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l. lntroductio,a. Lambda notation pro,vides, a convenient means, for writing 
expression.s whi.ch denote functions As an informal. example, consider 'the 
polynomial expression x2+1'x-l. One can oonstnict an expression ).x.x2+7x-1 
called a lambda abstraction denofng tbe polynomial function whose values ar,e 
given by the polynomial expression. Thus, Ax.x2+7x- l could be read as ''the 
function of x whose value is x2+7x- l," and the defining ,equation p(x) = 
x2+7x- l for t he polynomial p coutd as weU be written p = b;. 2+7x-l. The 
val.ue of p at the argument 3, for e:ii.:amp!e 1, ·s ob ainable by applying the 
expression ~x.x2+ 7x- 1 to 3, which. entails substituting 3 for .x to obtain 
32 7➔3-1 and ,evaluating: the result to obtain 29. This, process of 
substitution and evaluation. reflects 'lhe computational behav·or of many m.odern 
pro,gramming languages - which explains. in ,part ,he .recent interest in the 
lambda ,cakufas .among compute.r scientists (cf. [Landin 64165; Stoy 77]). 

Some of the po •er of the lambda calculus is su,ggested by the way function.s of' 
several arguments can be handled. The addition function. or two variables, for 
example, whose value is the sum of the values of the variables, could be 
denoted :>i.x.l .x+y. More accurat,ely, the ·":due of Ax.).y .. x+y is .a 
functional which, applied say to the argument: 2., yietds the add-two function 
of one. ariabte: ).y 2+y. The add-two function can in turn be applied to the 
argument 4 to yield the sum 6. T.hus a function of two variables can. be 
regarded as a functional of ,one var'ab)e whose value is a function of one 
variable, .in this case an "add a. constant' function. Thus, in studying 
cak:t1lations w1 h lambda notations ther - is no, loss of generality in 
restricting attention to functions - o.r more precisely functionals -- ,of one 
arg:ument, and we shaU do so in what foUows. 

A more intriguin,g examp]e suggesting the importance and special character of 
the lambda calcuJus is the '"triple composition Cunctional T. For any function 
f ·O·f one argumen and posjti\re integer n, let f<n) denote the composition 
f 0 f11

••• 0 f of f with itself n times. T.he functional T 1cao be · defined by 
the eqtJation T(fl - .t< )Ji or equivalently by T :: ).f.O,x.'fffUlx))))i. Thus, 
T applied to the cubic polynomial ).z._z3 wou1d yield the 27th degr,ee 
polynomial )..z..z27. By the same reasoning, T applied to T equals. the 
'"com.pose.·_ 27 times" functional because T(JJi ~pplied to f ~uals fliCn)ffJ' = 
(T11T 0 TI(O - TITITIOll ~ T(Tiff 3))) = T(~ll0 ~ l) 0 fC3~ : nff.9)) :~ f'(27). 

Bnt although it makes good intu:iti e sense to define the value of nn m this 
w.ay, there ar,e obvious logi.cal difficulties. .Applying a function to itself 
\'iolates tbe rules ,of ordinary set tbeory which forbid a function fr-om being in 
its own domain. The ·violation can qu,·clcly lead to oo.otradiction. f ,or exampte, 
let P be the 'parad0Jical11 functional such that f(f) is zero if fff) is not the 
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lnteger z.eroJ and PU) is the integ,er one otherwise. So by definition P(f) I 
flO fo.r an f; substituting P for· f .immediately yields the contradiction. P(P) 
I P(P}. 

The ,problem we consider is how to gi.ve values to such ejl;pressions involving 
functi.o.nals which .may be appt"ed to, themselYes. The intuitive sense of examples 
like T(TI must. be pr,eserv,ed while avoiding contradictions fr,om examples. like 
P(P). Such a domain of values would be a model for the lambda calculus. 

Lambda calculus .has been the subject of r,esearch by logicians for .r,oughly fifty 
years 1, although the model theory of the lambda calculus is a de·,efopment 
primarily of the past decade - largel carried out foHowing the lead of Dana 
Sco,tt. While a host of models and methods for model. construction are now 
avail.able1 the clear statement of just what in general a model of the lambda 
calculus may be seems .not t,o be well known. The purpose of this paper, which is 
largely tutorial, is to review briefly why the.re is an a.pparent difficulty in 
defining the notion of' model fo, the .lambda ,calculus, and then to show how this 
difficulty is ov, rcome. 

This 1ques.tion of what a model of the lambda calculus is has bothered me for 
some time. A similar concern is. expressed in [Hindley and Longo, 1980] who 
,comment that, " ... there seems t,o be, ftrst1y an assumption that the definition 
is too obvious to need stating, and secondly a disagreement about what the 
definition should be." Reading through the literatur,e d,escribing the various 
model •Constructions ([Plotkin 72, Wadsworth 76J, Soou 76t Stoy 77, Pfotkin 781 

Engeler 79, Scott 80a.,c]), I .fel , as though I kept asking1 ' What is a gro-up?'" 
and kept being told ' Permutations on n letters are a g;roup;" or "7lk is a 
group,," but was never told that a group, is. simply an algebraic struchu-e with a 
binary opera ion ·satisfying the we I. kn.own conditions. It turns out that there 
is a •Comparably simp,le definitio,n ,of model for the lambda calculus whieh w,e 
state next. The remainder ,of this paper prorVides a justifi.catioo. for the claim 
that the following definition is appropriate. 

Definition. A combinatory algebra is a structure <D ,> where • is a 
binary operation on D, such that there .are elemen.ts K, S E D satisfying 
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(I.I) (K•do)-d1 : do, and 

1( 1.2) (1(S-do)•d 1 hlz = (do-d2Hd I ~·2) 

for au do, d l I d2 E D ., 

A combinator1 model of the lambda calculus is a structure <Dt·,t> where 
<D ,> is a combinatory algebra and t · E D satisfies 

U .. JaJ 1(t-do)-d t = do d 1, 

(I.lb) ff VdED(do,11 = dt-d) then 4,-do:::: •n:11, 

for all d,o, dt E D, and 

U.Je) 1-e = ,.1 

Combinatory models serve for what is known as the a-lambda calculus. For the 
other main variant known as tt-fambda calculus, we simply require that the 
element e be a left identity on 1)1

, i.e., n:t : d for all ·d E D. 
Equiva·tently, we can simplify condition U.J,) to, U.4). 

Definition. An 1extensional combinator, model of the .lambda calculus is a 
oombioatory alg,ebra <D,·> such that 

(I.4) :if 'v'dED(d0,-d = d1

1-d) then do= dt 

for all d,o;, di E D. 

The abov,e definitions are not spec'aUy new. The definition. of combinatory 
algebra is due ·o Curry.. Condition ( 1.4) is known as extensionalitjl, .and 
the fact that extensional ,combinatory algebras sen,e. as models for the 
v-calcul us has been obsen:red often [ B,a endre.gt 77, Hindl.ey and Longo 80, Scott 
80a]. A variant of the definition or oombinatory mode! abo e is mentioned 
.along the way in [Scott 80b]. 0 her slightly more complex but stilt simple, 
purely alg braic formulations. appear io [Ob ulowicz 77, Obtulowicz and Wiweger 
78, V0lken 78, Aczel SO, Barendregt and Longo1 80,, Barendregt 81]. [llarendregt 
,81, CH.5§4., Cooperstock 81J survey many ,of these. 



Nevertheless, it still seems w,orthwhile to emphasize aigain here that the 
gene.ral defmition of lambda carculus model can be formulated in this 
e1ementary way without any of the algebraic baggage - very useful for othe.r 
purposes. - of l'attices, con inuity, or categories, and a]so without any of the 
syntactic baggage of lambda calculus terms. Although the resuJts described are 
known in one form or another to a. number of researchers, I have not seen the 
story told in ,gl!J·te so ,elementary a way as attempted be1ow.3 

To keep this pa per self-co,ntained ,, ~e review in be next section the basic 
definitions of the synta,ctic properties. of what is know.n as the unlyped lambda 
ca'tculus. It wm turn ,out that most of the standard syntactiic 1esults about 
reductions, normal forms, and Church-Rosser properties will not be needed in 
our dev,elopment. The main syntactic not.ion r,equired is m rely that of a 
lambda theory~ namely, a system of ,equations between lambda terms ,closed 
under the :standard inferenoe rules. (See. ![Hindley, Lercher, and Seldin 72]1 for 
a more · complete treatment of the syntactic theory and [Barendregt 81] as a 
comprebensivie reference.) 

Section J, introduces enrvironm,enl models. We dev,e!op enough of their 
properties to explain the view that environment models ar,e the natural, most 
general formula io,.n of what might be meant by mathematical models for the 
untyped lambda cakulus. In p,articular, the axioms a·nd rules of inference of 
lambda calculus are sound when interpreted by em1ironment models;, every 
environment model thus yields. an associated lambda theory.. The consistency or 
lambda calculus - a purely syntactic notion commonly p.roved by syntactic 
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(Church-Rosser) properties - is shown ·to foHow from the exis:tence or 
nontrivial en foonment modiels The ventral result is a completeness theor,em 
demonstrating that every lambda theory is the theory associated, with some 
environment model. 

Th.e drawback of environment models is that they define purely algebraic 
conditions, by ioductio.n on the syntacfc structure of lambda terms. In Section 
4 we demonstrate the equivalence between the combinatory models defined above 
and environment modelsl thereby r,evealiog how to formulate the algebraic 
conditions needed for mode.ls without reference ·to syntax. 

