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§0. Introduction

With the notion of (pre complete) numbered set Ershov [3] gave a general framework
for certain results in classical recursion theory. In his theory the notion of morphism is
central. In [6] there is a definition >f enumeration operators and (implicitly) of Turing
operators. Although enumeration operators (restricted to the r.e. sets as numbered set) are
morphisms, Turing operators are not even partial morphisms.

There is a natural correspondence between these (and other) classes of recursion
theoretic operators and morphisms on an appropriate numbered set, via the constructive
part of the A-calculus models Pw? aad T+. The different classes of operators on Pw are
efective continuous maps obtained by embedding Pw into Pw? or T¥ in two natural ways,
giving Pw either the Cantor or the Scott topology.

In particular Turing operators work on Pw with the Cantor topology. This is implicit
in Nerode’s theorem, see [6], p. 154, relating ¢¢-reducibility to total Turing operators. Also
a different proof will be given of a theorem in [6], p. 151, relating enumeration and Turing
reducibility. Finally an interpolation result, in the sense of Algebra, will be proved for
total Turing operators.

1. The Models Pw, Pw? and T*

L.ct w be the set of natural numbers with Pw as power set. (Pw, C) is a complete partial
order (cpo) and so is (Pw?, C) with < A, B> < A, B' > iff A C A’ B C B (these struc-
tures are even complete lattices). Cpo’s X are always considered with the Scott topology,
see [2], § L or [1], § 1.2. [X—X] is the cpo of continuous naps on X with the pointwise par-
tial ordering. There is a binary operation on Pw such that (Pw, -) is a continuous A-model,
i.e., a model of the A-calculus in which exactly the continuous functions are representable,
sec [1],§ 1.2.

Similarly one can make Pw? into a continuous A-model.

1.1 Notation A, B, ... range over Pw; A = w — A;a, b, ... range over Pw? if a =< A, B >, then
a_=Aand ay. = B;n,m,..,1,7,.,pq,.. range over w; (n, m) is an effective bijective coding
of w? on w;e, is an cffective enumeration of the finite elements of Pw?(i.e. of {ala_, a are
finite }), withe, =< ¢, > .

1.2 Proposition For a, b € Pw? define

a-b=<{ml|Fe, " b(n,m)Ea_},{m|3e,Cb(n,m)Ea,}>

For f € [Pw?— Pw? define

graph(f) =< {(n, m)lm € flen)--}, {(n, m)lm € flen)1-} >
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Then - : Pw'— Pw? and graph :[Pw?—Pw?]— Pw? are continuous and moreover

graph(f) - a = f(a).
In particular (Pw?,) is a continuous A-model.

Proof As for Pw. e
In § 3 another continuous A-model will be used, namely Plotkin's 7. One has

T% = {< A,B>|ANB=¢} C Pu’

see [2] for the definition of application (-) and abstraction (graph) in this structure.
These definitions use an effective enumeration by, by, ... of the finite elements of 7.

1.3 Definition Let X be Pw, Pw® Or T.
(i) The computable part of X, notation X, is defincd as follows:

Pw.={A|AisT.E. };
Puw? = (Pw)’;

T‘;’=T"‘0Pw3.

Let ng = {w,-},-eh,.
(i) A map f:X—X is computable iff 3a € X.Vz € X f(z) = a-z.
1.4 Lemma Let X be as above and f:X.— X be continuous. Then £ has a unique continuous
extension f: X—X.
Proof Define f(z) = U {/(¥) | y C =,y finite}. This is defined because the supremum is over
a directed set. 7 is clearly the unique continuous extension off.e
1.5 Definition A continuous f:X,—X. is called computable if its unique continuous exten-

sion 7:X — X is computable.
The following notions are due to Ershov.



1.6 Definition

(1) A numbered set is a structure (X, ) where y:w— X is a surjective map.
(ii) If(x,~) and (X’,+) are numbered sets then u:X — X' is a partial morphism iff for
some partial recursive ¥:w —w one has

va p(y(n)) = ¥(¢(n)).

