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1. Introduction 

In this repo11 an effective nlgorithm is presented v.hich for an) gi\t~n arbitrary rrc1or 

replacemenl system(\ R ) (8] allows to decide \\ hethcr it i: rc1-- i. tent or not. This algo
rithm is an extension of thl' one presented in (11] which relics un the per ·is1c11 c of the 
given Petri net when it constructs a finite scmilincar rqnc. l.'nt.ttiun ur it: 1cach·1bility set. 
The algorithm here is sclf-c(>11lain d, ba cd on a recursive c:011 tructinn of scmilinear rep
rcsL:ntations for subsets of the counter ct of the YRS. Ir the YRS is persistent, the whole 
counter set i obtained b) the algorithm, thu also gi\'ing a ·cmilincar reprcscntntion 
of the rcachahilit) set. For further motivation to stud) per istcnt system the reader is 
referred to [(d 0, 13, 17]. In lS], it is prm ed that the decision prob km fur Lhe persistence 
of one transition in a RS or Petri net is rccmsivcl) c4ui\alcnt to the decidability of the 
reachabilit) problem. but it is al ·o conjccturcd Lhat the persi ' tenet.: or a \IRS or Petri net 
can be decided complctelJ independent from the reachabilit1 problem . llie algorithm 
pre ·cntcd in the t.:qucl docs not rel) on an algorithm for thc general rcachubilit) problem. 
Throughout the paper, \IRS terminology is used: the tran ition to and from Petri nets is 

trnightfornard [4]. 
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2. Not.It ion and preliminaries 

A Vector Replacement Srstcm (YRS) [8] is a pair (T, m) where T = {t1, ... , tw} is a finite 
set of lransitions l; = (ui, v;) E N1'xZ 1' *with u, + Vi > 0 and m E N'' is the inilial vector 
(v E N). l; E T is applicable at m' E Nl' iff ui < m' (written a(t;, m')), application of ti at m' 

takes m' tom'+ v; (written m'ii+ m' +vi). 

For r = t1 1 ... ti, E r• we define inductively 
i) a( r, m'):=r = 0 V a(ti 1, m') I\ a(t,2 ••• tir, m' + vi); 
'') °"'r . II 8r: = L.,j=l Vii, 

iii) m'L m":=a(r, m') I\ (m" = m' + 8r). 

The reachability sci R.(T, m) of (T, m) is R(T, m): = {m'; (3r E T*)[mL m']}. Let <l>: r• -t Nw 
denote Lhc Parikh mar ping. ·n1e counter sct C(T, rn) of (T, m) is given by 
C(T, m): = {ifJ(r); TE r· I\ a(r, m)}. 

I .ct v E z,, "'be the integer matrix whose i-th column is v;, i E lu,. Obviously, we have 
i) (Vr E T')l8r = V<P(r)]; 

ii) R(T, m) = { m + Ve; c E C(T, m)}. 

A linear set LC N1' ' is a set of the form L = {a+ I:;= 1 n1bi; (n1, ... , n,.) E Nr} for some 
r E N, a, b1, •.. , b, E N'('. A scmilinear set is a finite union of linear sets. Semilinear sets 
arc exactly those sets definable by expressions in Presburger Arithmetic, i.e. the first order 
theory of the nonnegative integers with addition [16]. There is an effective procedure to 
construct scmilinear representations of the sets defined by Presburger expressions [3,14]. 

Definition 1: 
A vector m 1 E N" is persislent iff 

(Vl;, l1 E T)[(i ~ j) I\ a(t;, m') I\ a(t1, m')) = a(titj, m')]. 

(T, m) is persistent iff all m 1 E R.(T, m) are persistent 

It is known that for a persistent YRS (T, m), R(T, m) and C(T, m) are effectively construc
table sc111ilincar sets [9,12]. 
The following algorithm for the construction of the reachability graph RG(T, m) works 
lt)r arbitrary VRS's, it docs not assume persistence. In this algorithm, which is a slight 
modification of one originally given in [6], a digraph with labelled nodes and edges is 

•, dcnntc, the set of m\nnt:'gativr integers. /. the set of intl:g.ers. and N: = 0 N LJ{ w} lhe set N augmented hy the "infinite" 
1n1mb,'r .,.; with ±n + w = ui ± ti =..,; and 11 < w for all n EN. For i E N. /, stands for the set {l, ... , i}. 
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constructed: The label l(e) of an edge e is an element of T . and rnch node k obtuinj a label 
1r1(k) E f,r. (In pictures, parallel edges are merged into one which rccci,cs thl' union of 
the edge labels.) From these labels, marks have to be distinguished which in the algorithm 
ser\'e to decide which nodes still have to be dealt with. 