As an easy application of the notion of combrnatory model,. we wilJ see in. 
Section .5 that the ,construction of a lambda. calculus model in [Engeter 79] 
follows for simpter - more general reasons than was demonstrated there. This 
,com,pletes time main part o.£ the $10ry .. 



In Sections 6 and 7 we indulge in an algebraic excursion in which se,•era:1 
·structures akin to combinatory algebras are defined and compared. In Sectfo.R 6, 
lambda models · r,e introduced; they provide a technically useful variation ,0£ 
combinatory model·s. ln S~tion 7 the ,connection between ]ambda terms and 
co:m.binatory terms given in Se tions 4 and 6 feads to the formulation of lambda 
algebr:as, which are not equivalent either to combinatory algebras or fam.bda 
models1, but retain the best features of both. In the final secfon we cite 
some additional results conn cting the model theory and proof theory ,of lambda 
calcuhis .. 

.2. Syntax and Lambda Th.eories. We let x, y1, z denote variables chosen from 
some fi:x.ed infinite set of variables~ ,d denote a constant, and u, v, w denote 
lambda terms defiaed inducdv ly as follows. A lambda. term is either a 
ariable1 a cons,tant, an application ,of the form (uv), or an abstraction of 

the form o~,;: u). For readability the nota i.on b.u is llsually used for 
abstractions, and parentheses are omitted in applications with. association to 
the Jeft being understood. Thus1 UV\¥ abbre,•iates ((uv)w). Occurr,ences of 
variables in terms are said to be bou,rd or fr,ee following the usual .rules as 
though :\x was a quantifier such as 3x. Finally ).x112 ... wn.u abbreviates 
~xl.1'x2 .... :~xn'.u. for every set C ,of constants11. we l:et A(C) denote the 

Iambd a terms wh.ose constants are chosen sofely from C; so 4( Slf) denotes the 
co,nstant- fr,ee ,or pur.e terms. 

Let u[•/x] deno e the result of substituting the term v for free occurrences: 
,of x in u subjec~ to the usual provisos about renaming bound variables in u to 
avoid capture of rree ·variables in v. Two basic axiom schemes (a) and (tJ),, 
and an optio.nal third axiom. scheme {f,1, reflect: the in:tuition behind 
abstraction and application. 

(.a:J ,().x u) = G\.y u[y/:,i:]) £or y not free in u, 

ht) (ly (uy)) = u for y not free iin. u. 

WI th these axiom schemes we take the usual. mrerence .rules for a congruence 
relation1, namely three rules. of · nfereoce, 
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( . . . d . l 1 L ' transitivity au symmetry, u = v1 u :: v r v :: v, 

(congruence) u = u\ v : v' J- (uv) - {u'v1, 

W,e. would also· ·insist ,on the additional axiom 

except that it happens to follow already from c,1 and (transitivity and 
symmetry) as the reader may check. 

Terms which are pr,ovably equal by these rules from instances of (o:), UJJ (and 
(I))'), are said fo 1Ctt-)com-'ff'/ to one ano her. Note that oonve.rtib:ility is 
an equhrale.nce relation on terms - transitivity and symmetry follow 

· immediately from the corresponding inf:erence rule on.cc refiexi vi:ty is priOVed. 

Axioms and inference ruies lead directly to the notion o.f a theory. 

Definition. A lambda theory Yover a set C of constants is a set of 
equations between terms m A(-Cl containing all. instances of {a) and 1(i'J, 
and closed under th . rules Uransiti vity and symmelry), {congruence), and (E). 
The notation ly-u = v means that the equation "111 = v' is in :T. The theory 

is u:tem:ional if it also, contains all instanc.es of (,r). 

Clearly, -if u oon.verts to· v, then ~ : v for all lambda theories /T. 

As with con.v-ertibility; equality in any lambda theory .!Fdefines, an equivalence 
relatiom on lambda terms The 9-="equivalence class or u is denoted r[u]Jr~ 

Namely, 

Because the axioms and inforence rules are given by schemes in which my terms 
may be substituted for u and v, it foUows th.at simultaneous su 1bstitution 
preserves ,equation$. Tmat is, 
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if '3,ui : vi for i=O, ... ,n, then t,rucJ:u1h:1 ... u0/~8] : vcJ·v1/x1,···vn/~],, 

where 1.1cJu1 /x1 , ... u0
/xJ denotes the result of simultmreous:ly 

substituting u1, ... u
0 

for free occurrences ,of x1, ... ,itn in~- (We 
require of co,urse that the variables: lltl ••. ,x0 be distinct and, as in the case 
of (ti), that bmu1d variables. of UO are renamed to avoid capture of free 
variables in u1, ... un.) 

This ·is aU we .need in. the way of ·syn actic notions about lambda caku'lus. 

J. Values of 'Terms, and En·vironment .Models. The simplest firist notmn of 
la.mbda calculus modet might be any set D of :alues togethe.r with a ma,pping 
from any lambda t,erm u to a value [[ u]l]E:D such that convertible t · rms are 
assign d the same vah.1e. Clearly it is a minimal requirement of any notion of 
m,odel tha.t convertible terms rece:i e the same value in the model. This ought 
not be the sole requirement of model~ however, because it does .not guarao tee 
the condition that the value of a. term determines its behavior with respect to 
the values ,of o:tber terms. Specifically, we expect the in£erence mies to be 
sound, which leads to the foHowing 

Definition. A{n .extensiona/J term modef of the ]amhda calculus over a set 
C of constants c.onsists of a set D · hose clements are called Wilues, and a 
mapping[[·]] from A(C)· onto D such that 

[[(Ax u)]] - [[(>i.y u{y/x])]]I for y not free in u, 

[[((Ax u)v)]] = [I[ u[vh] ]] 

1([[(.~y (uy))]]I : [[u]IJ for y not free in. u,) and 

if [[u]I] : [[v]] and [[u']] = l[[v]], then 
[[(uu1]] = [[(w')]] and [[(>.x u)]] : [[(.)rx v)]]. 

Clearly, term models are a trivial reformulation o.f lambda th.eories. Namely., 
if Yis a lambda theory, then mapping a term to its . .r-equiv.aJ,ence class 
yields a. term model. Conversely, if[(·]] is the mapping or a term model, 
then the set of equations "u - v" sucll that [[ u]] = [[ vJ] is the lambda theory 
which. yi.e1ds the term model. 
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So a.lthougb the notion ,of term mod I is simple and natund given the axioms 
and rules for lambda calculus, it remains an essen iaUy syntactic notion which 
ha rd ly serves. to justi( y belie£ or interest in the axioms.. That is, term 
models fail to captur. ,he in.tui tive idea of fam bda terms as descriptions of 
func ions.. (It is like saying that a model ,of ,group, th.eory is any assignment 
of truth alues to formulas Sllch that provably equivalent formulas about grou_ps 
receive the same truth value. The central mode[i..th,eoretic notion which . -

justifies the rules of proof,, namely the notion of how an algebraic structure 
satisfies a formufa 1, has; been left' out.) 

What sort of structure allows interpretation o,f lambda terms? It would be 
easiest if we cou Id appea I to the sta.nd ard inducth,e definition of the value of 
a term ,over an ordinary algebraic structure - for example, a structure ~ ·: 
·<D,> where · is a binary operation on th.e set D. It wiU be hel,p[ut to 
re iew how a:lues are determined .in this ·standard case. 

We defin the set of &-terms to be c-0nstructed from constants in D, 
var'ables par ntheses 1, and a symbol for the binary operation · on D. 
A tually for reasons which w:m .appear below, it w11 be convenient to om.it the 
symboJ. for · and write '(uv) instead of (u·v), so that &.terms, become the 
special cas of lambda terms in which lambda abstracti~ns do not occur. 

Each ?term has a · alue in. D which is determined as soon as an. assignment of 
values to the free variables. in th.e term is giv,en. That is, the term is 
thought of as defi.ning a function on D of as many arguments as there a___re fr,ee 

ariable.s. It turns out to be simpler technicaUy to .regard terms as defining 
'functions of all' the variables,, even though the value will act-ually depend 
only on the values. of the £r.ee variables in the term.. In the ,context of lambda 
calculus, assignments of values to variahl.es arie usually referred to as 
,environments. 

F,orma:Uy, an environment p is any map from he set of all variables into D. 
The valuation mapping ~ defines for each ~te:rm u, a function 'YJ uJ 

from envi.ronments to D. The valaie of u in the environment p is written as 
'P"[u];.,,. (We omit the subsc.ript -C whenever "t is clear from context.) 

Tbe value of a term comistiDg of a single constant is simply the value 
of the ,constant. 
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(J. l) "P'[d]p, = d for di E D .. 

The value of a term consisting of a single variable is the value assign.ed tbe 
l"ariable 'by an ,enmonment. 

(3.2) ytx]p = p(x). 

Finally, the vs.Jue in .C of a term or th form (uv) is, simply the result ,of 
applying the binary ,operation • to th.e values of u and v. 

Definition. Ao equation u = " between &terms is defined to be 11alld in 4, 
written ~ u = ·v, iff the values of u and v are the same in al eoYironmen ts. 
Namely., 

~ u = ·v iff ~u] = ~v]. 

Th difficulty in extending these familiar definitions to lambda terms is that 
lambda abstractions are meant to, denote functfonst so their ,~atues would not, 
Jik e ordinary terms, be expected to be ,elements of the structure but rather to 
be functions on it. Of oours , once we aUow functions as values, a lambda 
term mig:ht be applied to a lambda term whose valu was determine.d to be a 
function, so we must then admit that the value of a. term could also be a 
junctional on functfons on. the structure. Things get even messier ·if we think 
of applying a term to itseJ.f, for, as we noted in the introducfon, thi 
viola.tes the rules o:f set theory which fo,rbid .a (unction from being in i.ts own 
domain. 

