmdisp[
static TBYTE tcdisp[2
static TBYTE recprero 2
static TBYTE setinf[2] = {'i
static TBYTE setout{2] =
static TBYTE video[2] = {
static TBYTE audio[2] = {
static TBYTE setasw[2] =

H—'
.

D -mn
-

Lison Yonn Yann Yonn Yane
. o w wpm
. °.e o = .5\-,.1 - -
-on-o-\*‘.
oo Nl wo
-e

(=]
'I—-lf"ﬂ o< xoT

]—
i

N oo
NN SN

e N W N B RN

/* DEVICES */
static TBYTE rvtr[2] = {'a'}:



static TBYTE avtr[2] = {'s'}):
static TBYTE bvtr[2] = {'d'};:

static TBYTE aux[2] = {'k'};

static TBYTE blk[2] = {'1'};

/‘

* These are the character strings the input will be compared
* against :
=/

static char devi[4] = "001";

static char dev2[4] = "002";

static char devaux[4] = "AUX";

static char devax[4] = "AX";

static char devblk[4] = "BLK";

static char devb1[4] = "BL";

/* Used for assignment of devices */

TBYTE  primary[2]:

TBYTE  secondary[2];

int pd;

int dpd;

int sd;

int dsd;

/* variables set up for doing wipes and dissolves */

char du;

char wc[4];

int wipecode;
TBYTE  function[2];

static TBYTE wipe[2] = (']'};
static TBYTE dissolve[2] = {'['}:

/®* CALCULATION VARIABLES AND CONSTANTS */

/*

* These are most of the empirical offsets determined for proper
* machine function

*/
int evlist = 3; /* how many events to do at a time */
long preroll = 150; /* matching the preroll of record deck*/
Tong followon = 40; /* delay at the end of edit before
* stopping */

long tolerance = 1; /* accuracy tolerance, must be at least

- * one unless perfect machines */
Tong vtroffset = 3; /* delay for vtr response */
long wipeoffset = 9; /* delay for switcher wipe 004 */
Tong dissoffset = 9; /* delay for dissolve */
long commit = 10; /* last test for devices in sync */
Tong threshhold = 25; /* last chance to sync devices */
long absurd = 2000000L; /* accomodates serial line garbage */
char funclist[15]; /* same as cmdlist */
long vtrinfrm; /* frame mark for activating edit */
long vtrintc; /* timecode mark for activating edit */
long vtroutfrm; /* mark for ending edit */
Tong vtrouttc; /* mark for ending edit */



-25-

long errin; /* error tolerances in and cut */
long errout;
long aswinfrm; /* switcher in-point in frame and
* timecode */
long aswintc;
/‘
* These are the actual variables the above offsets are applied to
* for proper functioning. For the following assignments p or pri
* mean primary device and s or sec mean secondary. Primary and
* secondary only refer to source devices not record devices. In
* the case of a wipe or dissolve, the secondary device is the
* second segment or event line in the edl.
./
long thresh;
Tong commitpt;
Tong pfrmdiff; /* frame difference between record and

* source */

long sfrmdiff;
Tong pcurdiff; /* the difference currently maintained

* by devices */

Tong scurdiff;
long prifrm; /* frame device is at */
long secfrm;
long rvfrm;
char priframeno[10]; /* character representation of frame */
char secframeno[10];
char rvtcno[10];
long rvtc; /* numeric timecode */
int try = 0; /* number of retries */
long over;
struct line event[15]; /* program can handle 15 events in an
* edl */
/‘
* Initial integration of this function in with the upper level
* program
=/

strcpy(kbdport, KBDPORT);

bufptr = cmdlist;

endbuffer = &(cmd1ist[MAXCMDLIST]);

if ((fd = open(filename, ORDONLY)) < 0)
return (-1);

edl = TRUE;

debug = FALSE;

/* Set up of devices into a consistent state with the program */
control(recdev);

control(stop):

control(play);



-26-

sleep(1000);
control(stop);
/* checks audio and video status and resets them */
if (devtable[RVTR].status & BIT2)
control(video);

if ((devtable[RVTR].status & BITQ) &&
I(devtable[RVTR].status & BIT1))
y =3

if (1(devtable[RVTR].status & BITO) &&
(devtable[RVTR].status & BIT1))

y = 2;

if ((devtable[RVTR].status & BITQ) &&
(devtable[RVTR].status & BIT1))

y = 1;

for (x = 0; x < y; x++)
control(audio);