Algorithm I: 
begin 

start with an u11111arked node r (the "root") with m(r): = m; 
while there is an unmarked node do 

od 

select no11de1ermi11isticall y an unmarked node k; 
mark k; 
for all J E !., with a(t1 , m(k)) do 

od 

add to the graph constructed so far a ne\, unmarked node k! and an edge e 

from k to k' with t(e): = t.,; 
for i: = J, ... , v do 

if there is a node k" on a (not necessarily simple} path from r to k wilh 
ni(k" ) < m(k) + v.1 and (rn(k")), < (m(k) + v.1 ), 

then 
(m(k')),: = w 

else 

Ii 
od; 

(m(k')), : = (m(k) + v1)i 

if lhere is a node k" ~ k' in lhe graph constructed so far with m(k1') = m(k') 
then 

identify k' wilh lhis k" 
Ii 

end Algorithm 1. 

Note lhat new w-componcnls arl' introduced independently for different coordinates as 

for each coordinate i a different nude Jc' may be found. 
The proof of the termination of Algorithm 1 is very similar to the one given in [6] and 
won't be presented here. 
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Example: 
Fm the persistent YRS (T, m) with 
T = {(01\ 10'), (10\ 012100- JO"'), (0210\ 0 110 -021()1), (0 2 fl02, O"' -021202), (O,il 2,105 -0'112)} 

and m = JO,; (which is short for (1, o, o, o, o, 0) E N1
;) some run of Algorithm 1 produces the 

graph RG(T, m): 

Lemma I: 
Given (T, m), the set NPC(T, m): = {c E N"'; m + Ve is > O and not persistent} is an 
dkctivcly constructable semi linear set. 

Proof: 
8> Derinition 1, NPC(T, m) equals the set 

Hence, N PC(T, m) can be defined in Presburger Arithmetic, and a scmilincar repre
sentation can effectively be found. I 
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J. Some properties of RG(T, m) 

Let k be a node in RG(T, m) for some arbitrary YRS (T, m). 

Lemma 2: 
"n,e sets 

C1J.-: = {<l~(r) ; r is the cdgc-1.tbelling sequence of a path in RG(T, m) from k to k}, anq 

C T 2: = {c E CT1,:; Ve> O} 
arc clfccti\'cl> constructable semilinear sets. 

Proof: 
Regarding the strongly connected component (SCC) of kin RG(T, m), stripped of the node 
murking m, as the transition diagram of a finite automaton over T, the set C h corresponds 
to the Parikh image of the regular language accepted by that finite automaton with k as 
initial and single final state. Hence, by Parikh"s Lemma (15], CTk is an cfTectively construc
table semilinear set. As CTt = {c E Ch; Ve> O}, and as systems of linear inequalities 
are expressible in Presburger Arithmetic the claim of the lemma follows from the fact that 
semi linear sets are elf ectivcly closed under Boolean operations [3]. I 

Definition 2: 
Form EN'' and NE N set 

F(m, N): = {m' EN!'; (Vi E Jv)[(mi = w I\ m: > N) V (mi= mm}. 

In the sequel, we shall make use of the following basic properties of RG(T, m) proved in 
(4,5]: 
a) For any given NE N and node kin RG(T, rn), one can cfTcctivcly find some r E r• (and 

hence <J>( r) E N1" ) s.t. a( r, m) and m + br E P(m(k), N). 

b) Fm any given node kin llG(T, m), there is a path from the root r to k with edge-label
ling sequencer s.t. a(r, m). 

Lemma 3: 
Let (T, m) be a persistent YRS and k a node in UG(T, rn). Let further p be the projection of 
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N•· u z,, on those coordinates where m(k) is not equal w. (Note that two transitions p(t;) and 
p{ij) with i =I= j and p(t,) = p(tj) are considered diff ercnt.) Then (p(T), p(m(k))) is persistent. 