The way out of this pot n ial paradox is quite .straightforward 1(and familiar in 
recursion beor ). Nam ly, we r,egard each element over the structure as 
denoting a function o,n the structure (much as an integer denotes a partial 
recursive· function \'ia a God,el numbering).. So we first require of a model th.at 
it consist of a nonempty set D w'hose elements will be the values or terms, 
togeth r with .a map ii from D onto a se:t D .. D of certain functions from 
D to .D., We will also want t,o represent each function in D ➔ D as an 
element of D, so we require an inverse map 't from D .. D into D (mu.ch like 
a mapping from a .recursive function to, its least Uodel number). That i.s, 
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f 1 
D -➔ D -+D ............ 

t' 

(3.4) f; t('l'(O) for all f E D ➔ D. 

w ·e sh.all. call the structur-e // = <D,t;-1.t> a functional domain. Note that 
since • maps D onto D ➔ D, it follows from. Cantor's cardinality theorems 
that D ➔ D cannot equal the se of aH functions from D to D except in the 
trivial case that D has ,exac:tl on.e element. 

Now the intended int rpr,etation of an a_pplication (uv) is that u denotes a 
function applied to, the argument · : So, the value ov,er a functional domain G 
of the appUcation is gotten by interpreting the value of u as a function and 
applying. that function to the alue of v. 

Finally1 we must assig,n values o lambda abstractions of the form Xx .. u. The 
intended interpretation here is that u is an expression which can be evaluated 
for any given \.'all:le of x, and ).x.u denotes the. function. f whose value P:cn is 
obtained from the evaluation or u when x is. assigned the valued E D. 
However, since we want values of erms to be elements .rather than functions., we 
define the value ,of the abstraction to be the etement ii'Ul E D which 
:represents. the functfon f. To describe the assignment of d to x, let p{dh:} 
den,ote an environment which agrees with p at all variables other than x an:d 
which assigns x the value d. 

(3.6)· 'Pl)x.u]p -- 'i'(O, 
where f:D· ➔D is the function such that ffd) : 'P[u](p(d/xJ) .. 

The only possible catch in clause (3.{)) is that the function f may not be in the 
set D -+ D, in which case •CO is undefined. We take the denial of this 
possibility as, our fundamental definition ,of D1odet 

Defin;tion. An environment modet4 of the lambda calculus is any functional 
domain such that if values. are assigned to, lambda terms according to (3. 1), 
(3..2.}, (l.5)., and (3..6) above, the functions f = AdED·.P{u](p{d/x)·) arising 
in (3.6) are an iB D ◄ D. 
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An equation u - v between lambda terms ,s defined to1 be ra/;d :in an 
environment model I?, written CF ·u = v, iff the ya]ues of u and ·v are th.e 
same in all enviranmen ts. Namely~ 

To illustrate th.is definiHon1 conside~ the term be~2.111 which in.tuitivel.y 
denotes the first projection function of two ·variables. Let p I be the value 
of ).xe:2.x1 in some environmen p. For d1,d2 E D, let d'1d2 
abbreviate {ii(d 1 ))(dz), and let d 1d2 ... d0 

be read ,as associated to, 
the left, i.e., as. ( ••.. ((d 1d2)d 3) ... d0

). Then we expect p I t,o have 

the property hat pldldl ~ di for aU d1,dz 1E D. 

To v.er.ify this,, observe that p, 1d1 : (n>.x2.x1l (p(d1/x1}) by (l6J+ 

Then p 1d 1c12 : 'Ptx1JU,{d 1tx1J)fdz/x21) by (3.6), again, and the 
righ hand side. of this equation •equals d I by (3. 2). 

A more general tech nkal justification or· the reasonabl · ness of the d,efinitio,n 
of environment model comes from the fact that the axioms and ru.les of 'lambda 
yalculus already foUow from the definition. To show thisJ we begin by 
obs.erving, foUowing [Wadsworth 76], that our use of ,environments properly 
reflects the properties of substitution in formulas. First, the value of a 
term. depends only on the values. ,of i· s free variables. 

Free J/ariable lemma. "}V[u]p, : "Ptul(,o{d/y)) for y not free in u. 

More generally, we have the 

Substitution L,emma. n u[v/x] ]- = 'P[u](pfd/xl) ford - '1'{y]p. 

Both lemmas are proved by routine induction on the structure of lambda terms. 
We obtain directly rrnm the Substitutio1n lemma the fundamental 

Soundness Theorem. The equatio.ns valid in an environment model form a lambda 
theory. In particular, if u. converts to v ,, then u = v is valid in al 
eo,vironment models 
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Proof. Dy ( 3. 5) and ( 3. 6), 'P[(uv)] and '11(~x u')] are determined solely by 
pt ll] and '.Wt V ], so (c-0ngruence) and m preserve validity 

To verify that (a) is valid, let 'Pt(>.x u)]p : 9(f)1 as in: (3.6)1 so, that ftd) = 
rtu](.afd/x}}. Let y be a. variabl.e distinct from x and such that y is not free 
in u. Let 'PtG\y u[y/x])Jp - i'(g). so g(d) ::: 'Pt , , y/!] ](p{d/y}). Then 

· Ax.u = Ay. u[y/xJ wiH be valid pro,vtdmg, r : g. 

By the Substitution Lemma~ g(d)1 = nuJ((p,{d/y}}{dth}) where d; ::: 1?"[y](p{d/y})~ 
By 0.2)~ d' =· d. Also,, 1(p{d/y}lfd,/x} = (p{d,h:})(d/y} by definition 
since ylx, so g(d) : r[:u]((p{dh:}){d/y})., By the Substitution Lemma 
again, g(d) = ,r[ u{vy] ](p{dh:}), but since y is not free in u, u[x/y] ; 
u, 1m g(d) - ftd) . . 

Verific.atioa of (I) foUows even .more easily from the :Substitution Lemma. 

Finally1 if u converts to v~, then the equation u = v is in ev,ery lambda 
theory, and hence is in the lambda theory of ,equa·tions "alid in any particular 
environment model. I 

A simple application of the notion: of env:ir,onment mod.el is .a model-tlteorietic 
proof of th.e sy.nta.cti.c consistency •Of lambda calc,u1us, viz. , n.onoonvertiblity 
between some pair of terms. 

Le,nma. The equatio.n. ).x1 ... ,::0 .xi = A,;1 ... 1 0.xf whe.re 1:S;i<j$n, is not 
valid in any environment model with more than one element. 

Proof. For 1 :Sk :S.n and any environ~ent p, fet pk :: 'Pl).1 l ..• :-;0;xklP~ 
From the definition ,of o/1'1 it follows as 1n the examp]e above that 
1p1d 1., .. d0 = dk for aH d 1, ... tdn ,f! D. H D has, more than one 

elemen tt there exist d 1, ... ,d n E D such that di i .cl j, so that 

Pi"1···dn = di I dj ·~ Pjdll···'dn and ther,efore Pi i Pj· I 

.Ao immediate consequence of this lemma is that every nontriviaf model, i.e., 
model. with more than one element, :is infimtt:. Assumin& as we :show in Section 
S, that nontrivial environment models existJ the preceding lemma and the 
:Soundness Theorem immediately imply the 

O:ms,stency Theorem. For l ~i<j~n the term lx1 ... xrr''1 does, oot oonv,en 

to ix1 ·:·x8 .:11J 
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The preceding definitions can be tri iaUy modified to deal with 1t-conversion. 
The intuitive content of the '1-rule is that an element may be identified with. 
th1e function it specifies, so that di.stiinct 1e!ements must specify distinct 
functions. This amounts simply to the 

Definition. An extensional en ironment model is an environment model for 
which the map t:D-+(D .. D) is one-to--one. 

We then can easily show the . 

tt-Soundness Theorem. The equa io.ns valid in an extensional environment 
model form an extensional lambda theory. lo particular, if u ,,_converts to v, 
then u = v is valid in all extensional en ironment models. 

The Consistency Theorem s.imilarly extends to extensional e:nv.ironment models 
and tt-con version. 

A con. erse to the Soundness Theorem proYides the most important technical 
support for the argument that environment models correcdy capture the 
intuitive meaning of lambda calculus as embodied in the convertibility rules. 
The axioms and rules of lambda calculus provide a complete logical system for 
proving equations about environment models. 

Completeness Theorem. Every lambda theory c.onsists, of precisely the 
equations vaHd in some ,environment model. That is, for every lambda theory 
!T," ther ls an environment model l] such that 

~ = V iff G;:: U = v. 

In particular, u = v is valid in all emrironmeot models iff u converts to v. 

The required environment model is gi en as follows. 

Definition. Let Ybe a lambda theory over a set C of constants. The 
functional domajn associated with .ris <D,4:-,9> where 
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D - { [[u]Jr I u 1E .A(C)},, 

( I([( u]J,-l)([[ v ]J,-)1 ; [[( uv)]Jy-, and 

~(l([[u)Jr)) = [[Ax.ux1b- for x not free ia u. 

Note that he foongruenoe) rule implies that• in ·the abov-e definitfoin is well 
defin d. To see that it is wen def'medi not,e that if ·t([[u]Jrl -

ti([[ v]Jy-), then evaluating at argu mei1t [( J]~ £or x .not free in u, v yields 

EC \l d}r = ([vx]y • so (f), implies [(Ax. wdy = [[). x. vx]y, that is 

it( 4'([1[ u]Jr)) = 'I',(+([[ v ]}y-)) by definition. f'i.naHy 1. (M immediately 

implies that • is a left inverse of 't, so <IJ)i~t'> i,; indeed a functional 
domain. 

