
MIT/LCS/TM-203

CLISP EXTE Sl0' S

Alan Bawden

Gl,enn S • But" ke

Carl t..r. Hoffman

July 1981

Mac,lisp Extensions

July 981

Alan Bawden
Glenn S. Burke

Cad w· .. Hoffman

This report describes research done at the Llboratocy for Computer Science of e Massachusett'>
Jnstitutc of Tr;?chnology. Support for this research was. pro1lidcd in part by ational Institutes of
Hea1th grant number I POl L . 03374-03 from th-e - ational Library of Medicine, !he , dvanced
Rcscm-ch Projects Agency of the Dcpanmcm of Defense under Oflfoe of a al Research Contract
numbers i 000l4· 7S·C·0661 and 00014·77-C·064L the ational Aeronautics and Space
Administration under grant NSG 1323, the U. S. Dcpartmcn. of Energy under gr.ant ET-78-C-02
4687, and the . S. ir For e under grant F49620~ 79-C-020.

C MBRIDGE

MAS , CHUSErJ [STl'l"UTI~ Of ' 'ECHNOI,OGY
LABORATORY FOR CO 1PUT 'R CU: CE

MASS C] r s1-:rr 02] 9

Ahstract

This document describes a common subset of selected fadHties available in Mac isp and its
derivath·e : PDP-10 and Mu!tics Ma,clisp, Lisp Mach.ine Li p (Zetalisp). and L The object of
this document is to aid people in writ.mg code wl1ich can run compatibly in more than one of
these environments.

Aclmow]edgemems

Much of th documentation presented here is drawn ffom pre""C::tistmg ·sources and modified to
be presentable in thi context The documentation on shaf]:}sig.n is derived from that written by
Richard S .. Lamson as a Multics onlinc help segment. The descriptions of backquote and defstroct
are derived from existing online documentation. The documen iation on format shares ome
portion with the isp Machine · annaJ; text has been exchanged in both directions. The
description. of defmacro also draws heavily •on me existing documentation in the Lisp Machine
Manual The Lip Machine Manual is authored by Daniel Weinreb and David Moon, and the
format documenra.tion therein was co11oibuted co greatly by Guy St.cele; !:hey have .an thus
indirectly c:onaibuted a great deal. lo this paper, as llave innumerable others who aided in the
preparation of the Lisp Machine Manual.

We would like to thank Joe] Moses for providing the motivation to bring Lisp up-to-da~e on
Multics, and Pe,rer Sz-0lovits. under v,•hose auspices this docum nt was produced.

Note

Any comments, suggestions. ,or critidsrns wm be welcomed. Pkase send Arpa ne:twork mail
to MACUSP-EXTE S!O S@MIT-ML

Those n ton the Arpal!!e may send U.S • . mail to

OJcnn S. Burke
Laboratory for Computer Scienc
:545 Technology ~ q,uare
Cambridge. Mass. 02139

@, Copyri~IH hy lhc fa:;. il huscL nstitutc of Tedrnnlogy: Cumhridgc. Ma~. 021 9
II ight'i res rv~d.

Maclisp Extensions

. Introduction . . .
.1 Compatibility

1.2 Conventions • •

2. Bactquote

3. Sharpsign .•.

4. Extendc:-0 Oefbn

.5. Defmacr:o.

6. Other Definition Facilities.

7. Setf. ..

i Table of Contents

Table of Contents

11•• • ••14 ■, a ■■ olll••••••••••••••••

1

1

2

5

'8

. .w

. l3

. IS

8. ew Funcli.ons and SpedaJ Forms . .17
•. 17

7
8

.18

8.1 Bit Hacking •
81.1 Boolean Operations
8.1 . .2 Byte Manip,ulation.
8. .3 Testing, .

8 .. 2 Predicates
8.3 Lim •. .
8.4 Variab es.
85 Aow of Control
8.5.I Conditionals.
8.5.2 Selection
8. 5 .3 Iteration. • . . • . .
8.5i.4 Non-Local Exits.

