MIT/LCS/TM-203

MACLISP EXTENSIONS

Alan Bawden
Glenn S. Burke

Carl W. Hoffman

July 1981

Maclisp Extensions

July 1981

Alan Bawden
Glenn S. Burke
Carl W. Hoffman

This report describes research done at the Laboratory for Computer Science of the Massachusetts
Institute of Technology. Support for this research was provided in part by National Institutes of
Health grant number 1 P01 LM 03374-03 from the National Library of Medicine, the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research Contract
numbers N00014-75-C-0661 and N00014-77-C-0641, the National Aecronautics and Space
Administration under grant NSG 1323, the U. S. Department of Energy under grant ET-78-C-02-
4687, and the U. S. Air Force under grant F49620-79-C-020.

MASSACHUSETTS INSTITUTE OF TECHNOILOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

Abstract

This document describes a common subset of selected facilities available in Maclisp and its
derivatives; PDP-10 and Multics Maclisp, Lisp Machine Lisp (Zetalisp), and NIL. The object of
this document is to aid people in writing code which can run compatibly in more than one of
these environments.

Acknowledgements

Much of the documentation presented here is drawn from pre-existing sources and modified to
be presentable in this context. The documentation on sharpsign is derived from that written by
Richard S. Lamson as a Multics online help segment. The descriptions of backquote and defstruct
are derived from existing online documentation. The documentation on format shares some
portions with the Lisp Machine Manual; text has been exchanged in both directions. The
description of defmacro also draws heavily on the existing documentation in the Lisp Machine
Manual. The Lisp Machine Manual is authored by Daniel Weinreb and David Moon, and the
format documentation therein was contributed to greatly by Guy Steele; they have all thus
indirectly contributed a great deal to this paper, as have innumerable others who aided in the
preparation of the Lisp Machine Manual,

We would like to thank Joel Moses for providing the motivation to bring Lisp up-to-date on
Multics, and Peter Szolovits, under whose auspices this document was produced.

Note

Any comments, suggestions, or criticisms will be welcomed. Please send Arpa network mail
to MACLISP-EXTENSIONS@MIT-ML.

Those not on the Arpanet may send U.S. mail to

Glenn S. Burke

Laboratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139

© Copyright by the Massachusetts Institute of Technology: Cambridge, Mass. 02139
All rights reserved.

Maclisp Extensions i Table of Contents

Table of Contents

LATHGOAEHON. .. c o3 55 00 voh s ohe aie 300 sl al 68 Ui 48 deres smidalem 1
L1 CBIIRIEIINY o o w6 o wem s e mam s w8 Kok AR diE B 008 S o @ Dk WK s 1
12 CONENTONE e v 40 MEaleh E Fle W mIE s SUE S BhE A Wl E0E BB Fee mnmsms 1
Lo PREGUOIE oo % oo 50 soniav s 510 6s o siw 3% 3g 68 o0 BN 2N o BT S Ew 2
3 INBATPRIN,. 2o nie il REETETHEE P SRS W R T 0 A a0 A e i Bus s s 5
& ERtentsAPeRIN . . . o5 00 2 e e 0w WE R SR a7 ST EE G G W D 8
5. DEEREEI0E ot) oo WL B, B R W N Wil es BE oA B e % 10
6. OtherDefinition Facilities. v« = « o v v ¢ s v 5" 0 s Sl R R Ee ok R RO B 13
B i iih ST o S oA i . e i s A e S WE AR e ST 15
SoNew Functions and Spectal FOTR ., 5403 s 0 e e @ aishass @a alia e & i Sele s s e 17
BLBEEREING . . o vivais ot iS00 wims e S R R S e A e R 17
Bl BODIERT LORRNRNR . o o oo e 0 5 o A s L L BB T 0 BB 17
L Pe NEaEMRONS v ot i B b0 i o 0 0 S 5 000 L I W a0 18
B TESHNE D5 U a0l e dEE IR e e e e e R e e LR 18
B PRI o o o 5.5 i sre 408 B0 1 S00 S0n SRR R B R e S e T 18
Bad- I o o ah G B AR R R W N L ROE R W W e S8R SR 19
BA-VanaBlen, i 24 20 8% 20 S0 HoR S0 B0 AT ale SRR HeaR R e e i o al e 20
S PIoal Contral - in wid Giitideave s BN 25 MESSE e 6@ N at dik 69 B3R G 21
RS TONATOONEIE. . v« 55 womims srm mim wow £ K76 S8 Fw W SAak TRTE oee wals 21
RO L SOICHON . v i 555 srwnwre SOE S WU e e SR Fal S S e wne 5wl s g 2
B Merabion s ;-0 i imn e 08 S 5T B A0k BNE Pk ave B el8 Wi v wue B s 23
B Non=Local Baie. & o's ohins @ 305 9% 8 4% 5% 4% o ol el on wies sun s 24
8.6 Miscellaneous tne w mow e b med A0 BR B R N FE el W 25
DRI 5 W SR, R VR B Uk I B S W RN R S e e 26
V- Iuendiston. . ol SRR WY S e Sk B vE Al RS A S e el 26
D2 ASIPIEEERIDIL . . oo e vow sommik w8 w0 A SR B AT B e S & 26
B SIMERCBEIERINN n. wom i ans G SUMm IR S PR R e R W S e S ¥ 27
94 Opfions to dBIIL. © o v iisain vk S e BRI STR0ETE mis e S8 GVE S S0 W0 28
L. o x s w5 BT SSERR SRR TEd N S i el e SR 28
D8 3 BONEHCEON .. w. wiln e o o opoeraise s onsanys e Sadode B R S R D s 30
DA ANEEANT . v i e 50507 AR BRI WA A e s W R 0 Ew mad wsa 31
DAL BEIEDOIBIEr 2 2lif e ak DR SR SIeRE B S s 9e BE 61 o s 2
N5 CONEIANIIG. .« = o5, w0 5 mam s p Bie T Al s B S0h e Sis &% Sy W06 % 33
DAOABCINOR . o e i RO ARG R R i e A S8 e G B 33
DT BATR i 25 RS e TR TR AR (O RE e e wie d s 35
N R AT . 1 G505 S PRsREEE T A R s e T e S & 35
G40 ERERICTHIN . wiocaie aiin A oom (5 Wy o semn 5w el B Bk R, e G S T 35
DA LT SRNANE . i omin mlm S e e A o e o Tt s e A 5. o R i e 36
DA emomalpPIe & e D T B R S e AT EE SN re R e LRSS R 36
AT SISO, . i son som i mmr w it Bk R R SR IR NG 4 36
DAAL QIO . soiane S8 SR BT Ty e) G (PSR B e e e B W 8 36
DA initialnlfRel . vty sl B8 S e S e R e e W S S R e Te 16

21-JUL-81

Table of Contents ii Maclisp Extensions

DAIE UL, Uy v i e s va o BALTVAS P od) ik Juhiads dn B B R W s E 7
DAIG CHllabIC- LRSI . o o onox b 68 55 56 B 0 0 B TAE 2s W T G0 37
DAY TRl o i G i e i e i B R W WS BN e e e W ik B B B 37
DR PIOPEIY = & b S S B RS E S A U BT Bl SRS WA, R SO e e 38
9.4.19 A Type Used As An Opucn 38
DA CRIEE OIS .+ v v 3 o e o i e e 5 TR, S o ek i e o SRR L 38
OSBRI . o oo v i e e o T R ik ey s o A RS 38
08 AVOUARIIONINNE . '+ F 52 ' 5 e e 5 R0 T S et L N SR 40
9.7 The deBnt-ORGHpBOT SIEIIEE o » o5 s o siie s Sl s o a & 4l e el 5 iwle e ek T 41
0.8 ErienSionE IO GEESIICT . o rs i v e 07 6 v A (640 et s s et s 42
D81 ASIDNIRERRENG & ooi 50 Rl SRR A AR e e T i A B 42
982 Syntax of G- OelmERYDR . ¢ ¢ s sinls e e @ B e b e W W AT e 43
A3 OPNoE I SEISTEtTRIRBE AT .. v o o v debedw 50 ok e S o8 B i 43
ORI 00 oo v 35 %G AN 958 IR TR UK S SR AR S MO e e e e A T 43
BRI OO . 55 oii v W o o% S5 B 37 ©% BN W AT WIE B TR 608 £ e ae e
DRV ORI o o o0 oo on w7 VR AR N RS W e AT B e A e UF T e sl 45
SRIA DRI s 2 o we wew Niw s e R R e wG SR e E B E B SR e S 45
OR RS REWOIE v i ol SL8 A GTE BN MEe BR LR R Bioh W 950 Bt o ko s e o 45
DEIL INTORE i s s % 8 TG BN N Al A0 Ak WR SR A0 B AT &8 Bow 0 UG 45
MEHONRE. - <t £ 55 908 95 53 s Be e kE ave Koy &% @ 2 AR wAS e Rl ek 47
0T TRoOPONIONS: < ¢ w-ois 5o am Bm-§a e Wik B RO N KOS O R WS R RN e e 48
107 DOrBOnes oo s v ai s e e e st 02 otk e SR WERGETE B R e M AT 54
TOL DEfnngYOnus O .. » . o v nm m-in b 8 80 % 5% $on o e e e B B SR R B R 54
WA For AT ARSI o o7 0 o 8 e St 8 R o B L 0 M B O B 57
12, Svate DTSRRI & & oo, o S e e B) B 5 0 s 0 1T S o A T 58
FEL TEIRRE o o i i vm s e oo ool 8 B T SRR 8 T S B B e R e 58
T WHSETOTINA T, & o o s mivma s 5 susis: e wrnre e s e, 5 ot ¥, v 00 0 AT 5 S8 58
1512 THinas To Walth DR BORL o s 5 5 - ar @ shom w50 B0) 80 9680 0 2 0 o e e 59
13 Funther Documentstion; 5 ood o/ o5 5 a o o s e e w5 s a0 5050 5w e e e 39
TR RIS o v mis won e 1% wom gow wommem i aon S o e e e e 59
T2V WRere TORTMEIE. v st s ais o 500 (000 i bl 0 o W o 0 < 0 A 59
1122 Things TOWahOULFOr. « + .« ¢ o v s o a5 ae o5 6a o5 6.4 5 4 s . R 60
TE2. 3 Forther Dosamentaliin. € s-s o8 no 66 b6 o0 &4 §5 s sor G0 s 5e s 62
IS T MECIIRE . oo siv 526 5% 508 503 @ne 56 S8 &8 BE.sus =8 B BN mE-534 od L0 s 62
11:4 Hines On Writing Teansportable Code & .-: o5 s a6 aiv vm s 5 o0 smpas sos s s 62
11.4.1 Condidonalization - = - ¢ ¢ 2o v s s » & WhE BYE B N RUE R Wa £ EE 62
A2 OBBEBAERIE . 0 con son s mis g0 =8 0% Kd 05 B3 8 08 w95 b0 B 1% 8 63
BRIEE 5o b S B e R R A B AR B e B RO e s s 65

21-JUL-81

Maclisp Extensions X 1 Introduction

1. Introduction

1.1 Compatibility

This manual is about compatibility between the PDP-10 and Multics dialects of Maclisp, and
the Maclisp derivative Lisps, Lisp Machine Lisp, and NIL.

Believe it or not, it really is possible to write code that runs in all of these Lisp dialects. It
is not always a completely painless thing to do, but with a little bit of care it is possible to write
reasonable code that runs in many places, and that doesn't offend everyone who tries to read it

The biggest stumbling block to writing code that runs in a Lisp dialect other than the one
you are most familiar with is the fact each of these Lisps has grown a different set of additional
features since the original Maclisp Reference Manual was written in 1974. How are you supposed
to be able to restrain yourself from using all the winning new features that the implementors of
your dialect have given you?

Well, unfortunately, you are going to have to avoid some of them. After all, some are
probably impessible to implement everywhere. On the other hand, some of them are so useful
that they have already migrated to all of the places you are planning to move your code. Those
are the features that are documented in this manual.

1.2 Conventions

The symbol "=>" will be used to indicate evaluation in examples. Thus, when you see "foo
=> nil", this means the same thing as "the result of evaluating foo is (or would have been) nil”.

The symbol "==>" will be used to indicate macro expansion in examples. Thus, when you
see "(foo bar) ==> (aref bar 0)", this means the same thing as "the result of macro-expanding
(foo bar) is (or would have been) (aref bar Q)".

Most numbers shown are in octal (base eight). Numbers followed by a decimal point are in
decimal (base ten). Despite growing sentiment in favor of decimal as the default base for Lisp
reading, it is still the case that most of the Lisps we are concerned with read numbers in octal by
default; the sole exception at this time is NIL.

Symbols are consistently written in lower case. This is because on Multics, most symbols have
lowercase printnames, and case translation is nof done by default on input. In the other
implementations, where most symbols have uppercase printnames, lowercase characters are
translated to uppercase on input, so a symbol fyped in lowercase will always be read correctly
everywhere. '

ML:MACDOC:INTRO 7 21-JU1-81

Backquote 2 Maclisp Extensions

2. Backquote

The backquote facility defines two reader macro characters, backquote ("'", ascii 140) and
comma (",", ascii 54). These two macro characters can be used together to abbreviate large
compositions of functions like cons, list, list* (page 19) and append. It is typically used to
specify templates for building code or other list structure, and often finds application in the
construction of Lisp macros.

Backquote has a syntax similar to that of quote ("', ascii 47). A backquote is followed by a
single form. If the form does not contain any use of the comma macro character, then the form
will simply be quoted. For example:

‘(fabc) = (quote (abc)) = ‘(abc)

The comma macro character may only be used within a form following a backquote. Comma also
has a syntax like that of quote. The comma is followed by a form, and that form is evaluated
even though it is inside the backquote. For example:

"(,abc)

]

(cons a (quote (b c)))
= (cons a '(b ¢))

‘{fa ,bc) = (listes (quote a) b (quote (c)))
(list» "a b "(c))
‘(ab ,c) = |(list (quote a) (quote b) c)
= (list 'a 'b c)
'(a . ,rest) = (cons (quote a) rest)

= (cons 'a rest)

In other words, all the components of the backquoted expression are quoted, except those
preceeded by a comma. Thus, one could write the common macro push using backquote by
proceeding from the standard definition

(defun push macro (form)
(1ist 'setq (caddr form) .
(1ist 'cons (cadr form) (caddr form))))

(defun push macro (form)
'(setq ,(caddr form) (cons ,(cadr form) ,(caddr form))))

Note how the code to build the macro’s output code begins to look more like the output code
itself. In fact, with a usc of let, we can go all the way to

(defun push macro (form)
(let ((datum (cadr form))
(1ist (caddr form)))
‘(setq ,list (cons ,datum ,list))))

and produce very legible code. An even better method for defining macros is defmacro (chapter
5, page 10).

MI:MACDOC;BACKQU 16 21-1U1.-81

Maclisp Extensions 3 Backquote

Backquote expands into forms that call cons, list, list* or whatever other functions it deems
appropriate for the task of constructing a form that looks like the one following the backquote,
but with the values of the forms following the commas substituted in.

Since backquote’s contract is specified not in terms of the code that it expands into, but
rather in terms of what that code produces when evaluated, assumptions should not be made
about what the code might look like. The backquote expansions shown in this section are only
possible expansions; it i§ not guaranteed that this is the way they will expand in any particular
implementation.

If a comma inside a backquote form is followed by an "at" sign ("@", ascii 100), then the
form following the ",@" should return a list. (On Multics, since the default line kill character is
@, the user may need to type \@ in order to get lisp to read a @.) Backquote arranges that
the elements of that list will be substituted into the resulting list structure. Frequently this
involves generating a call to the function append. For example:

*(.,6a b ¢) = (append a (quote (b c)})
= (append a "(b c))

*(a ,8b ¢) = (cons (quote a) (append b (quote (c))))
= (cons ‘a (append b "(c)))

'(a b ,Bc) (l1ists (gquote a) (quote b) c)

= (listes 'a 'b c)

Similar to following the comma by an atsign is following the comma by a dot (".", ascii 56). The
dot is a declaration to backquote telling it that the list returned by the form following the "." is
expendable. This allows backquote to produce code that calls functions like nconc that rplac the
list.

