
MIT/LCS/TM- 197

CONSERVATIVE LOGIC

Edward Fredkin

Tommaso Toffo l i

May 1981

This research was sponsored by the Defense Advanced Research
Projects Agency and was monitored by the Office of Naval
Research under Contract No. NOOO 14- 7S- C- O66J .

MIT/LCS/TM- 197

CONSERVATIVE LOGIC

Edward Fredkin

Tommaso Toffo Ii

May 1981

CONSERVATIVE LOGIC*

Edward F redkin
Tommaso Toffoli

MIT Laboratory for Computer Science
545 Technology Sq.

Cambridge, MA 02139

Abstract. Conservative logic is a comprehensive model of computation which explicitly reflects
a number of fundamental principles of physics, such as the reversibility of the dynamical laws and the
conservation of certain additive quantities (among which energy plays a distinguished role). Because it
more closely mirrors physics than traditional models of computation, conservative logic is in a better
position to provide indications concerning the realization of high-performance computing systems,
i.e., of systems that make very efficient use of t he "computing resou rces" actually offered by nature.
In particular, conservative logic shows that it is ideally possible to build sequential circuits with zero
internal power dissipation.

After establishing a general framework, we discuss two specific models of computation. The first
uses binary variables and is the conservative-logic counterpart of switching theory; this model proves
that universal computing capabilities are compatible with the reversibility and conservation con
straints. The second model, which is a refinement of the first, constitutes a substantial breakthrough in
establishing a correspondence between computation and physics. In fact, this model is based on elastic
collisions of identical "balls," and thus is formally id entical with the atomic model that underlies the
(classical) kinetic theory of perfect gases. Quite literally, the functional behavior of a general-purpose
digital computer can be reproduced by a perfect gas placed in a suitably shaped container and given
appropriate initial conditions.

Keywords. Conservative logic, reversible computing, computation universality, automata,
computing networks, physical computing, information mechanics, discrete mechanics.

*This research was supported by the Defense Advanced Research Projects Agency and was monitored
by the Office of Naval Research under Contract No. N00014-75-C-0661.

1

1. Introduction

This paper deals with conservative logic, a new mathematical model of computation which
explicitly reflects in its axioms certain fundamental principles of physics. The line of approach
offered by conservative logic avoids a number of dead ends that are found in traditional models
and opens up fresh perspectives; in particular, it permits one to investigate within the model itself
issues of efficiency and performance of computing processes.

Since many of the necessary technicalities have been thoroughly covered in a companion
paper, "Reversible Computing" 24 here we shall have more freedom to present the ideas of con
servative logic in a discursive fashion, stressing physical motivation and often making appeal to
intuition.

Computation-whether by man or by machine-is a physical activity, and is ultimately
governed by physical principles. An important role for mathematical theories of computation is to
condense in their axioms, in a stylized way, certain facts about the ultimate physical realizability
of computing processes. With this support, the user of the theory will be free to concentrate on
the abstract modeling of complex computing processes without having to verify at every step the
physical realizability of the model. Thus, for example, a circuit designer can systematically think
in terms of Boolean logic (using, say, t he AND, NOT, and F'At-,;- OUT primitives) with t he confidence
that any network he designs in this way is immediately translatable into a working circuit requiring
only well-understood, readily available components (the "gates," "inverters," and "buffers" of
any suitable digital-logic family).

It is clear that for most routine applications one need not even be aware of the physical
meaning of the axioms. However, in order to break new ground one of the first things to do is
find out what aspects of physics are reflected in the axioms: perhaps one can represent in the
axioms more realistic physics-and reveal hitherto unsuspected possibilities.

Physical principles already contained in the axioms

The Turing machine embodies in a heuristic form the axioms of computability theory. From
Turing's original discussion26 it is clear that he intended to capture certain general physical
constraints to which all concrete computing processes are subjected, as well as certain general
physical mechanisms of which computing processes can undoubtedly avail themselves. At the
core of Turing's arguments, or, more generally, of Church's thesis, are the following physical
assumptions:

Pl. The speed of propagation of information is bounded. (No "action at a distance:" causal
effects propagate through local interactions.)

P2. The amount of information which can be encoded in the state of a finite system is
bounded. (This is suggested by both thermodynamical and quantum-mechanical considerations;
cf. Bekenstein2 for a recent treatment.)

P3. It is possible to construct macroscopic, dissipative physical devices which perform in a
recognizable and reliable way the logical functions AND, NOT, and FAN-O UT . (This is a statement
of technological fact.)

Some physical principles that haven 't yet found a way into the axioms

Assumptions Pl and P2 above set definite bounda ries on the map of physically reachable
computation schemes. On t he other hand, Assumption P3 only represents an observed landmark,
and shou ld be taken as a starting point for an exploration rather than the end of the voyage.

It is well known that ,,;--;n, NOT, and 1-~, ;s;. oL 'T constitute a universal set of logic primitives, and
thus from a purely mathematical viewpoint t here is no compell ing reason to consider difTerent
primitives as a foundalion for com putation. However, the .,, 1> function is not invertible, and thus

2

requires for its realization an irreversible device, i.e., a system that can reach the same final state
from different initial states. In other words, in performing the Ai':D operation one generally erases a
certain amount of information about the system's past.* In contrast with the irreversibility of the
AND function and of other common logical operations, the fundamental dynamical laws that un
derly a ll physical phenomena are presumed to be strictly reversible. In physics, only macroscopic
systems can display irreversible behavior. (Note that the term "system" has a different meaning
for microscopic (or dynamical) systems and macroscopic (or statistical-mechanical) systems.)

Physical laws come in two flavors, namely, dynamical and statistical laws. Dynamical laws apply
to completely specified systems (in this context often called microscopic systems), and, at least in
classical mechanics, they make predictions about individual experiments. To the best of the physicist's
knowledge, these laws are exactly reversible. Statistical laws apply to incompletely specified systems
(which include what are in this context called macroscopic systems), and in general all they can say
is something about the whole ensemble of systems that meet the given incomplete specifications,
rather than about any individual system. In the case of macroscopic systems consisting of a very
large number of interacting particles, certain statistical laws take the form of predictions concerning
practically all (but not exactly all) individual experiments. These predictions can be organized into a
consistent set of deterministic laws (the laws of thermodynamics), and it is only from the viewpoint
of these quasi-laws that certain physical processes are irreversible.11

On thermodynamical grounds, the erasure of one bit of information from the mechanical degrees
of freedom of a system must be accompanied by the thermalization of an amount kT of energy
(cf. Section 5). In today's computers, for a host of practical reasons the actual energy dissipation
is still from eight to twelve orders of magnitude larger 10 than this theoretical minimum. However
technology is advancing fast, and the "kT" barrier looms as the single most significant obstacle
to greater computer performance.

At this point, it is easy to see some shortcomings of the traditional approach to digital
logic. Axioms for computation that are based on noninvertible primitives can only reflect aspects
of macroscopic physics. While they offer enough expressive power for dealing in a formal way
with what can eventually be computed by any physical means, they may deprive us of essential
tools for discussing how best to compute-in particular, whether and how the kT barrier can be
overcome-since many relevant aspects of microscopic physics are totally out of their reach. To
remedy these deficiencies, the axioms of computation must be told some of the "facts of life" of
the microscopic world . This is one of the goals of conservative logic.

One might object that perhaps physical computation is intrinsically irreversible, and thus
necessarily an expression of macroscopic phenomena. Or, from another angle, how can axioms
based on invertible primitives not miss some essential aspects of, say, recursive-function theory?
Finally, even if the new "microscopic" axioms turned out after all to be both physically and
mathematically adequate, wouldn't they force one to construct much more complex structures
in order to produce essentially the same results?

Attack is the best defense. We shall dispose of all of these objections not by indirect mathe
matical arguments or lengthy pleadings, but by counterexamples based on explicit constructions.

*The "loss of information" associated with an irreversible process is usually expressed in terms of a
quantity called (information-theoretic) entropy. Briefly, let p, be the probability of state i in a given
stale distribution. Then the information-theoretic enlropy of this distribution is - I:, p, log Pi• If the
!ogarithm is taken in base 2, then the entropy is sa id to be measured in bits. For example, assuming
equal probabililies for all possible values of the argument, lhe evaluation of the i'-A :'-/D function entails
a decrease in entropy of approximately 1.189 bits, while the complele erasure of one binary argument
(such as given by lhe function {O ,-.. 0, l ,-► O}) entails a decrease of exactly I bit. Note that information
t heorelic entropy is in general a much more richly endowed function than thermodynamic entropy; 1 in
the present situation, however, lhe lwo quanlities can be identified- the conversion factor being given
by the relalion l bit = k In 2.

3

These constructions will also show in a tangible way some of the advantages of our approach to
computation.