(i) If (X,~) is a numbered set, then the Ershov topology on X has as base the
collection

{(y(A) |ATe. ).

For the definition of complete numbered set and special elements, see [3] or [8]. Pw.
with the standard enumeration v(n) = W, forms a complete numbered set with special
clements ¢. Similarly Pw?, 7% can be numbered to become complete numbered sets with
special element < ¢,¢ > .

Morphisms between numbered sets are clearly continuous with respect to the Ershov
topulogy. On our three numbered sets X;, the morphisms coincide with the computable
inaps.

1.7 Generalized Rice-Shaphiro Theorem Let X be Pw, Pw? or T, Then on X, the Ershov
topology coincides with the (trace of the) Scott topology.

Proof See [4], 2.5, where the result is proved in a more general context, o

1.8 Generalized Myhill-Sheperdron Theorem Let X be as above and f:.X.—X,. Then f isa
morphism iff 1 is computable.

Proof (=) By 1.7 1 is Scott continuous. An easy computation shows that graph(f) € X..
(=) Let f(a) = b-a with b € X.. Then f is a morphism, since an index of b- « can be
computed uniformly from one of a. o
The following lemma is needed in § 3.

1.9 Lemma Any computable f:7“—T* can be extended to a computable f~:Pw?— Pw?.

Proof Let b = Az - f(z); then b € T%. Let k be the recursive function such that Bil) 7= M
Define

b~ =< {(h(n), m)l(—n; m) € b_}, {(h(n), m)|(+n;m) €b_} >, f~(a) = b~ - a in Pu?.

Sce [2], §1 for notation. An easy computation shows that I~ 7% = 7, use [2], Lemma
1.6,



§2. The A «-Operators

In order to define the recursion theoretic operators on Pw, this sct will be cmbedded in
Pw? in two different ways.

2.1 Definition
() LetA € Pw.Then
A=< A¢> and A’ =< A, A>.
(i) (Pw,) is the space Pw with the Scott topology (see e.q. [1], p. 10). (Pw,”) is the
space Pw with the Cantor topology (sce e.q. [6], p. 270).

A and e will range over the set {', *1. Pw= is the subspace of Pw? (with the Scott
topology) consisting of the image of Pw under the map A. Note that A:(Pw, A)—Pw® is a
homeomorphism. A partial map ®:X —Y on topological spaces X, Y is called continuous if
®| Dom(®) is continuous on the subspace Dom(®).

2.2 Definition Let f:Pw?—Pw? be given. The partial A e-operator induced by f (notation
@) is defined as follows.

S2(A) = (A%) € Pu;

(PF(A)" = f(A2).

That is @}\’ =& "0 folX;

e
Pw — Pw
A le
Pw? — Puw?
¥

If c € Pw?, write ®2* = ®2* with f(a) =¢- a for a € Pu?.

2.3 Lemma A partial map &:(Pw, A) —(Pw, o) is continuous iff @ is an induced A, e operator
by some continuous f:Pw— Puw.

Proof (=) ® = ®2* = e~ 0 f o A and we are done.
(=) Define fy = e 0 ® o A :Pw? -»+Pw? Then f is a partial continuous map. Since
Pw? is an injective topological space (it is an algebraic, hence continuous lattice, see [7]), &
can be extended o a total continuous f. Then & = tb?'. .
Write €, = {/: Pw’—Pw? | f compulable }.
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2.4 Definition | ¢t ®:Pw —+Pw.

(i) @ isapartial strong operator (® < €') il A € €, & = &

(i) @ isapartial Turing operator (® € €}) if If € C, & = &'

(iti) @ is a partial enumeration operator ( € C) if 3f € C, & = &
(iv) @ isa partial weak operator (® € C}) if 3f € C, & = &},

Write €, = {f € €L | fis total} forz € {s, T, e, w}.