Backquote examines the forms following the commas to see if it can simplify the resulting
code. For example:

*(ab. ,(cons x y)) = (lists (quote a) (quote b) x y)
= (list* 'a 'b x y)

‘(a3 .,bc ,17) = (lists (quote a) 3 b (quote (¢ 17)))

(1ist+s 'a 3 b "(c 17))

‘(a ,@8 ,@nil) = (cons (quote a) b)
= (cons 'a b)

‘(a ,.b ,@(nconc c d)) = (cons (quote a) (nconc b c d))
= (cons 'a (nconc b c d))

These examples should convince the user that he really cannot depend on what the code that
backquote expands into will look like. A simple-minded backquote might cxpand (,@a ,@nil)
into (append a 'nil), but this cannot be used as a reliable way to copy a list since a sophisticated
backquote can optimize the copying away.

MIMACDHOC:BACKQU 16 21-JUL.-81

Backquote 4 Maclisp Extensions

It is sometimes useful to nest one use of backquote within another. This might happen when
the user is writing some code that will cons up some more code that will in turn cons up yet
more code. The usual example is in writing macro defining macros. When this becomes necessary
it is sometimes difficult to determine exactly how to use comma to cause evaluation to happen at
the correct times. The following example exhibits all the useful combinations:

“'{8 B . ;1)
= (Tist 'lists ""a 'b ¢ (list 'quote (list d)))

When evaluated once this yields:
(lists 'a b <c-at-time-1> '(<d-at-time-1>))
Which when evaluated yields:
(a <b-at-time-2> <<c-at-time-1>-at-time-2> <d-at-time-1>)

"

Thus ™" means never evaluate, "," means cvaluate only the second time, ",," means evaluate both
times, and ",'," means evaluate only the first time.

MIMACDOC:BACKOU 16 21-JUL-81

Maclisp Extensions 5 Sharpsign

3. Sharpsign

The Lisp reader’s syntax can be extended with abbreviations introduced by sharp sign ("#",
ascii 43). These take the general form of a sharp sign, a second character which identifies the
syntax, and following arguments. Certain abbreviations allow a decimal number or certain special
"modifier" characters between the sharp sign and the second character. (On Multics, since the
default erase character is #, it may be necessary to type \# in order to get lisp to read a #.)

List of # macro abbreviations;

/char
reads in as the number which is the character code for the character char. For
example, #/a is equivalent to 141 but clearer in its intent, This is the recommended
way lo include character constants in your code. WNote that the slash causes this
construct to be parsed correctly by the Emacs and Zwei editors.

As in strings, upper and lower-case letters are distinguished afier #/. Any character
works after #/, even those that are normally special to read, such as parentheses,
Even non-printing characters may be used, although for them #\ is preferred.

\name
reads in as the number which is the character code for the non-printing character
symbolized by name. A large number of character names are recognized; these are
documented below. The abbreviations cr for return and sp for space are accepted
and generally preferred, since these characters are used so frequently. The rules for
reading ngme are the same as those for symbols; the name must be terminated by a
delimiter such as a space, a carriage return, or a parenthesis.

~char
generates Control-char. Thus # ~char always generates the character returned by tyi if
the user holds down the control key and types char.

#'form
is an abbreviation for (function form). form is the printed prepresentation of any
object. This abbreviation can be remembered by analogy with the ' macro-character,
since the function and quote special forms are somewhat analogous.

, form

evaluates form (the printed representation of a Lisp form) at read dme, unless the
compiler is doing the reading, in which case it is arranged that form will be evaluated
when the compiled output file is loaded. This is a way, for example, to include in
your code complex list-structure constants which cannot be written with quote. Note
that the reader does not put quote around the result of the evaluation. You must do
this yourself if you want it, typically by using the ' macro-character. An cxample of a
‘case where you do not want quote around it is when this object is an element of a
constant list.

#. form
evaluates form (the printed representation of a lisp form) at read time, regardless of
who is doing the reading. ‘This abbreviation would be used to supply constant
parameters to the compiler. For example, a program might contain #. Pl rather
than 3.14159,

ML:MACDOC:SHARPM 22 21-JUL-81

Sharpsign 6 Maclisp Extensions

Onumber
reads number in octal regardless of the setting of ibase.

radixRnumber

reads number in radix radix regardless of the setting of ibase. radix must consist of
only digits, and it is read in decimal.

For example, - #3R102 is another way of writing 11. and #11R32 is another way of
writing 35. In Maclisp, supradecimal bases may be used if number is preceded by +
or -; (status +) is temporarily modified to make this work.

+ feature

This abbreviation provides a read-time conditionalization facility. It is used as
+ feature form, If feature is a symbol, then this is read as form if (status feature
feature) is true. If (status feature feature) is nil, then this is read as whitespace.
Alternately, feature may be a boolean expression composed of and, or, and not
operators and symbols representing items which may appear on the (status features)
list. (or lispm amber) represents evaluation of the predicate (or (status feature
lispm) (status feature amber)) in the read-time environment.

For cxample, # +lispm form makes form exist if being read by the Lisp machine.
+ (or lispm nil) form will make form cxist on either the Lisp machine or in NIL.
Note that items may be added to the (status features) list by means of (sstatus
feature feature), thus allowing the user to selectively interpret or compile pieces of
code by parameterizing this list The most common features checked for using # +
are: lispm (present on Lisp Machines), Maclisp, NIL, Multics, ITS, TOPS-20 and
PDP10.

See also section 11.4.1, page 62 for a more general discussion of conditionalization,
- feature form

is equivalent to # + (not feature) form.
#M form

is equivalent to # + Maclisp }bmg.
#Q form

is equivalent to # +lispm form.

#N form
is equivalent to # +NIL form.

MEEMACDOCSHARPM 20 21-JUL-81

Maclisp Extensions) ¥ Sharpsign

The following are the recognized special character names, with their syﬁonyms. These names can
be used after a "#\" to get the character code for that character.

backspace bs

tab '
newline

Tinefeed 17
return ; cr
formfeed ff form
altmode alt
space sp

vt

null

help

delete rubout

Certain of these character groupings may overlap in some implementations. For example, on
Multics, help is simply the ? character. newline will generally be equivalent to either return or
linefeed, as appropriate for the host operating system.

MEMACDOCSHARPM 20 21-1UL 81

Extended Defun 8 Maclisp Extensions

4. Extended Defun

defun Special Form
defun is the usual way of defining functions. It still works the way it always has, but
several improvements have been added over the years.

A defun form looks like:

(defun name lambdarlist
body ...)

As in the past, name can be a symbol which is to be defined as a function. Alternatively,
name can be a list of the form (symbol property). This arranges to give symbol a property
property of the function, rather than defining some symbol to be that function. In other words,
after a defun like

(defun (foo bar) (x)
(cons x x))

it would be the case that
(funcall (get 'foo 'bar) 34) => (34 . 34)

In the simplest case lambda-list is a list of variables to bind to the arguments to the function;
this is as it has always been. In additon, the keywords &optional, &rest and &aux are allowed
to appear there. (Thus these are no longer valid variable names, but nobody seems to have been
inconvienced by this.) Their meanings are as follows:

&optional All of the variables following the &optional keyword (and up to the next &-
keyword) are optional. Thus a lambda-list of the form

(a b &optional c d)

means that the function may be passed from two to four arguments. a and b are
called reguired arguments, ¢ and d are called optional arguments (not surprisingly).
If an optional argument iS not passed in by the.caller, then the corresponding
variable will be bound to nil. If some other default value is desircd, then that
value may be specified as follows:

(a b RBoptional (c 'default) (d b))

This will bind ¢ to the symbol default if the function is passed only two
arguments. If the function is passed less than four, then d will be bound to the
sccond argument. This is because the variables are bound in sequence, so their
default values may refer to the values of variables already bound.

It is also possible to find out whether an optional variable was supplied. The bvl
(a b &optional (c 'default c-p))

will bind the variable c-p to t if the function was passed three arguments (ie.. an
argument was supplied for ¢), nil if it was passed only two.

MI:MACDOC; DEFUN 8 21-JU1.-81

Maclisp Extensions 9 Extended Defun

&rest This keyword must be followed by exactly one variable called the rest variable.
&rest must also appear gffer any required or optional variables. The rest variable
will be bound to a list of the remaining arguments that were passed to the
function. For example:

(a b &rest c)

is the lambda-list to use for a function that accepts two or more arguments, The
variable-c will be bound to a list of the arguments from the third one on.

(a b &optional (c 0) &rest d)

would specify that the function takes two are more arguments. If called on
exactly two arguments, ¢ will be bound to O and d will be bound to nil. If
called on three or more arguments, ¢ will be bound to the third argument and d
will be bound to a list of the fourth through last argument.

In the Lisp Machine implementation, the rest variable will be bound to a stack
allocated list that is only valid during the invocation of that function. This means
that the function should not incorporate this list into any permanent data-structure;
it should use a copy of the list instead.

In NIL, the rest variable will be bound to a vector which may be stack allocated.
&restl instead of &rest selects a list. Unfortunately, &restl is only recognized in
PDP-10 Maclisp and NIL.

&aux Following the keyword &aux are some more variables called auxiliary variables.
&aux must follow all required and optional variables and the rest variable if it is
given. Auxiliary variables do not correspond to arguments to the function at all,
they are simply local variables that are bound sequentually after the argument
variables. For example:

(1 &optional (a t) &aux (len (length 1)) tem)

is the lambda-list of a one or two argument function. b will be bound to t if the
second argument is not given, then len will be bound to the length of the list
that was the first argument, and tem will be bound to nil (presumably for use
later on.)

In Maclisp, functions with optional or rest variables will be implemented using the lexpr
mechanism. In these implementations it may be necessary to declare these functions as lexprs in
order to assure proper compilation.

The syntax

(defun name macro (form)

2

is still understood as a way to define a macro, but the new macro defining macro defmacro is
now the prefered way to do so. defmacro is documented in chapter 5, page 10.

ML:MACDOC;DEFUN 8 21-JUL-81

Defmacro 10 Maclisp Extensions

5. Defmacro

defmacro Macro
defmacro is a macro-defining macro which allows one to define macros in a more natural
or functional way.

If we want 'to define the first macro such that (first x) is equivalent to (car x), we could
s ;

(defun first macro (x)
(1ist "car (cadr x)))

or, using backquote (page 2),

(defun first macro (x)
'(car ,(cadr x)))

Just as backquote makes constructing list structure less cumbersome, defmacro allows us to
access the "arguments” to a macro in a much cleaner manner. The first macro looks like

(defmacro first (1)
*{car ,1))

when defined with defmacro.

In general, the argument list to a macro defined with defmacro is a pattern to be matched
against the body of the macro call. The symbols in the pattern will be bound to the
corresponding components, and then the body of the macro evaluated, the same as is done for an
ordinary macro. That is, for the macro call (first (get 'frob 'elements)), the pattern (I) is
matched against ((get 'frob 'elements)), and | gets bound to the form (get 'frob 'elements).

The macro push, which is defined on page 2 as

(defun push macro (form)
(let ((datum (cadr form))
(1list (caddr form)))
‘(setg ,1ist (cons ,datum ,1ist))))

could be defined with defmacro by

(defmacro push (datum list)
‘(setqg ,1ist (cons ,datum ,list)))

Macros, and thus defmacro, are useful for defining forms which provide syntax for some
kind of control structure. For cxample, someconce might want a limited iteration construct which
increments a variable by one until it exceeds a limit (like the FOR statement of the BASIC
language). Onc might want it to look like

(for a 1 100 (print a) (print (*= a a)))

To get this, one could write a macro t translate it into

ML:MACDOC:DEFMAC 22 21-JU1.-81

Maclisp Extensions 11 Defmacro

(do a 1 (1+ a) (> a 100) (print a) (print (* a a)))
A macro to do this could be defined with

(defun for macro (x)
‘(do ,(cadr x) ,(caddr x) (1+ ,(cadr x))
(> ,(cadr x) ,(cadddr x))
.@(cddddr x)))

Alternatively, for could be defined with defmacro:

(defmacro for (var lTower upper . body)
‘(do ,var ,lower (1+ ,var) (> ,var ,upper)
,Bbody))

If a pattern is not sufficient, or if a more function-like interface is desired, the argument list
to defmacro may contain certain &-keywords. These are analogous to the &-keywords accepted
by defun (sce page 8). In this case, the argument list should not have a dotted end (like the for
example), although the components may themselves be patterns.

&optional denotes the start of optional “arguments” to the macro. Each following parameter
is then of the form variable, (variable), (variable default), or (variable default present-p). default
is a form to be evaluated to provide a value of no corresponding "argument” is present in the
call. present-p is a variable; it will be bound to nil if no argument is present, t otherwise. For
example,

(defmacro print-in-radix (x &optional (radix 10.) (=nopoint? t))
"(let ((base ,radix) (*nopoint ,=+nopaint?))
{print .x)))

If variable is a pattern, then the first form is disallowed byecause it is syntactically ambiguous.
The pattern must be enclosed in a singleton list Note: in some implementations, if variable is a
pattern, default may be evaluated more than once.

&rest says that the following item should be matched against the rest of the call. That is, the
argument list (&rest items) is cquivalent to the argument list items, and the argument list for for,
(var lower upper . body), could have beecn written as (var lower upper &rest body). &rest
may be easier to read than a dotted list, and it allows one to use &aux.

&aux has nothing to do with patiern matching. It should come at the end of the pattern
(which thus cannot be a dotted list), and may be followed by one or more variable binding
specifications,. of the form variable or (variable value). The variable will be bound to the specified
value, or nil.

&body is identical to &rest, and in certain implementations may leave some information
around for other programs to use to decide on how that form should be indented. The for macro
should be defined with &body in preference to &rest.

The &optional variable bindings are performed sequentually, Thus something like
(defmacro foo (a &optional (b a)) ...)

will define a macro that when called with only one argument will bind both a and b 0 that
argument. When called with two arguments a will be bound o the first argument, and b will be

MEMACDOC:DEFMAC 22 21-JUL.-81

Defmacro 12 Maclisp Extensions

bound to the second.

The macro dolist (page 23) is defined such that
(dolist (var list) form-l form-2 ...)

steps var over the elements of list, evaluating all of the form-i each time (sort of like mapc). It
could be defined with defmacro by

(defmacro dolist ((var 1ist) &body forms
&aux (list-var (gensym)))
‘(do ((,1ist-var ,list (cdr ,list-var))
(,var))
({null ,Tist-var)).
(setq ,var (car ,list-var))
,Bforms))

MIMACDOC:DEFFMAC 22 21-JUL.-81

Maclisp Extensions) 13 Other Definition Facilities

6. Other Definition Facilities

defvar variable [inii] [doéu;mntatr‘an] Special Form
defvar is the recommended way to declare the use of a global variable in a program.
The form

(defvar variable init)
placed at top level in a file is roughly equivalent to

(declare (special variable))
(or (boundp ‘variable)
(setq varigble init))

If the init form is not given, then defvar does not try to initialize the value of the
variable, it only declares it to be special.

documentation is ignored in most implementations, although it is a good idea to supply it
for the benifit of those implementations that make use of it. It should be a "string" (see

page 63).

defconst variable [ini] [documentation] Special Form
defconst is similar to delfvar expect that if init is given, then varigble is always set to
have that value, regardless of whether it is already bound. The idea is that defvar
declares a global variable, whose value is initialized to something but will then be
changed during the running of the program. On the other hand, defconst declares a
constant, whose value will never be changed by the program, only by changes fo the
program. defconst always sets variable to the specified value so that if you change your
mind about what the constant value should be, and then you evaluate the defconst form
again, variable will get set to the new value,

eval-when times-list forms... Special Form
eval-when is used to specify precisely what is to happen to the containing forms. An
eval-when form must appear at top level in a file. fimes-list can contain any combination
of the symbols eval, compile and load.

If eval is in rimes-list, then when the interpreter evaluates the eval-when form each of
the forms will be evaluated. If eval is not present, then the forms will be ignored in the
interpreter. The return value is not guaranteed to be anything in particular.

If compile is in times-list, then when the compiler comes across the eval-when form at
compile-time, it will evaluatc each of the forms right then and there.

If load is in times-list, then when the compiler comes across the eval-when form in the
file, it will continue process the forms as if they appeared at top level in the file. Thus
the result of compiling the forms will be placed into the compiler output file so that they
may be loaded later.

Examples:

MI:MACDOC:DEFEXT 11 21-JUL-81

Other Definition Facilities 14 Maclisp Extensions

(eval-when (eval compile)
(setsyntax /" 'macro 'hack-strings)
(defun hack-strings ()
cee))

This will fool with the syntax of doublequote at run-time and compile-time (presumably to
allow the rest of the file to be read in properly), but when the file is compiled and
loaded the syntax of doublequote will be unchanged, and the function hack-strings will
not be defined.