/* Set up main loop */
loop = 0;
start = 0;
/* Start of main loop */
do
{
Toop++;
/* Start of the Input reading for the first number of events */
for (i = start + (Toop - 1) * evlist; i <= loop * evlist; i++)
{ .
read(fd, linebuf, edllen);
printf("%s\n", linebuf);

/.
* This is the statement which 'parses' the edi line and
* stuffs it into the structure LINE
*/
sscanf(linebuf, "%d %s %s %s %2d %*c %2d \

#2d %*c #%2d %*c %2d %*c %42d \

%2d %*c %2d %*c %2d %*c %2d \

%2d %*c %2d %*c %2d %*c %2d \

%2d %*c #2d %*c %2d %*c %2d ",

&event[i].eventno, &event[i].device,
&event[i].av, &event[i].shot,
&event[i].dur.sec, &event[i].dur.frame,
&event[i].qin.hour, &event[i].qin.min,
&event[i].qin.sec, &event[i].qin.frame,
&event[i].qout.hour, &event[i].qout.min,
&event[i].qout.sec, &event[i].qout.frame,
&event[i].rin.hour, &event[i].rin.min,
&event[i].rin.sec, &event[i].rin.frame,



-27-

&event[i].rout.hour, event[i].rout.min,
&event[i].rout.sec, &event[i].rout.frame);

convert(&event[i].dur);

convert(&event[i].qin);

convert(&event[i].qout);

convert(&event[i].rin);

convert(&event[i].rout);

/* marker of event number 512 signalling edl is done */
if (event[i].eventno == 512)

it
break;
}
} : /* End of Read/Input loop */
start = 1;

/* EDL EXECUTION LOOP */
for (j = ((loop - 1) * evlist); j < (i - 1); j++)
{ .

/* calculate threshold points and commit points */
thresh = event[j].rin.frm - threshhold;
commitpt = event[j].rin.frm - commit;

/*
* Set control to record deck and select audio and video
* channels
*/
control(recdev);
avm(&v, &a, event[j].av);
if (v == 1)
control(video);
for (x = 0; x < a; x++)
control(audio);

/* CUT OR WIPE-DISSOLVE */

/.

* this determines if the edit is a cut or wipe and dissolve
* and sends program control to the appropriate section.

‘/ .

if (strcmp(event[j].eventno, event[j + 1]))
/* ASSIGN CURRENT DEVICES */
/* This assigns the primary source to be used in the cut */
if (Istrcmp(event[j].device, devl))
strcpy(primary, avtr);

dpd = LDP1;
pd = AVTR;



retry:

-28-

} else
if (!strcmp(event[j].device, dev2))

strcpy(primary, bvtr);

dpd = LDP2;
pd = BVTR;
} else

if (Istrcmp(event[j].device, devaux) ||
Istrcmp(event[j].device, devax))

{
strcpy(primary, aux);
pd = AUX;
} else
if (!strcmp(event[j].device, devblk) ||
Istrcmp(event[j].device, devbl))
{

strcpy(primary, blk);
pd = BLK;

/* calculate desired frame difference */
pfrmdiff = event[j].rin.frm - event[j].qin.frm;

/‘

* This is the point of return if the edit must abort and
* try again

s/

/t

* SETIN SETOUT .. This sets the real in and out points for
* the machine control.

*/

bufptr = cmdlist;

strcpy(cmdlist, event[j].rin.tcno);

control(setin);

virinfrm = event[j].rin.frm - vtroffset;

vtrintc = ftotc(vtrinfrm);

errin = ftotc(vtrinfrm + tolerance);

bufptr = cmdlist;

strcpy(cmdlist, event[j].rout.tcno);
control(setout);

vtroutfrm = event[j].rout.frm - vtroffset;
vtrouttc = ftotc(vtroutfrm);

errout = ftotc(vtroutfrm + tolerance);

/* CUE DEVICES */

/.