The central result of conservative logic is that it is ideally possible to build sequential cir
cuits with zero internal power dissipation. It will be clear from our discussion that we are not
inadvertently toying with a scheme for a perpetual-mot ion machine.

Nondissipative computation demands that the mechanical degrees of freedom in which in
formation is processed be effectively isolated from the thermal degrees of freedom (see Section
5). Today, this goal has been achieved only for a trivial Boolean function, namely, the identity
function-for instance in superconducting loops used as memory elements. To take a similar
step for functions more complex than identity is not merely a problem of technical ingenuity;
rather, as we recalled above and will discuss in more detail below, one faces serious conceptual
difficulties, chiefly connected with the second principle of thermodynamics. These difficulties have
been amply aired in the literature.15 Theoretical as well as technical advances are needed to break
t he stalemate.

By showing how to reorganize computation at a logic level in a way that is compatible with
fundamental physical principles, conservative logic provides the required theoretical breakthrough.
In our opinion, this is also the beginning of a deeper and more meaningful dialogue between
computer science and physics (cf. Landauerl6

).

2. Conservative logic: the unit wire and the Fredkin gate

In this section we shall introduce, in t he form of abstract primitives, the two computing
elements on which conservative logic is based, namely, t he unit wire and the Fredkin gate. An
idealized physical realization of these elements will be discussed in Section 6.

The world of macroscopic physics offers an important advantage to systems designers. As
long as one is willing to use large-scale effects, based on t he collective action of very many par
ticles, one can synthesize concrete computing devices corresponding to quite arbitrary abstract
specifications. For instance, using suitably shaped "cams" and a sufficient amount of damping
(which entails energy dissipation) one can generate a wide range of functions, including inverting
amplifiers, adders, and threshold elements- - and thus, for instance, NANO gates. However, the
very macroscopic nature of these devices sets limits to their overall performance. It is true that
electronic miniaturization has achieved great successes in reducing volume and power dissipation
and increasing circuit speed. Yet, it is well known that attempts to improve performance by
carrying miniaturization to an extreme eventually lead to problems of noise and unreliability.
Devices based on t he "average" behavior of many particles become quite useless for the intended
purpose when the number of particles is so small that statistical fluctuations become significant.

By contrast, in the world of microscopic physics interactions are dissipationless; a lso, pre
dictable interactions can take place in a much shorter space and time, since the accuracy of the
interaction laws does not depend on averages taken over many particles. Thus, microphysics
appears to have many attractions for the efficiency-minded designer. However, there one can
choose only from a limited catalog of functions, namely, those realized by microscopic physical

effects.
In this conlext, it would be pointless to insist on using abstract computing primitives chosen

merely on grounds of mathematical convenience, only to discover that they cannot be realized by
any of the available physical functions. Rather, the selection of primitives must be gLi<led at first
by criteria of physical plausibility . Later on, when a certain set of primitives chosen according
lo lhcsc criteria will have been found satisfactory in terms of computing capabilities, one should

4

attempt to verify their actual physical implementability. This is indeed the plan that we shall
follow in our exposition of conservative logic.

Essential primitives for computation

Computation is based on the storage, transmission, and processing of discrete signals.
Therefore, any choice of primitives will have to include suitable building blocks for these computing
activities.

Fundamental constraints of a physical nature

P4. Identity of transmission and storage. As we shall explain in more detail below, from a
relativistic viewpoint there is no int rinsic distinction between storage and transmission of signals.
Therefore, we shall seek a single storage/transmission primitive capable of indifferently supporting
either function.

P5. Reversibility. At a microscopic, deterministic level, dynamical laws are reversible, i.e.,
distinct initial states always lead to distinct final states (this is true in both the classical and the
quantum-mechanical formulations of these laws.) Therefore, we shall seek abstract primitives in
the form of invertible functions.*

P6. One-to-one composition. The concept of "function composition" is a fundamental one
in the theory of computing. According to the ordinary rules for function composition, an output
variable of one function may be substituted for any number of input variables of other functions,
i.e., arbitrary"fan-out" of lines is allowed. However, the process of generating multiple copies of a
given signal is far from trivial from a physical viewpoint, and must be treated with particular care
when reversibility is an issue. In fact, this process involves the interaction of an "intelligence"
signal with a predictable source of energy (a "power supply") in a suitable device such as an
amplifier. For th is reason, we shall require that any fan-out of signals take place within explicit
signal-processing elements, and we shall restrict the meaning of the term "function composition"
to one-to-one composition, i.e, composition with one-to-one substitution of output variables for
input variables. From an abstract viewpoint, the responsibility for providing fan-out is shifted
from the composition rules to the computing primitives.

P7. Conservation of additive quantities. It is easy to prove14 that in all reversible systems
there exist a number of independent conserved quantities, i.e, functions of the system's state that
are constant on any trajectory or orbit. In general, of most of these functions little is known
besides their existence, since they are exceedingly ill-behaved (typically, they are not analytic).
However, in many physical systems the dynamical laws possess certain symmetries, and in cor
respondence with these symmetries one can identify a number of conserved quantities that are
much better behaved; namely, they are analytic and, which is more important, additive (that is,
these quantities are defined for individual portions of a system, and contributions from difTerent
portions add up). Additive conserved quantities play a vital role in theoretical physics.

Of the above-mentioned symmetries, some derive from the uniformity of spacetime, and ex
press themselves through conservation principles such as the conservat ion of energy (homogeneity
of time), momentum (homogeneity of space), and angular momentum (isot ropy of space). Other
symmetries which do not have a classical counterpa rt can be found in the qua ntum dynamics of
elementa ry particles. Since we are interested in physical computation rather than physics per se,
we sha ll not try to explicitly account for all t he symmetries of microscopical dy na mics- and thus
for all of its conservation rules. Rather, we shall require that our abstract model of computation

~ t shou ld be noted that reversibility does not imply invariance under t ime reversal; the la t ter is a more
spccializcJ notion . l ntu ilively, a revers ible syst em is on e that is retrodictablc or "ba,k wa rd determinis tic."

5

possess at least one additive conserved quantity, to be thought of as a prototype of t he many
such quantities of physics.

P8. The topology of spacetime is locally Euclidean. Intuitively, the amount of "room"
available as one moves away from a certain point increases as a power (rather than as an exponen
tial) of the distance from that point, 18 thus severely limiting the connectivity of a circuit. 23 While
we shall not explicitly deal with this constraint in presenting conservative logic here, our overall
approach and in particular the billiard-ball model of computation (Section 6) will be consistent
with it.

The unit wire

Let us consider a signal connecting two spacetime events Po and P1 . If in a given reference
frame the events Po, P1 are spatially separated, then one says that the signal was transmitted
from Po to P1• On the other hand, if in t he given frame Po and P1 take place at the same point in
space, one says that the signal was stored at that point. (For example, I can send a message to my
secretary over the phone (transmission), or I can leave a note on my desk for him or her to find
in the morning (storage). Note that in the second case the "stored" message may have traveled a
million miles from the viewpoint of an observer at rest with t he solar system as a whole.) Thus,
it is clear that the terms "storage" and "transmission" describe from the viewpoint of different
reference frames one and the same physical process.

In conservative logic, these two functions are performed by a single storage/transmission
primitive called the unit wire, whose intuitive role is to move one bit of information from one
point of spacetime to another separated by one unit of time. The unit wire is defined by the table

(2.1)

(where the superscript denotes the abstract "time" in which events take place in a discrete
dynamical system), and is graphically represented as in Figure 2.1.

Frc. 2.1 The unit wire.

The value that is present at a wire's input at time t (and at its output at time t + l) is called
t he state of the wire at time t.

F rom the unit wire one obtains by composition more general wires of arbitrary length. Thus,
a wire of length i (i > 1) represents a spacetime signal path whose ends are separated by an
interval of i t ime units. For the moment we shall not concern ourselves with the specific spatial
layout of such a path (cf. constraint P8).

Observe that the unit wire is invertible, conservative (i.e., it conserves in the output the number
of O's a nd l 's that are present at the input), and is mapped into its inverse by the transformation
t 1--t - t.

Conservative-logic gates; the Fredkin gate

Having introdu ced a primitive whose role is to represent signals, we now need primitives to
represent in a stylized way physical computing events.