(eval-when (eval)
(defun foo (frob)
(and (atom frob) (barf))
(car frob))) :

(eval-when (compile)
(defun foo macro (x)
(1ist ‘car (cadr x))))

This will define foo as a paranoid error checking function when the program is being run
interpreted, but will arrange to define foo as a macro at compile-time so that it will
compile just like car. When the compiled file is loaded foo will not be defined at all.

(eval-when (eval compile load)
(defprop frobulate frobulate-macro macro)
(defun frobulate-macro (x)

vui))

This is a way to define a macro by hand in Maclisp to be present whenever the file is
being run or compiled.

MIEMACDOCDEFEXT 12 21-JUL-81

Maclisp Extensions 15 Setf

7. Setf

satf

Macro
setf provides a general mechanism for modifying the components of arbitrary Lisp objects.
A setf form looks like:

(setf reference form)

The setf form expands into code to evaluate form and then modify some Lisp object such
that the form reference would evaluate to the same thing. For example:

(setf (car x) 47) ==> (rplaca x 47)

(setf (cadr x) nil) ==> (rplaca (cdr x) nil)

(setf (get a "zip) 'foo) ==> (putprop a 'foo 'zip)
(setf (arraycall t a 1) t) ==> (store (arraycall t a 1) t)
(setf (symeval foo) bar) ==> (set foo bar)

(setf foo bar) ==> (setq foo bar)

The order in which form and any forms found in reference are evaluated is not guaranteed
in any but the PDP-10 Maclisp and NIL implementations of setf. Neither is the value
returned by the code setf expands into guaranteed in any way.

setf also knowns how to perform macro expansions of any reference it doesn't recognize.
So if first is a macro defined to expand as

(first foo) ==> (car foo)
then
(setf (first foo) t) ==> (rplaca foo t)

setf's ability to expand macro forms makes it indispensable when using the defstruct macro
(page 26).

Several other common macros are defined to expand into code that includes a setf form. All
these other macros share the property with setf that in some implementations they are liable to
cvaluate their various sub-forms in an order other than the one they were written in. In some
cases you even run the risk of having some sub-form evaluated more that once.

push

Macro
push is defined to expand roughly as follows:

(push frob reference)

==> (setf reference (cons frob reference))

The qualifications about order of evaluation given for setf apply to push also;
additionally, only the PDP-10 and NIL implementations guarantee that forms in reference
will not be evaluated muliiple times.

MIL:MACDOCSETF 12 21-JU1.-81

Setf 16

pop '
pop is defined to expand roughly as follows:

(pop rej&rence)

==> (progl (car reference)
(setf reference (cdr reference)))

(prog1 is explained on page 25.)

Maclisp Extensions

Maero

The qualifications given for push about order of evaluation and multiple evaluation apply

to pop also.

ML:MACDOCSELF 12

21-JUL-81

Maclisp Extensions 17 New Functions and Special Forms

8. New Functions and Special Forms

This chapter documents a number of new functions and special forms that have been added
to the Maclisp language.

Although many of the functions documented here are shown shown as being functions, there
is no guarantee that any particular Lisp actually implements them that way, rather than as macros.

8.1 Bit Hacking

All of the functions in this section operate on integers of any size in Lisp Machine Lisp, but
only on fixnums elsewhere. Remember that all the integers shown here are in octal.

8.1.1 Boolean Operations

The following functions could be (and often are) implemented in terms of the boole function.
Their use tends to produce less obscure code.

logand &rest args
Returns the bit-wise logical and of its arguments. At least two arguments are required.
Examples:

(logand 3456 707) => 406
(1ogand 3456 -100) => 3400

logior &rest args
Returns the bit-wise logical inclusive or or its arguments. At least two arguments are
required.
Example: .
(logior 4002 67) => 4067

logxor &rest args
Returns the bit-wise logical exclusive or of its arguments. At least two arguments are
required.
Example:

(logxor 2531 7777) => 5248

lognot number

Returns the logical complement of number. This is the same as logxor'ing number with
=
Example:

(lognot 3456) => -3457

ML:MACDOC;NEWFUN 57 _ 21-JUL-81

Predicates 18 Maclisp Extensions

8.1.2 Byte Manipulation

Several functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integer (in Maclisp, this is restricted to a fixnum). Such a contiugous
set of bits is called a byre. NMNote that the term byfe is not being used to mean eight bits, but
rather any number of bits within an integer. These functions use numbers called byte specifiers to
designate a specific byte position within any word. Byte specifiers are fixnums whose two lowest
octal digits represent the .size of the byte, and whose higher octal digits represent the position of
the byte within a number, counting from the right in bits. A position of zero means that the
byte is at the right end of the number. For example, the byte-specifier 0010 (ie., 10 octal)
refers to the lowest eight bits of a word, and the byte-specifier 1010 refers to the next eight bits.
These byte-specifiers will be stylized below as ppss. The maximum reasonable values of pp and ss
are dictated by the Lisp implementation, except of course s5 may not "overflow"” into the pp field,
so may not exceed 77 (octal).

1db ppss num
Returns the byte of num specified with the byte-specifier ppss, as described above.
Example:

(1db 0306 4567) => 56

dpb byte ppss num
Returns a new number made by replacing the ppss byte of num with byte.

8.1.3 Testing

bit-test x y
Returns t if any of the bits in x and y intersect; that is, if their logand is not zero. bit-
test could be (and sometimes is) defined as a macro such that

(bit-test x y) ==> (not (zerop (logand x y)))

8.2 Predicates

fixnump x
Returns t if x is a fixnum. This corresponds to a typep of fixnum.
Examples:

(fixnump 1) => 1t
(fixnump (expt 259. 259)) => nil

flonump x
Returns t if x is a flonum. This corresponds to a typep of flonum.
Examples:

(flonump 3.14) => t
(fionump 17) => nil

MNote that this is the sume as floatp in most Lisps, which have only one wype of Roating-
puint representation. In Lisp Machine Lisp however, there are some kinds of floating

MLMACDOCNEWFUN 57 21-1111.-81

Maclisp Extensions ; 19 Lists

point numbers that are nof of type flonum. flonump will return nil for these objects. It
is probably the case that code that is trying to be compatible should use floatp in
preference to either flonump or (eq (typep x) 'flonum).

arrayp x
Returns t if x is an array. Note that some Lisps implement certain kinds of objects as
arrays; for example, PDP-10 Maclisp file objects are arrays, and Lisp Machine Lisp
utilizes arrays for most structures defined with defstruct (page 26).

evenp inleger
Returns t if integer is even, nil otherwise. This complements the oddp function which
Lisp provides.

= &rest args
{= requires at least two arguments. If any argument is greater than the next argument,
it returns nil, otherwise it returns t. In Maclisp, args should consist of either all fixnums
or all Aonums.

>= &rest args
Similar to < =.

fboundp symbol
fboundp returns nil if the symbol symbol in not defined as a function or special form. It
returns something non-nil if symbol is defined. The exact nature of the non-nil object
varies from implementation to implementation.

It is not defined what fooundp returns if symbol has an autoload property and is
otherwise undefined.)

8.3 Lists
1ist* &rest args ’
list* creates what some people call a "dotted list".

(list+ 'foo 'bar 'baz) => (foo bar . baz)
(list+ 'foo 'bar) => (foo . bar)
(1ist* 'foo) => foo

list* makes certain unwieldy compositions of the cons function somewhat easier to type:
(liste 1 2 3 4)
is the same as

(cons 1 (cons 2 (cons 3 4)))

make-1ist Jengih
make-list creates a list of nils of length lengrh. Example:

(make-1ist 3) => (nil nil nil)

MIL:MACDOC;NEWIFUN 57 21-JUI -81

Variables 20 Maclisp Extensions

nth n list
(nth n list) returns the n'th element of list, where the zeroth element is the car of the
list. If n is larger than the length of the list, nth returns nil. Examples:

(nth 2 '(zero one two three)) => two
(nth 0 '(a b c)) => a

nthedr n list
(nthedr n FEst) cdrs list n times, and returns the result If n is larger than the length of
the list then nil is returned. Examples:

(nthedr 3 '(gqwerty)) ==(rty)
(nthedr 0 (e taoinr))=>(etacinr)

Mote that
(nth n I)
is the same as

(car (nthcdr n [))

8.4 Variables
let Special Form
(let ((vard vaFl) (var2 val-2) ...)
form-1
Jorm-2
=)

binds ver-! to the value of wal-/, ver-2 wo the value of val-? etc., and evaluates each of
the form-i in that binding environment. That is, it is equivalent to

((lambda (var-f var-2 ...)
Jorm-I form2 ...)
val-1 valF2 ...)

but displays the values in close proximity to the variables.
Note that similar to do, a declaration is allowed as the first form in a let body.

lat® . Special Form
let* has a syntax identical to that of let, but binds the variables in sequence rather than
in parallel. Thus,

(let+ ({(a (foo)) (b (bar a)))
(computate a b))

is like

M1 MACDOC:NEWEUN 57 ’ 21-JUI1-81

Maclisp Extensions 21 Flow of Control

((lambda (a)
((1ambda (b)
(computate a b))
(bar a)))
(foo))

psetg Special Form
psetq is similar to setq. In the multi-variable case however, the variables are set "in
parallel” rather than sequentually; first all the forms are evaluated, and then the symbols
are set o the resulting values. For example:

(setq a 1)
(setq b 2)°
(psetg a b b a)
a=>2

b =>1

8.5 Flow of Control

8.5.1 Conditionals

it predicate-form then-form [else-form) Special Form
if is a convenient abbreviation for a simple cond which does a binary branch. predicate-
Sform is evaluated, and if the result is non-nil, then then-form is evaluated and that result
returned, otherwise else-form is evaluated and that result returned. If no else-form is
specified and predicate-form evaluates to nil, then nil is returned. if can (and usually is)
defined as a macro such that

(if pred then else)
==> (cond (pred then) (t else))

and

(if pred then)

==> (cond (pred then) (t nil))
or

==> (and pred then)

If there are more than three subforms, if assumes that more than one otherwise form was
intended; they will be treated as an implicit progn. For example,

(if pcel e e3)
==> (cond (p c) (t el 2 e3))

There is disagreement as to whether this constitutes good programuming style, so it is
possible that this last variant may be disallowed.

MLMACDOCNEWFUN 57 21-JU1.-81

Flow of Control . R Maclisp Extensions

8.5.2 Selection

selectq key-form clauses.. z Special Form
selectq is a conditional which chooses one of its clauses to execute by comparing the
value of a form against various constants, Its form is as follows:

(selectq key-form
(test consequent-forms...)
(test consequent-forms..)

..

The first thing selectq does is to evaluate key-form; call the resulting value key. Then
selectq considers each of the clauses in turn. If key matches the clauses test, the
consequents of this clause are evaluated, and selectq returns the value of the last
consequent. If there are no matches, selectq returns nil.

A fest may be any of

asymbol or integer The symbol or integer is compared with key. Symbols are
compared using eq; integers are compared on the same basis that
equal uses—equal types and equal values. Note that t and
otherwise are exceptions here.

a list The list should contain only symbols and integers, which are
compared as above.

t or otherwise The symbols t and otherwise are special keywords which match
anything, FEither of these may thus be used to signify a "default”
clause, which to be useful, should be the last clause of the selectq.

Examples:

(defun count-them (n)
(selectg n

(0 'none)

(1 'one)

(2 '"two)

((3 4) "a-few)

(t "many)))
(count-them 2) > two
(count-them 3) => a-few
(count-them 7) => many

(selectq 'one
(1 integer-one)
(one 'symbol-one)
(t 'something-else))
=> symbol-one

If the keys being tested against and the value of key-form are all of the same type. caseq
should be used, as it may produce more efficient code depending on the implementation,
This is trae in PDP-10 Maclisp, which has no primitive predicate that implements the
type of comparison that selectq uses. In Lisp Machine Lisp and Muliics Maclisp there
should be no difference unless bignums are used. Presently, bignums do not work

MIEMACDOC:NEWIUN 57 21-JU1.-81

Maclisp Extensions 23 Flow of Control

anyway, but this is expected to be fixed.

caseq key-form clauses.. Special Form
caseq is the same as selectq except that it requires all of the keys being compared to be
of the same type. It is also an error for the value of key-form to be of a different type
than the keys in the clauses.

Currently, in all but the PDP-10 implementation, caseq is implemented in terms of
selectq so does not provide this consistency checking, any qualifications given for selectq
apply to caseq.

In PDP-10 Maclisp, caseq does not accept the otherwise keyword; it is necessary for t
to be used. It also does not accept bignums.

8.5.3 Iteration

dolist Special Form
dolist is like a cross between mapc and do.

(dolist (wvar list) body..)

evaluates the forms of body for each element of list, with var bound to the successive
clements. body is treated as a prog or do body, so it may contain prog tags, and calls
to return, which will return from the dolist.

dotimes Special Form
dotimes performs integer stepping, and is otherwise similar to dolist.

(dotimes (var count) body..)

evaluates body count times; var takes on values starting with zero, and stops before
reaching count. For example,

(dotimes (i (// m n)) (frob i))
is equivalent to

(do ((i 0 (1+ i))
(count (// m n)))
((not (< i count)))
(frob i))

except that the name count is not used.
dotimes is similar to dolist in that the body is treated as if it were a prog or do body.

Toop Macro
dolist and dotimes are convenient for simple cases, wherce the extra syntax necessitated by
mapc or do is an annoyance. For complicated cases, the loop macro may be desirable.
It provides fur the stepping of multiple variables, cither in sequence or in parallel, and
methods for performing various sorts of accumulations, such as collecting o list, summing,
and counting; more than one such accumulation to be performed, and they need not be
accumulated "in sync" with the iteration. For example,

ML:MACDOC:NEWIFUN 57 21-JUL-81

Flow of Control 24 Maclisp Extensions

(loop for x in 1 as y = (f x) collect (cons x y))
produces a result like -

(do ((*V1ist* 1 (cdr *lists)) (x) (y) (*results))
((npull =lists) (nreverse sresults))
(setq x (car =liste))
(setq y (f x))
(setq ‘sresults (cons (cons x y) sresults)))

does. loop is extremely complicated so is not documented here; full documentation may
be found in MIT Laboratory for Computer Science Technical Memo 169 (January 1981).

8.5.4 Non-Local Exits

*catch rag form Special Form
The *catch special form is used with *throw to perform non-local exits. tag is evaluated,
and then jform is evaluated. If during the evaluation of form a (“throw tag value) is
done, then the *catch returns value.

*throw lag value
Evaluation of (*throw fag value) causes a pending *catch of fag to return value.

*catch and *throw are slightly more general versions of the standard Maclisp catch and
throw special forms. They are more general in that the tags given to them are evaluated, and
thus need not be written into the code, but can be passed in. Additionally, the difference in
argument ordering can make for more readable code, viz

(#catch 'exit
moby-big-hairy-compuation-
that-is-continued-over-
many-lines)

Lisp Machine Lisp, PDP-10 Maclisp, and NIL support *catch and *throw as the basic catching
and throwing primitives; catch and throw are implemented as macros in terms of them. Multics
Maclisp implements *catch and *throw as macros in terms of the existing catch and throw
special forms; thus it is impossible for *catch and *throw on Multics to accept anything but a
quoted atom for the fag. '

It is advisable for *catch and *throw to be used in preference to catch and throw; at some
future time it is anticipated that catch and throw will be changed to be equivalent to *catch and
*throw. The names *catch and *throw are expected to remain valid indefinitely.

unwind-protect form cleanup-forms... Special Form
unwind-protect evaluates form and returns that result as its value. When control returns
from the unwind-protect for any reason, whether it be a normal return, or a non-local
exit causes by a *throw or an crror. the cleanup-forms will be evaluated. unwind-protect
can thus be used for "binding”™ something which is not really bindable as a variable, or
for performing some necessary cleanup action, such as closing a file,
Example:

ME:MACDOC:NEWEFLUN 57 21-JUI.-8]

Maclisp Extensions) 25 Miscellaneous

(unwind-protect
(progn (turn-on-water-faucet)
(compute-under-running-water))
(turn-off-water-faucet))

8.6 Miscellaneous

progl first forms... Special Form
prog1 is similar to prog2, only without the first argument. All of the argument to prog1
are evaluated just as they would be for progn, however, the value returned by progl will
be the value of the first form rather than the last. For example:

(rplaca x (progl (cdr x) (rplacd x (car x)}))

can be used to exchange the car and» the cdr of a cons.