* Set the devices to the appropriate start points for the
* edit

./

if (!strcmp(primary, avtr) || !strcmp(primary, bvtr))

sprintf(inframe, "%051d", (event[j].qin.frm - preroll));



control(primary);
control(cue);
}
control(recdev);
control(recpreroll);
/*
* holds control until the record deck reaches the preroll
* point
*/
while (tcc(rvgetframe(RVTR1, rvtcno))
I= (event[j].rin.frm - preroll));

/* START DEVICES */
control(recdev);
control{play);

if (!strcmp(primary, avtr) || !strcmp(primary, bvtr))

control(primary);
control(play):
) )
/‘
* TRANFER CONTROL TO RECORD AND SET SWITCHER TO PROPER
* SOURCE CHANNEL
*/
control(recdev);

bufptr = cmdlist;
if (devtable[ASW].status & BITQ)
cmdlist[0] = '1';
else
cmdlist[0] = '0°';
strcpy(&cmdlist[1], primary);
control(setasw);

/* SYNCHRONIZE LDP TO VTR */

* This continually gets the frames of both the record and
* source deck and compares them to the desired frame

* difference. If the difference is too great or too small
* the 1dp is sped up or slowed down to match. If the

* difference is within tolerance, the machines are left to
* play. This loop is continued until the devices reach the
* threshhold point.

if (!strcmp(primary, avtr) || !strcmp(primary, bvtr))

for (;;)

prifrm = getframe(devices{pd], priframeno);
rvtc = rvgetframe{(RVTR1, rvtcno);




-30-

rvfrm = tcc(rvtc);
pcurdiff = rvfrm - prifrm;

if (pcurdiff <= (pfrmdiff + tolerance) &&
pcurdiff >= (pfrmdiff - tolerance))
send(dpd, FPLAY, 1);

else

if (pcurdiff < pfrmdiff)
send(dpd, FSLOW, 1);

else
send(dpd, FFAST, 1); .
if (rvfrm >= thresh)
break;
} : /* End of Sync Loop */
/0
* This is the last test for sychronization before the
* edit
&/

send(dpd., FPLAY, 1);
prifrm = getframe(devices[pd], priframeno);
rvtc = rvgetframe(RVIR1, rvtcno);

rvfrm = tcc(rvtc):
pcurdiff = rvfrm - prifrm;
} else

{
/.
* This is to set up parameters if no physical device is
¢ used for a source
*/
rvtc = rvgetframe(RVTR1, rvtcno);
rvfrm = tcc(rvtc);
pcurdiff = pfrmdiff;

)

/* COMMIT THE EDIT AND PERFORM IT */
/* if the devices conform to standards then go ahead */
if (pcurdiff <= (pfrmdiff + tolerance) &&
- peurdiff >= (pfrmdiff - tolerance) &&
rvfrm < commitpt)

/‘

* This is a loop to look for the in-point. When found,
* turn on EDIT. Then enter a similar loop to look for
* the out-point.

*/

for (i

if ((rvtc = rvgetframe(RVTR1, rvtcno)) == vtrintc)



-31-

control(edit);

for (:3)
if ((rvtc = rvgetframe(RVTR1, rvtcno)) ==
vtrouttc)
control(play);
break;
} else
if (rvtc > errout && rvtc < absurd)
{
control(play);

over = tcc(rvtc) - tcc(vtrouttc):
printf("EDIT ERROR--OVERRUN %1d\n", over);
break;

} else:

while (tcc(rvgetframe(RVIR1, rvtcno)) <=
(event[j].rout.frm + followon)):
break;
} else
if (rvtc > errin)
{
control(play);
printf("NOT QUITE\n");
++try;
if (try <= 2)
goto retry;
break;
} else;

} else

printf("RETRY\n");
++try;
if (try <= 2)
goto retry;:
} /®* End of the EDIT Loop */

control(recdev);
controli(stop);
if (!strcmp(primary, avtr) || !strcmp(primary, bvtr))

control(primary);
control(stop);

}
/* END OF CUT */
Start Wipe and Dissolve Loop */

This wipe/dissolve loup is very close to the cut loop in
terms of function. It's main difference is that it is
using the functions of the switcher and two source devices
are being used. Those are the only conceptual differences