Proof of the Comp.le.leness Theorem. Let Ybe a. lambda theory and ll its 
associated functional domain. For any environmen , , let u[ p] abbreviate 
[[ u[t11/x1,···un/:xn] lrhere x1, ... ,:x0 are the free ·variables. of u and 

p(xi) : [[ ni]J:r-. No·te that u[p] is well defined since simultaneous 

substitution preserves equadons. 

We claim that for all u E A(CJ: and environments Pt if r~u]p is defined 

by (J.1-2)1

1 (3.5-6), then 

In _parti.cu lar, ll is an envir,onment model 

The claim foUows by induction on the defmi.tion of a lambda term u. We 
consider only the most difficult case when. u is of the form >-.x.v wh.ere x is 
free in v. In this case, 

by ().6)., providing the .argument of 't is in the range oft·. So1 it suffices 
to prove that ~deD.T~v](p{,d/x}) = t((Ax.v)[p]). 

.. 
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But for any [[w)}y-E D, 

(~deD. 'P'~ v](p{d/x}))([[ w]!¥i 

: 'P'J: ](p[[wJ}r/x}) 

NoW" let y, z be a new variables not free in v,w,u1, ... u
0

l and let ui = 
Ui{z/x]. Then by the definition of simultaneous substitufon, 

[[ v[u1/x1~···>un/x0 ,w/x] ]b'- - [( v(uyx1, ... ,u;(x
0
J[w/x][x/z] JJ,-

- [[ ( (>.x.(\'[uy,i1, ..• ,u;txn])), w )[x/z] ]y by (~) 

- cc c ().x.< ve u1:x1 , ... tud'xnJntxtzJ w 1 lJr since z is not rree m w 

- [[ ( ().y.( {uyx1,···,udxn](y/xJ))(x/z] w) ]Jr renaming Ax 

to Ay to avoid capture of x 

= [( ( ().y.(v[y/xJ[uy:1: 1, ... ,u;(x
0
]))[,Jz] w ) ]Jr since y is 

not r ree in ui 

= [[ ( Ay.(\{y/x][u1/x1,.-·,un/xol} w) J}r by definition of di 
since z is not rree in v[y/x] 

- [[ ( (~y.h[y/x]l)[u 1 h:1 ,- ·• 1,unhi:nl w ) ]Jr since y is not f11ee in ~ 

- [[ ( (Ax.v)[u1/x1,·· ·1u
0
/xgl w) ]Jr renaming Ay to Ax by (a:) 

- (-Ii([[ (Ax.v)[p] ]Jr))([[w];Jr) by definition of [p] and Ci. 

Therefore, ).deD.?V~vJ(p{d/xll : t((~x.v)[pJ), and the claim is prov d. 

Now if Ct= u : v, then in the particular environment , 0 such that Prf.iJ = UxlJrfor 
all variables x, the terms u and v have the same value. By the above claim, 
the value of u is [[u]~nd that of v is C[v]Jy-1 so [l[u]g-- = ,[[v]Jr 

That is, ~: v, 
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Conversely, if~ - v, then ~pJ = v[,>] for aU .P since 

simultaneous substitution p,reser es 1equations. The abo¥e claim immediately 
impUes that Cl= u. - v. I 

4•. Combinatory Mode]s. The notion of ,environment model may· best retlect the 
intuitively correct way to assign values to terms of h.- lam:bda calculus, but 
it is mathematically a bit a.wkward. The conditjon that aU the functions f 
a.rising in. (3.6) be in D ➔ D obviously defines some kind of closur·e 
,condition on this set of functions, but the fonnufation of the condition is so 
,entangled with the syn ax ,of ]ambda terms tha it is hard to visualize what 
models look like, and it can be awkward to veriry tha.t par-ticular functional 
domains ar,e indeed m.odels. 

Is there some way to define the closure condi uons implicit in ( 3. 6) wi tho1.;1t 
reference to the :syntactic machinery ,of fam bda tenns? .Not surprisin,gl), a 
solution lies in cons,ide.ring combjnators., which were originally devised to 
short-circuit the syntactic complexities ,of variables, in terms.. Combinators 
ar,e simply variable free terms ove.r combinatory algebras. 

The k,ey property which motivates · he rather odd definition or combioatory 
alge'br.a ,given in the introduction is r,e ealed by considering the more .natural 
notion. af combinato.ry completeness defined below. 

Definition. Let · be a binary operation on a set D. The structure -,C = 
<D ,> is combin·ato.,iallp ,complete iff for every ~ter.m u and every finite 
sequence :x 1, ... , x

0 
or variables, there is a &-term u' not containing 

x 1, ... ,x0 and such that -GI= u = u'x1 ... .x0 
• 

.De.ffnltion. Let I abbreviate the oombinator SKK. For every ~term u and 
variable :,;: define a n.ew -&:-t,erm <x>·u as follows: 

<x>,u : Ku if .x is, does not occur in u, 
<x>x = I, 
<x>(uv) = S(<x>u)(<x>v) if,; does ,occur ·in u o,r v. 

Combin,atory Co.mplet:en,ess Lemma 1(Cuny). A structure£ - <Dt> is, 
combinatorially -complete iff ·it is a ~mbinamry algebra. 
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. 
Pro~/.(+-) Let -t be a. combinaitory algebra and K,S € D satisfy (Ll) and 
U.2). It follows directly from the definifons that x does not occur in <x>u, 
and. that -'1= u : (<x>u)x. Let u' be <x1> ... <x

0
),u. Th.en 1': u = 

• . d u. x1 ... x.n .as requare . 

( ➔) Left to the rieacler. I 

W now show hat the simpl.e definition of c:-ombioatory .models given at the 
outset provides the des'r·ed atgebra:ic characterization of environment models. 

Dejinilion. Let ,C = <Dt•,e> be a combinatory model. Let I .map elements 
of D into the .functions from D to D defined by left multiplication. That 
is, let (ti(do))(d) - d0·d. Th · .fu.ncJ.fonaf ,domain (ISSOtiated with & 
is <D ,t , J+> where q, is gi en by the nde 'P·(l(d)) .:: rnl. 

ote that ( t 3b) implies that 9 is, well defined, and (I. la) implie.s, that it 
is a. righ.t in rse of It so that <D,t;t·> is indeed a functional domain. 

Definitio.r,. Let C = <D.,t,i'>- be an eoviro.runent model. Define a binary 
operation · on D by the rule 1do,'tl 1 = (t(do))(d 1), and let ,1 -

Y~).xy.xy]p,. Th algebra associated with II is <D;,t>. 

Note that by the Free Variable Lemma., the value of I does not depend on the 
environment p . 

Combinat,ory Model Theorem. (Oi The functional domain /J associated with a 
com binatory mod el ff is an •en ironment model -which assigns, the same values to, 
~terms. That is, 



19 

for aH &-terms u. 

{ii] The algebra associated with an environment model is a cmnbinatory model. 

(iii) The associations between combina.tory models and environment models. 
defined abo,1,re are inverses of ,each other. That i_s.1 if ll is the en.vironment 
model associated: with a combina.tory ·m.odel ,&, then C is the combinatory mode] 
associated wi, h C, and vice' versa. 

Proof. rn L t in abbre iate the sequence of di~.tinct varia'bles XJt••·,xn. 
Let ii O a bbttvia te the sequence 1d 1, ... ,d n of (not necessarily distinct) 
elements in D. and let ,ptcJJi0 } abbreviat ·· ( ... (.orld1lx1}) ... {dJx11})·. 

We clai~ that for every term u E AID),, for every ,en:Yironment ,p,, and all 
x0 there is an. ·element du,.· i E D1 such that 

:n 

"P",S{.u](p{ln/in})1 - idupinin 

for all i1
0 

ED. 

This claim foUows by induction on the definition. of lambda terms. We giv,e the 
details only for the mos difficult case that u is of die form Axn+ 1 • v 
where xn+I is distinct from i

0
• We have, 

'.)1/~Axll½ 1 ··v](p{if JinJ) 

- it( ).dn+tED.'YJ:v]((p{ifJi0})'{di+l/x0,.1J) ) b.Y U.6)1 

~ 't"( >i.dn+lED.'P'~vJ(.p(i111.+llin+l})) 

=· 9'( )l.d n+ J. ED .dvp in+ 
1 
ii n+ 1 ) by induction. hypothesis 

; (,e(dvpi cf 0)) by definition of ~. 
n+l 

By combinat-ory completeness* there is a d ·E D such that 

tfl= (e(dvni _ , i 0)) : dill, 
,,. o+I 

so we define dupin to be d. 

The claim immediately implies tha.t ldED."P"~uJ(p{d/x}) : ·t[du,J E D .. D 1 

·so that the functi.onal domain C is an en.vironmeot m.odel. 



20 

A trivial induction on tile defmition of 1'-terms establishes that ~ and 

~ coincide on ?terms. 

( ii) Let C = <D, t,, ,,"i'> be an em~iroumen· model and C its associated 
algebra. Choose K, S E D to, be r,st:Axy.J] and 'P'J).xyz.xz(yt)], 

respectively. Thea ( 1. U, ( 1.2); ( 1.3,.atc) follow directly from the Soundness 
Theorem,, (fJ) t and the defhli tiom. To, verify ( l. 3b), no,te that 

e·do = 1(-li(Y""tlAxy.xy]))(dol by defwitfon of ti and 1 

= (>.dED.'P'J:~y.xy](p{d/x}) {dd by (3.4) and (l6) 

: TJ),y.xy](p{dc{xJ) 

: i'(Ad·ED.T,tl(xy)]((p(~zy'x]){d/y})) by (l.6)1 

= 'l'(~dlED.tl(d.o))(d)) by U .. 2), U.4), (3.S) 

= 'f{t(d.o)l. 