A conservative-logic gale is any Boolean function lhat is inver tible and conserva tive (cf.
Assumpt ions PS a nd P7 above). It is well known t hat, under the ord inary rules of function
corn position (where fa n-out is a llowed), the two-inpu t .-s: \:---1> gate constitu tes a universa l primiti ve

6

for the set of all Boolean functions. In conservative logic, an analogous role is played by a single
signal-processing primitive, namely, the Fredkin gate, defined by the table

u X1 X2 V Yl Y2

0 0 0 0 0 0
0 0 l 0 l 0
0 l 0 0 0 l
0 l l 0 l l (2.1)
l 0 0

-+ l 0 0
l 0 l l 0 l
l l 0 l l 0
l l l l l l

and graphically represented as in Figure 2.2a. This comput ing element can be visualized as a
device that performs conditional crossover of two data signals according to the value of a control
signal (Figure 2.2b). When this value is l the two data signals follow parallel paths; when 0, they
cross over.

U,3EV
X1 Yl

x2 Y2

13El a a
b b

03EO a b
b a

(a) (b)

Fie. 2.2 (a) Symbol and (b) operation of the Fredkin gate.

Observe that the Fredkin gate is nonlinear and coincides with its own inverse.
In conservative logic, all signal processing is ultimately reduced to conditional routing of

signals. Roughly speaking, signals are treated as unalterable objects that can be moved around
in the course of a computation but never created or destroyed. For the physical significance of
this approach, see Section 6.

Conservative-logic circuits

Finally, we shall introduce a scheme for connecting signals, represented by unit wires, with
events, represented by conservative-logic gates.

A conservative-logic circuit is a directed graph whose nodes are conservative-logic gates and
whose arcs are wires of a ny length (cf. Figure 2.3). Any out put of a gate can be connected only
t o the input of a wire, and similarly any input of a gate only to the output of a wire. The
interpretation of such a circuit in terms of conventional sequent ial computation is immediate, as
the gate plays the role of an "instanta neous" combinational element and the wire t ha t of a delay
element embedded in an interconnection line.

Fie . 2.3 (a) Closed a 11d (b) open conservative-logic circuits.

In a closed conservative-logic circuit, a ll inputs and outputs of any clements are conrn:cted within
the circuit (Figu re 2.3a). Such a circuit corresponds to what in physics is railed a closed (or isolated)

7

system. An open conservative-logic circuit possesses a number of external input and output ports
(Figure 2.3b). In isolation, such a circuit might be thought of as a transducer (typically, with
memory) which, depending on its initial state, will respond with a particular output sequence to
any particular input sequence. However, usually such a circuit will be thought of as a portion of
a larger circuit; thence the notation for input and output ports (Figure 2.3b), which is suggestive
of, respectively, the trailing and the leading edge of a wire. Observe that in conservative-logic
circuits the number of output ports always equals that of input ones.

The junction between two adjacent wires can be formally treated as a node consisting of a
trivial conservative-logic gate, namely, the identity gate. In what follows, whenever we speak of
the realizability of a function in terms of a certain set of conservative-logic primitives, the unit
wire and the identity gate will be tacitally assumed to be included in this set.

A conservative-logic circuit is a time-discrete dynamical system. The unit wires represent
the system's individual state variables, while the gates (including, of course, any occurrence of
the identity gate) collectively represent the system's transition function. The number N of unit
wires that are present in the circuit may be thought of as the number of degrees of freedom
of the system. Of these N wires, at any moment NJ will be in state 1, and the remaining No
(= N - N1) will be in state 0. The quantity N1 is an additive function of the system's state,
i.e., is defined for any portion of the circuit and its value for the whole circuit is the sum of the
individual contributions from all portions. Moreover, since both the unit wire and the gates return
at their outputs as many l's as are present at t heir inputs, t he quantity N1 is an integral of the
motion of the system, i.e., is constant along any trajectory. (Analogous considerations apply to
the quantity No, but, of course, No and NL are not independent integrals of the motion.) It is from
this "conservation principle" for the quantities in which signals are encoded that conservative
logic derives its name.

It must be noted that reversibility (in the sense of mathematical invertibility) and conservation
are independent properties, that is, there exist computing circuits that are reversible but not "bit
conserving,"24 and vice versa.13

3. Computation in conservative-logic circuits; constants and garbage

In Figure 3.la we have expressed the output variables of the Fredkin gate as explicit functions
of the input variables. The overall functional relationship between input and output is, as we
have seen, invertible. On the other hand, the functions that one is interested in computing are
often noninvertible. Thus, special provisions must be made in the use of the Fredkin gate (or, for
that matter, of any invertible function that is meant to be a general-purpose signal-processing
primitive) in order to obtain adequate computing power.

u v=u
X1 =:i--c Yl = UX1 + ux2
X2--lJ--y2 = UX1 + UX2

(a)

0

ah a

Fie. 3.1 Behav ior of the Fredkin gate (a) wilh unconstrained inputs, and (b) with X2 con
strained to the value 0, thus realizing the AND function .

Suppose, for instance, that one desires to compute the A'ID function, which is not invertible.
ln Figure 3.lb, on ly inputs u and x1 are fed with arbitrary values a and b, while x2 is fed with the

8

constant value 0. In this case, the y1 out put will provide the desired value ab ("a A~D b"), while
the other two out puts v and y2 will y ield the "unrequested" values a and ab. Thus, intuitively,
the A N"D function can be realized by m eans of the Fredkin gate as long as one is willing to supply
"constants" to this gate alongside with the argument , and accept "ga rbage" from it alongside
with the res ult. This situation is so common in computation with invertible primitives that it
will be convenient to introduce some terminology in order to deal with it in a precise way.

Terminology: source, sink, constants, garbage. Given any finite function ¢>, one obtains a
new function f "embedded" in it by assigning specified values to certain distinguished input lines
(collectively called the source) and disregarding certa in distinguished output lines (collectively
called the sink). The remaining input lines will constitute the argument, and the remaining output
lines, the result. This construction (Figure 3.2) is called a realization off by means of¢> using

source and sink.

c (source)

(argument) x Y (result)

g (sink)

F ie. 3.2 Realization off by <p using source and sink. The function¢: (c, x) f-+ (y, g) is chosen
so that, for a particular value of c, y = f(x).

In realizing f by means of¢>, the source lines will be fed with constant values, i.e, with values that
do not depend on the a rgument. On the other hand, the sink lines in general will y ield values that
depend on the argument, and thus cannot be used as input constants for a new computation. Such
values will be termed garbage. (Much as in ordinary life, this garbage is not utterly worthless
material. In Section 7, we shall show that thorough "recycling" of garbage is not only possible,
but also essential for achieving certain important goals.)

By a proper selection of source and sink lines a nd choice of constants, it is possible to obtain
from the Fredkin gate other elementary Boolean functions, such as on., NOT, and PAN-OUT (Figure

3.3).

l 0 l 0 l

a --+--+--~ - - a
a

a a (c) a

F ie. 3.3 R ealizat ion of the (a) OR, (b) NOT, and (c) F'Ai'-OUT functions by m eans of the Fredkin
gate.

In order to synthesize more complex functions one needs circuits containing severa l occurrences
of t he Fre<lki11 gate. For example, Figure 3.4 illustrates a l-line-Lo-4- line demultiplexer.

9

0

V
0

V
Ao >-1----1>-+--.-----.------
A1 >-1----~
X>

Ai

0

V
t>

Yo
t> Y1

t> Y2
t> Y3

Ao

Frc. 3.4 l-line-to-4-line demultiplexer. The"address" lines Ao, A1 specify to which of the four
outputs Yo, ... , Y3 the "data" signal X is to be routed. (Note that here the sink lines happen
to echo the address lines.)

Because of the delays represented by the wires, this is formally a sequential network. However,
since no feedback is present and all paths from the argument to the result traverse the same
number of unit wires, the analysis of this circuit is substantially identical to that of a combinational
network.*

Finally, Figure 3.5 shows a conservative-logic realization of the J-K flip-flop. (In a figure, when
the explicit value of a sink output is irrelevant to the discussion we shall generically represent
this value by a question mark.) Unlike the previous circuit, where the wires act as "transmission"
lines, this is a sequential network with feedback, and the wire plays an effective role as a "storage"
element.

K>~Q

J>--Di_
?

Frc . 3.5 Realization of the J-K flip-flop.

4. Computation universality of conservative logic

An important result of conservative logic is that it is possible to preserve the computing
capabilities of ordinary digital logic while satisfying the "physical" constraints of reversibility
and conservation.

Let us consider an arbitrary sequential network constructed out of conventional logic elements,
such as AND and orr gat es, inverters (or "N<n" gates), FAN-OCT nodes, and delay elements. For
definiteness, we shall use as an example the network of Figure 4.1- a serial adder (mod 2).

·*The composition rules of conservative logic force one to explicit ly consider the distributed delays en
countered in routing a signal from one processing element to the next. In conventional sequential networks
propagation delays are not explicitly associated with individua l gates or wires; rather, they are implicitly
lumped in the so-called "delay elements." Yet, in these networks the delay elements alrfady have an
explicit formal role, related to proper causal ordering ralher than to timing per se.·21 This confusion about
the role of delay elements is avoided in conservative logic.

