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§0. Introduction 

With the notion of (pre complek) numbered set Ershov [3] gave a general framework 
for certain results in classical recursion theory. In his theory the notion of morphism is 
central. In [6] there is a definition Jf enumeration operators and (implicitly) of Turing 
operators. Although enumeration operators (n;stricted to the r.e. sets as numbered set) are 
morphisms, Turing operators arc not even partial morphisms. 

There is a natural correspondence between these (and other) classes of recursion 
theoretic operators and morphisms on an appropriate numbered set, via the constructive 
p,111 of the },-calculus models Pw'l. a 1d T"". The different classes of operators on Pw are 
elective continuous maps obtained by embedding Pw into Pw2 or rw in two natural ways, 
giving Pw either the Cantor or the Sc,)tt topology. 

In paiticular Turing operators WlJrk on Pw with the Cantor topology. This is implicit 
in Nerode's theorem, see [6], p. 154, relating tt-reducibility to total Turing operators. Also 
a different proof will be given of a theorem in [6], p. 151, relating enumeration and Turing 
reducibility. Finally an interpolation result, in the sense of Algebra, will be proved for 
total Turing operators. 

§ I. The Models Pw, Pw2 and rw 
Let w be the set of natural numbers with Pw as power set. (Pw, C) is a complete partial 

order (cpo) and so is (Pw2, C) with< A,B > C < A',B' > iff Ac A' B c B'; (these struc­
tures are even complete lattices). Cpo's X are always considered with the Scott topology, 
sec [2], § l or [1], § 1.2. [X-+X] is the cpo of continuous maps on X with the pointwise par­
tial ordering. There is a binary operation on Pw such that (Pw, -) is a continuous },·model, 
i.e., a model of the },-calculus in which exactly the continuous functions are representable, 
sec [ll, § 1.2. 

Similarly one can make Pw2 into a continuous },-model. 

l. I Notation A, B, ... range over Pw; A= w - A; a, b, ... range over Pw2
; if a=< A, B >, then 

a_ = A and a+ = B; n, m, .. , i, j, .. , p, q, ... range over w; (n, m) is an effective bijective coding 
of w2 on w; e,1 is an effective enumeration of the finite elements of Pw2(i.e. of { ala- , a+ are 
finite}), with eo =< ¢,,¢, >. 

1.2 Proposition For a, b E Pw2 define 

a· b =< {ml3e,1 Cb (n, m) Ea_ }, {ml:le11 Cb (n, m) Ea+}> 

For/ E [Pw2-+Pw2] define 

graph(!) = < {(n, m)lm E /(e,t) __ }, {(n, m)lm E /(e,i)+} >. 
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Then.: Pw'1-+Pw2 and graph :!Pw2 -+Pw2]-+Pw2 arc continuous and moreover 

graph(!) ·a= f(a). 

In particular (Pw2, •) is a continuous ~-model. 

Proof As for Pw. • 
ln § 3 another continuous ~-model will be used, namely Plotkin's T"'. One has 

1'w = {<A,D > IA nB = ¢} C Pw2
; 

see [2] for the definition of application (·) and abstraction (graph) in this structure. 
These definitions use an effective ent1mcration bu, b1, ... of the finite elements of rw. 

1.3 Definition Let X be Pw, Pw2 or T"'. 

(i) Th~ computable part of X, notation x,., is denned as follows: 

Pwc = {AIA is r.e. }; 

Let Pv)~ = { Wi}iEw• 

(ii) A map f:X-+X is computable iff 3a E Xe Vx EX f(x) =a· x. 

1.4 Lemma Let X be as above and f:Xc-+X be continuous. Then/ has a unique continuous 

extension f:X-+X. 

Proof Define 7(x) = u {/(y) I y c x, y finite}. rn,is is denned because the suprcmum is over 
a directed set. 7 is clearly the unique continuous extension of/.• 

1.5 Definition A continuous f:Xc-+Xc is called com1mtable if its unique continuous exten­

sion f:X-+X is computable. 
The following notions arc due to Ershov. 
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1.6 Definition 

(i) A numbered se.t is a structure (X, 1) where Tw-+X is a surjective map. 
(ii) If (X, 1) and (X', ,') are numbered sets then µ:X -+X' is a partial morphism iff for 

some paitial recursive 'I/J:w -+w one has 

Vn µ(1(n)) '.::,:'. 1'('1/J(n)). 