Proof: 
Assume that (p(T), p(m(k))) is not persistent. TI1cn there are TE r• and t,-, tj E T with i =I- j 

s.t. (with m': = rn(k) + 8T) 

a(p( t, ), p( m')) I\ a(p( t j), p( m')) I\ ,a(p( l;)p( t j), p( m')). (*) 

Now, effectively find some TE r• s.t. a(r,m) and rn + 8r (: F(rn(k), N) . Chom:ing N big 
enough one could obt:,in m" E ll(T, m) n F(1n(k), N) s.t. a(rl;, m") /\ a(rt.i, m''). Frnm (*) then 
fr>llows -,a(Tl;lJ, rn"), contrndicting the persistence of (T, m). I 

Definition 3: 
Let (T, m) be an arbitrary YRS .. 
a) A transition t ET is bounded in (T, m) iff (3N EN, ;Jc E C(T, rn))IN<P(t) < c]. 

b) A sli-ongfy connected component (SCC) CC in RG(T, m) is called distinguished iff the la
bels of all edges leaving cc do not appear as labels of edges within any SCC. 

It has been shown in [5] that it is decidable whether t E T is bounded. As a matter of fact, 
t. ~ Tis not hounded iff it is the label of some edge within some SCC of RG(T, m). Let, in 
the sc4ucl, JJT(T, m) CT denote the set of bounded transitions in (T, rn). 

If (T, m') is a persistent YRS, and if T, T' E r• are sequences s.t. a( T, m'), a( r, m'), and CT> o 
then <P(T) E C(T, m' + 87"). This follows from the fact (proven in (7]) that c, c E C(T, m') 

implies max{c,c'}-c E C(T,m' + Ve) and the observation that a(T',m' + cr) because of 
CT> 0. 

Now. let (T, m) be a persistent YRS, k a node in some distinguished SCC of RG(T, m), 

k' -j k a node on n cycle through k, and T the edge-labelling sequence of a cycle through 
k but not k. Note that the node markings m(k") have the same set of w-coordinates for all 
nodes k" in the SCC of k. If p denotes the projection on those coordinates where m(k) is 
not equal tow, we have a(p(T), p(rn(k))) and p(6T) = o. It is also clear from the construction 
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in Algorithm 1 that p(m(k)) E R(p(T),p(m(k'))). 171erefore, using Lemma 3 and the above 
ohservntion, there must be a path starting from k with some edge-labelling sequence r1 s.t. 
<J>(r') = <f>(r). But then all transitions in r' arc unbounded, p{h ') = o, and this path must 
end ink. From this observation, one easily obtains 

Lemma 4: 
If (T, m) is a persistent VRS and k a node in some distinguished SCC of RG(T, m) then 
CTk, (resp. crt ) is linear and equal for all k' in the SCC of k. 

Proof: 

From the above discussion, one deduces that the sets C71c, arc linear and equal for all k' in 
the sec of k . But as cri, = {c E C:Tk'; Ve > O}, so arc the crt. I 

On the other hand, one may observe that if (T, m) is an arbitrary YRS and CC some 
distinguished sec in RG(T, m) s.t. all rn(k) for k in cc are persistent, then CTk (resp. 
crt) is linear and equal for all kin cc because {m(k); kin CC}= R(T -BT(T, m), m(k')) 

for any k' in cc, and (T - BT(T, m), m(k')) still is persistent. 

The following theorem states the basic properties of distinguished SCCs in the reachabi
lity graph of persistent VRS's. Let, in the sequel, w': = JBT(T, m)I denote the cardinality 
of BT(T, m) c T, nnd Pnr the projection of N111 onto those coordinates which correspond to 
transitions in BT. 

Theorem 1: 
Let (T, m) be a persistent VRS. 
a) There is exactly one maximal SCC (i.e. no other SCC can be reached from it) in 

RG(T,m). 

b) For each c E {p,n(c); c E CT(T, m)}, there is exactly one distinguished SCC CC(c) in 
RG(T, m) s.t. (VT E T*)[(a(r, m) I\ T determines the edge-labelling sequence of some path 
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in nG(T, m) from the root r to some node in CC(c))=p1rr(<l>(r)) = c]. 