10

delay

FAN-OUT NOT AND OR FAN-OUT

F rc. 4.1 An ordinary sequential network computing the sum (mod 2) of a stream of binary

digits. Recall that a EB b =ab+ ab.

By replacing in a one-to-one fashion these elements (with the exception of the delay element
cf. footnote at the end of Section 3) wit h a conservative-logic realization of the same elements
(as given, for example, in Figures 3.lb, 3.3a, 3.3b, and 3.3c), one obtains a conservative-logic
network that performs t he same computation (Figure 4.2).

FAN-OUT NOT AND OR FAN -OUT

Fie. 4.2 A conservative-logic realization of the network of Figure 4.1

Such a realization may involve a nominal slow-down factor, since a path that in the original
network contained only one delay element may now traverse several unit wires. (For instance,
the realization of Figure 4 . .l has a slow-down factor of 5; note, however, that only every fifth time
slot is actually used for the given computation, and the remaining four t ime slots a re available for
other independent computations, in a time-multiplexed mode.) Moreover, a number of constant
inputs must be provided besides the argument, and the network will y ield a number of garbage
outputs besides the result.

The above construction is given as a general existence proof of conservative-logic networks
having the desired computing capabilities, and makes no cla ims of yielding networks that a re op
timized in terms of number of gates, delay stages, or source and sink lines. Of course, by designing
directly in conservative logic- rather than simulat ing a conventional sequential network-one
usually obtains circuits that perform the same computation in a much simpler way (cf. Figure
4.3).

Fie . 4.3 A simpler conserva tive-logic realization of tile serial adder (mod 2).

Tn conclusion, any computation that can be ca rried out by a conve ntional sequential network

11

can also be carried out by a suitable conservative-logic network, provided that an external supply
of constants and an external drain for garbage are available. In Section 7, we shall show that
even these requirement s can be made essentially to vanish.

The theory of computability is based on paradigms that are more general than finite sequential
networks-namely, Turing machines and cellular automata, which are systems of indefinitely ex
tendible size. In analogy with the above construction, it can be shown that there exist both univer
sal Turing machines (Bennett5) and computation- and construction-universal cellular automata
(Toffoli22) based on conservative logic. (To be precise, Bennett's and Toff oli's arguments only deal
with the reversibility constraint; however, once this one is satisfied, the conservation const raint can
easily be introduced without modifying the conclusions.) Historically, Bennett's construction had
a very important role in opening up the present field of investigation. Let us explicitly note that
in both Turing machines and cellular automata t he usual initialization conditions (respectively,
blank tape and quiescent environment) provide an infinite supply of constants from within the
system, and similarly infinite room for the "disposal" of garbage, so that in these systems the
constraints of conservative logic can be met without intr.oducing external source and sink lines,
and t hus in full agreement with the standard definitions of these systems.

5. Nondissipative computation

The questions one asks of a theory depend to a great extent on its intended applications. Since
one of our main concerns is more efficient physical computation, we shall suspend for a moment
the mathematical development of conservative logic in order to discuss its physical interpretation.
In particular, we shall discuss certa in connect ions between computation, information theory, and
thermodynamics.

An isolated physical system consisting of a substantial amount (say, one gram) of matter
possesses an enormous number of degrees of freedom, or modes, of t he order of magnitude of the
Avogadro number(~ 1023). In general, the initial conditions and the mutual interactions between
such a la rge number of modes cannot be given or analyzed in any detail. However, in a suitably
prepared system having a great degree of regularity there are a few distinguished modes (the so
called mechanical modes- inclusive of electric, magnetic, chemical, etc. degrees of freedom)) for
which one can separate exact or approximate equations of motion independently of all the other
modes (the large pool of thermal modes). These equations describe an experimentally accessible
functional relationship between the system's initial and final conditions, and in this sense the
system can be seen as a mechanical computer.

Conservative mechanisms. One case in which one can achieve this separation in the descrip
tion of a system is when the mecha nical modes interact much more strongly between themselves
t,han with the thermal modes-for example, a spinning !,op in a gravitational field. In the ideal
case, where the coupling between mechanical and thermal modes vanishes, the mechanical modes
will const itute a perfect ly isola ted- -a nd, of course, revcrsible--subsystem. Note that in this case,
while the mean energy of the therma l modes is of the order of kT (where k is Boltzmann's constant
and T the temperature of the system), there will be no a priori connection between this energy
and that of any of the mechanical modes, which is in principle arbitrary. (Of course, one may
have to reckon with kT at the moment of initializing the mechanical modes, since this process
entails some form of coupling wit h t he rest of the world.)

Damped mechanisms.* There is another way in which one can achieve separate equations of

* An approach wh ich is intermed iate belween conservative and damped mechanisms is b riefly d iscussed
in Seclion 9.

12

motion for the mechanical modes; unlike the previous case, this way only works for special initial
conditions. Suppose that the rnbsystem comprising the mechanical modes were required to be
irreversible. As such, this subsystem cannot exist in isolation, but must be coupled to the thermal
modes. Intuitively, since the information that is lost by the mechanical modes in their irreversible
evolution cannot just "disappear" (at the bottom level physics is strictly reversible), one must
open a door, as it were, between mechanical and thermal modes, so that the information lost by
the mechanical modes will be transfered to the thermal ones; this process is called damping. But,
again, at physics' bottom level there are no one-way doors, and in general unwanted information
or noise will flow through the door from the thermal modes to the mechanical ones, rendering the
mechanical subsystem nondeterministic. In Feynman's words, "If we know where the damping
comes from, it turns out that that is also the source of the fluctuations." 7 A way out of this
dilemma is to encode information in the mechanical subsystem in an extremely redundant way,
so that the nondeterministic component of its behavior can be easily filtered out. Typically,
each mechanical mode is coupled to very many thermal modes, and is given an initial energy
E much greater than that of any single one of them, i.e., E » kT. With such asymmetrical
initial conditions, energy will flow preferentially from the mechanical modes to the thermal ones,
and will somehow manage to carry information with it . (Even though this empirical approach
does indeed work, we must admit that the connection between energy and information exchanges
in physical systems is still poorly understood.) Of course, for sustained operation of a damped
system it is necessary to regularly replenish the mechanical modes with free energy and flush heat
out of the thermal modes; this process is called signal regeneration.

Today, digital computers invariably follow this second approach, i.e., are based on damped
processes. The main reason is that from a technological viewpoint it is much easier to "tame"
friction-so that it will work in a controlled and predictable way-than to eliminate it altogether.
Moreover, any small deviations of a mechanism from its nominal specifications usually result
in noise that is in first approximation indistinguishable from thermal noise12

•
9 (in other words,

imperfect knowledge of the dynamical laws leads to uncertainties in the behavior of a system
comparable to those arising from imperfect knowledge of its initial conditions). Thus, the same
regenerative processes which help overcome thermal noise also permit reliable operation in spite
of substantial fabrication tolerances.

In this situation, where widespread irreversible processes have already been designed into
a computer for essentially technological reasons, it is very easy to accomodate any additional
irreversibility arising from the very nature of the logic primitives (such as the AND function)
which one tries to realize. Actually, the two relevant processes, namely, interaction of signals (i.e.,
computing proper) and signal damping and regeneration are usually found associated in such an
intimate way within the same physical device (say, a transistor) that they cannot be separated
and dealt with independently. As a consequence, today's algorithms and circuits are geared to
specifying a computation in terms of a sequence of "off-the-shelf' noninvertible steps (such as
AND, CLEAR REGISTER, etc.) even when the overall function to be computed is invertible or nearly

so.
The great tolerance that damped mechanisms have for imprecision and noise at the design,

fabrication , and operation stage should not make one forget their intrinsic inefficiency. 1n many
practical situations this inefficiency is felt only in terms of energy consumption. With computers,
however, one is not so much concerned with the "electric bill," i.e. , with the cost of free energy,
as with heat disposal. For brevity, we shall discuss only one limiting factor. Since si~;nals cannot
travel faster than light, higher throughput in a computer can eventually be achieved only by closer
packing of circuit elements. ln a damped circuit, the rate of heat generation is proponional to the
number of computing elemrnls, and thus approximately to the useful volume; on the otha hand,

t3

the rate of heat removal is only proportional to the free surface of the circuit. As a consequence,
computing circuits using damped mechanisms can grow arbitrarily large in two dimensions only,
thus precluding the much t ighter packing that would be possible in three dimensions.

For this and other reasons (cf. Section 2), there is strong appeal in the idea of computers
based on conservative mechanisms. Yet, commonsense based on experience tends to make one
uneasy with this concept. So many t heoretical and practical difficult ies immediately come to
mind that it is not easy to think of this concept as one that might after all be viable. We shall
pose straightaway four fundamental questions.