Example The jump operator ®(4) = A7 = {z | ¢}(z)]} is a partial weak operator. Namely
define

= {((nr m)l p) I aq (p; an, m) € Wp(p)}
C+ = ¢
then & = @’; see [6] p. 132 for the definition of W,
2.5 Definition

(i) Let D be some class of partial operators and A,B € Pw. A is D-reducible to B
(notation A <, B) if 3@ € D ®B) = A.
(ii) A is strongly reducible to B (notation A <, B) if A <cr B;
A is Turing reducible to B (notation A <r B) if A <cpB; |
A is enumeration reducible to B (notation A <. B) if A <crB
A is weakly reducible to B (notation A <, B) if A <cr B.

For a, b, € Pw? write a < b if 3c € Pw? a = ¢ b. then one has

AL B = el
AZn B s A
A<, B &' K <H

A<,B = A<B



2.6 Proposition

(i)  Any partial strong operator can be extended to a total enumeration operator.
(notation: ¢f'~~->¢C,).

(i) cpv->C,

(iii) P ~rec,

(iv) c& ~»¢,

v) ¢ C ¢t

(vi) ¢ C ¢

'roof Define i:Pw?—Pw? by i(< A,B >) =< A, ¢ > . Clearly i is definable,

1N 1N

(i) Note that &7 C &7, since io* =’ and this last operator is total (i(Pw?) =
Pw'):
]

Pl ~——3

Puw? > Pw? Puw?

Vi g
(ii) Similarly &7 C &L /.
(i) Now &7 C &/, since i’ =

(iv) Similarly ) C &/
(v) Now @} = &, since io* =’
(vi) Similarly &%= ®7...e

2.7 Corollary

A<,B = A<rB
I I
A<.B = A<,B.e

It is not true that ¢§ ~w— ¢4 or ¢~ ¢,, sce 2.14 and 2.16 below.
The classes €, €, and €4 turn out to consist of known recursion theoretic operators.

2.8 Theorem @ < C, iff @ is an enumeration operator as defined in [6], p. 147.

Proof (=) By definition ?I>(B) = FB for some F € Pw. = %E. Define b =< {((n,0),m) | (n,m) €

F},¢ > .Thenb € Pw? and ® = @}.
(=) Let ® = &/ be total and b € Pw?. Define F = {(n,m) | (n,0),m) € b_} € Pw..
Then ®(B) =F -BforallB € Pw. e
In order to describe weak and partial Turing operators, two Lemmas are needed.
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2.9 Lemma

(1) ‘There s a recursive function g such that foralli e Nand A, B € Pw

BB =4 = o=l
(i) There is a recursive function & such that for i € N with ¢/ total and all A,B €
Pw

S =A = A=WE,

Proof

(i) Define

11 if 3e,C B (n,m) € wi;
P, m) =0 if Je,, C B" (n,m) € wiy;
1 else

By the relativised s — m — n theorem 9%(i, m) = pht(m) for some recursive g. This g
works. (Note that if w; B'e P‘w*, then -3m % O B (n, m) Ewi_N w,'+).
(i) Similarly let & be a recursive function such that

Ghyiy (m) = x7(3,m) = {1 if 3¢, C B (n,m) € w;_.
T else.

Then h works. ¢
2.10 Lemma

(i) There is a recursive function g such that for all; € Nand all A, B € Pw

ca=p; = @,(B)=A

(if) There is a recursive function h such that for alli € Nand all A, B € Pw

Proof



(i) Given any regular r.e. set W,; cf. [6], p. 132, define

8 =< {((P, Q)r m) I (m,o, D, Q) € Wp(i)}r {((P, Q)! m) | (m: lapJQ) = Wp(i)} >
Clearly a € Pw? and an index for a is uniformly effective in i. Moireover ¢y = 7 iff
A*=aB forall A,B
(i) Similarly with
@ = {((P, Q): .n') I an(m: n,p, Q) = Wp(i)}r d’ . B
From 2.9 and 2.10 one obtains the following.
2.11 Theorem
(i) CR={¥,¥,,..}, where

‘I’i(A)r-{B lf CB=§O?;
1 else.