-32-

* that are present. This all leads to a large duplication of
* code with a few manipulations in the order of events.
./

else
{
switch (event[j + 1].shot[0])
case 'W': /* set up the switcher wipecode */
case 'w':
wc[0] = event[j + 1].shot[1];
wc[1] = event[j + 1].shot[2]:
wc[2] = event[j + 1].shot[3];
wipecode = atoi(wc);
case 'D':
case 'd':

/* Assign primary and secondary devices */
if (Istrcmp(event[j].device, devl))

strcpy(primary, avtr);

dpd = LDP1;
pd = AVTR;
} else

if (!strcmp(event[j].device, dev2))

strcpy(primary, bvtr);

dpd = LDP2;
pd = BVTR;
} else

if (!strcmp(event[j].device, devaux) ||
Istrcmp{event[j].device, devax))

{
strcpy(primary, aux);
pd = AUX;
} else
if (!strcmp(event[j].device, devblk) ||
!strcmp(event[j].device, devbl))
{
strcpy(primary, blk);
pd = BLK;
} else;

if (!strcmp(event[j + 1].device, devl))

strcpy(secondary, avtr);

dsd = LDP1;
sd = AVTR;
} else

if (Istrcmp(event[j + 1].device, dev2))

strcpy(secondary, bvtr);
dsd = LDP2;
sd = BVTR;



-33-

} else
if (!strcmp(event[j + 1].device, devaux) ||
Istrcmp(event[j + 1].device, devax))

{
strcpy(secondary, aux);
sd = AUX;
} else :
if (Istrcmp(event[j + 1].device, devblk) ||
Istrcmp(event[j + 1].device, devbl))
{
strcpy(secondary, blk);
sd = BLK;
} else;
}
/.

* Set up function list for when the switcher is called
* during the edit

./

switch (event[j + 1].shot[0])

case 'w':

case 'W':
sprintf(funclist, "%02d", wipecode);
funclist[2] = primary[0];
funclist[3] = secondary[0]:
funclist[4] = duration(event[j + 1].dur.frm);
strcpy(function, wipe);
aswinfrm = event[j + 1].rin.frm - wipeoffset;
aswintc = ftotc(aswinfrm);

break;
case 'd':
case 'D':
funclist[0] = primary[0]:
funclist[1] = secondary[0];
funclist[2] = duration(event[j + 1].dur.frm);

strcpy(function, dissolve);
aswinfrm = event[j + 1].rin.frm - dissoffset;

aswintc = ftotc(aswinfrm);

break;
}
pfrmdiff = event[j].rin.frm - event[j].qin.frm;
sfrmdiff = event[j + 1].rin.frm - event[j + 1].qin.frm;
wdretry:

/.

* SETIN SETOUT

s/

bufptr = cmdlist;
strcpy(cmdlist, event[j].rin.tcno);
control(setin);



-34-

vtrinfrm = event[j].rin.frm - vtroffset;
vtrintc = ftotc(vtrinfrm);
errin = ftotc(vtrinfrm + tolerance);

bufptr = cmdlist;

strcpy(cmdlist, event[j + 1].rout.tcno); ,
control(setout);

vtroutfrm = event[j + 1].rout.frm -~ vtroffset;
vtrouttc = ftotc(vtroutfrm);

errout = ftotc(vtroutfrm + tolerance);

/* CUE DEVICES */
if (Istrcmp(primary, avtr) || !strcmp(primary, bvtr))

sprintf(inframe, "%051d", event[j].qin.frm - preroll);
control(primary);
control(cue);

if (!strcmp(secondary, avtr) || !strcmp(secondary, bvtr))

sprintf(inframe, "%051d", event[j+1].qin.frm - preroll
(event[j].qout.frm - event[j].qin.frm));

control(secondary);

control(cue);

control(recdev);

control(recpreroll);

while (tcc(rvgetframe(RVTR1, rvtcno)) !=
(event[j].rin.frm - preroll));

control(recdev);
control(play);

if (!strcmp(primary, avtr) || !strcmp(primary, bvtr))

control(primary);
control(play):;

if (!strcmp(secondary, avtr) || !strcmp(secondary, bvtr))

control(secondary);
controli(play);
}
/l
* TRANSFER CONTROL TO RECORD AND SET SWITCHER
s/
control(recdev);

if (devtable[ASW].status & BITO)