Proof: 
a) Assume that there are two nodes k and k' in two different maximal SCCs of RG(T, m). 

l11cn there are r, r' Er• s.t. a(r, m), a(r', m), and r (resp., r') determine a path in RG(T, m) 

from the root to k (resp., k' ). Because of the result in (7] and its consequence mentioned 
a bow, we may assume w.l.g. that <P(r) = <I>( r') and m(k) and m(k') have the same set of w

coordinates, and hence, that k = k', contradicting the assumption. 
b) First note that in RG(T, m) an edge the label of which is a bounded transition always 
leads from one SCC to a different one. 
Let c E {P,n(c); c E C(T, m)} C N11

·'. Obtain from (T, m) a modified (T', m1
) in the following 

way (where BT= {tip ... , ti,)): 
AcJd to all (u;, v,) E T w' new coordinates the j-th of which is I for u,,, -1 for vi,, for 
j E /,,.,, and zero in all other cases, and m' equals (m, c) E N"+ 11

·'. It is easy to see from the 
derinitiun that (T', m') still is persistent, and that C(T1, m') = {c E C(T, m); p1rr(c) < c}. Also, 
it follows from the remark made above that for all r' E T'. with a( r', m1

) Pirr( <P( r')) = c if r' 
determines a path in RG(T1, m') from the root to some node in the maximal SCC. 
If one now observes that-again because of the above rcmark-RG(T'. m') is isomorphic 
to a subgraph of (some, because Algorithm 1 is nondeterministic) RG(T, m) (with the 
canonical mapping between the edge and node labels, resp.), then let the maximal SCC in 
RC(T', m') correspond to CC(c) in RG(T, m), and b) follows from a). I 

Definition 4: 
Let (T, m) be a YRS and k a node in RG(T, m) s.t. crt is linear. Let, further, rJ, j E Jh, be 
edge-labelling sequences of paths in RG(T, m) from k to k s.t 

h 

crt = {I: n/l>(ri); (n1, ... , nh) E Nh}. 
j=l 

A hurdle fork is then a number Hk EN s.t. 

m' E F(m(k), Hk)=(\/j E li,)[a( ri, m')]. 

Gi\'en TlC(T, m) for some (T, m), an H1. for some k with linear crt can effectively be 
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determined. 
Finally, we note a prope1ty of linear sets which is used by the algorithms discussed in the 
next section. Let, for sets A,B c ",A+ B denote the set {a+ b; a EA , b ED}. 1l1en we 
have 

l,cmma 5: 
Let L c N1' be linear, o E L, and L' some subset of L. Then there is a finite B C L' s.t. 
L' c B + L. If L' is scmilinear, and L, L' arc effectively given, such a 13 rnn effectively be 
obtained. 

The proof is left to the reader. 
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4. A decision procedure for persistence 

Let k be a node in the reachability graph RG(T, m) of some YRS (T, m), m E N11
, s.t. CTw 

is equal and linear for all nodes Jc in the SCC of k. We are now going to describe a 
procedure s!set wh ich for SCCs as above construct,; a semilinear representation of the set 
{ C + 4>( r); a( T, m + V C) and T is the edge-labelling seq uencc of a path in the sec of k} where 
C is some counters.t. m + Ve E F(m(k),Hk)-

procedure slsct (k:node: SL:repr or semilinear set: c:counter): 
begin 

rn it is required I hat k is a node in the rcarhahility graph llG(T, m) of some VRS (T, m). m E N". s.t. CTk' is 
equal and linear for all k' in the SCC of k. (T, m) i:tr. arc global for slset oc: 

var JI /(:integer: CTK :rc11r or scmilinear set: 
co SL, CTK refer to representations of semilinear sets oc: 
11roccdure complete (k:node: c:counter): 
begin 

var i:integer: bset:finite set or counter: L':repr of semilinear set; 
for i: = l, . . . , w do 

od 

if there is an edge labelled t, from k to some k' (possibly k = le') in the SCC of k s.t. 
(3c' E c + CTK)la(t,, m + Vc')/\(c' + <P(ti) ~ SL)] 
co this can be written as a Presburger expression oc 