8.6 Miscenaneous

9 .. Defstruct • . .
9.1 Introduction
9.2 A Simple Exam.pJe
9 ..3 yniax of defstruct . .
9.4 Opdons 10 dcfs,trucL
9.4.l type
9.4.2 constructor
9.4.3 aherant . .
9.4.4 dcfau[t~11ointer
9,4_.5- oonc-naime.
9.4.6 illclude .
9.4.7 named.
9.4.8 make-array
9 .4. 9 sfa · function
9..4.10 sfa·namc .
9.4.11 extcmal·pl'I'.
9.4. 11 ii.e· ymbot
9.4.13 ize-rr aero ..
9 .4. t 4 i niti a]-olf s.c t

... 18
.19
.20
.2

• • 21
. 22

i Iii .. 23
• . 24
• • 2S

. 26
• 26

........... 26
.. 27

••••• 28
. 28

. • 30
.31

.•• 32
. 33
.. 33
.35

. . 35
. 35
. 36,
. 36
.36
. 36
• 36

21-JUL-8l

Table of Contents

9.4.15 but-rust ...•••
9.4.16 c:.allab[e-acoessors
9.4.17 eval-when. . •
9.4.18 pmpeny . . • ••••...

li

9.4.19 A Type Us.ed As An Option •••.
9.4.20 Other Options . ..

9.5 Byte Fields • . • • . .
9.6 About Autoloadiing · .. . • . .
9. 7 The defsnuct·descliption Structure . .
9 .S Ex~ensions to defstruct •

9.8.l A Simple Example
'9.8.2 S;tntax of defstro.ct~define-cype .
9.8.3 Options to defstruct·deline·type
9.8.ll cons.••••.
9.8.3.2 ref . . • • • • . . • • • •
9.8.3.3 overhead . .
9.8.3.4 named .••
9.8.3.5 keywords ..
9.8.3.6 defstruct ..••••..

0. Format .
10.l The Operators .
10.2 Other Entries ..
OJ De·fining your own.. •

10.4 F,omiat and Strings. •

11. System Differences •.
ll. PDPalO
11.l.l Where To AndJt •.•
l .1.2 l11ings.To Walch Out For ..
U.1.3 Funner Documentati:m1. .

1 .. 2 Multics . • • • • .
11.2.1 Where To Find It. • • • • .
11.2.1 lllings To Watch Out For ..
l L2.3 F unher Documentation. •

11.3 Lisp Machine
11. Hints On Writing Transponabl Code .

L4.l Conditiona1ization
11.4.2 Odds and Ends . .

Index

Maclisp Extensions

17
37
37
38
38

. . . • . • . .38
38
40
41
42
42
43
43
43
41,
45
4.5
45
45

47
48
54
S4
51

58,
S8
58
59
59,
59
S9
fiO
62
62
6l
62
631

6S

21-J L-81

Madisp Extensions l Introduction

1. Introduction

1.1 Compatibility

This manual is abou compatibH"ty between the PDP-IO and MultiC$ dialects of MacJisp, and
the Maclisp derhracive Lisps, Lisp Machine ,- i:sp. and ML

Believe it or not. it rea11y is possible to write code ilia1 runs in all of these Lisp dialects. It
is nO't always a completely painless lhing to do, but with a littJe bit of care ·t is possible to wrice
reasonable code th.at runs in many p]aces. and that doesn't offend everyone who Dies to re.ad it

The biggest srumb1ing b]ock lo writing code l:hat runs in a Lisp dialect other than the one
}'OU are most familiar with is the fact each of these Lisps ha:s grown a different set of additional
feamres since the original Madisp Reference. Mauua/ was written in 1974. How are you supposed
to be able to restrain your.self from using all the winning ne features that the implemen ors of
your dialect have gh•en you?

Wen, unfmtuna.tcly. you are going to have to avoid some of them. fter all. some are
probably impossible to impl'.ement everywhere. On the other hand, some of lhcm are so useful
I.hat they have already migrated to aU of the places you are plano.i.og to move your code. Those
are the features that are documented iD this manual.

1.2. Con 'entions

The symbo] "~>" will be used to indicate eval.uation in examples. Thus, when you see 'foo
.:::> nil", this means the same thing as "the result of eva]uat~g foo is (or would have been) nil" ..