QuESTIOK l. Are there reversible systems capable of general-purpose computation?
QuEsnoN 2. Are there any specific physical effects (rather than mere mathemat ical constructs)

on which reversible computation can in principle be based?
QUESTION 3. In Section 4, we have achieved reversibility of computation at the cost of

keeping garbage signals within the system's mechanical modes. In a complex computation, won't
garbage become unmanageabe if we cannot dissipate it? And won't the need to dissipate garbage
write off any energy savings that one may have achieved by organizing the computation in a

reversible way?
QUESTION 4. Finally, without damping and signal regenera tion, won't the slightest residual

noise either in the initial conditions or in the running environment be amplified by an enormous
factor during a computation, and render the results meaningless?

The answer to Question 1 is an unequivocal "yes," as we have seen in Section 4.
In the next section, we make an important step toward a positive answer to Question 2, by

introducing a model of computation based on elastic collisions of hard balls. This model is, of
course, still quite stylized from a physical point of view. However, such collisions constitute a
prototype for more realistic physica l phenomena, such as inverse-square-law (e.g., electromagnetic)
interactions.

Section 7 gives a substantial contribution toward a positive answer to Question 3 (a complete
answer cannot be given without solving first Question 4). In fact, we show that the number of
data lines involved in the constants-to-garbage conversion need only be proportional, in the worst
case, to the number of argument/result lines, rather than proportional to the number of gates
(note that in the generic combinational circuit the number of gates increases exponentially with
the number of argument lines). This requires only a small increase in circuit complexity with
respect to conventional circuits.

In this paper, we shall not attempt to answer Question 4, which is connected with many
unresolved theoretical and experimental issues. However, we shall note that t here are known
today practically realizable physical contexts- such as superconducting systems-in which total
decoupling between mechanical modes and thermal ones is effectively achieved.

6. A "billard-ball" model of computation

In this section we shall int roduce a model of computation (the billiard-ball model) based on
sty lized but quite recognizable physical effects, namely, elastic collisions involving balls and fixed
reflectors. The "rules of the game" for this model are identical to those that underly the classical
kinetic theory of perfect gases-where the balls are interpreted as gas molecules and the reflectors
as sections of the container's walls. Intuitively, we show that by giving the container a suitable
shape (which corresponds to the computer's hardware), and the balls suitable initial conditions
(which correspond to the software- program and input data), one can carry out any specified

computation.

14

It is obvious t hat any configuration of physical bodies evolving according to specified inter
action laws can be interpreted as performing some sort of computation (it certainly computes its
own future stat e). In general, though, determining how- if at all- a desired computation can be
set up starting from assigned interaction laws is an awful computational task. On the other hand,
the systems in which we routinely design computations (time- and state-discrete "dynamical sys
tems" based on Boolean variables and Boolean functions) are very abstract objects and in general
bear little resemblance to physical sy stems. Conservative-logic circuits are Boolean dynamical
systems; yet, they were made to satisfy const raints P4, P5, and P6 (i.e., identity of transmission
and storage, reversibility, and one-to-one composition; cf. Section 2) on the assumption that
this would lead to a closer correspondence with physics and, ult imately, to a natural physical
realization of such circuits. Indeed, the results of the present section offer strong support for
this assumption. Briefly, one can establish a direct correspondence between the primitives and
composition rules of conservative logic and certain elementary features of the billiard ball model,
to the point that any conservative-logic circuit can be read as the full "schematics" of a billiard
ball computer. From then on,* the design of a nondissipative physical computer is reduced to
the design of a suitable conservative-logic network.

Basic elements of the billiard-ball model

Let us consider a two-dimensional grid as in Figure 6.la (we shall take as the unit of distance
the spacing between neighboring grid points) and ident ical hard balls of radius 1/ ./2 traveling
along the grid's principal directions at the velocity of one unit of space per unit time interval. At
time t = 0 the center of each ball lies on a grid point, and thus will again coincide with a grid
point at all integral values of time (t = l , 2, 3, ...), and only at such moments. Because of the
choice r = l / ./2, the above kinematic features are preserved after right-angle elastic collisions
between balls (cf. Figure 6.lb). In what follows, we shall restrict our attention to collisions of this
kind. Observe t hat in Figure 6.lb the left-to-right component of a ball's velocity is not affected
by the collision. Thus, straightforward graphic construction methods are sufficient to guarantee
the appropriate synchronization of complex collision patterns such as those of Figure 6.7, since
balls that are vertically aligned at time t = 0 will maintain their vertical alignment throughout
the whole process.

Q

0 .(a) (b)
Fie. 6.1 (a) Balls of radius 1/ vf'l, traveling on a unit grid. (b) R iglit-angle elastic collision
between two balls.

It is clear t hat the presence or the absence of a ball at a given point of t he g rid can be
interpreted as a binary variable, taking on a value of l or O (for "ball" and "no ball ," respectively)

* And, of course, to the extent to which elastic collisions represent an acceptable slylization of physical
effects.

15

at each integral va lue of time. The correlations between such variables reflect the movements of
the balls themselves. In particular, one may speak of binary "signals" traveling on the grid and
interacting with one another.

The interaction gate

The interaction gate is the conservative-logic primitive defined by Figure 6.2a, which also
assigns its graphical representation.*

fJ
1

pq
pq
pq

pq ta)

F1c. 6.2 (a) Tbe interaction gate and (b) its inverse.

{b)

In the billiard-ball model, the interaction gate is realized simply as the potential locus of
collision of two balls. With reference to Figure 6.3, let p, q be the values at a certain instant of
the binary variables associated with the two points P, Q, and consider the values-four time
steps later in this particular example-of the variables associated with the four points A, B, C,
D. It is clear that these values are, in the order shown in the figure, pq, pq, pq, and pq. In other
words, there will be a ball at A if and only if there was a ball at P and one at Q; similarly, there
will be a ball at B if and only if there was a ball at Q and none at P; etc.

p A pq

B,. pq
/

>-~
/ ' / c'- ~q

·q D pq

Fie . 6.3 Billiard-ball model realization of the interaction gate.

Interconnection; timing and cross-over; the mirror

*Note t hat t he interaction gate has four output lines but only four (rather than 2 1) output states- in
other words, the output varia bles are constrained. When one considers its inverse (Figure 6.'.~b), the sa me
constraints appear on the inpu t variables. In composing fundions of th is kind, one must exercise due
care t hat the constraints me satisfi ed .

16

Owing to its A:---:D and l\"OT capabilities, the interaction gate is clearly a universal logic primitive
(as explained in Section 5, we assume the availability of input constants). To verify that these
capabi lities are retained in the billiard-ball model, one must make sure that one can realize the
appropriate interconnections, i.e., that one can suitably route balls from one collision locus to
another and maintain proper timing. In particular, since we are considering a planar grid, one
must provide a way of performing signal crossover.

All of the above requirements are met by introducing, in addition to collisions between two
balls, collisions between a ball and a fixed plane mirror. In this way, one can easily deflect the
trajectory of a ball (Figure 6.3a), shift it sideways (Figure 6.3b), introduce a delay of an arbitrary
number of time-steps (Figure 6.3c), and guarantee correct signal crossover (F igure 6.3d). Of course,
no special precautions need be taken for trivial crossover, where the logic or the timing are such
that two balls cannot possibly be present at the same moment at the crossover point (cf. Figure
6.7 or 6.la).

(a) (c) (d)

F ie. 6.4 The mirror (indicated by a solid dash) can be used to deflect a ball's path (a),
introduce a sideways shift (b), introduce a delay (c), and realize nontrivial crossover (d).

Thus, in t he billiard-ball model a conservative-logic wire is realized as a potential ball path, as
determined by the mirrors.

Note that, since balls have fin ite diameter, both gates and wires require a certain clearance
in order to funct ion properly. As a consequence, the metric of the space in which the circuit
is embedded (here, we arc considering the Euclidean plane) is reflected in certain circuit-layout
constra ints (cf. P8, Section 2). Essentially, with polynomial packing (corresponding to the A belian
group connectivity of Eulidean space) some wires may have to be made longer than with ex
ponential packing (corresponding to an abstract space with free-group connectivity).23

The switch gate and the Fredkin gate

In designing conserva t ive-logic circuits in the billiard-ba ll model, it is convenient to have
av ailable a wider set of primitives. Such primitives can be constructed "from scratch," utilizing
various collision patterns, or can be sy nt hesized starting from t he interaction gate as a building
block. Different trade-offs can be achieved between total delay, number of colli sions, number of
nontrivia l crossovers, etc.