then 

fi 

L': = {c' E c + CTK;a(t;, m + Vc')A(c' + 4>(t;) (;l SL)}: 
co the right hand side defines a semilinear set oc: 
bset: = ,,omc finite subset of L' s.l. L' C bset + CTK; 
co hecau,e of Lemma 5. this assignment is effective oc; 
for all c' in bset do 

od 

S'L: = SL LJ(c' + 4>(t,) + CTK): 
complctc(k', c' + 4>(t;)) 

end complete; 
CTK: =co a representation of oc CTt; 
co nole Lemma 2 and lhe remark after Lemma 4 oc; 
HK: =some hurdle H1c for k: 
c: =some cou111er E C(T, m) s.t. m + Ve E F(m(k),HK); 
SL: = co a representation of oc c + CTt: 
co111plele(k, c) 

end slset: 
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Theorem 2: 

a) The procedure slsrt terminates and yields a set SL C e(T, m). 

b) If (T, m) is persistent then SL = {e + <P(r); r is the edge-labelling sequence of a path 
in the sec of k in RG(T, m) starting from k S.t. a(r, m + Ve)}, where e is the counter 
determined in slset. 

Proof: 

a) Frnm the selection of II K :.ind c, it is clear that e + CT/ C C.'(T, m). When some 
,· + <P(l1 ) + CTK is added to SL one can assume by induction on the depth of recursion 
that SL C e + C(T, m + \le) before that step. Let r' E r• be some seq uence s.t. 
a(r', m+ Ve)/\c/>(r') = c'-e. Furthermore, SL+CTK CSL. But by the definition of HK and 
CTK, there is, for any e" E CTK, a r'' ET• s.t. a(r", m +Ve)/\ <P(r'') = e" I\ r'' determines 
a path from k to k. Hence, a(r', m + V(e + c'')) A a(ti, m + V(c' + e")) as er'' = Ve''> 0. As 
c' has been chosen arbitrary in CTK this shows that e' + <P(t,) + CTK Ce+ C(T, m + Ve), 

and by induction, that in variantly SL C e + C(T, m + Ve) C C(T, m). Now assume that 
s/sct docs not terminate. Then, by K5nig's Infinity Lemma, there must be an infinite chain 
of nested recursive calls of the procedure complc1e and a subchain of this chain such that 
all calls in this subchain have the same first parameter. Let (c'} N be the sequence of 

1(:: 

counters in the second raramcter position of this subchain. Because each infinite sequence 
in N'' has a nondecreasing infinite subsequence (this is a corollary of what is sometimes 
referred tu as Dicksnn·s 1.emnia 12, 1.ernrna /\]) there is a subsequence (r.') N of (ei) _ N 

,( iE 

s.t. (m + Vt') N is nondecreasing. As has been shown above, for each c' there is a ri E r• te 
s.t. a(ri, m + Ve) A <P(ri) = e' - c I\ (r' is the edge-labelling sequence of a path a; in 
the SCC of k in RG(T, m) starting from k and ending in some fixed node k') . The last 
observation follows from the choice of (e\EN· Considering the multiplicity with which 
the edges of RG(T, m) appear in a i, i E N, and applying once more Dickson's Lemma, 
one obtains indices j < / s.t. al contains each edge of RG(T, m) at least as often as does 
o1 . As CT/<! is linear and equal for all k' in the sec of k, and by the definition of the T i, 

<J>(rl) - <P(rJ") E CTI<. Tl1Lls, after c j + CTK has been added to SL,,/ ESL, contradicting 
the assumption that s/sel does not terminate. 

b) From the Grst part of this proof we know that SL C {r. + <P(r); r is the edge-labelling 
sequence of a path in the SCC ol'k in H(,'(7', 111) starting from k s.t. n(r, m . -1 Vr)}. The other 
direction can easily he Sl'l'll b) i11durtiu11 on till' k11gth or r. I 
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The procedure s/set will now be used in the following main algorithm to decide persist
ence of an arbitrary YRS. 