Texpr-funcall function &rest args
lexpr-funcall is a cross beween funcall and apply. (lexpr-funcall function arg-1 arg-2 ...
arg-n list) calls the function function on arg-! through arg-n followed by the elements of
list, for example

(lexpr-funcall 'list 'a "b '(c d)) => (a b c d)
(lexpr-funcall "plus 3 4 *(2 1 0)) => 12

Note that two argument lexpr-funcall is the same as apply, and that lexpr-funcall with
a list argument of nil is essentially funcall.

without-interrupts forms.. Special Formi
This provides a convenient way of executing some code uninterruptibly. forms are
evaluated as with progn and the value of the last form is returned. It is guaranteed that
the evaluation will be performed as an atomic operation.

ferror condition-name format-string &rest format-args
ferror provides a mechanism for signalling errors using format (page 47) to generate the
error message. condition-name is used to specify the type of condition which is to be
signaled; no mechanism for this exists in Maclisp. However, condition-name may be nil,
in which case an uncorrectable error occurs—nil is therefore the only value of condition-
name guaranteed to work everywhere.
Example:

(ferror nil "%%% Compiler error - call ~5 %%%"
(get 'compiler 'maintainer))

MLMACDOCNEWIFLN 57 21-JU11 -81

Defstruct 26 Maclisp Extensions

9. Defstruct

9.1 Introduction

The features of defstruct differ slightly from one Lisp implementation to another. However,
defstruct makes it fairly easy to write compatible code if the user doesn’t try to exercise any of
the more esoteric features of his particular Lisp implementation. The differences will be pointed
out as they occur.

One difference that we must deal with immediately is the question of packages. defstruct
makes use of a large number of keywords, and on the Lisp Machine those keywords are all
interned on the keyword package. However, for the purposes of compatibility, the Lisp Machine
defstruct will allow the keywords to appear in any package. The Lisp Machine programmer is
discouraged from writing keywords without colons, unless the code is to be transported to another
Lisp implementation. Classes of symbols that defstruct treats as keywords will be noted as they
occur.

Other package related issues will be dealt with later.

9.2 A Simple Example

defstruct Macro
defstruct is a macro defining macro. The best way to explain how it works is to show a
sample call to defstruct, and then to show what macros are defined and what each of
them does.

Sample call to defstruct:

(defstruct (elephant (type list))
color b
(size 17.)

(name (gensym)))

This form expands into a whole rat’s nest of stuff, but the effect is to define five macros: color,
size, name, make-elephant and alter-elephant. Note that there were no symbols make-
elephant or alter-elephant in the original form, they were created by defstruct. The definitions
of color, size and name are casy, they expand as follows:

(color x) ==> (car x)
(size x) ==> (cadr x)
(name x) ==> (caddr x)

You can sec that defstruct has decided to implement an clephant as a list of three things: its
color, its size and its name. The expansion of make-elephant is somewhat harder to expiain,
let's look at a few cases:

MEMACDOC:DEFSTR 58) 21-JU1.-81

Maclisp Extensions 27 Syntax of defstruct

(make-elephant) ==> (1ist nil 17. (gensym))
(make-elephant color 'pink) ==> (1ist 'pink 17. (gensym))
(make-elephant name 'fred size 100) ==> (list nil 100 'fred)

As you can see, make-elephant takes a "setq-style” list of part names and forms, and
expands into a call to list that constructs such an elephant. Note that the unspecified parts get
defaulted to pieces of code specified in the original call to defstruct. Note also that the order of
the setg-style arguments is ignored in constructing the call to list. (In the example, 100 is
evaluated before 'fred even though 'fred came first in the make-elephant form.) Care should
thus be taken in using code with side effects within the scope of a make-elephant. Finally, take
note of the fact that the (gensym) is evaluated every fime a new elephant is created (unless you
override it).

The explanation of what alter-elephant does is delayed until section 9.4.3, page 31.

So now you know how to construct a new elephant and how to examine the parts of an
elephant, but how do you change the parts of an already existing elephant? The answer is to use
the setf macro (chapter 7, page 15).

(setf (name x) 'bill) ==> (rplaca (cddr x) 'bill)

which is what you want.

And that is just about all there is to defstruct; you now know enough to use it in your code,
but if you want to know about all its interesting features, then read on.

9.3 Syntax of defstruct

The general form of a defstruct form is:

(defstruct (mame option-l1 option-2 ... option-n)
slot-description-1
slot-description-2

slot-description-m) .

name must be a symbol, it is used in constructing names (such as "make-elephant”) and it is
given a defstruct-description property of a structure that describes the structure completely.

Each option-i is cither the atomic name of an option, or a list of the form (option-name arg .
rest). Some options have defaults for arg; some will complain if they are present without an
argument; some options complain if they are present with an argument. The interpretation of rest
is up to the option in question, but usually it is expected to be nil.

Fach slor-description-j is cither the atomic name of a slot in the structure, or a list of the
form (slo-namie init-code), or a list of byte field specifications. init-code s used by constructor
macros (such as make-elephant) to initialize slots not specified in the call to the constructor, If
the init-code s not specified, then the slot is initadized to whatever is most convenient. (In the
elephant cxample, since the structure was a list, nil was used. If the structure had been a
fixnum array, such slots would be filled with zcros.)

ML:MACDOC:DEFSTR 58 21-1U.-81

Options to defstruct - Maclisp Extensions

A byte field specification looks like: (fleld-name ppss) or (field-name ppss init-code). Note that
since a byte field specification is always a list, a list of byte field specifications can never be
confused with the other cases of a slot description. The byte field feature of defstruct is
explained in detail in section 9.5, page 38.

9.4 Options to defstruct
The following sections document each of the options defstruct understands in detail.

On the Lisp Machine, all these defstruct options are interned on the keyword package,

9.4.1 type

The type option specifies what kind of lisp object defstruct is going to use to implement your
structure, and how that implementation is going to be carried out. The type option is illegal
without an argument. If the type option is not specified, then defstruct will choose an
appropriate default (hunks on PDP-10s, arrays on Lisp Machines and lists on Multics). It is
possible for the user to teach defstruct new ways to implement structures, the interested reader is
referred to section 9.8, page 42, for more information. Many useful types have already been
defined for the user. A table of these "built in" types follows: (On the Lisp Machine all
defstruct types are interned on the keyword package.)

list All implementations
Uses a list. This is the default on Multics.

named-list All implementations
Like list, except the car of each instance of this structure will be the name
symbol of the structure. This is the only "named"™ structure type defined on
Multics. (See the named option documented in section 9.4.7, page 35.)

tree . Al implementations
Creates a binary tree out of conses with the slots as leaves. The theory is to
reduce car-cdring to a minimum. The include option (section 9.4.6, page 33) does
not work with structures of this type.

list® | All implementations
Similar to list, but the last slot in the structure will be placed in the cdr of the
final cons of the list Some people call objects of this type "dotted lists". The
include option (section 9.4.6, page 33} does not work with structures of this type.

array - j All implementations
Uses an array object (net a symbol with an array property). This is the default on
Lisp Machines. lisp Machine users may want to scc the make-array option
documented in section 9.4.8, page 35

MIAMACDOC:DERSTR 58 21-1U1.-81

Maclisp Extensions 29 Options to defstruct

fixnum-array All implementations
Like array, except it uses a fixnum array and thus your structure can only contain
fixnums. On Lisp Machines defstruct uses an art-32b type array for this type.

flonum-array ' All implementations
Analogous to fixnum-array. On Lisp Machines defstruct uses an art-float type
array for this type.

un-gc-array PDP-10 only
Uses a nil type array instead of a t type. Note that this type does not exist on
Lisp Machines or Multics, because un-garbage-collected arrays do not work in
those implementations.

hunk PDP-10 only
Uses a hunk. This is the default on PDP-10s.

named-hunk PDP-10 only
Like hunk, except the car of each instance of this structure will be the name
symbol of the structure. This can be used with the (status usrhunk) feature of
PDP-10 Maclisp to give the user Lisp Machine-like named structures. (See the
named option documented in section 9.4.7, page 35.)

sfa PDP-10 only
Uses an SFA. The constructor macros for this type accept the keywords sfa-
function and sfa-name. Their arguments (evaluated, of course) are used,
respectively, as the function and the printed representation of the SFA, See also
the sfa-function (section 9.49, page 35) and sfa-name (section 9.4.10, page 36)
options.

named-array Lisp Machine only
Uses an array with the named structure bit set and stores the name symbol of the
structure in the first element. (See the make-array option documented in section
9.4.8, page 35.)

array-leader ; Lisp Machine only
Uses an array with a leader. (See the make-array option documented in section
9.4.8, page 35.)

named-array-leader Lisp Machine only

Uses an array with a leader, sets the named structure bit, and stores the name
symbol in element 1 of the leader. (See the make-array option documented in
section 9.4.8, page 35.)

fixnum All implementations
This type allows one to use the byte ficld feature of defstruct to deal symbolically
with fixnums that aren’t actually stored in any structure at all. Essentially, a
structure of type fixnum has cxactly onc slot. This allows the operation of
retricving the contents of that slot o be optimized away into the identity
operation. Sce section 9.5, page 38 for more information about byte ficlds.

ME:MACDOC:DEIFSTR 58 ' 21-1U1-81

Options to defstruct 30 Maclisp Extensions

external Multics only
Uses an array of type external (only Multics Lisp has these). Constructor macros
for structures of this kind take the external-ptr keyword to tell them where the
array is to be -allocated. (See section 9.4.2, page 30, for an explanation of
constructor macro keywords.) See also the external-ptr option described in section
94.11, page 36.

9.4.2 constructor

The constructor option specifies the name to be given to the constructor macro. Without an
argument, or if the option is not present, the name defaults to the concatenation of "make-" with
the name of the structure. If the option is given with an argument of nil, then no constructor is
defined. Otherwise the argument is the name of the constructor to define. Normally the syntax
of the constructor defstruct defines is:

(constructor-name
keyword-1 code-1
keyword-2 code-2

;ce.};vord-n code-n)

Each keyword-i must be the name of a slot in the structure (not necessarily the name of an
accessor macro; see the conc-name option, section 9.4.5, page 33), or one of the special
keywords allowed for the particular type of structure being constructed. For each keyword that is
the name of a slot, the constructor expands into code to make an instance of the structure using
code-i to initialize slot keyword-i. Unspecified slots default to the forms given in the original
defstruct form, or, if none was given there, to some convenient value such as nil or 0.

For keywords that are not names of slots, the use of the corresponding code varies. Usually
it controls some aspect of the instance being constructed that is not otherwise constrained. See,
for example, the make-array option (section 9.4.8, page 35), the sfa-function option (section
9.4.9, page 35, or the external-ptr option (section 9.4.11, page 36).

On the Lisp Machine all such constructor macro keywords (those that are nor the names of
slots) are interned on the keyword package.

If the constructor option is given as (constructor name arglist), then instead of making a
keyword driven constructor, defstruct defines a “"function style” constructor. The arglist is used
to describe what the arguments to the constructor will be. In the simplest case something like
(constructor make-foo (a b c)) defines make-foo to be a three argument constructor macro
whose arguments are used to initialize the slots named a, b and c.

In addition, the keywords &optional, &rest and &aux are recognized in the argument list.
They work in the way you might expect, but there are a few fine points worthy of cxplanation:

(constructor make-foo
(a Boptional b (c 'sea) &rest d RZaux e (f 'eff)))

‘This defines make-foo to be a constructor of one or more arguments. ‘The first argument is used
to initinlize the a slot. The sccond argument is used o initialize the b slot. I there isn't any
second argument. then the default value given in the body of the defstruct (if given) is used

MEMACDOC:DEFSTR 58 21-JU1-R1

Maclisp Extensions , 3l Options to defstruct

instcad. The third argument is used to initialize the ¢ slot. If there isn't any third argument,
then the symbol sea is used instead. The arguments from the fourth one on are collected into a
list and used to initialize the d slot. If there are three or less arguments, then nil is placed in the
d slot. The e slot is not initialized. 1t's value will be something convenient like nil or 0. And
finally the f slot is initialized to contain the symbol eff.

The b and e cases were carefully chosen to allow the user to specify all possible behaviors.
Note that the &aux "variables” can be used lo completely override the default initializations given
in the body.

Since there is so much freedom in defining constructors this way, it would be cruel to only
allow the constructor option to be given once. So, by special dispensation, you are allowed to
give the constructor option more than once, so that you can define several different constructors,
each with a different syntax.

Note that even these "function style” constructors do not guarantee that their arguments will
be evaluated in the order that you wrote them.

9.4.3 alterant

The alterant option defines a macro that can be used to change the value of several slots in a
structure together. Without an argument, or if the option is not present, the name of the alterant
macro defaults to the concatenation of "alter-" with the name of the structure. If the option is
given with an argument of nil, then no alterant is defined. Otherwise the argument is the name
of the alierant to define. The syntax of the alterant macro defstruct defines is:

(alterant-name code
slot-name-I code-1
slot-name-2 code-2

slot-name-n code-n)

code should evaluate to an instance of the structure, each code-i is evaluated and the result is
made to be the value of slot slor-name-i of that structure. The slots are all altered in parallel
after all code has been evaluated. (Thus you can use an alterant macro to exchange the contents
o two slots.)

Example:

(defstruct {1isp-ﬁackar (type list)
conc-name
default-pointer
alterant)

(favorite-macro-package nil)
(unhappy? t)
(number-of-friends 0))

(setq Tisp-hacker (make-lisp-hacker))

Now we can perform a transformation:

ML:MACDOC;DEFSTR 58 21-JUL-81

Options to defstruct 32

(alter-1isp-hacker lisp-hacker
favorite-macro-package 'defstruct
number-of-friends 23.
unhappy? nil)

==> ((lambda (G0009)

((1ambda (G0011 G0010)
(setf (car GO009) ‘defstruct)
(setf (caddr G0009) GOO11)
(setf (cadr GO009) GOO010))

23.

nil))

Tisp-hacker)

Maclisp Extensions

Although it appears from this example that your forms will be evaluated in the order in

which you wrote them, this is not guaranteed.

Alterant macros are particularly good at simultaneously modifying several byte ficlds that are
allocated from the same word. They produce better code than you can by simply writing
consecutive setfs. They also produce better code when modifying several slots of a structure that

uses the but-first option (section 9.4.15, page 37).

9.4.4 default-pointer

Normally the accessors are defined to be macros of exactly one argument. (They check!) But
if the default-pointer option is present then they will accept zero or one argument. When used
with one argument, they behave as before, but given no arguments, they expand as if they had
been called on the argument to the default-pointer option. An example is probably called for:

(defstruct (room (type tree]

(default-pointer securrent-roomss))

(room-name 'y2)
(room-contents-1list nil))

Now the accessors expand as follows:

(room-name x) ==> (car x)
(room-name) =

=> (car sscurrent-roomes)

If no argument is given to the default-pointer option, then the name of the structure is used

as the "default pointer”. default-pointer is most often used in this fashion.

MI:MACDOC:DEFSTR 58

21-JUL-81

Maclisp Extensions 33 Options to defstruct

9.4.5 conc-name

Frequently all the accessor macros of a structure will want to have names that begin the same
way; usually with the name of the structure followed by a dash. The conc-name option allows
the user to specify this prefix. Iis argument should be a symbol whose print name will be
concatenated onto the front of the slot names when forming the accessor macro names. If the
argument is not given, then the name of the structure followed by a dash is used. If the conc-
name option is not present, then no prefix is used. An example illustrates a common use of the
conc-name option along with the default-pointer option:

(defstruct (location default-pointer
conc-name)
(x 0)
(y 0)
(z 0))

Now if you say

(setqg location (make-location x 1 y 34 z §5))
it will be the case that

(location-y)

will return 34, Note well that the name of the slot ("y") and the name of the accessor macro for
that slot ("location-y") are different. -

9.4.6 include

The include option inserts the definition of its argument at the head of the new structure'’s
definition. In other words, the first slots of the new structure are eguivalent to (i.e. have the
same names as, have the same inits as, etc.) the slots of the argument to the include option.
The argument to the include option must be the name of a previously defined structure of the
same type as the new one. If no type is specified in the new structure, then it is defaulted to
that of the included one. It is an error for the include option to be present without an
argument. Note that include does not work on certain types of structures (e.g. structures of type
tree or list®). Note also that the conc-name, default-pointer, but-first and callable-
accessors options only apply to the accessors defined in the current defstruct; no new accessors
are defined for the included slots.