Henc.e, if d0~d - d1 d for all d. then ,f(d,o,) : l(d 1) by 

definition of+, so e·do,: 9(1i~doU = i'(t(d 1n : 1·d1, This 
proves ( I. 3b) holds in rf. 

Hiil Let 11 = <Dit~i(,> be an ,emironment model,~= <Dt\e> the 
ass:oc.ia'ted combi.natory model, I/' : <D,11/J";t~> the environment mod ~l 
assocfated ,,.,itb 4, and#· the combinato.ry model associated with c·. 
Clearly, ,t = •·· But 'i'tt'(do)) = nl0 by definition of 'i'\ and 
,,10 = "1'1(•(do,)) by the proof of (ii) abovet so· ~ ;; ~'. Hence, 11 = 
/?. The proof that.~:; -C ~ follows similady. I . 

To state the r,ela ion between the values of lambda terms in an et1vir,orunent 
model and ?terms m the assoefated com'binatory model, we establish. for lambda 
terms a l'iesuh corresponding to combinatorial oom pletene.ss. Let KA 
abbreviate lxy.x) 5A abbreviate lxy:i.xz:(yz), and IA abbrevia.te 
((~KllK).). Define .combinatory· lambda terms inductively to be lambda 
terms which are either constan ts.t vadables1 K~ t ~, or appHca tions ,of 
combmatory lambda terms. In other woridsJ oomllinatory lambda terms are 
p.recisely those lambda terms iEt which the only abstractioM occurring are in 
~A. and~-
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Combinatory lambda Term Lemma. For -ev,ery u E A(O there is a oombina.tory 
lambda term u(~J E A(C) such that u converts to :u(ll. 

Proof. For any 1combina1ory lambda term u. E A(C) and variable xt define 
«x>>u E A(C) as follows: 

<<x)>u = (K); u) i£ x is. not free in u; 

«x>>x = IA, 
<<x>)(uv) = <U\ «x»u)«x» J i£ 1 is rree in u. or v. 

It follows by simple calculation rrom the definitions that ·«v>u is a 
oombina.tory lambda te.rm which co.nftrts to ~x.u. 

· Let ull) to be the com bin.atory lambda t.erm ,obtained fr-om an 6T/Jitrar, 
lambda term u by repfaci.ng. aU oc.eurrences or 1:11: by «x>>. lnductiv,ely·~ we 
may define u<>.:) .as follows= 

Definition. Let~= <Dt· 1•> be a combtnatory model. For .any u € A(D), 

define u<~ be the -&.term obtained by replacing aU occurrences of Kl 

:and ~ in uCM by the co.nstant values in D of K~ and ~ in the 
environment m.odel associated with C. 

Note that by tlt.e Free Variable Lem.ma, the values or the closed terms K). and 
~ are determined by the envirorunent mode[ alone and not by any particular 

cbo:ioe of env·rnnment. So uC'Gl is we.U defined. 

Com.bina.tory M'o·del Tn·eorem. (iv) Let II be an environment mod'.el and -& ·its 
associated combmatory model. Then for all lambda terms u, 

'P"ttu) = ~uf-'1]. 

Proof. JY~u] = ')?"~u().l:J by Soundness since u comfCrts to :u()J_ The proof 

now follows immediately by i.nductio.n on the numbe.r of occurrences of free 
variables, oonstants, and terms K). and ~ :ia u(~). I 
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The Combinatory Model Theorem demonstrates, that combinatory models and 
environment models are merely notationaJ v:adaots or the ume class of 
ma thema icaJ structures. 

The significance of the these results, i.s, that we can: now straightfonvardly 
interpriet arbitrary latnbda ter:ms and equations between them as though they were 
standard te.rm s and eq u a.tions over an o.rdinary algebraic structure defined by 
first order axioms . 

. 
5. An Elementary Model Construction. We now present a simple construction 
of a class of ,oombinatory models using only elementary properties of sets. 

Let A be any non.empty set~ and let B be the least set oontaining A and aH 
ordered pairs consisting of a finite subset ,IJ ~ B, and an ,etemen t b E B. 
Such an ordered pair is denoted ('9 ➔b). Assume that elements of A are 
d istin,guishable from ordered pairs,, 

Let DA : zB =, (d I d ~ Bl, aad define the binary operation · on DA 
'by the rule ·· 

(5. l) d 1112 = (b E B 1 (tl➔b) E d I for some a '!: dz}-

Model Existence Theorem [Plotkin 72]. 6 The structure <D A,•10 is .a 

,co1mbinatory model wher,e 

(5.2) , : { (a➔(l)➔bn I •JtJ finite subsets of B and b E «"ti}.7 

P~oof.. Choos , 

( !t 3) K = I (c.-tf ,8 _. b)) I b E al~ and 

'(5.4) S = { C11.,.(~-+h4<b))) I b E a·,-16·"!)} 

The proof that e, K, and S given by 1(:5.2-4) satisfy (I . U, (1.2),, (LJ,.a;c) is 
a. direct ,consequence of the definitions: and is-omitted. To verify (I. Jb) t not.e 
that A n edo = ¢ and that b e do•6 iff (l'➔b) e "'o by 

definition. Heace, ir edo - ed1, I~, then. (~-+b) E 1do, - ml 
for some (IJJ...,b} t so b 1E do·'1 - d I •a. I 
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The model Existence Theorem validates th a.s-sumptfon made in proving the 
Consistency Theorem in Section J th.at nontri-1,iial models exist. [ndeed, DA 
bas uncountably many elements. Ther,e are also countably infinite models, e.g., 
the recursively enumerable el.ements of DA form a countable submodel. (The 
Lambda Algebra Theorem in Section 7 provides another mechanism for constructing, 
~ nontrivial countable model from. any nontdvfal comb·uatory model.) 

Now let x be any binary operation on the set A. Let functions. f~ and f from 

.A to DA be deaned as follows: 

(5. 5) frJ.a) : (a'I, 

fm+ 1(a) = fn(a) U { ({a.1 .. h) I a1 
E A, b E f

0
(axa')}, . . 

fta) == U . f 1(aJ. 
n>O n 

Embe-dding Theorem [Engeler 79]. The function f given in (:5 .• 5) isomorphically 
embeds the structure <A1,x) .into <DA,+>. 

Proof. Note that. Ra) n A = {a}, m I is injective. The ¥erificatfo,n that f 
is a homomorphism is a routine calculation which we omit (cf. [Engeter 79)). I 

To iUustra te the significance of the Embedding Theorem., we can: now mate sense 
of the examples involving, integers, polynomials, and tripl com.position giv·en 
in the Introduction. For e-xampteJ to obtain the piecewise integer polyn.omia1s 
as part of a oombinatory modelt let A be the least set cm1taimng the integers 
Z and distinct new elements ad1d, add0 , mult, mu,lt

0
, •cond, eond3, 

conda a' for n E z, a,a~ ·E A. Define a binary operation x on A by the , 
rules, 

.add x.m = add·n, addnx:m == Ilif.m, 

muhxn .. multn., muJt
0

xm = nm, 
condxa : co.nda, cond

3
x:a' ;::: cond

8 8
,, . ' ' ,, 

.1 u t "f .._1 L . • u OODt111 a
1
a ,xa: = .a I a E: n, otuerwise a , 

for n,m •E il:1 and a,a\a" E A; the operation x may be defined arbitrarily 
on arguments not specified above. 

Now embedding <A x) into DA yields (an isomorphic copy of) I a[ong with 
addition1 multiplication,. and oonditionals. The tripfe oomposition functiooa] 
T of the Introduction also appears in DA' since T = 1'fx.ltfU~) is defmed 
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by a pu,e lambda expression and so can be interpreted i a DA without eve.a 
appealing to the Embedding Theorem. The reader liS mvited to consider why the 
difficulties surrounding th.e paradoxical functional P no longer threaten. 

For constructio,n of 1e·x ensional model.st see (Sc-0tt 80a,§5J who• sketches an. 
elementary ccmstruction of an embedding. theorem into extensional m.odets based 
on a modification of DA· [ScoU &Oc] provtdes aooth.er construction of 
extension.al embeddings based on. a universa! embedding property for tile P(!,l 
model. See [Wadsw,orth 77] for a detailed treatment of Scott'·s originaJ 
•constructio,m of extensional m,odel'S from continuous lattices. 

·6. An oth,er A lgeb r ic Axiom a ti za tio,n = Lam bid a M odeJ.s. The definition of 
oombinatory model conn.ects nicely with the definition of enviroam.ent model, but 
suffors the sma H technical disadvantage that the ,elements K, S a·re not 
identified uniquely. For example1 {nb}➔(tf-tb)) I b E B} i ano,ther element 
in DA distinct rrom th.e K or (S.3) which sa.tisfies (LO. In order to 
maintain the corriespondence between the algebraic structure or the model and 
the values, ,of lambda terms~ it is important to make the appropriate choice of K 
and 81 namely as the values of K). and 8A, in the associated environ me at 
model. It is an amusing e1.erdse to describe these values in a purely 
algebraic way. 