Algorithm 2: 

begin 
var GSL, N PC:repr of scmilinear set; 
procedure test ((T, m):VRS); 
begin 

var i:integer: SL, SL':repr of scmilinear set; k:node: c', cmax:counter; 
procedure slset (k:node; .. . ); ... ; 
construct RG(T, m) using Algorithm l; 

if RG(T, m) doesn't satisfy the necessary condition of Theorem la) or contains a non-persistent node marking 
thus violating Lemma 3 

then stop '(T, m) is not persistent' fi; 
set CC,, i = l , ... ,h. the distinguished SCC's of RC(T, m); 
cm.ax: = 0 co E Nu• oc; 
SL: =0; 
for i: = l, ... , h do 

k: =Y>mc node in CCi; 
slsct(k, SL', c' ): 

crnax: = max(c',cmax) Cl.I max component-wise oc: 
SL:= SL LJ SL' 

od; 
if SL n NFC =;if 0 then stop '(T, m) is not persistent' fi; 
CSL: = CSL LJ SL; 
co CSL globally collects all counters in C(T, m) found by the algorithm oc; 
for i: = 1, ... , w do 

if t, ET - BT(T, m) then 

construct from (T, m) a new VRS (Ti, m') where T 1 is obtained from Thy adding aw+ 1st coordinate 
which isl for u,. -1 for v, . and zero in all other cases, and m; equals (m,cmax;) E Nw+ 1; 

co this means that C(T',m' ) = {c E C(T,m);c; < cmax;} oc; 
test((T', mi)); 
co note that CSL is glohal in this recursion oc 

fi 
od 

end test; 
N PC: = N I'C(T, m) co note Lemma 1 oc; 
CSL: = 0; 

test((T, m)); 

if (3c E CSL, 31: E lw)la(t,, m + V c)A(c + <J>(t,) ~ CSL)] 
then slop '(T, m) is not persistent' 
else stop '(T, m) is persistent' 
fi 

end Algorithm 2. 
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Theorem 3: 
Algorithm 2 terminates for every VRS (T, m) and detennines whether (T, m) is persistent 
or not. 

Corollary 1: 
Persistence is decidable for arbitrary VRS's. 

Corollary 2: 
If (T, m) is persistent Algorithm 2 yields CSL s.t. CSL = C(T, m). 

Corollary 3: 
There is an effective construction of scmilincar representations of the reachability set of 
persistent VRS's. 

Proof: 
Because of the reduction of the number of unbounded trnnsitions in successive recursive 
calls of the procedure tesl, it is clear that Algorithm 2 terminates. If Algorithm 2 stops 
within tesl the answer given is correct because of Lemma 3. Otherwise, if the condition 

(3c E CSL, 3i E l w)[a(ti, m + Vc)/\(c + <P(ti) g CSL)] 

in the last if-statement of Algorithm 2 evaluates to false, GSL equals C(T, m) because of 
Theorem 2a), and (T , m) is persistent because, in fact, CSL n N PC = 0 has been verified 
by the algorithm. Conversely, if (T, m) is persistent then so me all (T i, m;) generated in the 
recursive calls of test as addition of a coordinate just bounding the number of times how 
often some transition can be applied docsn 't hurt persistence. Fu11hcrmore, if c E C(T, m), 

then it follows from Theorem lb), 171eorem 2b), and Lemma 3.1 in [9] that 

((Vi E Iw)[t1 ET -BT(T, m)=ci > cmaxi])=c E GSL. 

Hence, by induction on the number of unbounded transitions and by the construction of 
the (T', m ;), C(T, m) c CSL, and because of Theorem 2a), C(T, m) = CSL . TI1erefore, if 
(T, m) is persistent, the condition in the last if-statement of Algorithm 2 evaluates to false. 
This proves the theorem. The corollaries are immediate consequences. I 
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5. Conclusion 

The algorithm presented in this report extends the results in (11,12) and answers some 
of the questions asked in [9]. Thus, persistence of arbitrary VRS's is decidable (by an 
algorithm which docs not make use of a solution to the general reachability problem), and 
there is an effective method to construct semilinear representations for the reachability set 
of persistent VRS's. As far as the author knows, m-reversiblc [1] and persistent VRS's are 
the only classes of VRs·s for which an effective representation of infinite reachability sets 
has been given so far. Thus there remains a number of open problems in extending this 
result to other classes of VRS's of inten:st as well as in establishing the complexity of the 
algorithm given here. Another open problem concerns the characterization of the class of 
VRS's that have semilincar reachability sets. 

Addendum: While this report was being prepared. another algorithm for deciding persistence based on lhe non
constructive proof in [9] was obtained independently in (18]. 
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