ML:MACDOC:DEFSTR 58 21-JU1-81

Options to defstruct 34 Maclisp Extensions

An example:
(defstruct (person (type 1ist)
conc-name)
name
age
sex)

(defstruct (spaceman (include person)
default-pointer)
helmet-size
(favorite-beverage 'tang))

Now we can make a spaceman like this:

(setq spaceman (make-spaceman name "buzz
age 45.
sex t
helmet-size 17.5))

To find out interesting things about spacemen:

(helmet-size) ==> (cadddr spaceman)
(person-name spaceman) ==> (car spaceman)
(favorite-beverage x) ==> (car (cddddr x))

As you can see the accessors defined for the person structure have names that start with
“person-" and they only take one argument. The names of the accessors for the last two slots of
the spaceman structure are the same as the slot names, but they allow their argument o be
omitted. The accessors for the first three slots of the spaceman structure are the same as the
accessors for the person structure.

Often, when one structure includes another, the default initial values supplied by the included
structure will be undesirable. These default.initial values can be modified at the time of inclusion
by giving the include option as:

(include name new-init-1 ... new-init-n)

Each new-init-i is either the name of an included slot or of the form (included-slot-name new~init).
If it is just a slot name, then in the new structure (the one doing the including) that slot will
have no initial value, If a new initial value is given, then that code replaces the old initial value
code for that slot in the new structure. The included structure is unmodified.

MEMACDOC:DEFSTR 58 21-JLiL-§1

Maclisp Extensions 35 Options to defstruct

9.4.7 named

This option tells defstruct that you desire your structure to be a “named structure”. On
PDP-10s this means you want your structure implemented with 2 named-hunk or named-list.
On a Lisp Machine this indicates that you desire either a named-array or a named-array-
leader or a named-list. On Multics this indicates that you desire a named-list. defstruct bases
its decision as to what named type to use on whatever value you did or didn't give to the type
option. .

It is an error to use this option with an argument.

9.4.8 make-array

Available only on Lisp Machines, this option allows the user to control those aspects of the
array used to implement the structure that are not otherwise constrained by defstruct (such as the
area it is to be allocated in).

The argument to the make-array option should be a list of alternating keyword symbols to
the Lisp Machine make-array function (see the Lisp Machine manual), and forms whose values
are to be the arguments to those keywords. For example, (make-array (:type ‘art-4b)) would
request that the type of the array be art-4b. Note that the keyword symbols are not evaluated.

Constructor macros for structures implemented as arrays all allow the keyword make-array to
be supplied. Its argument is of the same form as the make-array option, and attributes specified
there (in the constructor form) will override those given in the defstruct form.

Since it is sometimes necessary to be able to specify the dimensions of the array that
defstruct is going to construct (for structures of type array-leader for example), the make-array
option or constructor keyword accepts the additional keywords :length and :dimension (they mean
the same thing). The argument Io this pseudo make-array keyword will be supplied as the first
argument o the make-array function when the constructor is expanded.

defstruct chooses appropriate defaults for those attributes not specified in the defstruct form
or in the constructor form, and defstruct overrides any specified attributes that it has to.

9.4.9 sfa-function

Available only on PDP-10s, this option allows the user to specify the function that will be
used in structures of type sfa. Its argument should be a picce of code that evaluates to the
desired function. Constructor macros for this type of structure will take sfa-function as a
keyword whose argument is also the code to evaluate to get the function, overriding any supplied
in the original defstruct form.

If sfa-function is not present anywhere, then the constructor will use the name-symbol of the
structure as the function,

MIMACDOC:DEES T 58 ' 21-JU1 -81

Options to defstruct 36 Maclisp Extensions

9.4.10 sfa-name

Available only on PDP-10s, this option allows the user to specify the object that will be used
in the printed representation of structures of type sfa. lts argument should be a piece of code
that evaluates to that object. Constructor macros for this type of structure will take sfa-name as
a keyword whose argument is also the code to evaluate to get the object to use, overriding any
supplied in the original defstruct form.

If sfa-name is not present anywhere, then the constructor will use the name-symbol of the
structure as the function.

9.4.11 external-ptr

Available only on Multics, this option is used with structures of type external. [ts argument
should be a piece of code that evaluates to a fixnum "packed pointer” pointing to the first word
of the external array the defstruct is to construct. Constructor macros for this type of structure
will take external-ptr as a keyword whose argument overrides any supplied in the original
defstruct form.

If external-ptr is not present anywhere, then the constructor signals an error when it
expands.

9.4.12 size-symbol

The size-symbol option allows a user to specify a symbol whose value will be the "size" of
the structure. The exact meaning of this varies, but in general this number is the one you would
need to know if you were going to allocate one of these structures yourself. The symbol will
have this value both at compile time and at run time. If this option is present without an
argument, then the name of the structure is concatenated with "-size” to produce the symbol.

Similar to size-symbol. A macro of no arguments is defined that expands into the size of
the structure. The name of this macro defaults as with size-symbol.

9.4.14 initial-offset

This option allows you to tell defstruct to skip over a certain number of slots before it starts
allocating the slots described in the body. This option requires an argument, which must be a
fixnum, which is the number of slots you want defstruct to skip. To make use of this option
requircs that you have some familiarity with how defstruct is implementing you structure,
otherwise you will be unable to make use of the slots that defstruct has leflt unused.

MIMACDOC:DEFSTR 58 21-JU1.-81

Maclisp Extensions) 37 Options to defstruct

9.4.15 but-first

This option is best explained by example:

(defstruct (head (type list)
(default-pointer person)
(but-first person-head))
nose
mouth
eyes)

So now the accessors expand like this:

(nose x) ==> (car (person-head x))
(nose) ==> (car (person-head person))

The theory is that but-first's argument will likely be an accessor from some other structure,
and it is never expected that this structure will be found outside of that slot of that other
structure. (In the example I had in mind that there was a person structure which had a slot
accessed by person-head.) It is an error for the but-first option to be used without an

argument.

9.4.16 callable-accessors

This option controls whether the accessors defined by defstruct will work as "functional
arguments”. (As the first argument to mapcar, for example.) On the Lisp Machine accessors are
callable by default, but on PDP-10s it is expensive to make this work, so they are only callable if
you ask for it. (Currently on Multics the feature doesn't work at all..) The argument to this
option is nil to indicate that the feature should be turned off, and t to turn the feature on. If
the option is present with no argument, then the feature is turned on.

9.4.17 eval-when

Normally the macros defined by defstruct are defined at eval-time, compile-time and at load-
time. This option allows the user to control this behavior. (eval-when (eval compile)), for
example, will cause the macros to be defined only when the code is running interpreted and
inside the compiler, no trace of defstruct will be found when running compiled code.

Using the eval-when option is preferable to wrapping an eval-when around a defstruct
form, since nested eval-whens can interact in unexpected ways.

MELMACDOCDEFSTR 58 21-JUL -81

Byte Fields 33 Maclisp Extensions

9.4.18 property

For each structure defined by defstruct, a property list is maintained for the recording of
arbitrary properties about that structure.

The property option can be used to give a defstruct an arbitrary property. (property
praperty-name value) gives the defstruct a property-name property of value. Neither argument is
evaluated. To access the property list, the user will have to look inside the defstruct-description
structure himself, he is referred to section 9.7, page 41, for more information.

9.4.19 A Type Used As An Option

In addition to the options listed above, any currently defined type (a legal argument to the
type option) can be used as a option. This is mostly for compatibility with the old Lisp Machine
defstruct. It allows you to say just fype when you should be saying (type type). Use of this
feature in new code is discouraged. It is an error to give an argument to a type used as an
option in this manner.

9.4.20 Other Options

Finally, if an option isn't found among those listed above, defstruct checks the property list
of the name of the option to see if it has a non-null defstruct-option property. If is does have
such a property, then if the option was of the form (option-name value), it is treated just like
(property option-name value). That is, the defstruct is given an option-name property of value.
It is an error to use such an option without a value.

This provides a primitive way for the user to define his own options to defstruct. Several of
the options listed above are actually implemented using this mechanism,

-

9.5 Byte Fields

On Multics, the byte field feature will not work unless the user has arranged to define the
functions Idb and dpb (section 8.1.2, page 18). They are not yet present in the default
environment, but they are available as part of the extension library (section 11.2, page 59).

The byte field feature of defstruct allows the user to specify that several slots of his structure
are bytes in a fixed point number stored in one element of the structure. For example, suppose
we had the following structure:

(defstruct (phone-book-entry (type list))
name
address
(area-code 617.)
exchange
line-number)

This will work just fine. Except you notice that an area-code and an exchange arc both always
less than 1000, and so both can casily fit in 10. bits, and the line-number is always less than
10000. and can thus fit in 14, bits. 'Thus you can pack all three parts of a phone number in 34,

M1 MACDOC:DEFSTR 58 : 21-JU).-81

Maclisp Extensions 39 Byte Fields

bits. If you have a lisp with 36. bit fixnums, then you should be able to put the entire phone
number in one fixnum in a structure. defstruct allows you to do this as follows:

(defstruct (phone-book-entry (type list))
name
address
((area-code 3012 617.)
(exchange 1612)
(1ine-number 0016)))

The magic numbers 3012, 1612 and 0016 are byte specifiers suitable for use with the functions
ldb and dpb (page 18). Things will expand as follows:

(area-code pbe) ==> (1db 3012 (caddr pbe))
(exchange pbe) ==> (1db 1612 (caddr pbe))

(make-phone-book-entry
name '|Fred Derf|
address '|259 Octal St.|
exchange ex
line-number 7788.)

==> (1ist '|Fred Derf| '|259 Octal St.| (dpb ex 1612 115100017154))

(alter-phone-book-entry pbe
exchange ex
line-number 1n)

==> ((lambda (G0003)
(setf (caddr GO003)
(dpb ex 1612 (dpb 1n 0016 (caddr G0003)))))
pbe)

defstruct tries to be maximally clever about constructing and altering structures with byte
fields.

The byte specifiers are actually pieces of code that are expected to -evaluate to byte specifiers,
but defstruct will try and understand fixnums if you supply them. (In the make-phone-book
example, defstruct was able to make use of its knowledge of the line-number and area-code
byte specifiers to assemble the constant number 115100017154 and produce code to just deposit
in the exchange.)

A nil in the place of the byte specifier code means to define an accessor for the entire word.
So we could say:

MLMACDOC:DEFSTR 58 21-3U1 81

About Autoloading 40 Maclisp Extensions

(defstruct (phone-book-entry (type list))
name
address
((phone-number nil)
(area-code 3012 617.)
(exchange 1612)
(1ine-number 0016)))

to enable us to do things lii:e:
(setf (phone-number pbel) (phone-number pbe2))

to cause two entries to have the same phone numbers.

We could also have said just: ((phone-number) ...) in that last defstruct, but the feature of
nil byte specifiers allows you to supply initial values for the entire slot by saying: ({name nil init)

o

Constructor macros initialize words divided into byte fields as if they were deposited in the
following order:

1) Initializations for the entire word given in the defstruct form.

2) Initializations for the byte ficlds given in the defstruct form.

3) Initializations for the entire word given in the constructor macro form.
4) Initializations for the byte fields given in the constructor macro form.

Alterant macros operate in a similar manner. That is, as if the entire word was modified first,
and then the byte fields were deposited. Results will be unpredictable in constructing and altering
if byte fields that overlap are given.

9.6 About Autoloading
This section only applies to PDP-10 and Multics Lisp.

If you look at the property lists of the macros defined by defstruct, you will find that they
are all have macro propertics of one of four functions: defstruct-expand-ref-macro, defstruct-
expand-cons-macro, defstruct-expand-alter-macro and defstruct-expand-size-macro.
These functions figure out how to expand the macro by examining the property list of the car of
the form they are asked to expand. defstruct-expand-ref-macro, for example, looks for a
defstruct-slot property, which should be a cons of the form (structure-name . slot-name).

Since the defstruct form only expands into putprops of the desired functions (instead of
actually constructing a full-fledged definition), loading a compiled file containing a defstruct
merely adds a few properties o some symbols. The run time environment is not needlessly
cluttered with unwanted list structure or subr objects. If the user thinks he may wish to use any
of the macros defined by defstruct afier compiling his file, he need only give the four expanding
functions auteload properties of the name of the file containing defstruct itsclf.

MI:MACDOCDEISTR 58 21-JUI -81

Maclisp Extensions 41 The defstruct-description Structure

For purposes of using defstruct interpreted, the two symbols defstruct and defstruct-
define-type should be given similar autoload properties. Thus six symbols with autoload
properties suffice to make defstruct appear loaded at all times.

9.7 The defstruct-description Structure

This section discusses the internal structures used by defstruct that might be useful to
programs that want to interface to defstruct nicely. The information in this section is also
necessary for anyone who is thinking of defining his own structure types (section 9.8, page 42).
Lisp Machine programmers will find that the symbols found only in this section are all interned
in the "systems-internals” package.

Whenever the user defines a new structure using defstruct, defstruct creates an instance of
the defstruct-description structure. This structure can be found as the defstruct-description
property of the name of the structure; it contains such useful information as the name of the
structure, the number of slots in the structure, etc.

The defstruct-description structure is defined something like this: (This is a bowdlerized
version of the real thing, 1 have left out a lot of things you don’t need to know unless you are
actually reading the code.)

(defstruct (defstruct-description
(default-pointer description)
(conc-name defstruct-description-))
name
size
property-alist
slot-alist)

The name slot contains the*symbol supplied by the user to be the name of his structure,
something like spaceship or phone-book-entry.

The size slot contains the total number of slots in_an instance of this kind of structure. This
is not the same number as that obtained from the size-symbol or size-macro options to
defstruct. A named structure, for example, usually uses up an extra location to store the name
of the structure, so the size-macro option will get a number one larger than that stored in the
defstruct description.

The property-alist slot contains an alist with pairs of the form (property-name . property)
containing properties placed there by the property option o defstruct or by property names used
as options to defstruct (sce section 9.4.18, page 38, and scction 9.4.20, page 38).

The slot-alist slot contains an alist of pairs of the form (slorname . slor-deseription). A slot-

description is an instance of the delstruct-slot-description structure. The defstruct-siot-
description structure is defined something like this: (another bowdlerized defstruct)

MLIMACDOCDEFSTR 58 i 21-JUl.-81

Extensions to defstruct 42 Maclisp Extensions

(defstruct (defstruct-slot-description
(default-pointer slot-description)
(conc-name defstruct-slot-description-))
number :
ppss
init-code
ref-macro-name)

The number slot contains the number of the location of this slot in an instance of the
structure. Locations are numbered starting with 0, and continuing up to one less than the size of
the structure. The actual location of the slot is determined by the reference consing code
associated with the type of the structure. See section 9.8, page 42,

The ppss slot contains the byte specifier code for this slot if this slot is a byte field of its
location. If this slot is the entire location, then the ppss slot contains nil.

The init-code slot contains the initialization code supplied for this slot by the user in his
defstruct form. If there is no initialization code for this slot then the init-code slot contains the
symbol %%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is defined as a macro that expands into a
reference to this slot,

9.8 Extensions to defstruct

defstruct-define-type Macro
The macro defstruct-define-type can be used to teach defstruct about new types it can
use to implement structures.

9.8.1 A Simple Example

Let us start by examining a sample call to defstruct-define-type. This is how the list type
of structure might have been defined:

(defstruct-define-type list
(cons (initialization-list description keyword-options) list
(cons 'list initialization-Tist))
{ref (slot-number description argument)
(1ist 'nth slot-number argument)))

This is the minimal example. We have provided defstruct with two picces of code, one for
consing up forms to construct instances of the structure, the other to cons up forms to reference
various clements of the structure.

From the cxample we can see that the constructor consing code is going to be run in an
environment where the variable initialization -list is bound to a list which is the initializations o
the slots of the structure arranged in order. ‘The variable description will be bound w0 the
defstruct-description structure for the structure we are consing a constructor for. (See scction
9.7. page 41.) ‘Ihe binding of the variable keyword-options will be described later. Also the

MI:MACDOC:DEFSTR 58 21-JUL-81

Maclisp Extensions _ 43 Extensions to defstruct

symbol list appears after the argument list, this conveys some information to defstruct about how
the constructor consing code wants to get called.

The reference consing code gets run with the variable slot-number bound to the number of
the slot that is to be referenced and the variable argument bound to the code that appeared as
the argument to the accessor macro. The variable description is again bound to the appropriate
instance of the defstruct-description structure.

This simple example‘ probably tells you enough to be able to go ahead and implement other
structure types, but more details follow.

9.8.2 Syntax of defstruct-define-type

The syntax of defstruct-define-type is
(defstruct-define-type npe
option-1
option-n)
where each option-i is either the symbolic name of an option or a list of the form (option-i .

rest). (Actually option-i is the same as (option-i).) Differeni options interpret rest in different
ways.