(i) €. = {Ty,T,..}, where T;(A) = Wi. e
Now the reducibility notions can be characterized.
2.12 Theorem Let A, B € Pw. Then

(i) A<.B = Aisenumeration reducible to B, cf. [6] p. 146;
(i) A<.,B = A<.BandA <.B; -
(iii) A<rB = AisrecursiveinB;

(iv) A<,B = Aisre.inB,cf. [6]p.133.

Proof J

(i) By28.
(i) (=)LetF,G e %E besuch that A = FBand A = GB. Define

a =< {((n,0), m) | (n, m) € F},{((n,0), m) | (n,m) € G} >
Then e € Pw? and @/ (B) = A.
(=) Let 7'(B) = A. Define F = {(n,m) | ((n,0), m) €a_.} and G = {(n, m) | ((n,0),m) €
ay}. Then A = FB, A=GB.
(iii) By 2.11(i).
(iv) By 2.11(ii). e
Now it is shown why partial Turing and strong operators cannot always bc made total.
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2.13 Lemma Let ¢ € ¢ and ¢ € Dom®. Then for all B € Dom® one has ®(B) = ®(¢).
Moreover ®(4) is recursive,

Proof First notc that A" T B° = A=0B letd = ¥/, ie. ®(A) = f(A) for A € dom®.
“’hen by monotonicity

o(¢) = f(< ¢ >)C f(<B,¢>)=o(B)

for B € Dom®. Hence ®(B) = ®(¢) on Domd.- Morcover ()" =< ¥(¢),P(d) > €
Pw? = RE?, since f if computable. Hence &(¢) is recursive. o

2.14 Corollary c© '\7(-) Cs.
Prool Let K be a non recursive r.e. set. Note that K <, K and K < . K. Hence by 2.12(ii)
one has K <, K, i.e. ®(K) = K with ® € ¢Z. By 2.13 & cannot be made total. e

2.15 Theorem (Nerode). Let <, denote truth table reducibility, cf, [6], p. 110. Then for all
A,B € Pw

A<uB = IbeCr ®(B)=A

For a proof, see [6], th.9 XIX. The idea is that (Pw, *) is a compact metric space,
hence a continuous @ on it is uniformly continuous. This provides the required (effectively
uniformly bounded) truth table conditions.

While (Pw, *)(:2N) is an injective space, see [7]; therefore all partial functions on it
can be extended to total ones. However, the extension may fail to be computable,

2.16 Corollary c% /7‘9 Cr.

Proof By 2.15, 2.12(iii) and the fact that <, % <, cf[6], cor.9 XVIIL e
A concrete example of a partial Turing operator that cannot be made total is the
following. Define

®(A) = {q — p} if p,qare the first two elements of A
1 if A has at most one element.

By Church thesis and 2.11 ¢ is a partial Turing operator. @ cannot be extended to a
total Turing operator ™~ because, by the compactness of (Pw,*), &~ has to be uniformly
continuous, which is impossible.

§3. The Turing-Rogers Operators
In [6] another class ¢, of partial operators is suggested. It will be shown that ¢, =
¢k
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3.1 Definition Let X,Y be sets and let i:X—Y be an injective map. Let g:Y—Y. Then
/X =X isdelined by g via ¢ if f = i~ 0 g o i with Dom(f) = {z | g(i(2)) € i(X)}:

f
X X
;b
Y —=Y

g

2.2 Notation
() 2= N =N = N - {0,1};2% = {p € P | p is partial recursive}.
(i) 79— Puw is defined by

() = {(n,m) | p(n) = mj}.

(il)) c:Pw—9, is defined by
ca = ¢(A) = characteristic function of A(equals 0 if argument in A).