Let ~ be a oo.m bina tory model1 I/ its associated environment model, and begin 
by choosing any Kt S saHsfying (I. U and (1.2). Let 

( 6. U B -· SCKS)K 

be the · composition'' vom binator. It is ,easy to verify that Bxyz: - J:(y.z) is 
valid in any combina tory algebra. Let 

We now haYe · 

because 

'P'~~).xy.x]p ; 'l'(~d.rjCAy.x]p~ : ~().d.i'(le·.d)) = 90.d.'l'tt(K'ifl))) ·= 

= '9G,d.1-{K-d)) = +Cll(B-e)•KJ) : 1·UB-.)·KJ = ((B:-t)'iB-e))~K. 



ote that as predict,ed by the Free Variab]e Lem.mat the value of the dosed tum 
Ki is determined by the environment model II alone and no·t by any particular 
choice of p t K or S. 

Letting 

a similar calculation shows th.at 

Definition. ([Scott &Ob], [Barendregt 81]) A lambda model ·is an algebra 
<D, ,K,S> such that 

K,. S E D satisfy { t 1)1 ( 1.2), 

<D, · 10 is a combinatory model where , = S(K.1)1, 

(
16. 16) K = t2 • K, and 

(6.7) S : •rSJ 

where , 2 t , 3 are given by (6.2) and (6.4). 

Because the righthand sides ,of ( 6. 6) and 1
( 6 .. 7) are the values. of K). and ~ 

in. the ·environment model associated with any combinatory mode'I <D 1• 11>, they 
are un:iquely determined independently of the particular cho:ice of K and S. Bi 
Con erse1y, the values of K~ and ~ determine , because ,1 is the value of 

).;xy.xyi and lxy.xy converts to :~(K;,l>l· Th-us we ba,e established the 

Lambda Model Tl1eorem. Any combinatory model <D t • 1,e> uniquely determines 
a lambda .model <Il' ,\11!fK,1rS>, independently of the ,choice of K and S 

E D satisfying (l.1-2). 

Conversely, if <D, ,K;S> is a lambda model, then <D; ;&.KD> is a 
combin atory model.. Moreover, these two correspondences are inverses ,of eacb 
other .. 
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The axioms for lambda models are a bit mo.re elaborate than for oombinatory 
mod ls, but lambda rnode ls have the advantage hat the s andard algebraic .notion 
of a. substrucrure relates nicely to, certain. syntactic properties of :lambda 
terms. For example, the interior of a !ambda calculus model is normally 
defined as , he val1.1es of the pure, i.e. constant fr:ooJ clo.se-d lambda terms 
'C Barendre:gt 7 6]. In terms of lambda models1- the interior now has a familiar 
algebraic definition .as the minimum sUbalgebra or a lambda model; this foU.o,ws 
immediately from the Combina.tory Lambda Term Lemmai (6. 3)~ and ,(6.5). 

It might seem tha we are now read · to develop a nice theory of models usin,g 
the usu al algebraic notions of substructures'! morphisms:, ete. One serious, 
tech.meal ·impediment remains1 however. Neither the class of com.binatory models 
nor the dass of !ambda models is dosed under the operation. of taking 
substructures or of a.pplying morphi,sms "iith respect to the binary operatio.n • ! 

The difficulty springs from the fact that the first order a:xiorns ( l. lb) and 
(I. 4) are n.ot equa ions. Equationally a:domatfaed structures are gua rantood 
to be closed under taking substructures and morpbis.mis, but first order 
axiomatizable structures are not in general [cf. Monk 76,§24]. 

In fact the com binatory alge ra which is the interior of th.e extensfona1 term 
model is no-t. ,extensional [Plotkin 74], i.e. it does not satisfy ( 1.4), and is 
not even expandable by any choice of K1 S in.to a (not necessarily e:xtemfonaO 
la:mbd a. model [ Bareadregt; letter to M.eyer, Oct. 1980]. This im.pHes among 
othe.r things that th.ere is no purely equ ational definition. of :ta mbda models 
sin.ce eq nationally defined da:sses of structures are closed under tak.ing 
substructures. 

Nev,ertheless, t.nere is an equationally definabte class of structures called 
1.ambda algebras which serve so wen for interpreting lambda terms that i1: is 
tempting to identify th.em as he proper a lge:braic embodiment of lambda calculus 
[cf. La:m:be.k 80]1. We consider th.ese neld. 

7. Lambda Algebras. The mapping from u to, uC~) given in Section 4 
sugge.sts an obvious way to interpre lambda. terms: wi.thin arbitrary eombmatory 
_algebras - by replacing K,_, in JM by the constao.t K € D and 
similarly for ~- U the combinatory algebra is a combina ory model~ then 

the c-0ntent of the Combinatory Model Theorem ( i\<) is that this idea indeed 
works. However, in an arbitrary algebra replacing K1 by some K satisfying 

(I. U may cause pmbl.ems because there may be no K which. beha~es comp'leteJy 
like K.l with respect to ,convertibmty. For examp e, :since KA converts to 
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(K)/M = «x>)(<<y»x), ·= ~(K1K).lI;v their interpretations in 
the combinatory algebra should agreet but there is no guarantee that the 
algebra wm contain K,S such that K has the same value as <v{<y>x) = SCK.K)l. 
In general, the problem is to gualia nt:ee the e,mrtence of ~ S in the algebra 
such that the analogue ,of rule ti) holds, .nam.ely, if u ;; v, then <x>u - <x>v. 
To do this, some slightly weaker conditions than. those for a combina tory m.odel 
suffice. 

DeflnWon.(Curry1 [cf. Barendregt 81,CH. 7]) A .Lambda Algebra is a structure 
<D,·1K.,S> where <Dt> is a c-0mbinatory algebra, KiS e D satis,fy 0.1), (1.2), and 

(7.U K = <x>(<y)( .Kxy ))t 

(7.2) 1 S = <x)(<y>C<z>C Sxyt m 

(73) <x)(<y){ S(lu)(Ky)' )) - <x>(<y>( K(,:y) n, 

(7A) <x>(<y>( S(S(KK)x)y )) ;; <x>(<y)![ <z>b,z) )), 

(7.5)1 <X){<y)(<:v( :S(S(S{K.Sb)y)z) = OOC<y){(z.)( S(Sxz)(Sy:d ). 

Note that {7 .1-5) denote equations between constants. For example; (7. 0 in 
less a bbr,evia ted form .reads. 

K = S(S(KSJ(S(KK (S(KK)D))(KD 

which would be even. longer if we had expanded the combinator I as SKK aad put 
in fuH parenthesization. The reader will appreci0;te the utUity of the 
ablmwiations .. '9 E,ren with: the abbrevfations, (7.1.-5)1 ar,e hardly memo.rable 
ha,ring b en chosen solely for the purpose or carrying out the proofs below. 

In the foUowing lemmas we develop some of the elementary properdes •Of the 
transform <x> on combinatory terms. These properties wiU imply that 
oom bi natory models ·ca a be ,obtained Crom farnbda algebras simply by ex-tending 
lambda algebras with i.ndeterminates - just as fie r.ing. of integer multivariate 
polynomials is obtained from the ring of integers.. This res.ult then yields a 
mathematically robust characterization. of lambda algebras as substructures and 
homo.mo,phic images of lambda models. 
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Let 1' = <D, ·> be a combinatory algebra, and .K.,S E D be any elements 
satisfying U.l-2.). 

Let X be a ·set of ariab!es and tt{X] be the free ,oombinatory a1g,ebra generated 
by X over the constants in#. That is, t{X] is the free word algebra of 
?terms with variables onJy from X, modulo the ,congruence relation on c&.terms 
gen rated by the equations between co.nstant terms valid in~ and .all 
substitution instances of OJ-2). 

FormaUy1 let u ·v,w range ,o,v,er ~terms, and define the proof sy.s1em ,of 
IJ'-Com-binaro.ry Logic for ,,c· to .have :woms 

u = v su.ch that u,v are variable free terms and :c:fl= u = v, 

Kuv: u, and 

and inJerenoe rules! 1(transitlvity and symmetry) and (congruence). 1(We would 
also ·usist oo the axiom ( reflexivity) except kat it foUows already from K uv : u 
and (transitivity and symmetry).)1 

Write ~ct.,,1- u = v iff the equation ·u : v is provable in this system, and 
.let 

[[u]J = {v I &-CL-~ u = I, 

D[ XJ = l [[ u]] I u E AJD)1 and all variables in u ar,e io X}. 

t(X] ; <D[X], •) where [[ u]ll{[ vJ] = [[1(uv)]I]. 

(7 .. 6)Lemma. G{XJ .is a combioatory algebra and the mappmg taking d E D to 
[[dJ] isomorphically embeds.~ into -c(XJ. Moreover if u,v are -&-tenns all 
of whose an.ables are in the set Xt then 

Proof. The construction of t(XJ from~· is the standard one fo.r constructing 
a polynomial'~' algebra from any ,equatiooaUy defined algebra. I 
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Lemma (7. 16> justifies identifying d E D with th.e element [[d]] of D[X] 
which. we shaJI continue to do,. No!e that because (7.1-5) denote equations 
bern'·een variable fr,ee ?terms, it now folfows immediately that t(X] · atisfies 
whichever of' (7. l-5) that rf satisfies. In. particular, if C is a lambda 
algebra, then so is t( XJ. 

(1. 1)Lemma. For any -&term u and variables :11y1 

(i) x does not o.ccur in <x>ui 

UiJ if y does not occur in u, then <x>u = <y)( , y/~l). 

Pr,oo j. By induction o.n. the defurl tfon of <x>. I 

(7~8)l,emma. For aU &-terms ·u,v and distinct variables x,y, if x does not 
occur in v, then 

(<x>ul[ /y] = OO(u[v/y]). 