The symbol type is given a defstruct-type-description property of a structure that describes
the type completely.

9.8.3 Options to defstruct-define-type

This section is a catalog of all the options currently known about by defstruct-define-type.

9.8.3.1 cons

The cons option w defstruct-define-type is how the user supplies defstruct with the
necessary code that it needs to cons up a form that will construct an instance of a structure of
this type.

The cons option has the syntax:

(cons (inits description keywords) kind
body)

body is some code that should construct and return a piece of code that will construct,
initialize and return an instance of a structure of this type.

The symbol inits will be bound to the code that the constructor conser should use to initialize
the slots of the structure, The exact form of this argument s determined by the symbol kind.
There are currently two kinds of initialization. There is the list kind, where s is bound to a
list of initializations, in the correct order, with nils in uninitinlized slots. And there is the alist

ML:MACDOC:DEISTR 58 21-JU1.-81

Extensions to defstruct 44 Maclisp Extensions

kind, where inits is bound to an alist with pairs of the form (slot-number . init-code).

The symbol description will be bound to the instance of the defstruct-description structure
(section 9.7, page 41) that defstruct maintains for this particular structure. This is so that the
constructor conser can find out such things as the total size of the structure it is supposed to
create.

The symbol keywords will be bound to a alist with pairs of the form (keyword . value),
where each keyword was a keyword supplied to the constructor macro that wasn't the name of a
slot, and value was the "code" that followed the keyword. (See section 9.8.3.5, page 45, and
section 94.2, page 30.)

It is an error not to supply the cons option to defstruct-define-type.

9.8.3.2 ref

The ref option to defstruct-define-type is how the user supplies defstruct with the necessary
code that it needs to cons up a form that will reference an instance of a structure of this type.

The ref option has the syntax:

(ref (number description arg-l1 ... arg-n)
body)

body is some code that should construct and return a piece of code that will reference an
instance of a structure of this type.

The symbol number will be bound to the location of the slot that the is to be referenced.
This is the same number that 5 found in the number slot of the defstruct-slot-description
structure (section 9.7, page 41). g

The symbol description will be bound to the instance of the defstruct-description structure
that defstruct maintains for this particular structure.

The symbols arg-i are bound to the forms supplied to the accessor as arguments. Normally
there should be only one of these. The Jast argument is the one that will be defaulted by the
defaull-pointer option (section 9.4.4, page 32). defstruct will check that the user has supplied
exactly n arguments to the accessor macro before calling the reference consing code.

It is an error not to supply the ref option to defstruct-define-type.

MIMACDOC:DEFSTR 58 ! 21-JU1.-81

Maclisp Extensions 45 Extensions to defstruct

9.8.3.3 overhead

The overhead option to defstruct-define-type is how the user declares to defstruct that the
implementation of this particular type of structure "uses up" some number of slots locations in the
object actually constructed. This option is used by various "named" types of structures that store
the name of the structure in one location.

The syntax of overhead is:

(overhead n)

where n is a fixnum that says how many locations of overhead this type needs.

This number is only used by the size-macro and size-symbol options to defstruct. (See
section 9.4.13, page 36, and section 9.4.12, page 36.)

9.8.3.4 named

The named option to defstruct-define-type controls the use of the named option to
defstruct. With no argument the named option means that this type is an acceptable "named
structure”, With an argument, as in (named fype-name), the symbol type-name should be that
name of some other structure type that defstruct should use if someone asks for the named
version of this type. (For example, in the definition of the list type the named option is used
like this: (named named-list).)

9.8.3.5 keywords

The keywords option to defstruct-define-type allows the user to define constructor keywords
(section 9.4.2, page 30) for this type of structure. (For example the make-array constructor
keyword for structures of type array on Lisp Machines.) The syntax is:

(keywords keyword-l1 ... keyword-n)

where each keyword-i is a symbol that the constructor conser expects to find in the keywords alist
(section 9.8.3.1, page 43).

9.8.3.6 defstruct

The defstruct option to defstruct-define-type allows the user to run some code and return
some forms as part of the expansion of the defstruct macro.

The defstruct option has the syntax:

(defstruct (description)
body)

hody is a picce of code that will be run whenever defstruct is expanding a defstruct form
that defines a structure of this type. The symbol deseriprion will be bound to the imstance of the
delstruct-description structure that defstruct maintins for this particular structure,

MIMACDOCDEFSTR 53 21-JU .-81

Extensions to defstruct .46 Maclisp Extensions

The value retrned by the defstruct option should be a list of forms to be included with
those that the defstruct expands into. Thus, if you only want to run some code at defstruct
expand time, and you don't want to actually output any additional code, then you should be
careful to return nil from the code in this option.

ML:MACDOC:DEFSTR 58 21-JUL-8]

Maclisp Extensions 47 Format

10. Format

format destination cammlis!rfng (any-number-of args)
format is used to produce formatted output. format outputs the characters of control-
string, except that tilde ("~") introduces a directive. The character after the tilde,
possibly preceded by arguments and modifiers, specifies what kind of formatting is desired.
Some directives use an element of args to create their output.

The output is sent to destination. If destination is nil, a string is created which contains the
output (see section 104 on format and strings, page 57). If destination is t, the output is sent to
the "default output destination”, which in Maclisp is the output filespec nil—the terminal
(controlled by the variable ~w) and outfiles (controlled by ~r). With those exceptions, destination
may be any legitimate output file specification.

A directive consists of a tilde, optional decimal numeric parameters separated by commas,
optional colon (™") and atsign ("@") modifiers, and a single character indicating what kind of
dircctive this is. The alphabetic case of the character is ignored. Examples of control strings:

"eS" : Thisisan S directive with no parameters.
"~3,4;:@s" ; Thisisan S directive with two parameters, 3 and 4,
; and both the colon and atsign flags.

format includes some extremely complicated and specialized features. It is not necessary to
understand all or even most of its features to use format efficiently. The beginner should skip
over anything in the following documentation that is not immediately useful or clear. The more
sophisticated features are there for the convenience of programs with complicated formatting
requirements.

Sometimes a numeric parameter is used to specify a character, for instance the padding
character in a right- or left-justifving operation. In this case a single quote (') followed by the
desired character may be used as a numeric argument. For example, you can use

II-_B' Ll Ud"
to print a decimal number in five columns with leading zeros (the first two parameters to ~D are
the number of columns and the padding character).

In place of a numeric parameter to a directive, you can put the letter v, which takes an
argument from args as a parameter to the directive. Normally this should be a number but it
doesn't really have to be. This feature allows variable column-widths and the like. Also, you can
use the character # in place of a paramecter; it represents the number of arguments remaining to
be processed.

It is possible to have a dircctive name of more than one character. The name need simply be
enclosed in backslashes ("\"); for example,

(format t "~\now\" (status daytime))

As always, case is ignored here. There is no way to gquote a backslash in such a construct. No
multi-character openitors come with format.

MI:ZFORMAT:FORMAT PROLOG 21-1UI1.-81

The Operators 48 Maclisp Extensions

Note that the characters @, #, and \ which are used by format are special to the default
Multics input processor, and may need to be quoted accordingly when typed in (normally, with
\).

Once upon a time, various strange and wonderful interpretations were made on control-string
when it was neither a string nor a symbol. Some of these are still supported for compatibility
with existing code (if any) which uses them; new code, however, should only use a string or
symbol for control-string.

This document describes an implementation of format which is currently in use in Maclisp
(both PDP-10 and Multics), and is intended to be transported to NIL. It thus is oriented towards
the Maclisp dialect of Lisp. The behaviour of format operators should be fairly consistent across
Lisp dialects; entrics documented here other than format, however, exist only in the Maclisp
implementation at this time, although they could be added to other format implementations
without difficulty.

10.1 The Operators

Here are the operators.

~A arg, any Lisp object, is printed without slashification (like princ). ~nA inserts spaces
on the rightt if necessary, (0o make the column width at least n.
~mincol,coling, minpad, padcharA is the full form of ~A, which allows aleborate control
of the padding. The string is padded on the right with at least minpad copies of
padchar; padding characters are then inserted colinc characters at a time until the total
width is at least mincel. The defaults are O for mincol and minpad, 1 for colinc, and
space for padchar. The atsign modifier causes the output to be right-justified in the
field instead of left-justified. (The same algorithm for calculating how many pad
characters to output is used.) The colon modifier causes an arg of nil to be output as
0.

~S8 This is identical to ~A except that it uses prin1 instead of princ.

~D Decimal integer output. arg is printed as a decimal integer. ~n,m,0D uses a column
width of n, padding on the left with pad-character m (default of space), using the
character o (default comma) 1o separate groups of three digits. These commas are
only inserted if the : modifier is present. Additionally, if the @ modifier is present,
then the sign character will be output unconditionally; normally it is only output if
the integer is negative. If arg is not an integer, then it is output (using princ) right-
justified in a field n wide, using a pad-character of m, with base decimal and
+nopoint bound to t.

~0O Octal integer output. Just like ~D.

~p If arg is not 1, a lower-case "s" is printed. ("P" is for "plural”.) ~:P does the same
thing, after backing up an argument (like "~:*", below); it prints a lower-case s if
the Jusr argument was not 1. ~@P prints "y" if the argument is 1, or "ies” if it is
not. ~:@P does the same thing, but backs up first.
Example:

(format nil "~D Kitt~:@P" 3) => "3 Kitties"

MLFORMATFORMAT PROLOG 21-JU1.-81

Maclisp Extensions) 49 The Operators

=X

~* ignores one arg. ~n* ignores the next n arguments. n may be negative. ~:*

backs up one arg, ~n:* backs up n args.

"Goes to" the nth argument. ~0G goes back to the first argument in args.
Directives after a ~nG will take sequential arguments after the one gone to. Note
that this command, and ~*, only affect the "local" args, if “"control” is within
something like ~{.

Outputs a newline. ~n% outputs n newlines. No argument is used.

The fresh-line operation is performed on the output stream. ~n& outputs n-1
newlines after the fresh-line. The fresh-line operation says to do a terpri unless the
cursor is at the start of the line. This operation will virtually always succeed in
Maclisp, since all Maclisp file arrays know their charpos. Implemented by format-
fresh-line, page 56.

Outputs a space. ~nX outputs n spaces. No argument is used.
Outputs a tilde. ~n~ outputs n tildes. No argument is used.

~newline

Tilde immediately followed by a carriage return ignores the carriage return and any
whitespace at the beginning of the next line. With a :, the whitespace is left in place.
With an @, the carriage return is left in place. This directive is typically used when
a format control string is too long to fit nicely into one line of the program:

(format the-output-stream "~BThis is a reasonably ~
long string~%")

which is equivalent to formating the string
"~&This is a reasonably long string~&"

Qutputs a formfeed. ~n| outputs n formfeeds. No argument is used. This is
implemented by format-formfeed, page 56.

Spaces over to a given column. The full form is ~destination,incrementT, which will
output sufficient spaces to move the cursor to column destination. If the cursor is
already past column destination, it will output spaces to move it to column
destination + increment+k, for the smallest integer value k possible. increment defaults
to 1. This is implemented by the format-tab-to function, page 56.

~Q uses one argument, and applies it as a function to params. It could thus be used
to, for example, get a specific printing function interfaced to format without defining
a specific operator for that operation, as in

(format t "~&; The frob ~vQ is not known.~%"
frob 'frob-printer)

The printing function should obey the conventions described in section 10.3, page 54.
Note that the function to ~Q follows the arguments it will get, because they are
passed in as format parameters which get collected before the operator’s argument.

~[str) ~; 500l ~;... ~;strm~] s a set of aliernative control strings. The alternatives (called
clatses) are separated by ~; and the construct s wrminated by ~]. For example,
“~[Siamese ~;Manx -~;Persian ~;Tortoise-Shell ~;Tiger ~;Yu-Hsiang ~]kitty".
The argth alternative is sclected; O selects the first. If a numeric parameter is given

MI:FORMAT:FORMAT OPS 211U -81

The Operators 50 Maclisp Extensions

(i.e. ~n[), then the parameter is used instead of an argument (this is useful only ife
the parameter is "#"). If arg is out of range no alternative is selected. After the
selected alternative has been processed, the control string continues after the ~].

~[str0 ~;strl ~;... ~ strn~:;default~] has a default case. If the last ~; used to separate
clauses is instead ~:;, then the last clause is an "else" clause, which is performed if
no other clause is selected. For example, "~[Siamese ~;Manx ~;Persian
~:Tortoise-Shell: ~;Tiger ~;Yu-Hsiang ~:;Unknown -] kitty". '

~[~1ag00,tag0! ... str0~tagl0,...;strl...~] allows the clauses to have explicit tags. The
parameters to each ~; arc numeric tags for the clause which follows it. That clause is
processed which has a tag martching the argument. If ~:af,a2,bl,b2,..; is used, then
the following clause is tagged not by single values but by ranges of values a/ through
a2 (inclusive), b/ through b2, etc. ~: with no parameters may be used at the end
to denote a default clause. For example, "~[~'+,-/*'//;0operator ~'A'Z a, 'z letter
~'0,'9.digit ~:;other ~]".

~:[false~;true~] selects the false control string if arg is nil, and selects the frue
control string otherwise.

~@[true~] tests the argument. If it is not nil, then the argument is not used up,
but is the next one to be processed, and the one clause is processed. If it is nil, then
the argument is used up, and the clause is not processed.

(setq prinlevel nil prinlength 5)
(format nil "~@[PRINLEVEL=~D~]~@[PRINLENGTH=~D]"
prinlevel prinlength)
=> " PRINLENGTH=5"

If there is no parameter, then arg is printed as a cardinal English number, e.g. four.
With the colon modifier, arg is printed as an ordinal number, e.g. fourth. With the
atsign modifier, arg is printed as a Roman numeral, eg V. With both atsign and
colon, arg is printed as an old Roman numeral, eg. IIIL

If there is a parameter, then it is the radix in which to print the number. The flags
and any remaining parameters are used as for the ~D directive. Indeed, ~D is the
same as ~10R. The full form here is therefore ~radix,mincol padchar,.commacharR.

arg is coerced to a character code. With no modifiers, ~C simply outputs this
character. ~@0C outputs the character so it can be read in again using the # reader
macro: if there is a named character for it, that will be used, for example
"#\Return"; if not, it will be output like "#/A". ~:C outputs the character in
human-rcadable form, as in "Return", "Meta-A". ~:@C is like ~:C, and
additionally might (if warranted and if it is known how) parenthetically state how the
character may be typed on the user's keyboard.

To find the name of a character, ~C looks in two places. The first is the valuz of
the symbol which is the value of format:*/ & -var, which is initialized to be the
variable which the # reader mucro uses. U is not necessary for the value of
format:*/ # -var to be bound. The sccond place is *format-chnames; this is used
primarily to handle non-printing characters, in case the # reader macro is not loaded.
Bath of these are a-lists, of the form ((mame . eode) (e . eode) ...

MLIFORMATFORMAT OPS ' 21-JU..-81

Maclisp Extensions 51 The Operators

The Maclisp/NIL format has no mechanism for telling how a particular character
needs to be typed on a keyboard, but it does provide a hook for one. If the value of
format:*top-char-printer is not nil, then it will be called as a function on two
arguments: the character code, and the character name. If there were bucky-bits
present, then they will have been stripped off unless there was a defined name for the
character with the bits present. The function should do nothing in normal cases, but
if it does it should output two spaces, and then the how-to-type-it-in description in
parentheses.: See section 10.3, page 54 for information on how to do output within
format.