3.3 Definition

(i) @2 —<2 is a partial recursive operator, notation ® € ¢ if  is defined by some
total ¥ € ¢, via 79— Pw.
(i) ®:Pw—Puw is a partial Turing-Rogers operator, notation ® € ¢, if & is defined
by some total ¥ € C, via c:Pw—9.
3.4 Lemma Let g:Pw?— Pw? be computable such that ¢(T*) C T«. Then g | T* is comput-
able in T, :

Proof Let f = g | T“. fis continuous since T is a subspace of Pw?. An easy computation
shows that if a = graph(f) as defined for 7%, thena € T%. ¢
Now we need yet another characterization of ¢£.

3.5 Proposition ¢ € ¢/ iff @ is defined by some computable f:79—T< via *: Pw—T.
Proof (=) By 2.9(i) there is an index ¢ such that for all A € Pw

(B(A)) = o).

Defined =< d.,d} > with
d_. — ((7’), (])r ﬂl) | (Tn, o,p, (’) & "Vf’(i)}’
d‘{‘ = {((p, q), Tn) | (m) lx D, f[) = WP(*)}
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where W, is the "regularization” of W; as defined in [6], p. 132. Define g(a) =
da in Pw?. Clearly g is computable and @ is defined by g via * : Pw — Pw?. By the regularity
of W, it follows that

VaE T g(a) € T

By 3.4 f=g| T iscomputable. Moreover @ is defined by £ via *:Pw—T<,
(=) Let f:7*—~T< be computable. By 1.9 f can be extended to a computable f~:Pw?— Puw?,
Then ¢ defined by £ via * is also defined by /- via*,ic.d e Ch. e

Remark Similar results hold for the classes ¢! and ¢. However not for the strong
operators: the only partial strong operators defined via T+ are the constant ones.

3.6 Lemma
(i) Define SG: -2 by SG(¢) = s¢ - . Then SG € ¢,, SG(F) C Ry, and V¢ €
Py SG(Y) = 9.
(i) If® e cLy, then it may be assumed that ¢ is defined by a ¥ € ¢F with () C
Dos- '
Proof

(i) LetA = {(n,(p,s9(q) | E. = {(p.q)}} and ®(B) = A - B defined in Pw. Then
&, € ¢, and 5G is defined by @, via 7, i.e. ® € C,. The rest is clear.

(i) By(i). e
Let o : 7%= be defined by
0if neA;
o(<A,B>)n)=<"!if nehB:
T glse
That is ofa) is the partial characteristic map of a.

3.7 Lemma Let f: T7*—T<“. Then f is computable iff f is defined via o by a total ® € ¢, with
d(?) C I

Proof (=) Take x = 7 o o and let h,¢ be recursive functions such that e, = b, and
E{-‘(h) s X(bn)- Define :

D = {(é(n), (m, 1)) | (=h(n);im) € Nz - flz)-Ai == 0)V((+h(n); m) € Nz - f(z) _Aé = 1)},

Then D € Pw,, hence ¥ = M A-DA € C.. An easy computation shows that £ is defined
by ¥ via x (use e T aiff Eyy C x(a).
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Pw- - - - —% Pw

v

Let @ € ¢ be defined by ¥ via 7. Since by definition w(7(%)) C (%), it follows that ¢
is total and &{P) C Hy,.

(=)Lletf=0"0®o00=0"55G0c ®oo. Byitsufficestoshowthat f,==f| T¥is
computable. But £ is the composition of the morphismso | 72, & | % and o™ 0 SG | PR,
I ence itself a morphism. Therefore we are done by the generalized Myhill-Shepherds|on
theorem 1.8. o

3.8 Theorem ¢f, = cf.

Proof (C) Let @ be defined by ¥ € €, viae.

¢
Pw —————w Pw
’ "
Tw c.f ;Tw “/ c
Y %
. QPR
v

By 3.6(ii) it may be assumed that ®(®) C 9. Define f: T“—T» by & viao. Then f is
computable by 3.7. By a diagram chase, one sees that @ is defined by f via *.
(2) By an even simpler diagram chase, using also 3.5. ¢ ‘

Question Can the Kreisel-Lacombe-Shoenfield theorem, cf. [6] p. 362, be proved by the
methods of this paper?