For exa mple, t he switch gate (cf. Priese 19
) , defined in Figure 6.5, realizes t he conditional

ro ut ing of one data signal by one control signa l, a n<l is a more convenient primi t ive in certain
design situa tions.

J.7

C

(a) (bJ
FIG. 6.5 The switch gate and its inverse. Input signal xis routed to one of two output paths
depending on the value of the control signal, c.

Figure 6.6 shows a billiard-ball realization of this gate, as suggested by A. Ressler.

C '.X

ex

C
FIG. 6.6 A simple realization of the switch gate.

Finally, Figure 6.7 illustrates two billiard-ball realizations of t he Frc<lkin gate, one (due to R.
F eynman and A. Ressler) based on the switch gate, and one (in a version by N. Margolus) based
directly on the interaction gate.

18

Fie. 6.7 Two realizations of the Fredkin gate. Steering and timing mirrors are not explicitly
indicated. The "bridge" symbol denotes nontrivial crossover; all other crossovers are of the
trivial kind. The unit wires are not indicated.

We have thus shown that the primitives and the composition rules of conservative logic have
a straightforward realization in the billiard-ball model of computation. In the remainder of this
paper, we shall use the tools of conservative logic to deal with important issues of feasibility
and of complexity of computational schemes. The fact that conservative logic can be put into
correspondence with an underlying physical model such as the billiard-ball model of computa
tion will provide a tangib le motivation for many of these questions, and will suggest a physical
interpretation of our results.

In the past century, a satisfactory explanation for the macroscopic behavior of perfect gases
was arrived at by applying statistical mechanical arguments to kinematic models of a gas. The
simplest such model represents molecules as spheres of finite diameter. Both molecules and con
tainer walls are perfectly hard and elastic, and coll isions are instantaneous.

Billiard-ball computation is based on the same idealized physical primitives. However, here
we are in a better position to deal with individual systems (rather than statistical mechanical
ensembles), because of enormous computational advantages. In fact, the balls (which correspond
to gas molecules) are given very specia l initial conditions, while the collection of mi rrors (which
correspond to the container's walls) is given a very special shape. Owing to these "very special"
features, any trajectory can be explicitly computed for an arbitrary length very efficiently (each
collision requires a simple Boolean operation rather than the numerical integration of a differential
equation) and exaclly (there is no loss of resolut ion due to truncation or round-off errors) . Thus, it
is possible to reconstruct on an exact, quantitative basis a number of thermodynamica l arguments
or gcdanken-cxperiments which arc traditionally couched in a qualitative way and arc not a lways
clear or convincing.

19

7. Garbageless conservative-logic circuits

In Section 4, we showed that universal computing capabilities can be achieved in a reversible
mechanism with the proviso that one may have to supply input constants alongside the argument
and may obtain garbage signals alongside the result. In this section, we shall consider whether such
conversion of constants into garbage must a lways accompany nontrivial reversible computation,
and to what extent.

In physical computation, where signals are encoded in some form of energy, the reversibility
of a mechanism guarantees only that no energy is dissipated within the mechanism itself, i.e., that
no energy is transferred from the degrees of freedom in which signals are encoded (mechanical
modes) to other degrees of freedom over whose evolution we have no direct control (thermal
modes). However, in a complex mechanism energy may be dissipated in another way, i.e., by our
losing knowledge (and thus control) of a mechanical mode's current state,* which in the course of a
computation may end up depending on the initial conditions through such a complex relationship
that we may not be willing or able to unravel it. In other words, even when there is no transfer
of energy from a given mechanical mode to thermal modes, circumstances may force one to move
the whole mode from the "inventory" of mechanical modes to that of thermal ones. For the
benefit of the casual reader, we stress that this is an im portant point, whose explicit mention is
often neglected in thermodynamical arguments. An analogous situation will arise in conservative
logic circuits. Here, it is clear that the garbage signals may depend on the argument in a fashion
as complex as the result itself; moreover, this complexity may be arbitrarily high, since we are
dealing with circuitry that has universal computing capabilities.

If every time that we start a new computation we supply a circuit with fresh constants and
throw away the garbage (i.e., treat the garbage signais as thermal modes), then we will have
dissipated energy. To contain waste, we might consider reprocessing garbage signals so as to use
them as known inputs to a subsequent computation. In order to do so we must explicitly figure
out their dependence on the argument; but this will require in general a second computer as
complicated as the one that generated the garbage signals to begin with. Thus, while we strive to
contain the garbage generated by the original computer, the new computer is likely to generate
additional garbage which in general will depend on the argument in an even more complex way.
Is there any way out of this dilemma?

Let us consider first, as one extreme, the most "wasteful" way of dealing with garbage. In
the construction of Section 4 we replaced in a one-to-one fashion ordinary logic gates- most of
them noninvertible- with conservative-logic gates, making use of source and sink lines. In a
realization such as that of Figure 4.2 the number of source a nd sink lines is essentially proportional
to the number of gates, and thus, intuitively, to the complexity of the computation being carried
out. In this sense, conservative logic "predicts" that a physical computer structured according to
traditional design criteria- those of Figure 4. 1, faithfully retraced in Figure 4.2-must dissipate
power at a rate proportional to the number of gates. (It is not surprising that, having injected a
bit of fundamen tal physics into the axioms of conservative logic, we get back from its theorems
some facts of applied physics.)

Note that, in general, the number of gates increases exponentially with the number of input
lines. This is so because almost a ll boolean functions are "random," i.e., cannot be realized
by a circuit simpler than one containing an exhaustive look-up table. Thus, in the "wasteful"
approach the amount of garbage grows exponentially with the size of the argument. Can one do
substantially better? In particular, is it possible to achieve linear growth of garbage?

~n.alher than of of its laws, which arc fixed and by definilion known lo us.

20

It is obvious that careful design can lead to substantial improvements in particular cases. For
example, the circuit of Figure 4.3 uses, for the same computation, only one seventh as many source
and sink lines as the circuit of Figure 4.2. In this sense, conservative logic predicts the existence
of physical circuits having much lower power requirements than traditional ones. However, we

want to find general design principles rather than isolated examples.

In this section, we shall prove that in general garbage can be made not only the same size
as the argument (thus achieving linear growth), but also identical in value to the argument. The
relevance of this will be discussed at the end of the section.

Terminology: Inverse of a conservative-logic network; combinational networks. The inverse
of a conservative logic network is the network which is formally obtained by replacing each gate
by its inverse (note that the Fredkin gate happens to coincide with its inverse) and each unit wire
by one running in the opposite sense-thus turning inputs into outputs and vice versa (Figure 7.1).
The inverse of a network looks like its "mirror image," and, as it were, "undoes" its computation.

Fie. 7.1 (a) A conservative-logic network and (b) its inverse.

A conservative-logic network is combinational if it contains no feedback loops, and any path from
any input to any output traverses the same number of unit wires.

Let us consider an arbitrary Boolean function y = f(x) realized by a combinational
conservative-logic network</> (Figure 7.2a). For the intended computation, we shall have distin
guished a number of input lines of¢ as source lines, to be fed with specified constants collectively
denoted by c, while the remaining input lines constitute the computation's argument, x. Similarly,
we shall have distinguished a number of output lines as sink lines, generating garbage values
collectively denoted by g, while the remaining output lines constitute the computation's result,
y.

c>~g

X >~ y

(a)

g>Bc 4>-l
Y> X

(b)

FIG. 7.2 (a) Computalion ofy = f(x) by means of a combinational conservative-logic network
</>. (b) This computation is "undone" by the inverse network, 4>-1•

Consider now the network ¢-1, which is the inverse of ¢ (Figure 7.2b). If g and y are used as
inputs for ¢- 1, this network will "undo" ¢ 's computation and return c and x as outputs. By
combining the two networks, as in Figure 7.3, we oblain a new network which obv iously computes
the identity func tion and thus looks, in terms o r input/output behavior, just like a bundle of
para llel wires. Not only the argument x but also the constants c arc returned unchanged. Yet,
buried in the middle or this network t here appears the des ired result y. Our next task will be to
"observe" this value w ithout disturbing lhe system.

21

C >a- 9-P,-a:C ef> 4>- l
x> --Y--P,- X

FIG. 7.3 The network obtained by combining 4> and 4>-1 looks from the outside like a bundle
of parallel wires. The value y (= f(x)) is buried in the middle.

In a conservative-logic circuit, consider an a rbitrary internal line carrying the value a (Figure
7.4a). The "spy" device of Figure 7.4b, when fed with a O and a 1, allows one to extract from
the circuit a copy of a, together with its complement, a, without interfering in any way with the
ongoing computation.

>-----11.--- ----l

(a)

>lrJ;a----1
0) a

(b) l) a

Fie. 7.4 The value a carried by an arbitrary line (a) can be inspected in a nondestructive
way by the "spy" device in (b).