(iii) If (X, 1) is a numbered set, then the Ershov topology on x has as base the 
collection 

b-'(A) I A r.e. }. 

For the definition of complete numbered set and special elements, see [3] or [8]. Pwc 

'.vith the standard enumeration 1(n) = Wn forms a complete numbered set with special 
clements</>. Similarly Pw~, ri can be numbered to become complete numbered sets with 
special clement<</>,</> > . 

Morphisms between numbered sets are clearly continuous with respect to the Ershov 
Lopulogy. On our three numbered sets Xe, the morphisms coincide with the computable 
inaps. 

1.7 Generalized Ricc-Shaph.i.ro Theorem Let X be Pw, Pw2 or rw. Then on Xe the Ershov 
topology coincides wi-th the (trace of the) Scott topology. 

Proof See [4], 2.5, where the result is proved in a more general context. • 

1.8 Generalized Myhill·Shepcrdron Theorem Let X be as above and f:Xc-+Xc. Theri / is a 
morphism iff / is computable. · 

Proof ( =) By 1.7 / is Scott continuous. An easy computation shows that graph(!) E Xe, 

( =) Let /(a) = b · a with b E Xe. Then/ is a morphism, since an index of b. a can be 
computed uniformly from one of a.• 

The following lemma is needed in § 3. 

1.9 Lemma Any computable f:Tw-+Tw can be extended to a computable t ~ :Pw2-+Pw2 • 

Proof Let b = h • f(x); then b E T~. Leth be the recursive function such that eh(,i) = b,
1

• 

Define 

See [2], §l for notation. An easy computation shows that 1~·1 rw = /, use [2], Lemma 
1.6 .• 
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§2. The A •·Operators 

In order to define the recursion theoretic operators on Pw, this set will be embedded in 
Pw2 in two different ways. 

2.1 Definition 

(i) Let A E Pw. Then 
A'==< A,</>> and A• =< A, A> . 

(ii) (Pw,') is the space Pw with the Scott topology (see e.q. [1], p. 10). (Pw,•) is the 
space Pw with the Cantor !opology (see e.q. [6], p. 270). 

A and • will range over the set {', *}. Pw.::;. is the subspace of Pw2 (with the Scott 
t,Jpology) consisting of the image of Pw under the map A. Note that A:(Pw, A)-+Pwe. is a 
homeomorphism. A paitial map <I>:X -+Yon topological spaces X, Y is called continuous if 
<I>I Dom(<I>) is continuous on the subspaceDom(<I>). 

2.2 Definition Let f:Pw2-+Pw2 be given. The partial A •·operator induced by f (notation 
<t>f •) is defined as follows. 

That is 'l>J° = . -, o Jo A: 

ipA• 
I 

Pw -+ Pw 

LA L• 
Pw2 -+ Pw2 

I 

If c E Pw2, write <t>;-• = <t>f• with /(a)= c • a for a E Pw2• 

2.3 Lemma A partial map <I>:(Pw, A) -+(Pw, •) is continuous iff <I> is an induced A,• operator 
by some continuous f:Pw--tPw. 

Proof (=)<I> = <t>f• = . - 1 o / o A and we arc done. 
(=>) Denne /0 = • o <I> o A -1:J'w'l - ► l'w2 . Then /0 is a partial continuous nwp. Since 

l'w'l. is an injective topological space (it is ,111 algebraic, hence conti1111011s lattice, sec [71), /o 
can be extended to a total continuous/. Then 11> =--= <l>f•. • 

Write e'l. = {/: Pw2-+l'w'l. I/ computable}. 
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2.4 lkfinition Let <t>:Pw - •Pw. 

(i) <I> is a partial strong operator(<!> c e.~·) ir :l/ E <".1 <I> = <t>'J 

(ii) <I> is a partial 'f'uring opcmtor(<I> E.: c!/) ir 3/ E C1 <I>= <1>;" 

(iii) <I> is a partial enumeration operator(<!> E en if 3/ E C2 <t> = <I>'} 

(iv) <l> is a partial ireak operator(<I> EC~) if 3/ E C2 <t> = <t>;'-

Write Cx ={IE e~ I/ is total} for x E {s, T,e, w}. 