)
{

)

/
b
S

/

i

-35-

bufptr = cmdlist;

cmdlist[0] = '1';
strcpy(&cmdlist[1], primary);
control(setasw);

bufptr = cmdlist;

cmdlist[0] = '0';
strcpy(&cmdlist[1], secondary);
control(setasw);
else

bufptr = cmdlist; .
cmdlist[0] = '0';

strcpy(&cmdlist[1], primary);
control(setasw);

bufptr = cmdlist;

cmdlist[0] = '1°;

strcpy(&cmdlist[1], secondary);
control(setasw);

* SET WIPE CODE */
ufptr = cmdlist;
trcpy(cmdlist, funclist);

L
* SYNCHRONIZE sync each disc to the record deck
./

f (!strcmp(primary, avtr) || !strcmp(primary, bvtr))

do
{

prifrm = getframe(devices[pd], priframeno);
rvtc = rvgetframe(RVTR1, rvicno); '

rvfrm = tcc(rvtc);
pcurdiff = rvfrm - prifrm;

if (pecurdiff <= (pfrmdiff + tolerance) &&
pcurdiff >= (pfrmdiff - tolerance))

{
send(dpd, FPLAY, 1);
if (++k > 3)
break;
else;
} else
{
k = 0;

if (pcurdiff < pfrmdiff)
send(dpd, FSLOW, 1);
else
send(dpd, FFAST, 1);



-36-

while (rvfrm < thresh);

)
if (!strcmp(secondary, avtr) || !strcmp(secondary, bvtr))
{
do
{ .
rvtc = rvgetframe(RVTR1, rvtcno);
secfrm = getframe(devices[sd], secframeno);
rvfrm = tcc(rvtc);
scurdiff = rvfrm - secfrm;
if (scurdiff <= (sfrmdiff + tolerance) &&
scurdiff >= (sfrmdiff - tolerance))
send(dsd, FPLAY, 1); _
else
if (scurdiff < sfrmdiff)
send(dsd. FSLOW, 1);
else
send(dsd, FFAST, 1);
while (rvfrm < thresh);
if (!strcmp(primary, avtr) || !strcmp(primary, ovtr) &&
!strcmp(secondary, avtr) || !strcmp(secondary, bvtr))
{
prifrm = getframe(devices[pd], priframeno);
rvtc = rvgetframe(RVTR1, rvtcno);
secfrm = getframe(devices[sd], secframeno);
rvfrm = tcc(rvtc):
pcurdiff = rvfrm - prifrm;
scurdiff = rvfrm - secfrm;
} else
if (!strcmp(primary, avtr) || !strcmp(primary, bvtr) &%
!strcmp(secondary, aux) || !strcmp(secondary, blk))
{
prifrm = getframe(devices[pd], priframeno);
rvtc = rvgetframe(RVTR1, rvtcno);
rvfrm = tcc(rvtc);
pcurdiff = rvfrm - prifrm;
scurdiff = sfrmdiff;
)} eise

if (Istrcmp(primary, aux) || !strcmp(primary, blk) &%
!strcmp(secondary, avtr) || !strcmp(secondary, bvtr))

rvtc = rvgetframe(RVTR1, rvtcno);
secfrm = getframe(devices[sd], secframeno);



-37-

rvfrm = tcc(rvtc);
pcurdiff = pfrmdiff;
scurdiff = rvfrm - secfrm;
} else
if (!strcmp(primary, aux) || !strcmp(primary, blk) &&
Istrcmp(secondary, aux) || !strcmp(secondary, blk))

rvtc = rvgetframe(RVTR1, rvtcno);
rvfrm = tcc(rvtc);

pcurdiff = pfrmdiff;

scurdiff = sfrmdiff;

if (peurdiff <= (pfrmdiff + tolerance) &&
pcurdiff >= (pfrmdiff - tolerance) &&
scurdiff <= (sfrmdiff + tolerance) &%
scurdiff >= (sfrmdiff tolerance) &
(rvfrm < commitpt))

/* Start the EDIT Loop */

/.