~mincol ,coline ,minpad padchar{text~> justifies text within a ficld mincol wide. ftext
may be divided up into segments with ~;—the spacing is evenly divided between the
text segments. With no modifiers, the leftmost text segment is left justified in the
field, and the rightmost text scgment right justified; if there is only one, as a special
case, it is right justiied. The colon modifier causes spacing to be introduced before
the first text segment; the atsign modifier causes spacing to be added after the last
minpad, default 0, is the minimum number of padchar (default space) padding
characters to be output betwecen each segment. If the total width needed to satisfy
these constraints is greater than mincol, then mincol is adjusted upwards in colinc
increments. colinc defaults to 1. For example,

(format nil "~10<foo~;bar~>") => "foo bar"
(format nil "~10:<foo~;bar~>") == " foo bar"
(format nil "~10:8<foo~;bar~>") => " foo bar "
(format nil "~10<foobar~>") == " foobar"

(format nil "~10:@<foobar~>") > " foobar "
(format nil "$~10,,,'#<~3f~>" 2,58023) => "Esseses? 59"

If ~~ is used within a ~< construct, then only the clauses which were completely
processed are used. For example,

(format nil "~15<~S~;~"~8m ~"~8~x" 'foo)

= " Foo"
(format nil "~15<~8~;~"~S~;~~~5~>" 'foo 'bar)
= "F0O0 BAR"

(format nil "~15<~S~;~~aS~;~+~5~>" 'foo 'bar 'baz)
=> "FOO BAR BAZ"

If the first clause of a ~< is terminated with ~:; instead of ~;, then it is used in a
special way. All of the clauses are processed (subject to ~=, of course), but the first
one is omitted in performing the spacing and padding. When the padded result has
been determined, then if it will fit on the current line of output, it is output, and the
text for the first clause is discarded. If, however, the padded text will not fit on the
current line, then the text for the first clause is output before the padded text. The
first clause ought to contain a carriage return. The first clause is always processed,
and so any arguments it refers to will be used; the decision is whether to use the
resulting piece of text, not whether to process the first clause, If the ~:; has a
numeric parameter a1, then the padded text must it on the current line with »
character positions to sparc to avoid outputting the first clauses text. For example,
the control string

MLFORMATFORMAT OPS 2i-JUL =81

The Operators , Maclisp Extensions

":ux; 5 ~{~<nz: : -1: - ~S~)~“ .~}_~1'

can be used o print a list of items separated by commas, without breaking items over
line boundaries, and beginning each line with ";;". The argument 1 in ~1:; accounts
for the width of the comma which will follow the justified item if it is not the last
element in the list, or the period if it is. If ~:; has a second numeric parameter,
then it is used as the width of the line, thus overriding the natural line width of the
output stream. To make the preceding example use a line width of 50, one would
write

"ty B ~1,605; ~Seden o] %"

Note that the segments ~< breaks the output up into are computed "out of context”
(that is, they are first recursively formatted into strings). Thus, it is not a good idea
for any of the segments to contain relative-positioning commands (such as ~T and
~&), or any line breaks. If ~:; is used to produce a prefix string, it also should not
use relative-positioning commands.

~{str ~}
This is an iteration construct. The argument should be a list, which is used as a set
of arguments as if for a recursive call to format. The string sir is used repeatedly as
the control string. Each iteration can absorb as many elements of the list as it likes.
If before any iteration step the list is empty, then the iteration is terminated. Also, if
a numeric parameter » is given, then there will be at most n repetitions of processing
of str.

~:{str~} is similar, but the argument should be a list of sublists. At each repetition
step one sublist is used as the set of arguments for processing sir; on the next
repetition a new sublist is used, whether or not all of the last sublist had been
processed.

~@{str~} is similar to ~{str~}, but instead of using one argument which is a list,
all the remaining arguments are used as the list of arguments for the iteration.

~:@{str~} combines the features of ~:{sir~} and ~@{str~}. All the remaining
arguments are used, and each one must be a list. On each iteration one argument is
used as a list of arguments.

Terminating the repetition construct with ~:} instead of ~} forces sir to be processed
at least once even if the initial list of arguments is null (however, it will not override
an explicit numeric parameter of zero).

If str is null, then an argument is used as sir. It must be a string, and precedes any
arguments processed by the iteration. As an example, the following are equivalent:

(apply (function format) (lists stream string args))
(format stream "~1{~:}" string args)

This will use string as a formatting string. The ~1{ says it will he processed at most
once. and the ~:} says it will be processed at least once. Iherefore it is processed
exactly once, using args as the arguments.

M1 FORMATFORMAT OPS 21-JU1 -81

Maclisp Extensions 53 The Operators

T~} Terminates a ~{. It is undefined elsewhere.

e This is an escape construct If there are no more arguments remaining to be
processed, then the immediately enclosing ~{ or ~< construct is terminated. (In the
latter case, the ~{ formatting is performed, but no more clauses are processed before
doing the justification. The ~~ should appear only at the beginning of a ~< clause,
because it aborts the entire clause. It may appear anywhere in a ~{ construct) If
there is no such enclosing construct, then the entire formatting operation is
terminated.

If a numeric parameter is given, then termination occurs if the parameter is zero.
(Hence ~~ is the same as ~# ~,) If two parameters are given, termination occurs if
they are equal, If three are given, termination occurs if the second is between the
other two in ascending order.

If ~~ is used within a ~:{ construct, then it merely terminates the current iteration
step (because in the standard case it tests for remaining arguments of the current step
only); the next iteration step commences immediately. To terminate the entire
iteration process, use ~:~,

~F outputs arg in free-format floating-point. ~nF outputs arg showing at most n digits.
~n:F will show exactly n digits. No other variations are guaranteed at this time;
neither is the exacs interpretation of n. It is reasonable to use this, however, when
one desires to print a flonum without showing lots of insignificant trailing digits; for
example,

(format nil "~6f" 259,258995) => "259.259"

~E Outputs arg in exponential notation; e.g., "2.59259e +2". ~nE interprets n the same
as ~F. No other parameters or flags are guaranteed at this time.

~$ (That's a dollar sign.) ~rdig,ldig field padchar$ prints arg, a flonum, with exactly rdig
digits after the decimial point (default is 2), at least /dig digits preceding the decimal
point (default is 1), right justified in a field feld columns long, padded out with
padehar. The colon modifier says that we should cause the sign character to be left
justified in the field. The atsign modifier says that we should always output the sign
character. The Idig allows one to specify a portion of the number which does not get
zero suppressed.

~% This is not really an operator. If one desires to use a multi-character format operator,
it may be placed within backslashes, as in ~\now\ for the now operator. Scc page
47.

ML:FORMAT:FORMAT OPS) 21-JUL-8]

Other Entries 54 Maclisp Extensions

10.2 Other Entries

?format destination control-string (Any-number-of frobs)
This is equivalent to format except that destination is interpreted like the second argument
to print—nil means "the default”, and t means "the terminal”. This only exists in
Maclisp at the moment.

10.3 Defining your own

define-format-op Macro
This may be used in two formats:

(define-format-op operator varlist body-forms...)
and
(define-format-op operator fixnum-character-code)

The operator may be the fixnum code for a character, or a symbol with the same print-
name as the operator. Whichever, it is canonicalized (into upper case) and will be
interned into the same obarray/package which format resides in. For example, the format
operator for tilde could be defined as

(define-format-op /~ #/~)

where " #/~" represents the fixnum chafacter code for tilde.
For the first format, the type of operator is determined by decoding varfist, which may
have one of the following formats:

(params-var)
An operator of exactly zero arguments; params-var will get bound to the
parameters list

(params-var arg-var)
An operator of exactly one argument, params-var will get bound to the
parameters list, and arg-var to the argument.

(params-var . args-var)
An operator of a variable number of args; params-var will get bound to the
parameters list, and args-var to the remaining arguments to format (or to the
recursive ~{ arguments). The operator should return as its value some sublist
of args-var, so that format knows how many were used.

A definition for the appropriate function is produced with a bvl derived from the variables
in varlist and a body of body-forms. (The argument ordering in the function produced is
compatible with that on the Lisp Machine, which is arg-var (if any) first, and then
params-var.)

standard-output Variable
Quiput from format operators should be sent o the stream which is the value of
standard-output. In the Multics implementation of format. this value may sometimes be
an object which is not suitable for being fed to standard Lisp output functions (e.g.,
princ): format has definitions of various output functions which handle this case properly,
and may be used for defining operators which will work compatibly in Multics Maclisp.

ML:FORMAT:FORMA'T PUBDOC 21-JUL-81

Maclisp Extensions | _ _ 55 Defining your own

They are documented below. Note that because of the way format interprets its
destination, it is not necessarily safe to recursively call format on the value of standard-
output in PDP-10 Maclisp. It is safe, however, to use ?format (page 54) instead, or to
call format with a destination of the symbol format.

Maclisp format will also accept a destination of format to mean "use the format destination
already in effect”. This is primarily for the benefit of Multics Maclisp, since there the value of
standard-output cannot be passed around as a stream. The format operator now, which prints
the current time, could be defined as

(define-format-op now (params)
params i unused
(let ((now (status daytime)))
(format 'format "~2,'0D:~2,'0D:~2,'0D"
(car now) (cadr now) (caddr now))))

with the result that

(format nil "The current time is ~\now\.")
could produce the string

"The current time is 02:59:00."

format:colon-flag Variable

format:atsign-flag Variable
These tell whether or not we have seen a colon or atsign respectively while parsing the
parameters to a format operator. They are only bound in the toplevel call to format, so
are only really valid when the format operator is first called; if the operator does more
parameter parsing (like ~[does) their values should be saved if they will be needed.

These variables used to be named just colon-flag and atsign-flag. In the interest of
transporting format code to Lisp implementations with packages, their names have been
changed. Thus, in either implementation one references them with the "format:" at the
front of the name, which in Magclisp is just part of the print-name.

The params are passed in as a list. This list, however, is temporary storage only. If it is
going to be passed back, it must be copied. In Maclisp and NIL, it is an ordinary list which, in
PDP-10 Maclisp. will be reclaimed after the operator has run. On the Lisp Machine, it will be a
list-pointer into an art-q-list array, possibly in a temporary area. Thus, although it is safe to
save values in this list with rplaca, one should not ever use rplacd on it, cither explicitly or
implicitly (by use of nconc or nreverse).

Conceptually, format operates by performing output to some stream. In practice, this is what
occurs in most implementations; in Maclisp, there are a few special SFAs used by format. This
may nol be possible in all implementations, however. To get around this. format has a
mechanism for allowing the output to go to a pseudo-strcam, and supplies a sct of functions
which will interact with these when they are used.

MLFORMAT:FORMAT IDERS 21-JU1 -81

Defining your own 56 Maclisp Extensions

format-tyo characier
tyos character to the format output destination.

format-princ object
princs object to the format output destination.

format-prinl object
prinis frob to the format output destination.

format-lcprinc siring capitalize?
This outputs srring, which must be a string or symbol, to the format output destination
in lower-case. If capitalize? is not nil, then the first character is converted to upper case
rather than lower.

format-terpri
Does a terpri to the format output destination.

format-charpos

format-11inel
Rewrn the charpos and linel of the format output destination. Since in the Maclisp
implementation multiple output destinations may be implicitly in use (via outfiles, for
instance) this attempts to choose a representative one. The terminal is preferred if it is
involved.

format-fresh-11ine

This performs the fresh-line operation to the default format destination. In PDP-10
Maclisp, this first will try the fresh-line operation if the destination is an SFA and
supports it. Otherwise, if the destination is a terminal or an SFA which supports
cursorpos, it will ry (cursorpos 'a). Otherwise, it will do a terpri if the charpos is
not 0. In the Maclisp implementation, where multiple output destinations may be
implicitly involved (via outfiles, for instance), this handles each such destination
separately.

format-tab-to (fixnum destination) (Optional increment?))
This implements ~T to the current format destination (q.v.). In PDP-10 Maclisp, this
operaticn on an SFA will use the tab-to operation if it supported, passing in arguments
of destination and increment (as a dotted pair); otherwise, charpos will be used to
compute the number of spaces to be output. If charpos is not supported, two spaces will
be output.

format-formfeed
Performs a formfeed on the format output destination. In Multics Maclisp, this will
normally just tyo the character code for a formfeed. In PDP-10 Maclisp, this will use the
formfeed operation if the destination is an SFA and supports it, otherwise it will do a
(cursorpos 'c) if the destination is a TTY file array (or an SFA) and supports it,
otherwise it simply outputs the character code for a formfeed.

ML:FORMAT:FORMAT IDEFS ; 21-JUL-81

Maclisp Extensions 57 Format and Strings

format-flatc Macro
(format-flatc forml form2 ... formn)

The forms are evaluated in an environment similar to that used inside of format: the
various format output-performing routines such as format-tyo and format-princ may be
used to “perform output”. In all but the Multics Maclisp implementation, standard-
output will be a stream which simply counts the characters output—it will only support
the tyo operation.-

10.4 Format and Strings

In the PDP-10 Maclisp implementation, format has provision for using a user supplied string
implementation. Normally, format expects to use symbols. However, if (fboundp 'stringp) is
true, then format will use the stringp predicate to see if its argument is a string. If that is the
case, then the function string-length will be used to find the size of the string, and char-n will
be used to fetch characters out of the string. Both of these routines should have been declared
fixnum when compiled (ie., be ncallable). Internally, tests are ordered such that string-ness is
independent on atomic-ness. In additon, the character routine may be used to canonicalize
something o a character code.

The Multics implementation is similar to the PDP-10 Maclisp implementation, but uses
different routines; stringlength to get the size of the string (or symbol), and getcharn to fetch a
character out of the string. The character routine is not used.

*format-string-generator Variable
This variable, which exists only in the Maclisp implementation of format, should have as
its value a function to convert a list of characters to a "string” to be returned by format.
In the PDP-10 implementation, this defaults to maknam, but may be modified if
"strings" are being supported. In the Multics implementation, it is a function which does

(get_pname (maknam character-list))

and may be modified, if desired, to something more efficient. In the PDP-10
implementation, the list of characters should neither be modified nor returned to free
storage, as it will be reclaimed.

The PDP-10 Maclisp hack of returning an uninterned symbol which has itself as its value
and a +internal-string-marker property is not handled here; it is done by the outer call
to format itsclf, and only if the returned "string” is a symbol and the value of *format-
string-generator is maknam. This is done so as to not add unnecessary overhead to
internal uses of "strings" by format.

The name of this variable differs from that of other uscr-accessible format variables for
historical reasons; it will not be changed, because it only exists in Maclisp.

ML:FORMAT:FORMAT IDEES 21-1U1 81

System Differences u 58 Maclisp Extensions

11. System Differences

This chapter describes differences yu'u may encounter in using these tools in each of the
various Lisp dialects in which they have been implemented. One section is devoted to each
implementation, and a final section deals with transporting code between them. The system-
specific sections are broken into parallel subsections.

Since not all of the tools documented herein will be a part of the default Lisp environment,
the first subsection simply describes how to make them available. This will in general involve
placing a form at the head of a source file to establish the appropriate read-time and compile-time
environment.

The next subsection lists a number of things to watch out for in using a particular
implementation or in writing transportable code. It deals with miscellaneous incompatibilities
related to these tools and to the Lisp implementations in general. Some options which are specific
only to a single implementation are documented here.

The final subsection contains references to other sources of documentation, including that
which is available online.

11.1 PDP-10

PDP-10 Maclisp is currently in a state of flux with regard to how these tools are provided and
exactly where they are located. Some are present in the default environment while others must be
requested explicitly. Check the online documentation for the current status.

11.1.1 Where To Find It

The sharpsign and backquote reader macros are present in the default environment. loop and
format have autoload properties. Many of the functions and special forms described in chapter 8
are present natively or are autoloaded from. ((LISP) MLMAC) (for MacLisp MACros). The rest
may be loaded from ((LISP) UMLMAC) (for User MacLisp MACros). defstruct may be loaded
from ((LISP) STRUCT).

To use the bit-test, dolist, and dotimes macros, place the following form at the head of the
source file.

(eval-when (eval compile) (load '((lisp) umimac)))
To use defstruct, include the following form.
(eval-when (eval compile) (load '((1isp) struct)))

This will cause defstruct to be present during the interpretation or compilation of a file. To use
defstruct during debugging of the compiled file, see section 9.6, page 40.

MIL:MACDOC:DIFFS 46 21-JUL.-81

Maclisp Extensions 59 Multics

11.1.2 Things To Watch Out For

defun&-check-args Variable
The "extended defun” facility (page 8) provides little or no argument count checking for
functions by default. By setting this variable to t, the function being defined will contain
additional code which will provide a more meaningful error message when the function is
called with the incorrect number of arguments.

A feature is provided whereby sequences of characters surrounded by balanced double-quotes
are read as un-interned symbols which are bound to themsclves. This provides partial
compatibility with newer Lisps that have strings. They are primarily useful as arguments to princ,
load, and format, and are not intended to be used as first-class data objects as on those systems
which support them natively.

11.1.3 Further Documentation

For the latest changes to this implementation, see the file . INFO,;LISP RECENT on any ITS
system. Earlier editions of this file are archived in .INFO, ;LISP NEWS. The file .INFO.;LISP
FORMAT contains a chart of the format operators suitable for printing on an ascii console. The
files .INFO.;LISP LOOP and LIBDOC;STRUCT > contain the Bolio source for the loop memo
and the defstruct portion of this memo. Perhaps someday these will be replaced by something
formatted for a console.