Example The jump operator <l>(A) = Ai = {x I <p;(x)!} is a paitial weak operator. Namely 
define 

c_ = {((n, m), p) I 3q (p, q, n, m) E Wµ(p)}­

c+ = </>. 

then <I>= <1>;1; see [6] p. 132 for the definition of wp(p)· 

2.5 Definition 

(i) Let D be some class of partial operators and A,B E Pw. A is D-reducible to B 

(notation A <v B) if 3<1> ED <t>(B) = A. 

(ii) A is strongly reducible to B (notation A <s B) if A <c;- B; 

A is Turing reducible to B (notation A <TB) if A <cf B; . 

A is enumeration reducible to B (notation A <e B) if A <er B 

A is weakly reducible to B (notation A <w B) if A <c: B. 

For a, b, E Pw2 write a< b if 3c E Pw~ a= c b. then one has 

A< B A• <B' _s = 

A< B = A'< B• _,v 
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2.6 Proposition 
(i) Any partial strong operator can be extended to a total enumeration operator. 

(notation: ef ,·d--7 Ce)-

(ii) 
(iii) 
(iv) 
(v) 

( vi) 

ef. --vv--1/ Cw 
eP ,.,,.,_/ e 

e e 

e~ ,.""'--7 Cw 

eP c e.P s - T 
eP c eP 

e - w 

Proof Define i:Pw2-+Pw2 by i(< A,B >) = <A,</>>. Clearly i is definable. 

(i) Note that <t>'l C <P101, since io* = ' and this last operator is total (i(Pw2
) -

Pw'): 

(ii) 
(iii) 
(iv) 
(v) 
(vi) 

<f>'. 
I 

Pw - -,> Pw 

l' ·~ 
Pw2

- ~ Pw2 
- Pw2 

I i 

Similarly <I> j° C <I>;~,. 
Now <I>" C <I>" since io' = ' f - iof> 

S. ·1 I ., ., 
IITil ar y <I>/ C <I> io/· 

Now <1>'; = <1>;:i, since io* = ' 
S. ·1 l ;f..// ;f.. ., tmt ar y 'I'/= 'I' Joi•. 

2.7 Corollary 

A<sB = 
ll 

A <1'B 

ll 
A <,,B = A <wB.• 

It is not true that ef, N~ er or cf ,w\--~ e,., see 2.14 and 2.16 below. 
111e classes ee, Cw and ef turn out to consist of known recursion theoretic operators. 

2.8 Theorem <I> E ee iff <I> is an enumeration operator as defined in [6], p. 147. 

Proof ( =) Ry definition <l>(B) = F-B for some FE Pwc = ~E. Define b =< {((n, o), m) I (n, m) E 

F}, ¢ > . Then b E Pw'f:, and <I> = <l>i. 
(=) Let <I> = <l>i be total and b E Pw~. DcfineF = {(n,rn) I ((n,o),m) Eb_} E Pwc. 

Then <l>(B) = F · B for all BE Pw. • 
In order to describe weak and paitial Turing operators, two Lemmas are needed. 
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2.9 Lemma 

(i) 'l11crc is a recursive function y such that for all i EN and A, lJ E Pw 

•• ( ) lJ 
<I> w; B = A = C;\ = 'Pg(i) 

(ii) There is a recursive function h such that for i EN with <1>:;, total and all A,B E 

Pw 

Proof 

(i) Define 

{

J if 3en CB• (n, m) E Wi-; 

tfJ0 (i, m) =. 0 if 3en CB• (n, m) E wi+; 

T else. 

By the relativised s - m - n theorem tfJ"(i, m) = 'P~i)(m) for some recursive g. This g 

works. (Note that if wi B• E Pw•, then ,3m 3en CB• (n, m) E wi- n wi+). 

(ii) Similarly leth be a recursive function such that 

a () B( · ) {l if 3enCB•(n,m)Ewi-; 
'Ph(i) m =x i,m = T 

else. 

Then h works. • 

2.10 Lemma 

(i) There is a recursive function g such that for all i EN and all A,B E Pw 

(ii) There is a recursive function h such that for all i EN and all A,B E Pw 

Proof 
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(i) Given any regular r.e. set wp(i ) cf. [6], p. 132, define 

a = < {((p, q), m) I (m, o, p, q) E Wµ(i)}, {((p, q), m) I (m, 1, p, q) E W p( i )} > . 