* This edit loop is very similar to the one for cuts
* except that the switcher is involved and must be

* activated in the middie of the edit

./

for (::)
if ((rvtc = rvgetframe(RVTR1, rvtcno)) == vtrintc)

control(edit);

for (:3)
if ((rvtc = rvgetframe(RVTR1, rvtcno)) ==
aswintc)
break;
else

if (rvtc > aswintc & rvtc < absurd)
goto wdretry;
control(function);

for (;:)

if ({(rvtc = rvgetframe(RVTR1, rvtcno)) ==
vtrouttc)
control(play);
break;

} else

if (rvtc > errout && rvtc < absurd)

{
control(play);

over = tcc(rvtc) - tcc(vtrouttc);
printf("EDIT ERROR--OVERRUN %1d\n", over);

break;



-38-
} else;

}
while (tcc(rvgetframe(RVTR1, rvtcno)) <=
(event[j + 1].rout.frm + followon));

break;

} else

if (rvtc > errin)

{
control(play);
printf("NOT QUITE\n");
++try:
if (try <= 2)

goto wdretry;

break;

)} else;

} else

printf("RETRY\n");

++try:

if (try <= 2)
goto wdretry;

}

control(recdev);
control(stop);
if (Istrcmp(primary, avtr) || !strcmp(primary, bvtr))

control(primary);
control(stop):
} .
if (!strcmp(secondary, avtr) || !strcmp(secondary, bvir))
control(secondary);
control(stop);
}
J++:

}

/* RESET AV */
control(recdev);
if (v == 1)
control(video);
for (x = 0; x < (4 - a); x++)
control(audio);
} /* End of Execution Loop */

if (j != (loop * evlist))
start = 0;

}
while (event[j].eventno != 512); /* End of edl */



return (0);

convert(time)

{
sprintf(time->tcno, "%02d%02d%02d%02d", time->hour, time->min,
time->sec, time->frame);
time->frm = ((long) time->min * 60 + (long) time->sec) * 30
+ (long) time->frame + 1;
sprintf(time->frameno, "%051d", time->frm);
return;
}
long
tcc(time)
long time;
{
long frm;
long :
long a = 1000000;
long b = 10000;
long c = 100;
long d = 60;
long e = 30;
long f=1;
time -= a;
n = time / b; <
time = time - (n * b);
frm = n * 60;
n = time / c;
time = time - (n * c);
frm = (frm + n) * e + time + f;
return (frm);
}
int

struct reftime *time:

avm{v, a, str)

int *v, *a;
char *str;

/* possibles are: 'V', 'B' (V12), 'A1',
'A2°', 'A1V', 'A2V', 'AA' ¢/

if (Istrcmp(str, "V"))



return;
)
if (!strcmp(str, "8"))
{
‘v:l;
*a = 3;
return;
}
if (!strcmp(str, "A1"))
{
*v = 0; *
la:]_;
return;
}
if (!strcmp(str, "A2"))
{
*v = 0;
*a = 2;
return;
}
if (Istremp(str, "A1V"))
{
‘vsl;
*a = 1;
return;
}
if (!strcmp(str, "A2V"))
{
‘v:l;
Oa=2;
return;
}
if (!strcmp(str, "AA"))
{
*v = 0;
*a = 3;
return;
}

/* will accept 'V12', even though our implementation uses 'B' */
if (!strecmp(str, "Vi2"))

{
*v = 1;
%a = 3;
return;

printf("getavmode: illegal mode string '%s'; all channels off\n");
*v = 0;

*a = 0;

return -1;



long
ftotc(time)

}

long time;

long t, frames;

int i, digits[3];

frames = time - 1L;
digits[2] = frames

frames /= 30:

digits{1] = frames

frames /= 60:

digits[0] = frames

t = 0;

for (i = 0; i < 3;
t = (t* 100) +

t += 1000000L;

return (t);

duration(dur)

{

long dur;

if (dur == 0)
return ('0');

else

if (dur <= 19L)
return ('1');

else

if (dur <= 23L)
return ('2');

else

if (dur <= 28L)
return ('3');

else

if (dur <= 36L)
return ('4');

else

if (dur <= 53L)
return (°'5');

else

if (dur <= 85L)
return ('6');

else
return ('7');

= ((frames
= ((frames
= ((frames

i++)
digits[i];

/ 30) * 30);
/ 60) * 60);
/ 60) * 60);