11.2 Multics

The Multics implementation is also changing. As of this writing, only some of the extensions
described in this document are available from the standard libraries, but we expect the remainder
to be installed in the near future. Check the online documentation for the current status.

11.2.1 Where To Find It

Only a few of the improvements to Multics Maclisp since 1974 are now a part of the default
environment. Primarily, these are the special forms which need to be primitively understood by
the compiler, such as eval-when and unwind-protect and certain simple functions such as list®.
The special forms let and let® are also in the default environment. The other tecols documented
here may be accessed by the Multics Lisp special form %include. This form causes a text file to
be inserted inline during the interpretation or compilation of a file. The form:

(%in'clude library)

can be placed at the front of any file of Lisp code that wants to utilize all of the features
documented here. ‘This form will arrange for the correct eval-time, compile-time and run-time
environments to be present whenever the file is being processed in any way. To arrange for this
extended environment to be present whenever the lisp interpreter is being used, this form may be
placed in the file start_up.1isp in the user's home directory.

MLIMACDOC:DIFIS 46 ‘ 21-JU1 -81

Multics 60 Maclisp Extensions

Since the %include form is unique to the Multics implementation, a variant on the following may
be used to allow the file to also read into other Lisps: ;

(eval-when (eval compile) (or (status feature Multics) (read)))
(%include library)

Those Multics Lisp users who wish to be more selective about the facilities they use may instead
use the form

(%¥include module)

where module is one of backquote, sharpsign, defun, defmacro, defstruct, setf, format, or
loop. Selective loading of packages may be desired to prevent name or syntax clashes or to speed
compilation. Note that some packages will load others as needed. For instance, defstruct will
load setf. '

%include uses the translator search list to find the file to be included. To see the full
pathname of the file which is found, type

where_search_paths translator backquote.incl.lisp
The actual object segments are bound together as bound_lisp_library_.
where bound_lisp_library_
will find the full pathname of this segment.

The modules listed above may be broken into three categories: read-time (backquote,
sharpsign), compile-time (defun, defmacro, setf, defstruct, loop), and run-time (format).

The behavior of the include file for each module depends upon its type. For read-time and
compile-time files, the include file will load the file at eval-time or compile-time, but will not add
any forms to the object segment. For run-time files, the include file will place a form in the
object segment which will load the desired module, either directly or via an autoload property. It
will also provide the appropriate function declarations for the compiler.

To use an eval-time or compile-time module at run-time, you can type (%include module) to
the interpreter or place this foorm in a file to be read into the interpreter, such as the
start_up.lisp file. Alternately, you can load the object segment directly, as in (load
"»exl>objectlisp_backquote_"). but this is not recommended since it requires specifying an
absolute pathname.

11.2.2 Things To Watch Out For
The characters sharpsign ("#") and awsign ("@") are default erase and kill characters on
Multics. If these characters are being used for input editing, you will have to type "\ #" or

"\@" to enter them. Likewise, remember that to directly enter a backslash, two must be typed.

Most other Lisp rcaders translate lowercase characters to uppercase characters in symbol
names. The Multies implementation docs not do this case translation by default. This form will
madify the readuble to correctly read files which are writicn in uppercase:

ML:MACDOC:DIFFS 46 21-JU1-81

Maclisp Extensions , 61 Multics

(do ((i #/a (1+ 1)))
((> i #/2))
(setsyntax (- i #040)
(boole 7 (apply ‘'status (list 'syntax i)) #0o500)
i))

The syntax used for reading strings is also different from that used elsewhere. In other Lisps,
the / character will quote the next character, so /" will insert a double quote character into a
string. In Multics Lisp, the / character loses its special meaning and is interpreted as an ordinary
alphabetic. To inmsert a double quote character into a string, the character is typed twice,
following the Multics system convention. This incompatibility arose since the implementation of
strings in Multics Lisp predated their implementation elsewhere.

While no installed facility is available at the moment for resolving these syntax differences,
the authors have a private reader which is compatible with the PDP-10 case and string syntax.
Contact one of them for more information.

When the Multics Lisp compiler needs to generate an anonymous function, it creates a
symbol to put the definition on. This will occur whenever a function is passed as an argument
using (function (lambda ..)), or when using (defun (mame prop) ..), for example.
Unfortunately, you get the same names every time you run the compiler. Doing

(declare (genprefix unigue-name))

will fix this problem; the compiler will then use wnigue-name as a basis for its generated names.
For example, the loop module does

(declare (genprefix loop-iteration/|-)) -

so that the compiler will generate names loop-iteration/|-1, loop-iteration/|-2, etc.

error works incompatibly. The second argument is output following the first, rather than
before, as is done elsewhere. It is recommended that you use ferror instead, or define your own
error signalling primitive. This is often a good thing to do anyway.

The default setting of the *rset switch is nil. You may find it helpful to wrn it on in your
start_up.lisp.

If you find a symbol which has become muysteriously unbound, chances are that you have
taken the car of a symbol or bignum someplace. The object returned by such an operation is the
special marker stored in unbound value cells.

The recently written Multics command display_lisp_object_segment (short name

dlos) may be used to examine the contents of compiled Lisp object scgments. It is quite useful
in verifying the proper execution of complex macros and compile-time facilities.

MLIMACDOC:DIFEFS 46 21-1U11.-81

Lisp Machine 62 Maclisp Extensions

11.2.3 Further Documentation

Online Lisp documentation resides in the directories >ex1>info and >doc>info. The info
segment lisp.changes.info describes the latest changes to the Multics implementation.
lisp_manual_update.info describes earlier changes. A collection of segments
1isp_module . info, where module is as above, repeat the documentation contained in this
manual. Finally, the segment display_lisp_object_segment.info describes the
display_lisp_object_segment command. !

These segments may be perused by means of the help command. For instance, type
"help 1isp.changes” to view the first of these segments.

11.3 Lisp Machine

On the Lisp Machine, everything described in this document is a part of the default
environment. No changes need be made to source files.

Further documentation may be found by consulting the Lisp Machine Manual, the LMMAN
directory on the AI machine, and finally the source code itself. The Zmacs command Meta-
period will prompt for a function or variable name and read the source file in which it is defined
into a buffer.

11.4 Hints On Writing Transportable Code

This section contains some hard-knocks knowledge gathered by the authors over many tea-
filled nights of grief. While we have done our best to distill some coherent advice from our
experience, there are no easy answers. This is at times a black art.

No doubt there are techniques (and pitfalls!) which we have overlooked. If you have
something which could be added to this section, the authors would like to hear from you.

11.4.1 Conditionalization

Ultimately, despite evervone’s best efforts, you are likely to find that your code must be
conditionalized in some manner. In this eventuality there are a couple of things to be aware of,

The sharpsign reader macro (chapter 3, page 5) is a very handy tool for conditionalizing code
for different sites. However, its indiscriminant use can result in highly unreadable code.
Frequently, when it seems that conditionalizations are going to need to be sprinkled throughout a
piece of code, it is possible to identify a common pattern between them, and replace them with
an appropriately defined macro. This macro will have a definition that will be conditionalized for
gach site that the code runs, and will serve to localize the ugly implementation dependent details,
Sometimes this operation actually improves the readability of the code, since it forces the
programmer 0 give a name (o a pattern present in many places.

As an cxample, the following macro provides a system-independent way of determining the
screen size of a console stream,

MI:MACDOC:DIFFS 46 ' 21-JU1.-81

Maclisp Extensions 63 Hints On Writing Transpoitable Code

(defmacro screen-size (stream)
#+ITS "(status ttysize ,stream)
#+Lispm '(multiple-value-bind (width height)
(funcall ,stream ':size-in-characters)
(cons height width))
#-(or ITS Lispm) ''(80. . 24.))

Another problem with using any of the conditionalization features of the sharpsign reader
macro is the fact that although something like

#+NIL form

does causc the form form to be ignored in Lisps that arent of the NIL variety, it is nevertheless
necessary that form be readable in those other Lisps. In other words, if form contains the use of
a reader syntax that is only supported in NIL, then it won't work to conditionalize form in this
manner, because other Lisps are going to have t parse it.

Currently, a frequent cause of such problems is the use of a special character name after #\
that isn't universally understood.

In some situations, large portions of a program will need to be written differently from system
to system. Often such portions will deal with issues of operating system interface, such as console
or file i/o. In such cases, it is best to define a common interface to this portion, so that this
code may be factored out into separate files.

11.4.2 Odds and Ends

Avoid directly inserting into your code constants which are specific to the byte, word, or
pointer size of a machine. For instance, use (rot 1 -1) instead of 1_43 to reference the most
negative fixnum on a PDP-10. Similarly, use (Ish -1 -1) for the most positive fixnum and
(haulong (rot 1 -1)) for the number of bits in a fixnum,

There is only one reliable way to define a function that ignores one or more of its arguments
without complaint from the compiler;

(defun ignore-second-arg (first second third)
second ;ignored
(list first third))

Other conventions do not work universally,

Not all Lisps have strings. However, in most, text surrounded by doublequotes will read in
as some kind of object which will print out again in a readable format. This object is suitable for
passing to functions such as princ and format, but cannot be universally guaranteed to behave
reasonably with functions such as equal.

In Maclisp, the default syntax of the colon character s alphabetic, but it has special meaning

on the Lisp Machine. Don't use it in the name of a symbol unless you know what you are
doing.

MIEMACDOC:DIFFES 46 21-JUl.-81

Hints On Writing Transportable Code . M4 Maclisp Extensions

If colons are being used only for denoting keywords, then it is useful to give colon the syntax
of whitespace outside the Lisp Machine. This can be accomplished with this Maclisp form:

(setsyntax "]:] "| .I nil)

Don't leave control-V's (circle-plus on the Lisp Machine) lying around randomly, like in valret
strings. They have special syntactic meaning on the Lisp Machine.

All PDP-10 Maclisp compiled output ("FASL™) files use the same format. It is therefore
possible to transport the compiled file between PDP-10s (e.g., from an ITS to a TOPS-20), if the
code contained therein is not conditionalized on those differences. The source code for loop, for
example, does nol contain any # + or # - conditionalizations which distinguish between any
PDP-10 implementations; the FASL file for loop used on TOPS-20 and TOPS-10 sites is the same
one used on ITS.

MIL:MACDOC;DIFFS 46 21-JU1.-81

Maclisp Extensions

*catch Special Form. . .
*format-string -generator
*rset Varigble.

Variable . .

= & ¥ & & =

Index

.24
57
.61

[A

o Wik &

*throw Function.

= Function
>= Function . .« 55 o4
Mormat Function
arrayp Function.
bit-test Function
case translation .

= = & =
N
U T AT

caseq Special Form

char-n Function.
character Function . . .
defconst Special Form. . .
define-format-op Macro .
defmacro Macre.
defstruct Macro.

defstruct-define-type Macro .

defun Special Form

defund&-check-args Variable

defvar Special Form. . . .
dolist Special Form
dotimes Special Form . .
dpb Function . .
error Function. .

.. 2%

eval-when Special Form. . .

evenp Function
fooundp Function.
ferror Function
fixnump Function.
flonump Function.
format Function.
format-charpos Function .
format-flatc Macro
format-formfeed Function

format-fresh-line Function

format-lcprinc Function. .
format-linel Function. . .
format-prinl Function .
format-princ Function . .
format-tab-to Function. .

format-terpri Function . . .

format-tvo Function

jormat =i Farable. . .« oovowiw wwisics w0 -

format;*top-char-printer

format:asign-Mlag Variable

.............

........

T

; S e RN B s
e oI e s (e S o e BN uE Sr Baz aie
i et e TN N W T T N EE Y
R R TR e T R ¢ wiE EUE GE ST il i e
S aha see e et G AR SR AUR R wE i
....... TR AL RS e RE 4
& B el wi e S SN a
S e R T Do W g
R I S A . e RClG BV Res Uk YRR NS WS

*® 2 2 F & @ & & & & = 8 B 4 % & % & » 4 B & » & & & » = -
SR S RS W e B S 2 B L S R S B i 0E
S Sl e e § 3 2N ok in
........ g g
SRR TS GOE SN NE SOR BAe s i A R
------ .« % % 24 & & & & & @ . = & = 2 ® & 9 8 & 4 & 4 & @ 8 6 '8
idiniee 3% i v N L
.....
SIS WG B R S ST AR N B o e T A i Al
S e e R e
L i 2 i 4 - e P S
o St WroE wiE WA WEOH wrie RS SR NI e e S s T T Y
5 M O SRR R e e R e S o e
G e % N G 3 e o Arsit A adh Rl T i i O e
S R B SR lg mig et R ———— .
e ot e ISt ey e oL ot S BB e
W W GE SR e w e T R SR TR R
s T DS i RS SRURTY SENEiSG : o e A Ly i
2 GBE WIE A e A e RN W T
O T 5 SR T e e 5
i Gl TR BER SRR e Ene Bin aon SR Yy Sy b ok g
........ .
N s e T VA T T e TS SR Wrd T BN RO, e i
5 ETY e RN e Bk i 30 B B wh B
il pER AR B SR e 5% % 2wl 5% Bl ST B S
..........
i aiia 5 WE B 1 T Y dew N S0

Vari

TR s e g i E o 3 . S5 L3 a0 S G : 3

19

21-JUL-81

Index e Maclisp Extensions

FOrMAt-colon-fIat WAPMBIE . ..« o v v v w = suls binlnis 5 n s o6 oie o0 50 608 576 6n &ls s 55
genprefix. Comtpiler Daclanition . o i vs 0o w1% 5.5 sis %18 53 W8 €% w8 v 58 son o w50 61
if Special Form S g e e 21
1db Famelion. ... o o500 5.5 e P b B AT B S S e i T ek AR TR 18
DAL STBCENE POIIE & s 003, 05000 M T 8 R B | &, e e 1B 20
R Shai PO - s i et R SR R B e M I R M e g - 20
Jexpr-Ronall FUmbloN. . oo s 005 ¢ 05062 w0 w5 @ 0w S e SRR SR R 25
list* Function A 7 s 5 e e e B e e et B e e i B R R TE G 19
ROl PRSI i o AR Tl i TR WM S o 8 6 o S 17
IBEOE-FOMRION (v o 05 55 E% 85 e st e Wim A w s e W e sawie e
ORTOE PEOMEIII oo nox 3on soin o5 sivmmy 000 SN T D SRRty T I A R e 17
logxor Function So B T DD I TS e S 4 < b 17
0D a0 (5 i b Ba bk R RE TR D RS RREE e e e N e T e B W e 23
make-list Function Wik e PE 2 R 5 R AT S e e R 4, O
AR PURCTIN s wov s wo% 5% o ww wo . wue wos wih oBAE KB ACEOET NTE v PR W 20
otBedr FUOSE: .« v o5 25 05 55 BE 6% BF N0 a0 RE K v o e EUR MR .. 20
BECESRBTYHE s v va Wi =% wn B EE 0 olE B R B B N e SR R w6 T
DECRIREE - o« oo w5 w3 ws BoM BN BA NE O g0 K g e 8RO B 4 . . .26,28, 30,41, 55
POD- MELID, 4.0 som st 50 50 wr wor v wow 2w . iz ik B Bk AR Ak B0S A Fis ik it B
Progl SpEIaI FBEm .5 w5 55 ois win w5 36 %5 Fox 5w Wi B w4 0w g AT lgE WG TRE (ERe e 25
petiG Speclal Fomm o s s i ain &% &5 55 6% 5@ 205 S 08 e E G e W% s s o |
DO MO . o v i s s w8 Be BAE B R N Rt RO O R 5 15
SRl ORI IO v x5 mu mrw wm wE mvE wor mor wa ave od B8 AR NU TN BA B8 B 22
SREE MEBEIOL iosicnoi e Bk Wi B BOK W RO W BOE N W ONVE R R R PEYORI -
standgrd~output Fariable « o e 556 % 5 515 %% w5 o0% s en e 30w B0 B Ehe W e RE 6 54
SENE-IRN FHREHON, 5 o0 v hvs n o win s m o bn bos v bin W'e wie a7 o7k a B % R 57
stringp Function. R TR AR (R W S e S et W M B o Bra 57
SRR 5 i e e R s ST AT 5 B e Wi B F W A B W 59, 61,63
unwind-protect Spaclol FOmm < oi v a/iia 5655 i o e s @ = W sl wow S B a1
without-inferrupts Special Form. . « o « « o e v v v s b3 e s 8 6 v o s ana nanewessuia 25

21-JUL-81