§4. Interpolation

Given finitely many distinct clements f, ..., i3, € Pw, then for cach Ay, ..., A, € Pw
there is a total Turing operator @ such that ®(B;) = A;, o < ¢ < p, provided that cach B;
can be mapped onto 4; at all (i.e. A; <, B; foro < i < p).
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4.1 Interpolation Theorem Let B, ..., B, be a collection of pairwise different sets. Assume

A; <y B; Vi&fi, foro L tSup

Then3® € € Vi < p (B;) = A
[In classical notation, for distinct By’s,i = 1, ..., p:
Vi < p 2(Ca, = ¥ A VB o8 is a characteristic function)

implies
3z Vi < pf...2dem...)].

Proof Since (Pw, *) is an Hausdorf vpace there are disjoint clopen neighborhoods A, =
{a € Pw?| ey, T a} such that B; € 4, foro<i <p.

LetA=|] Ay,

IEp

Note that A is also open and £ = {4 | Vi < p(A N (en)+ F# ¢)V (AN (en)— # B)}-
Let fi(g) be (the index of) the it-condition <<< my, ..., my, >, > . Let j range over
{0, 1}%. Define

eM(7) = e, U <{my, | h <k; A ju=1},
{mu | h < kNG, =0} > .

Note that

&43) T B} = h=i. (1)
Finally define

c={(m,q) | I < p3Ij € {0,1}% e,, = "(H)AI(F) = 1}

ey ={(mq)|FH<pIT {0, 1} en=c"(F)AaiG)=0} U D

where D = {(m,q) | Vi < pl{(em)— N (ens)+ # )V ((em)-i— N (en)— # P)) Age w}.

14



Claim 1 A} = ¢ B; foro < i <p. Indeed

g€ (c B:)q e Hes B: (m,q) € c—
= e, CB; h <pIjen=eG)Aal(j) =1

= 37GEB Al =1  (by(1)
< B; satisfics the ¢t-condition fi(q)

= gEA;

Similarly (¢ B})+ = 4,, since for no (m,q) one has e,, = B} A (m,q) € D (because
&y o BL):

Claim2VvVBe Pw ¢B' € Pu'

Case 1 Be A Thene,, C B for some i < p, hence

Vg 37 € {0,1}* M) C B".

Now ifaf(7) = 1 then g € (¢ B")_ else ¢ € (¢ B*) 1. S0 (¢ BY)_U(c B") 4 = w.
Ifq € (¢ B)_N(c B*)+ then e¥(7) = 1AQ1(7) = 0, a contradiction. Thus ¢ B® € Pw".

Case 2 B € A Then by the definition of D it easily follows that c B* =< ¢, w > € Pw". o

4.2 Remarks

(i) By an even simpler technique one can also show that if {B:}, N is a set of
isolated elements in (Pw, *) and for some recursive f

Vi 3k A} = wygy B,

then for some

®ech
Vi A; = ®(B).
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Moreover one may assume that dom(g) is not meager. [By assumption 34’ Vi B; & Ay;

let B; € A, C Ay for all ¢ - this is possible since 4, is also closed. Then the following
a € Pw? will do the job:

a— = {(m, p) | 3¢ 3q((9,p) € (W) — Nem=¢,Uen) V(m=h'Ape N)}

a4 = {(m: P) | =) HQ((Q) P) = (wf(i))_--l— Aen= €q o) en‘-}-

The last clause in the definition of a_ gives the non meagerness of dom(®), making

{efined (equal w) on A

(i1) In the same way as in (i), under similar assumptions, one can find an interpolat-

ing & € ¢!, By 2.6(iv), ® may actually be taken in C,,,.

(i) It is not difficult to see that 4.1 cannot be extended to a result as in (i). [Take the

B; a converging sequence and the A4;,(<,; B;) not converging.] Also (i) cannot be
strengthened by dropping the isolatedness or the uniformity.
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