Proof By induction on the de:frni tio.o of <x>. Th.e cases that u : ll or x 
does not occur in u are trivial 

Suppose u = ( u I u2)1 and 1· occurs in u. Then 

(<vu)[v/y] : (S(<vu1U<x>u2))(v/y] by definition of <x> 

- S( (<x>ut )[ v/y], )( (<x>u2), v/yJ ) by definitio.n of [v/y] 

= S( <x>4:u 1:Cv/y]) )( <x){ui[v/y]) ) by induction hypothesis 

= <x>C ui[v/y] u2[v/y] ) by definition of ,(,o 

= <x>Cu[v/yJ) by definition. o.f [v/y]. I 

(1.9)Lemma. For any ?terms u,v and variable x, ~ ((<x>u)v): u[v/x]. 

Proof. As, already observed .in the Combina.tory 1Compleieness Lemma, an 
induction on the definition of <x> implies -4: ( <x>u)x = u. Since 
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substitution preserves validity of equations,. -4= ((<x>u)x)[v/~] = u[v/7'], but 
by (7.7,(i)) x does not ,OC(:ur in <x>:u, so ((<x>u}~[v/x] - ((<x>u)v). I 

(7. IO)Lemma. If K,S atisfy (7;1 2), then for aU distinct variables x,y,z, 
and ?terms u 

CD ~ <y>(Kxy) - Kx1. 

cm ~ <z><sxrz> = Sxy, 

WO -4:: (y)( (<x>u)y ) = <x>u if y does not ,occur in <vu., 

Proof.Ci) ~ <y)( K.xy ) = (<x>(<y)( Kxy ))) x by (7.9) 

= Kx by (7.1). 

UO ~ <z>( Sxyz ) = (<x>(<y>(<z>( Sxyz; )))) x· y by (7 9) twice 

= Sxy by (7.2.). 

(iii) By definition <x>u ·is always ,of the form Kv o.r Svw In the first case, 

<x>u - v = (Kx)[v/x]. but 

~ • (Kx .. v/x] = (<y>(Kxy))[ /x] by (0, 

= <y)((Kxy)[v/x)) by (7.8) providing y does. not. occur in v 

= ·<y>(Kvy) ~ <y>( (<x>u)y ). 

The case u : Svw follows similarly from (ii}. I 

(1 .ll)Lemma. If K,S satisfy (7.3), then for aU -?t rms u,v and variables x, 

4:::: <x>C:uv) = S(<x>u)(<x>v). 

Proof. If x occurs in '(uv),, then the equation is iden.tically true,. ·so assume 
x does not occur in (uv). Let y,z be distinct variab es not equal to x and not 
occurring in (uv). Then 
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<v(uv) = ~(uv)1 'by definition ,of <x> 

=· K(uy)[v/y] since y doe.s not occur in u. But 

1'#1: K(uy)[v/y] 

= (<y){K(uy))1 v) by (1. '9) 

- ( <y>( (K(xy}}[u/x] ) ·v)1 

= ( ,(<y>(K(xy))} u/x_] v) by ,(7.8)' since y does not occur in d 

= f<x><<y>( K(xyl m u v by <1.91 

: 
1((.x){<y){ S(Kx)(Ky)' m u V by· (7.l) 

= ( (<y)( S(Kx)(Ky) )1)(u/~] v) ~y (7. '9) 

- ( <y)( (S(Ki;)(Ky))[u/x] ) v) by (7.8) since y does not occur in u. 

= { ·<y>( S(Ku'){ Ky) ) v) by ·substitution 

= ( S(Kul(Ky) )[ v/y] by (7 '9) 

: S(Ku){Kv), since y does not occur in u 

= S(<x>u)( <x>v) by deftnition of <x>. I 

(7.l2)Lemma. Let tf be a lambda algebra and u,v be &-terms with ·variables 
only bi X.. If l{X]~ u. : \~, then 4:XJt: <x>u = <x>v. 

Proof. By ( 7. 6). validity is the same as provability for equations between 
?t,erms u v aU of whose variables are in X. W,e proceed b,y induction on the 
.le.ngth of the p1roof that ~CL~, u = v. 

If the proof is of length onet i.e., u. = v is an axiom, then if u1v are 
variable rree terms, the result is imme-eUate, If u = K.u1 u2 and ·v = u1, 
then, noting that (7.11) holds for ~X] because by (7.6) 11:XJ is a 
com binatory aJg,ebra sa.tisfying the same var. able free eqttations as ~ we have 
<x>u - <:x>v because 
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t(X]F <x>(Ku1 u2) 

- S(<x>(Ku1nc<x>u2) by (7.11) 

= S(S(KK)(<x>u1)}(<x>u2) by (7.11) 

- (S(S(KK)(<x>u1))y)[<vu2/y] where y is chosen not to occur in oou1 

; (<y>( S(S(KK)(<x>u1))y )) oou2 by (7.9) 

::: {<y>( {S(S(KK)x)y)[<vu1/x] )) <x>u
2 

= ( (<y>( (S(S(KK)x)y) ))[<x>u1/x] ) <x>u2 by (7.8) since y is not in <x>ut 

= (<X)(<y>( (S(S(KK)x)y) })) <x>ul <x>u2 by (7.9) 

- (<x>(<y>( <z.>(xzl ))) <x>u1 <x>u2 by (7.4) 

= <z>C (<x>u1)z ) by (7.8-9) where z is chosen not to occur in <x>u1 

= <x>u1 by (7.HXiiD). 

The case tha u = v is the axiom Su 1 u2 u 3 = u 1 u 3c u 2 u 3), follows similarly 
using (7.5)1

• So (7.12) holds for th axioms of ~CL~. 

If the .last infi rence rule i.R the proof •Of u = " was (transitivity and 
symmetr ), then (7.12) follows immediately by induction. If the last rule was 
(congruence)~ then u = (u1u2), v = (v1v2), and tt{X]t:: u1 = "I• uz - v2. 
Hence, 

= S(<x>v1)(<x>vz) by induction sioce substitution preserves validity 

; <x> by ,(7.10 I 

A point of possible confusion about (7.12) is that it does not hold in ~ as 
opposed to :4: X]. That is 1. it ma be th at the equation u = v is valid in < 
but the equation <x>u = <x>v is not. The source of the confusion '.s that while 
4:XJt= u = v implies ,GI= u = v·. the ,converse fails. (This frequently happens 
in classical algebras. For example, x : ~ is valid in the ring z2, but not 
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in the polynomjal ring 1Z2(x].) The key property of "t(XJ required in the 
p.roof of (7.12) is. the equivalence of validity and provability given. by (7.,6J 
whi.ch holds omly for ~terms all or whose variab es .are in X. 

Lambda Algebra Theorem. If 1' = <D,.•,K,S> is a lambda algebra and X ·s an 
infinite set of ,·ariab)es, then ~[X] - <D[X],·,K,~> is a lambda model. 

Proof. Let t :; <x>(<y>( xy )). W,e first observe tha <D[X] •,4> is a 
combinato.ry model. To see this, note that by (7 . .8 9)1 m - <y>(dy) for aH 
d ,e D[X]. U.3a) follows directly by another application or (1.9)·, and 
(I. 3c) foUows by 1(7. HX ijij). 

To erify (1.3b), suppose [['u] ,d = [,[v]]d for aU d in D[X]. Let y E X be 
a variable not in u v; there is such a y since X is infin"te. Then letting d 
be [[y]J, we ha e ((uy]] = [[vy]J, and so by {7.6) and {7.12), {(<y>(uy)]] -
[[ <y>{vy)]]. But by (7.8-9), [[i(eu)]] : [[ <y>(uy)]] and likewise with v in 
place of u 1, so e[[u]] : e[[v]]. 

So <D[X], · ,t> is a combinatory model. By the Lambda Mod:el Tneorem. 
<D [ X], · ,t!.zK ,, 3.S> is a lambda model. But 

\(X]I= •2K = t((Bt)K) by (6.1-2) 

- <x><&Kx) by (7.9} 

: <XXe(Kx)) by (16.U and (7J2) 

= <x>C<y)( Kxy )) by (7.9) and (7.1.2) 

: K by(7.1), 

and a similat calcula ion using (7.2) shows that t(XJt: 13S - S, so 

~DO is this lambda model. I 

So given a lambda algebra~ we can atways extend it with at most a countable 
number of indetermina es, to obtain a lambda model. Conv,ersefy., every 
lambda model 'is a lambda algebra; (7.1-5) foHo,w :from the Combinatory Model 
Theorem Uv) since each is of the form uC'1 : J.Cl for convertible 
lambda terms utv. 
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Cor:of/ar1. (i)(Barendregt) The lambda algebras are precisely the class of .all 
substructu.res of lambda models. 

(iO Th.e lambda algebras are pr,eci.sely the class of aH homomorphic images ,or 
- -

lambda m.ode]s. 

Proof Applying homomorphisms and taking substructures preserves equations, 
so homomorphic images and subs ructures, of models are algebras. Conversely1 

every lambda algebra -C is an image and a substructur·e of ~ [X]. I 

Thus1, we learn the unexpected .facts that he dass of homomorphic images and 
the class of substructures of lambda models coincide and are finitely 
axioma izabt by equations, namely the ano01s for lambda algebra . 

Extensional combinatory a]gebras and extensional ,combinatory models coincide. 
To characteri~ their substructures axiomaticaHy, just add the axiom 1 =· 
<x>C<y>(xy)) to (7.1-S). The resulting class. of alg,ebras, a~e called Curry 
alg:ebras (cf. [La.mbek 80]).10 

8.Fu·rther Directions. The developmen above ,eveals how to treat lambda 
,calculus as a theory of equations for a class of ordinary algebraic structures 
which can be described alternativety as oombinatory models, lambda modets, or 
the polynomial a]g,ebras over lambda a]gebr.as .. 