The symbol '' - ;>" will be u ed ro indicate macro •expansion in examples. Thu. when you
see "(too bar} "'"'> (aref bar O)', lh's means the same thin.g as "the result of mac:ro-expandiog
(foo bar} is (or wou1d have been) (aref bar O)'.

Mo t numbers shown are in octal (base eight). , umbers foUowed by a dccima1 point are in
decimal (base ten). De pile growing sentiment in favor of decimal as the deFault base for Lisp
.reading, it · . sti.U the case thal most of lite Li ps we are concerned with read numbers in octal by
default. lhe sole exceptio11 at this. time is IL

Symbol are cons.istentiy wiitren in lower case. This is because on Mu tics, most symbols ~ave
lowc~asc- prinmames, and case translation is not done by default on input In the ,other
implemencations, where most symbo s have uppercase printnames, Io ercase characters are
uanshued to uppercase on in put. so a ymbol typed' in lowercase wiU atways be read correctly
C\lery here.

ML: 1 CDOC:l . ORO 7 21 -JUI - I

Backquote 2 Maclisp Extensions

2. Backquote
The backquote facility defines two reader macro characters. backquote r • ". ascii 140) and

comma ("i". ascii 54). Thes<.: two macr-o characters can be used together 10 abbreviate large
c-ompositions of functions li e cons. list list• (page 19) and append. It is typic.ally used to
specify templates for building code or other list structure, and oft.en finds application in th.e
construction ,of Lisp, macros.

Backquote has a s;'Titax similar w that of quote ("' .. , ascii 47). A backquote is followed by a
single form. If the fonn does not. contain any use of the comma macro character. then lbe form

m simply be quoie-d. For example:

"(ab c) ~ (quote (ab c)) ;

The comma macro character may only be used within a fonn foHowing a backquo e. Comma aJis:o
has a syn~]ik:e thal of quote. The comma is followed b~ a form, ,and that form is evaluated
even though it is inside the backquote. For exampJe:

"(,ab c) - (cons a (quote (b c)))
- (cons a '(b c))

'(a .b t) ~ (list• (quote a) b (quote (c)))
.a (list• 'ab "(c))

"(ab ,c) - (list (quote a) (quote b) c)
~ (list •a "b c)

' (a . , r-est) ; (cons (quote a) rest}
; (cons 'a rest)

In other words all the components of the backquoted expression are quoted except those
proceeded by a comma. Thus , one could .wdte the common macr:o push using bad.quote b:y
proc,cedi ng fr-om lhe standard defimlion

to

(defun push macro (form)
(l'st 'setq (caddr form)

(list 'cons (cadr form) (caddr form))))

(defu~ push m~cro (form)
'(setq , (caddr form) (coos ,(cadr form) ,(caddr form))))

Nole how the code to build the macro's output code begi s to 1oot more like me outpul code
it.self. ln fact. ilh a use •Of let.. we cao go aH lhc way to

(defon push macro (form)
(let ((datum (tadr form))

(list (caddr form)))
'{setq . ist (cons ,datum .1·st))))

:md rirud ·, e very kgibk cndc. An C\·cn bcucr method for defining macro i. de macro (cha ccr
5. page JO).

Ml.: /\CDO ; 'IMCKQ 16 2.HUl. :81

Madi.sp Extensions 3 Back:q u ote

Bae quote expands into forms that call cons. list, Hst• or whacever other functions it deems
appropriate for lhc msk of constnJctin.g a fonn thar. looks like the one fo Uowing the badcquote
bu1 with lhe v-a1ues of rhe forms foHowing the commas substituted in.

Since backquote's contrac1t is specified not in lerms of lfl,e code rhat it ex:pands inro. but
rather in term of what lhat code produces when evalualed. assumptions. shouid not be made
about what the code might look l.i:ke. The backquore expansions shown in this section are only
possible expansions· il · · noL guaranteed lhat this is the way they wiU expand in any particular
implementation.