Clearly a E Pw~ and an index for a is uniformly effective in i. Moreover c_.\ = 'P7 Hf 
A•= an• for all A,B 

(ii) Similarly with 

a=< {((p, q), :-n) I 3n(m, n, p, q) E Wp(i ) }, </> > . • 

From 2.9 and 2.10 one obtains the following. 

2.11 Theorem 

(i) er;,= {wo, w 1, ... }, where 

\Jli(A) = {B if CFJ = 1(7';; 
l else. 

(ii) Cw= {fo, r 1, .. . }, where ri(A) =Wt.• 

Now the reducibility notions can be characterized. 

2.12 Theorem Let A,B E Pw. Then 

(i) A <e B = A is enumeration reducible to B , cf. [6] p. 146; 
(ii) A <s B = A <e B and A <e B; 

(iii) A <r B = A is recursive in B; 

(iv) A <w B = A is r.e. in B, cf. [6] p. 133.· 

Proof 

(i) By 2.8. 
(ii) (=) LetF, GE ~Ebe such that A = FB and A= GB. Define 

a = < {((n, o), m) I (n, m) E F}, {{(n, o), m) I (n, m) E G} > 

Then a E Pw~ and 4>:(B) = A. 
(=) Let 4>:(B) = A. DefineF = {(n,m) I ((n,o),m) Ea_.} and G = {(n,m) I {(n,o),m) E 

a+ }- Then A= FB,A=GB. 

(iii) By 2.1 l(i). 
(iv) By 2.ll(ii). • 

Now it is shown why partial Turing and strong operators cannot always be made total. 
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2.13 Lemma Let <I> E e~' and </> E Dom<I>. Then ror all B E Dom<I> one has <l>(B) = <I>(</>). 
Moreover <P(</>) is recursive. 

Proof First note that A. C It = A = /J. I.ct 1> = <1>1
;, i.e. <I>(/\)* = f(A') for A E dom<t>. 

·, 'hen by monotonicity 

<I>(</>)°=!(<</>,</>>) C: /(< IJ, </> >) = <P(B)° 

for B E Dom<I>. Hence <I>(B) = <I>(</>) on Dom<P. - Moreover <I>(</>)* =< <I>(</>), <l>(</>) > E 
1)w~ = ~E2

, since J if computable. Hence <I>(</>) is recursive.• 

2.14 Corollary cf+ Cs. 

Proof Let K be n non recursive r.e. set. Note that K < e Kand K < e K. Hence by 2.12(ii) 
()ne has K <s K , i.e. <I>(K) = I( with <I> E er, By 2.13 <I> cannot be made total.• 

'.l.15 Theorem (Nerode). Let <u denote trnth table reducibility, cf. [6], p. 110. Then for all 
:1,B E Pw 

A <tt B = 3<1> E Cr <l>(B) = A 

For a proof, see [6], th.9 XIX. The idea is that (Pw, *) is a compact metric space, 
hence a continuous <l> on it is unirormly continuous. This provides the required (effectively 
uniformly bounded) truth table conditions. 

While (Pw, *)(~ 2N) is an injective space, see [7]; therefore all pa1tial functions on it 
can be extended to total ones. However, the extension may fail to be computable. 

2.16 Corollary cr;.~cr. 

Proof By 2.15, 2.12(iii) and the fact that <T fa <tt, cf[6], cor.9 XVlll. • 
A concrete example of a partial Turing operator that cannot be made total is the 

following. Define 

<I>(A) = {q - p} if p, q are the first two elements of A 

T if A has at most one element. 

By Church thesis and 2.11 <I> is a partial Turing operator. <I> cannot be extended to a 
total Turing operator cJ> ·~ because, by the compactness of (Pw, *), <l> " has to be uniformly 
continuous, which is impossible. 

§3. · rhc Turi11g· Rogers Operators 

In [6] another class er/{ of partial operators is suggested. Jt will be shown that cf, n = 
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3.1 Definition Let X, Y be sets and let i:X-+ Y be an injective map. Let g: y....,. Y. Then 
f:X -+Xis defined by g via i if f = i- 1 o go i with Dom(!)= {x I g(i(x)) E i{X)}: 

I 
x ~ x 
~ Ji 
y ~ y 

g 

).2 Notation 

(i) GJ> = N -► N;<:Jh1 = N - {O, l}; GJ>~ = {ip E GJ> I 'Pis partial rtcursivc}. 
(ii) r:GJ-+Pw is defined by 

r(ip) = {(n, m) I ip(n) = m}. 