Algebraic definitions .and arg.uments •can often offor more simplicity and. greater 
appeal than syntactic ones, particulady if one can avoid lh.e notorious 
pitfalls of substitution in the pr s nee of bound variables. Having in 
principle eUminat,ed the need fo.r syntactic notions in defining which 
struc ur,es are mod·els, the general question arises ,of how much more of the 
highly developed s. ntactic-oomputational '1pr,oof theort of lambda calculus can 
be usefully understood from an algebraic "model theory" viewpoin·t. The re has 
already been v.aluab],e interaction between the two viewpo·nts. One important 
example ·s worth sketching, 

A lambda term .has a head normal form if it conv,erts to a. term of the fo.rm 
).xi .•. xn.(yu) for some n~0; 11lx1 ... x0

.y'' is called the head of the term 

and is unique up to renaming bound variables (for ,,-calculus there is a 
sligbtJy mo.re complicated kind of uniqueness, property),. A lambda term is 
11nsolvable if i : does not have a. head normal form. By re,peatedly converting 
·the solvable subterms of any term u :itn.to bead .normal form and replacing, 
unsolvable subterms by a new constant IJ, one ,obtains in. the limit .a uniqu,e, 
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possibly infinite, term caUed the Bohm tree of u. The Bohm tree can be 
regarded a.s. the trac of the possibly infini e· computation needed to, evaluate 
the term. Fonowing earli,er work in [Hyland 76, Wadsworth 76,t Plotl(o 78, 
Barendregt and .Longo 80], Longo has recently observed that the value in DA of 
a closed term u is :set theoretically included in th value or a closed term v 
iff the Bohm tree of u approximates that of ,,, namely the Bohm tree of u is 
obtainable from he Bohm tree of v by replacing some of the subterms of the 
tree of v by 0 . In particular, an equation betw en lambda terms is valid in 
DA iff the erms ha e the same Bohm tree. This provides an elegant 
connec ion between th syn tactic-com putatfonal behavior or lambda terms and 
their meaning in a ma thematicaH · elem nta ry model. 11 

As [Seo ,t BOb] has emphasized the untyped lambda calculus c-oosidered abo,ve 
can be viewed as the special case of th · typed lambda calculus in which tber,e 
is only one ype. Most appl"cations of lambda calculus in the study of 
programming anguages and computability require the richer structure of 
multiple types. I hope to provide an elementary treatment of this 
gen.era.Uzation in a seque] t,entatively titled "What is a solution of a domain 
equation?'' 
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Notes. 

I. If ·<D , ·> is a combinatory algebra and • satisfies. ( l.3a,b), then 
e~ ,satisfies O. la,h,, and c), Le., <D,le"t) is a combinatory model, 
as is easily v-erified. So in .a sense (I. Jc) is a redundant, normalizing 
condition. The reason for requiring it is revealed in the Combinatory Model 
Theorem (fu) in Section 4. 
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2.. [Scott 80a1aOb~ .arg,ues th.at "extensionaHty" should be .reserved to refer to 
the weak,er co,ndi tion (,l) given in Section I, but I prefer to follow the mo1e 
familiar usage. 

3. [Cooperstock 81] is a study similar to this one in which Barendregt's 
structures t ,en virnnment mode1s,J Acze] structut1es, Obtulowkz structures, and 
vanations of combinatory models and Scott model:s 1(cf. ote 8.) are oompar,ed. 
Cooperstock also presents a thoughtful discussion of the sense in which all the 
struct.u.res: provide e.quivalen.t mechanisms for inte.rpretiog lambda terms. 

[ Bareodregt 81] gi ,.res a compr·ehensi ve treatment of oo.mbmatory algebras, lambda. 
models aRd lambda algebras (cf. Sections 6, and 7}. 

4. The technical setup here ts very close to hat of [Wadsworth 76], except 
that I ha.ve dropped any requirement of a lattice structure on D as weH as the 
requirement that the maps t Hd 9 be ( oontinuous)1 isomorphisms. In fact 
[Obtulowicz 77, Obtulowicz and Wh,-eger 78] give essentiaUy this definition 
wbjcll they credit as implicit in [Wadsworth 76]. Precisely the defmition ,of 
en ironme nt model is also given in [ Cooperstock .S l] where ·it is creel ited as 
joimly proposed by Cooperstock and C. Rackoff based on fhe preceding earlier 
references. 

[Barendregt 77] defines valuafons over a mo,re general class or structures 
resem·bling functional domains using essentially the same rules (3.l-2)J(3.5--6)1

1 

but valuations over tht?$e more generaJ structures suffer the flaw that the 
(l) nd:e is not sound. More ret,ently [Berry 80] has offered a definition 
which is a combination of Barendregt's no<tion and term models. 

The pathologies of Barendregt's, structures are iucidly analyzed by [Hindley and 
Longo 7 8] who essentiaUy idenffy th structures as combinatory algebras and 
lambda .algebras (considered in Secti.on 7). Hindley and Longo also arrive at a 
definition ,equivalent to environment models (\\•hich they call A-s.truct:ur,es) 
by .adding to Bareodregt's formulation the requirement tbat the (f) ntle be 
sound. They not . by the way hat their formulation was obtained independently 
of Barendreg 's, and I note that m definitions were formulated independently 
of an the pape.rs subsequent to [Wadsworth 76]. 

5. Afert r,e:aders may r,emember that our formal definitions require that 
oonsta n ts in lambda terms given values in I/ must be elements or D • so we m.ust 
identiry ,constants c ,e C with the corresponding constants [[c]Jr E D. 
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·6. The co.nstructfon is tak.en directly fr.om [Engeler 7'9, cf. Fehlmann 79]. It 
is a notational variant of ,one of se eral .models frrst described in [Plotkin 72]. 
These ,constructions are nearly the sa:me as the better kmiown P fl), construction 
[Scott 76]. 

Ind ed, Longo [personal ,communication 198.1] has sb.cnvn that DA and Pa;, have 
the same pure lambda theory and each is isom.otphically -mbeddable in the other. 
However, they define diff er,ent set theoretic .inclu$ions among the values of 
the pure dosed terms, and their b · nary operations behave d:ifferently ,, i.e., 
they are not even isomorphic as combinatory algebras. 

7.. The choice of ·• is no·t unique. For Hample, let 

Theo <D At,e> and <DA,1 "'} are d·stinct expansions of the oombinatory 
algebra <DA>·> to, c-ombinatory models. Longo [~rsonal communication 1981] 

has even shown that they have distinc pure lambda thoories.;, in. fact 1 

yields an :interesting model which, in contrast to he DA model. with t ,or the 
Po.l• model, does not giv aH unsol able · erms the ·same value (cf. Secfon 8). 

8. In general, 'n is chosen to be rJ:>ixo, .. xn.{XO,··Xa),]. Cootiauing 

with a purely algebr.aLc approach, we cou[d define following [Scott 80b] 

•1 = ,1 and. 'n+ 1 = (B-e),'(B •~), for n>O~ 

It is, easy to verify that in any oombioatory model d), · ,1> . 
(N.l) •ndio-.. dn ;,dod1···dn, 

(N.2) if lie1,. .. ~e·
0

E:D. dcfl .. ~e
0 

= d1e1 ... e·
0 

then 1
0
d0 = 1

0
d1, and 

(N. 3) re(1ndol, - •nCm<J :;. edo 

for all do ... Jd 0 E DJ n>O. 

The reader might enjqy deriving an algebraic proof so'fely from (N.1-3) that in 
any ,combinatory modeJ <D;,ti> there is exactly one pair of elements K and S 
satisfyin.g ,( l .1-2)J 1(6.6-7). 

These equations suggest .another .a1.iomatization of models proposed by Scott 
[cf Volken 78. Barendregt 811:Thm.5.4.9]. 
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Definition. Let ./' = <D, ·,F> be a s ructure w.here • is a binary operation 
on. D1 and F s D. Let fo = D and Fn+I = {dlo:E' I do-d'l E FD for au d1«D}. 
✓ is a Scott Model ifJ for aU n>O and an.y ~term u over D such that XO: 
is, not fue in u, ./ sati.sftes 

It is ,easy to see ha if ./' = <D, ·,f> is .a Scott model, then <D,. ■,.o is. 
a combinato.ry model, ·where e. is the umque element ,of F 2 such that (I.lb)' is 
valid in /.: Conversely, if <D,,,1> ·s a combinatory model, then <D;,f> 
is a Seo model where F = ft-d I id e D} - ,~o. In fact, F

0
:: 10 •D. 

9. Our derini ion ,of tae transfo.rmatfon <x> on ?terms was chosen £or ease 
m proofs r athe.r than efficiency, and consequently the length of <x>u has been 
allowed to, grow exponentially in the length of u. There exist transforms with 
the same properties as <x> Ythich incr,ease the :t ngtb onl.y linearly. 

10. [Barendr,egt and Koymans 80] show that not aU combinatory alg, bras can be 
expanded by choice ,of K,S in to lambda algebras. The interior .of the 
combinatory '"''o.rd algebra based on K.,S-terms is aa ,example of such a combinatory 
al.gebra. They also show. as noted at the end ,of Section 6, that not all lambda 
algebras. ar J ambd a models. 

11. It also, provides a simple model th.eoretic characterization of the 
syntactic a:i,ricept of normal form, as pointed out by Longo. - amely , cl E D.A 
is the value of a pure closed lambda term in normal form iff d its maximal 
under set inclusion in the interio - ,of DA and con:tains, only finitely maay 
elements of the in te.rior . 
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