U a c.omma inside a backquote form is followed by an "at" sign ("@". ascii 100), !hen the
forn1 following the ",@" should return a list (On Multics. since the default 1ine kill character is
@., the user may need to t pe \@ in order to gee lisp to read a @.) Baci::quotc arranges. th.at
the elementS of that list will be substitiuted into the :resulting list structure. Frequently th.is
involves generating a call to the function append. For example:

'(,0a b c) ~ (append a (quote (b c)))
~ (append a •(b c))

•ca .@b c) ; (cons (quote a) (appeRd b (quote (c))))
- (co~s 'a (append b '(c)))

'(ab ,@c} = (list• (quote a) (quote b} c)
s (list• •a 'b c)

Sim.ilM to fonowing the comma by an atsign is following lhe comma by a dot ('-.", ascii S6). The
dot is a declaration to backquote lcl1ing it that the lis returned by the form following the ",. ' is
expeodabfe. This allows backiquotc 10 produce code that calls fi.mctions like nconc that rp]ac die
lisl

Backquote examines lbe fonns following the commas to see if it can simplify the resulting
code. For ex.ample:

• (a b . • (cons X y)) - (H st• (qi:,mte a) (qu~te 'b) X)')
= (l:ist• 'a 'b, X y)

I (a 3 ,b C '17) "' (list• (quote a) 3 b (quot.a (c 17)))
~ (list• •a 3 b . (· C 17))

' (a , @b ,. (fo i1) ,. (•C10i'I s (quote a), b}
• (con.s • a. b)

• (~ , • b , 0 (nconc c _d)) (cons (quote a) (nconc b c d))
(cons 'a (nconc b c d))

These examp]es hou Id con ince the user that h c really ,cani:rnt depend on wha the code !.hat
backguotc c pands imo wi11 look U:c. A simpk~·mi11dcd backquotc mjght c:icpand (,@a ,@nil')
1nlo (append a 'nil), but I.his cannot he u:sc.d as ii r ?iablc way to copy a list sinc:c a sophisticated
bar quot C'lll optimi1c Lhc cupying awny.

Ml.:M;\ CI OC:111\C . .: KC)U lCi 21-JUI .-81

Baekquote 4 Madisp Exumsions

It is sometimes useful fo nesL one use of backquotc within another .. This might happen when
the user is writing some code th.at wi l oons up some mor-e code that will in turn cons up yet
more code. The usual example is in riting macro, defining. macros. When this becomes nei;essary
it is sometimes difficult Lo• determine· exacuy how to use comma w cau eval ation to happen at.
the correct ti.mes. The following exarmp e exhibits an the usefuJ combinations:

•·•(a ,b ,.c ,",d)
; (list 'list• ••a 'b c (list 'quote (list d)))

Y.fhen eva1uatcd once this yfe1ds~

(list• •ab <c-at-time-1> "(<d-at time-1>)}

Which when ,evaluated yields:

(a <b-at-ti,me-2> <<c-a t-t ime-t>-at-t ime-.2> <d-at-t ime-l>}

Thus, means n.ever evaluate, ' ," means evaluate only I.be second lime, ·•.,' means valuate both
times, .and ",' 1 '' means evaluate only the :first. thne.

MacJisp Ex tensions 5 Sharpsign

3. Sharpsign
The Lisp reader's syntax can be extended with abbreviations imroduced by sharp sign (" #"

ascii 43). The c take the general fonn of a sharp sign a second character which identifies the
syntax, and following arguments. Certain abbreviations aUow a decimal number or certain sp.ccial
"modifier'' ch.aracle:rs between the -sharp sign and the second characc.er. (On 1u1tics, since the
derault erase character !S .I/ ., il may be necessary to type \ # in order to gee lisp ro read a # .)

List of # macro abbreviations:

,#/char
reads in as the number which is the character code for the character char. FoF
example, # /a is ~quivalent ~ 141 but dearer in its intent. This is the recommended
way w include charact.er constants in your code. Note that the slash causes this
construct to be parsed correctly by the Emacs and Zwei editors.

As in -strings upper and lower-case letters are distinguished after # /. Any character
works after # I. ,even those that are nomtally special ro read, such as parentheses.
Even non-printing characters may be used, although for I.hem # \ js preferred.