By applying this device to every indiv idua l line of the result y of Figure 7.3, we obtain the
following complete circuit (Figure 7.5)

ci > p-- - - - -91-----p-

Ch > 4> p- h+m-n p- 4>-l Ch

x1> P,--Yl Y1 - p- Xl

Xm> -Yn Yn-P,-

0) Yl

0) Yn
"spies"

1) Y1

1) Yn

F rc . 7.5 A "garbageless" circuit for computing the function y = f(x). Inputs c1, ... ,ch and
x1 , ... , X m are returned unchanged, while the constants 0, . .. , 0 and 1, ... , l in the lower part
of the circuits are replaced by lhe result, Y1, .. . , Yn, and its complement, y1, ... , Yn·

As before, the resu lt y produced by ¢ is passed on to 1>- 1; however, a copy of y (as well as its
complement y) is now available externally. The "price" for each of these copies is merely the
supply of n new constants (where n is the width of the result).

The remarkable achievements of th is construction are discussed below with the help of the
schematic representation of Figure 7.6.

22

0------ ~ -~-□

[B-~r ~ F ~~r~[l

------- ----i
Frc. 7.6 The conservative-logic scheme for garbageless computation. Three data registers are
"shot" through a conservative-logic black-box F. The register with the argument, x, is returned
unchanged; the clean register on top of the figure, representing an appropriate supply of input
constants, is used as a scratchpad during the computa tion (cf. the c and g lines in Figure 7.5)
but is returned clean at the end of the computation. Finally, the tokens on the register at the
bottom of the figure are rearranged so as to encode the result y and its complement y.

In this figure, it will be convenient to visualize the input registers as "magnetic bulletin boards,"
in which identical, undestroyable magnetic tokens can be moved on the bo_ard surface. A token
at a given position on the board represents a 1, while the absence of a token at that position
represents a 0. The capacity of a board is the maximum number of tokens that can be placed
on it. Three such registers are sent through a "black box" F, which represents the conservative
logic circuit of Figure 7.5, and when they reappear some of the tokens may have been moved,
but none taken away or added. Let us follow this process, register by register.

(a) The "argument" register, containing a given arrangement of tokens x, is returned un
changed. The capacity of this register is m, i.e., the number of bits in x .

(b) A clean "scratch pad register" with a capacity of h tokens is supplied, and will be returned
clean. (This is the main supply of constants-namely, c1, ... , ch in Figure 7.5.) Note that a clean
register means one with all O's (i.e., no tokens), while we used both O's and l's as constants, as
needed, in the construction of Figure 4.2. However, a proof due to N. Margolus shows that all
O's can be used in this register without loss of generality. In other words, the essential function
of this register is to provide the computation with spare room rather than tokens.

(c) Finally, we supply a clean "result" register of capacity 2n (where n is the number of bits
in y). For this register, clean means that the top half is empty and the bottom half completely
filled with tokens. The overall effect of the computation F is to rearrange these tokens on the
board so as to construct a "positive" and a "negative" image of the result, i.e., y and y.

One must preload the resuit register with an appropriate number of tokens because the circuit is
conservative, and thus cannot turn O's into l's o r vice versa. lf one waives the conservation constraint
and only insists on reversibility, then with suitable primitives one can achieve a slightly simpler
scheme24 than that of Figure 7.6. Briefly, one would provide a clear (all O's) result register of size n
(ral,her than 2n), and at the end of the computation this register would contain just y (rather than
y and y).

With reference to Figure 7.6, it must be stressed that the only change on the state of the
system introduced by the computation F is to turn a set of constants into the desired result y. In
other word, lo carry out a computation there is no need to increase the entropy of the computer's
environment.

One might object that, having obtained the result y , the computer's user may have lost interest in

23

the argument x and may want to "throw it away." Our construction makes it clear that the respon
sibility for thus thermalizing x rests on the user, rather than on the mechanics of the computation.
Nevertheless, let us consider a bona fide user who is accustomed to traditional computation (where
x is routinely thrown away) and wants to try our "garbageless" computer without having to learn
new bookkeeping habits. He might argue, "The bits that are returned in the argument register are
nominally garbage, since they still depend (though, I admit, in a very simple way) on the argument.
In particular, I cannot reuse them as constants for a new comput ation. Thus, I supplied an m-bit
wide argument plus n bits of constants (or 2n bits, in the conservative case), and I got back an n-bit
wide result plus m bits of data that I don't need. As far as I'm concerned, the computation has had
the side effect of t urning n bits of ' useful energy' into m bits of 'heat.' " Even if one accepts this
viewpoint (but cf. below), the relevance of our construction is ha rdly affected. In fact, it is clear that
the extent of this minor, user-induced "dissipation" involving at worst m bits has nothing to do with
the number of gates involved in the computation. This number, which in Figure 7 .5 is proportional
to h- the size of the scratchpad register-in general grows exponentially with m. In physical terms,
while a "kT" barrier (cf. Section 1) of the form 2mkT would pose a major threat to high-performance
computation, a barrier of the form mkT is just a minor nuisance.

Role of the scralbpad register. Trade-offs between space, time, and available primitives

In the construction of Figures 7.5-7.6, the function F which connects the initial value of
the argument/ result register pair to its final value is both invertible and conservative, quite
independently of the values of the constants c1, ... , ch in the scratch pad regist er. We have also
noted that no loss of generality is incurred if these constants are set equal to 0. Why, then, is it
not possible to eliminate the scratchpad register altogether? In other words, is there not for any
function/ a conservative-logic circuit Fo of the following form (Figure 7.7), where y = f(x)?

0)

0)

1)

1)

YI

Yn

Yn

F1G. 7. 7 A conservative-logic "circuit" which computes y = f(x) without using a scratchpad
register.

The answer is, of course, Yes, since Fo is invertible and conservative, and thus by definition
a conservative-logic gate. However, this "construction" is quite uninteresting since in general
Fo cannot be rea lized by composition of smaller conservative-logic primit ives. 24 T herefore, a
scratchpad register is essential if one wants to compute an arbitrary function / starting from
a fixed set of conservative-logic primitives. Intuitively, the reversibility constraint makes a com
puting gearbox so t ight that certain functions cannot be computed at all unless some "play" is
prov ided-in the form of additional cif'grees of freedom-by the scratchpad register.

The next question is, Given a fixed set of primit ives, how much "play" do we need in order
to compute /? In other words, how does the size h of the scraichpad register depenc on the size
of the computat ional problem? As one might expect, also in this conte-xt there are defi nite trade
offs between "space" (i.e., the size of the scratchpad register) and "time" (i.e., the delay between
input and output), as discussed, for instance, by Dennett.5 At one extreme of the range (v iz.,

24

least time), the construction of Section 4 implies that a scratch pad register of size proportional to
exp m (where mis the size of the argument) is certainly enough. At the other extreme (least size),
using only the Fredkin gate as a primitive the least useable size for this register is proportional

tom.

Circuits that convert argument into result. General-purpose conservative-logic computers

In the construction of Figures 7.5- 7.6, for the sake of conceptual clarity we have made use of
separate argument and result registers. The argument register is returned unchanged, while the
constants placed in the result register are rearranged into the desired result (cf. Figure 7 .8a, in
which the scratchpad register has been omitted for clarity).

X

(a)

FIG. 7.8 While in general (a) one cannot depend on the argument tokens in order to synthesize
the result, in a typical case (b) some of the tokens can be reused. If the desired function is
both invert ible and conservative (c), then the result can be obtained by just rearranging the
argument tokens. (The scratchpad register has been omitted for clarity.)

Is it possible to design a circuit which would directly rearrange the tokens of the argument x into
the result y = f (x), us:ng one and the same register for x and y? Such a computational scheme
(Figure 7.8c) would be particularly convenient in iterative computation, where the result of one
iteration directly constitutes the argument for the next.

In many cases, it is possible to achieve some economy in terms of source a nd sink lines, as shown
in Figure 7 .8b, depending on the nature of the function f. However, for the extreme situation
of Figure 7.8c to be realizable by a conservative-logic circuit, a necessary condition is that f be
both invertible and conservative (this is triv ial). This condition is also sufficient (trivially) if one
allows arbitrary conservative-logic primitives. What is important is that the condition remains
sufficient (as proved by B. Silver) even for circuits that use the Fredkin gate as the only primitive.
That is, any invertible, conservative function, and thus any iterate of such a function, can be
realized without garbage by means of the Fredkin gate.

Even when used in an interactive or process-control mode, an ordinary general-purpose com
puter owes its power and flex ibility to its ability to operate in a "closed" mode for sustained
periods of time; that is, arbitrary input/ output relationships (within given time and memory
limits) can be synt hesized by letting a fixed "CPU function" operate in an iterative way on an
interna l set of variables (program plus data).