(iii) c:Pw-~1 is defined by 

cA = c(A) = characteristic functjon of A{equals o if argument jn A). 

J.3 Definition 

(i) <I>:GJ> -+GJ is a partial recursive operator, notation <I> E e~ if <I> is defined by some 
total 'It E ec via r:GJ>-+Pw. 

(ii) <l>:Pw-+Pw is a partial Turing-Rogers operntoi', notation <I> E efw if <I> is defined 
by some total iv E er via c:Pw-+GJ>. 

3.4 Lemma Let g:Pw2-+Pw2 be computable such that g(Tw) C rw. Then g I r w is comput­
able in rw. 

Proof Let/= g I rw. f is continuous since rw is a subspace of Pw2• An easy computation 
shows that if a= graph(!) as defined for rw, then a E Tt • 

Now we need yet another characterization of er 
3.5 Proposition <I> E ef. iff <I> is defined by some computable f:Tw-rw via *:Pw-+rw. 

Proof ( =) By 2.9(i) there is an index i such that for all A E Pw 

Defined =< cl , d 1 > with 
d ___ =-= {((p, q), m) I (m, o, p, q) E wl'(i)}, 

d+ = {((p, q), m) I (m, l , P, q) E w,,(i)}-
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where W"(i) is the "regularization" of Wi as defined in [6], p. 132. Define g(a) = 
da in Pw2• Clearly g is computable and <I> is defined by g via*: Pw-+ Pw2. By the regularity 
of wp(i) it follows that 

Va E Tw g(a) E rw. 

By 3.4 f = g I rw is computable. Moreover <I> is defined by/ via *:Pcv-+Tw. 

(=) Letf:Tw-➔rw hecompulable. By l.9 f can be extended to a computable/~ :Pw2-+Pw2 • 

Then <I> defined by/ via * is also defined by 1 - via*, i.e. <I> E er• 
Remark Similar results hold for the classes c:.· and e;:,. However tJOt for the strong 
opcralors: the only pattial strong operators defined via r w are the constant ones. 

J.6 Lemma 

(i) Define SG : GJ>-+GJ> by SG(1f;) = sg · 1/J. 171en SG E Cr, SG(<J>) C <Jb 1 and V1/J E 

GJ!J1 SG(7/J) = 1/J. 

(ii) Jf <I> E c;R, then it may be assumed that <I> is defined by a \JI E c: with \Jl(<J>) c 
'Jb1-

Proor 

(i) Let A = {(n, (p, sg(q))) I En = {(p, q)}} and <I>c(B) = A · B defined in Pw. Then 
<I>,, E Cc and SC is defined by <l>e via T, i.e. <I> E er, The rest is clear. 

(ii) By (i). • 

Let a : Tw-+GJ> be defined by 

{

O if nEA; 

a(< A,B >)(n) = 1 if n EB: 

i else. 

That is a(a) is the pattial characteristic map of a. 

3.7 Lemma Let f: rw- r w. Then f is computable iff / is defined via a by a total <I> E Cr with 
<I>(~) C 'Jb1. 

Proof(=) Take x = r o a and let h, e be recursive functions such that e1i(n ) = bn and 
E ('(h) = x(b,i). Define 

D = {(e(n), (m, m I ((-h(n); m) E l\X. f(x) __ f\i = O)V(( +h(n); m) E l\x. f(x)_ /\i = l)}. 

Then DE Pwr, hence \JI = "A· DA E Cc. An easy computation shows that/ is defined 
by \JI via X (use eh(n) C: a iff l:,C(n) C x(a)). 
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I 

Let <l> Ee~· be dcflncd by "1 via r. Since by dcflnition IJl(r(~)) C~ r(%1), it follows that <I> 

is total ancl <fi(GP) c ~~H -

( =)Let/ = a-1 o <I> o a= 0-1 :> SC o <I> o a. By it suffices to show that A=/ I T~ is 
rDmputable. But A is the composition of the morphisms a I T~, <I> I ~~ and a- 1 o SG I GJR, 

l eHce itself a morphism. Therefore we are done by the generalized Myhill-Shepherdslon 
theorem 1.8. • 

3.8 Theorem e~n = ef. 

Proof (C) Let <I> be deflned by 'II E er via c. 