#\11ame
reads in as the number which is the character code for the non~prjnting character
symbolized by oome. A large number of character names are ro::ogv izcd; tllese are
documented below. To~ abbreviations er for return and sp for space are ru::cepted
and generally preferred, since these characters are used so Creque ntly. The rules for
r-eading name are the same as those for symbols; the name must be lerminated by a
delimiter such as a space, a carriage return, or a parenthesis.

"char

#'form

generates Contr-ol·char. Thus # "'char always generates the character returned by tyi if
the user holds down tile control key and cypes char.

is an abbreviation for (function fomi). form is the prloted prepresentation of any
object. This abbreviation c.an be remembered by analog~ with me I macro-charac~er,
siilce Lhe function and quote special fonns are somewhat aatogous .

. #,form
evaluares fom1 (the primed r~prcsentation of a isp Form) at read time u.n]ess the
compiler is doing lhe reacling, in which case i is arranged that form wm be evalua:ted
when the compHed ,ou tpm 6!e is looded. This is a way. for example, w include in
your code comp]ex list-sLrUcrure consrants which c..annol be writren ith quote. Note
that the reader docs nor pm quote around rhc. result of the cval alion. You must do
this yourself if you want h, typK:ally b)1 u ing lhe ' macro-characler. An example of a

· case where you do aoL wam: quote around it is when this object is an e]cment of a
constant lisL

form
evaJuatc form (the princcd reprcsenHHion of a lisp form) at read lime. regard css of
wh~i is doing lhc reading. ·1 · i. ahbrcvi:ulm-i wnuJd ht! llSCd rn \lpply cnm;t;mt
parnrnelcrs lo lhc com 'kr. Fur example. a pmgr~m1 might cnntam #. Pl. rather
Lh,10 3.14'159.

~I.: M i\CI})C;SHAHPM 2

Sharpsig» 6 aclisp Extensions

#Onumber
re.ads uumber in ~ regardless of tbe setting of ioase.

t:adixAnumber
reads number in radix rad"ix regardless of lhe setting of ibase. radix must con.sist of
on1y digits, and tt is read in decimal

or example. - #3R102 is another way of writing 1 . and # 11 R32 is another way of
writing 35. ln MacUsp. supradocima1 bases may be used. if' number is preceded by +
or -· (status +) is temporarily modi6ed o ma e this work.

+feature
This abbreviation provides a read-time conditionalization facility. k is used as
+ fea1ure fomr . If feature is a symbol then th,is is read as femt if (status feature

feature) is true. f (status feature feall,re) is nil. then I.bis is read as whitespace.
ltema1ely featute ma be a bootean expression composed of and, or. and not

operators and symbols representing items which may app-ear on the (status features)
UsL (or fispm amber) represents evaluation of the predicate (or (sta us feature
lispm) (status feature amber)) in the rcad~time environment

For example, # + Hspm fonn makes form exi c if being read by the isp madtine.
+ (or lispm nil) /om1 will make form exist on either me isp machme or in NIL.
No11.c. I.hat ilems may be added to the ,(status features} list by means of (sstat!us
feature feature), thus allowing the user to se]cct.ively interpret or compile pieces of
code b)' parameterizing t:bis list The mo t commo11 features checked for using # +
are: Hsµm (present on Lisp Machines), Macnsp, Nil, Multics, ffS, TOPS-20 and
PDP10.

See also section 11.4.l, page 62 for a more general di.scus:sion of conclitionaJiz.ation.

- feaJure form
is equivalent 10 # + (not feaJure) form.

#Mform
is equiva1ent to # + Maol"sp form.

#Oform
is equi\falent to· # + lispm form.

#Nfonn
is equivalent to # + 1N L form.

M aclisp Extensions 1

The: following are the recognized special character names with the·:r synonyms. These names can
be used after a "#\" to get_ the ch.aracter code for lhat characrer.

backspace bs
tab
n,ewl i ne
1·ne eed lf
return
formfeed
al tmode
s1pace
·vt
null
help
de · ete

Cl'

ff
alt
sp

rubout

fo,rm

Certain of thes character groupings may overlap in some implementations. For example. on
Multics, help is simply the ? character. newline will ge:nerally be equi,vatent to either return or
linefeed. as appropriate for the host operating ·systeHID.