By sending the output back to the input in Figure 7.8c, and similarly recycling the constants
in the scratch pad register , one obtains a closed conservative- logic compute r. V-/ith some ingenuity,
it is possible to design in this fash ion genera l- purpose conservative-logic computers20 based on
the Fredk in gate, having a circuit complexity compara ble, in terms of number of gates, with t ha t
of ord inary computers based on lhe '-\.\:--:D gate.

25

8. Energy involved in a computation.

With regard to energy, we have debated so far to what extent it must be dissipated in a
computation. Having reached the conclusion that in ideal conditions no energy need be dissipated,
one may wonder how much energy need be involved in a computation.

The topic of how much energy signals must have has received much attention in the past, 21
,
4

but mostly in the context of information transmission rather than of information processing.
Actually, because of thermal noise and quantizat ion problems, issues of signal energy may arise
at the moment of launching a signal or at t he moment of receiving it, but as long as the medium
is not noisy or dispersive the energy of a signal during its free travel seems to be irrelevant.
The situation changes if this free t ravel is replaced by an "obstacle course," i.e., some form of
processing, where signals are forced by a computer to nonlinearly interact with one another. In
this case, what energy a signal must have may be dictated by t he nature of t he anticipated
int eractions or by other considerations.*

At any rate, the billiard ball model (in which the energy is simply proportional to the number
of balls) shows that the energy involved in a computation need not be greater than just that in
which the argument and the result signals themselves are encoded. Thus, there is no necessary
connection between the energy involved in a computation and its length or complexity.

9. Other physical models of reversible computation

A kinematical (rather than dynamical) model of reversible computation, compatible with the
rules of classical analytical mechanics, was described by Toffoli.25 In this model, binary values
are encoded as distinguished phase angles of rotating shafts, and nonlinear- though reversible
coupling between shafts is achieved by suitable "cam followers." Such a mechanism offers a simple,
intuitive realization of the AND/N AN D gate,2 4 a universal, reversible, nonconservative primitive.

An approach to microscopic computat ion which is less defensive toward thermal noise than the
one considered here is discussed by Bennett.0 There, t he isolation between mechanical modes and
thermal modes is achieved only on a time average, and computation may be made dissipationless
in the limit t-too, where t is the input-to-output delay.

Analogous dissipation properties are exhibited by a stylized though substantially realistic
electronic implementation of conserva tive logic.8 This is an active RLC circuit in which switching
is performed by MOS transistors. Resistors and capacitors are "parasitic" elements of the tran
sistors themselves, while inductors are discrete components. As c¾_i increases the computation
slows down, but the energy dissipated by each elementary computational step approaches zero
as closely as desired.

F ina lly, Benioff has discussed a stylized realization of universal, reversible Turing machines
based on qua ntum-mechanical principles.3 This approach is especially relevant to some still un
resolved issues discussed in Section 5- in particular, Question 4.

*Note that on dimens ional grounds it would be poin tless to look for a strict energetic "equivalent" of
in format ion. An "amount of information" is arrived :it by counting in a cer tain way t he states of a system,
and is t hus associated with a certain classifica t ion of states (while energy is a property of indiv idual
states). T he natural uni t for per forming t his count, i.e., for span ning portions of the state space, is the
qua ntum of action- not an energy yardstick. Additional pa rameters must be specified in order to a rrive
at energy valt!es.

26

10. Conclusions

We have shown that abstract systems having universal computing capabilities can be con
structed from simple primitives which are invertible and conservative. By exhibiting and discuss
ing a detailed classical-mechanical model of such systems, we have given constructive evidence
that it may be possible to design actual computing mechanisms that are better attuned with the
resources offered by nature. In particular, we have shown that virtually nondissipative computing
mechanisms are compatible with general physical principles.

In conclusion, conservative logic constitutes a productive and readily accessible context in
which many problems at the crossroads of mathematics, physics, and computer science can be
recognized and addressed.

Acknowledgments

For our work on reversible computing in general, see the historical and bibliographical credits
in "Reversible Computing." 24 For conservative logic, we acknowledge contributions by E. Barton
and D. Silver; and for the billiard-ball model contributions by R. Feynman, N. Margolus, and A.
Ressler. Many fruitful discussions with C. Bennett, G. Chaitin, R. Feynman, and R. Landauer
provided insight and encouragement. A careful reading by N. Margolus resulted in a number of
substantial clarifications.

List of references

[1] BAIERLEI 1, Ralph, Atoms and Information Theory, W. H. Freeman (1971).
[2] BEKENSTEIN, Jacob D., "Universal Upper Bound to Entropy-to-Energy Ratio for Bounded

Systems," Phys. Rev. D 23, 287-298. ·
[4] BEKENSTEIN, Jacob D., "Energy Cost oflnformation Transfer," Phys. Rev. Letters 46 (1981),

623- 626.
[3] BE. IOFF, Paul, "The Computer as a Physical System: a Microscopic Quantum Mechanical

Hamiltonian Model of Computers as Represented by Turing Machines," J. Stat. Phys. 22
(1980), 563-591.

[5] BENNETT, Charles H., "Logical Reversibility of Computation," IBM J. Res. Dev. 6 (1973),
525-532.

[6] BENNETT, Charles H., "Dissipation-Error Tradeoff in Proofreading," BioSystems 11 (1979),
85-91.

[7] F EYNMA1', Richard, Lectures on Physics, vol. I, Addison-Wesley (1963).
[8] FREDKI ·, Edward, and ToFFOLI, Tommaso, "Design Principles for Achieving High-

Performance Submicron Digital Technologies," Proposal to DARPA, MIT Lab. for Comp.
Sci. (1978) .

[9] HAI<E. ·, H. , "Cooperative Phenomena," Rev. Mod. Phys., 47 (1975), p. 95.
[10] HERRELL, Dennis J., "Femtojoule Josephson Tunnelling Logic Gates," IEEE J. Solid State

Circuits, SC-9 (1974), 277- 282.
[11] KATZ, Amnon, Principles of Statis tical Mechanics-The Information Theory Approach, W.

H. Freeman (1967).
[12] KEYES, Robert W., "Physical Uncertainty and Informat ion," IEEE Trans. Comp. C-26:10

(October 1977), 1017- 1025.

21

[13] KINOSHITA, Kozo, et al., "On Magnetic Bubble Circuits," IEEE Trans. Computers C -25

(1976), 247-253.
[14] L,NDAU, L. D., A>ID E. M. LIFSHITZ, Mechanics, Pergamon Press (1960).
[15] LANDAU8R, Rolf, "Irreversibility and Heat Generation in the Computing Process," IBM J.

5 (1961), 183-191.
[16] LANDAUER, Rolf, "Wanted: a Physically Possible Theory of Physics," IEEE Spectrum 4:9

(September 1967), 105- 109.
[17] LANDAUER, Roif, "Fundamental Limitations in the Computational Process," Ber. Bunsen-

Ges. 80 (1976), 1041- 1256.
[18] OHANIAN, H. C. , "Gravitation and Spacetime," W.W. Norton (1976).
[19] Pn.rEsE, Lutz, On a Simple Combinatorial Structure Sufficient for Sublying Nontrivial Self

Reproduction, J. Cybernetics 6 (1976), 101-137.
[20] RESSLER, Andrew, "The Design of a Conservative Logic Computer and a Graphical Editor

Simulator," M.S. Thesis, MIT, EECS Dept. (January 1981).
[21] SHANKON, "A Mathematical Theory of Communication," Bell Systems Tech. J. 27 (1948),

379-423 and 623- 656.
[22] ToFFOLI, Tommaso, "Computation and Construction Universality of Reversible Cellular

Automata," J. Comput. Syst. Sci. 15 (1977), 213-231.
[23] ToFFou, Tommaso, "Cellular Automata Mechanics," Tech. Rep. No. 208, Logic of

Computers Group, CCS Dept., The University of Michigan (November 1977).
[24] ToFFou, T ommaso, "Reversible Computing," Tech. Memo MIT /LCS/TM-151, MIT Lab.

for Comp. Sci. (February 1980). An abridged version of t his paper appeared under the same
tit le in Seventh Colloq. on Automata, Languages and Programming (ed. J. W. de Bakker
and J. van L eeuwen), Springer-Verlag (198G), 632- 644. An enlarged, revised version for
final publication in in preparation.

[25] ToFFOLI, Tommaso, "Bicontinuous Extensions of Invertible Combinatorial Functions,"
Math. System s Theory 14 (1981), 13- 23.

[26] TURING, A. M. , "On Computable Numbers, with an Application to the Ent scheidungs
problem," Proc. London Math. Soc., ser. 2, 43 (1936), 544-546.

28