<I> 

Pw ----> Pw 

1'w J'ic-~T":_ ,/le 
'-~ '-"~ 

~GJ ';I GJ 

I{, 

By 3.6(ii) it may be assumed that <J>(GJ>) C GJL1• Define/: rw-rw by <I> via a. lhen / is 
computable by 3.7. By a diagram chase, one sees that <I> is defined by/ via*. 

(:=)) By an even simpler diagram chase, using also 3.5. • 

Question Can the Krcisel-Lacombc-Shocnfleld theorem, cf. [6] p. 362, be proved by the 
methods of this paper? 

§4. Interpolation 

Given finitely many distinct clements I~,, ... , iJ11 E J>w, then for each 1\0, ... , A1, E l'w 

there is a total Turing operator ,J> such that <fl(Bi) = A i, o < i ::; r, provided that each Bi 

can be mapped onto A i at all (i.e. Ai <u Bi for o < i < p). 

13 • 



4.1 Intcq>0lation Theorem Let Bo, ... , Bp be a collection of pairwise different sets. Assume 

Then 3<1> E <>r Vi < p <l>(Bi) = Ai. 

[In classical notation, for distinctB;'s, i = 1, ... , p: 

Vi < p 3z(CA; = cp;1i I\ VB cpf is a characteristic function) 

implies 

3z Vi< p( .. . idem ... )]. 

Proof Since (Pw, *) is an Hausdorf ::pace there are disjoint clopen neighborhoods An, = 
{a E Pw2 I en; Ca} such that Bi E .A.n. for o < i < p. 

Let .A.= LJ An;· 
iEp 

Note that .A. is also open and .A. = {A I Vi < p(A n (enJ+ :/: </>) v (An (enJ- :/: 4>)}. 
Let f;(q) be (the index of) the tt-condition << m1, ... , mk; >, a; > . Let j' range over 

{O, l}~'i. Define 

Note that 

Finally define 

ei,q(j') = e,i;U <{mh I h < ki I\ -ih = l}, 

{mh I h < ki/\jh = O} >. 

' tf,'1(]) CB;= h = i. 

where. D = {(m, q) I Vi< p(((em)- n (e11J+ :/: ¢) V ((em)+ n (e,i;)_ :/: ¢)) /\ q E w}. 

14 
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Claim 1 A; = c B; for o < i <p. Indeed 

(by (1)) 

= B; satisfies the tt-condition J;.(q) 

Similarly (c B;)+ = Ai, since for no (m, q) one has em C s; I\ (m, q) E D (because 
en, CB;). 

Claim 2 VB E Pw cB* E Pw* 

Case l B E ..A.. Then en, C n• for some i < p, hence 

Vq 3!] E {O, l}k• ei,q(]) CB*. 

Now if a1{J) = 1 then q E (c B*)_ else q E (c B*).-1- , So (c B*)-U(c B*)+ = w. 

lf q E (c B*)_ n(c B*)+ then a7(]) = l/\a7(]) = O, a contradiction. Thus c B* E Pw•. 

Case 2 BE ..A.. Then by the definition of D it easily follows that c B* =< </>, w > E Pw•. • 

4.2 Remarks 

(i) By an even simpler technique one can also show that if {B;} . N is a set of 
tE 

isolated elements in (Pw, *) and for some recursive/ 

then for some 

Vi Ai = <l>(Bi). 

JS 



Moreover one may assume that dom(</>) is not meager. [Ry assumption 3h' Vi Bi ft .AM 

!et U; E Jl,,, c Jl,,, for all i - this is possible since Ah, is also closed. Then the following 
a E Pw1 will do the job: 

a_= {(m,p) j :li :lq((q,p) E (w1(d- I\ em = eq U e"J V (m = h' I\ p E N)} 

The last clause in the dennition of a_ gives the non meagerness 0 1' dom(<f>), making <I> 

·jcfincd (equal w) on Jlh'-1 

(ii) In the same way as in (i), under similar assumptions, one can find an interpolat­
ing c.f> Eel,('.. By 2.6(iv), <f> may actually be taken in Cw. 

(iii) It is not difficult to see that 4.1 cannot be extended to a result as in (i). [Take the 
B; a converging sequence and the A;(<u Bi) not converging.] Also (i) cannot be 
strengthened by dropping the isolatedness or the uniformity. 
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