II: !At:I le: ' IIAl{P I 21.1 11·J I ·H I

tended Defun 8 facJisp Extensions

4. Extended Defun
def un Special Form

defun is the us,ual way of de6ning functions. It still works the way it always haas, bu1
se eral inlprovemem.s have been added over the years.

A defun fom looks like:

{ def un name lambda-Tisi
body •.. -)

s in lhe past, n.arne can be a symbol which is to be defined as a function. Alternatively
name can be a List of the form (symbol properlp). Th.is arranges to give symbol a property
property of the function. rather than defining som.e ymbot to be l:hat function. n other words.
aft.er a defun like

(de un (foo bar) (x)
(cons xx))

it wou1d be U'le casie that

(funcall (get 'foo "bar) 34) ~> (34. 34)

[n lhe simpkst case lambda-lisl is a list of variables to bind to the arguments lO the function;
this is as il has always been. In addition, Lhe keywords &optional', &rest and &aux ar-e allowed
to appear !here. (Thus these arc- no longer valid variable names, but nobody seems to have been
inconvienced by this ..) Their meanings are follows:

&optional All of the variables following the &optional keyword •(and up oo the o.ext &­
keyword) ar-c optional. Thus a lambdt:?-list of the fonn

(ab &opt onal ~ d)

means that the n:mclion may be passed from two to four ar-guments. a and b are
called required argumems. c and d ar - caned optional arguments not surprisin~y).
lf an opdonat argument is not passed in by the -caller·, theu lhe corresponding
variable wiU be bound to nil. If some other default value is dcsjred. then that
value may be specified as foUows:

(ab &optional (c 'default) {db))

This win bind c to ·me symbol default if the function is passed only two
arguments. 1f lhc function is passed less than four. then d will be bound to the
scrond argumcnL Thi is because the ariablcs are bound i11 soqucncc, so lh.eir
default values, may reTer to the alucs of variables already bound.

It is also poosible 10 find out whether an opti,onal ariablc was supplied. The b•;l

(ab &opt ·ona (c 'defau t c-p)}

will bind Lhc \.'ari;1hlc c-p m t if the function was p.a.,;,,scd three argument°' fr~." an
argumcm was urplicd fu c), nil if iL was 11asicd only twu.

Madi p Extensions Extended De.fun

&,rest Thi-s keyword mus1 be foUowcd by exactly one variable called the rest 't'ariabJe.
,&rest mu t also appear after any required or optional ariabks. The rest. variable
will be bound to a]ist of the remaining arguments that were passed to the
function. .For e1:ample:

(ab &rest c)

is the lambda-list to use for a function that accepits two or more argume ts. The
variable:c wil he bound to a list of the arguments from the third one on.

(ab &optional (c 0) &rest d)

wou]d specify that the function rakes two are more arguments. If called on
,exactly two arguments, c will e bound ro O and d will be bound to n·1. If
called on three or mor,e arguments, ,c will b bound to the third argument and d
wm be bound LO a list of the fourth through]ast argumenL

In the Lisp Machine implementation, the rest variable wUl be bound to a stac ·
atlocate-d list that is only alid during the invocation of tllal .function. Th.is means
that tbe function sbou d not incorporate this list into any perm.anent data~StrUcmre:
it should use a copy of me list instead.

n IL. the r,est variab]e wilt be bound to a vecror which may be stack allocated.
&restl instead of &rest seloots a lisL Unfommately &restl is on1y recognized in
PDP-10 M aclisp and _ L.

&aux Followin,g the keyword &aux are some more v•ariab cs called auxiliary variab es.
&aux mast follow all required and optional variables and the res variable if it is
given. Auxiliary variables do not cc,rrespond to arguments ro the: function at all,
they are simply local variables mat are bound sequentually after the argument
variables. For ex.ample:

(1 &optional (at) &aux (len (length 1)) t~m)

is the lambda-list ,of a one or two ar-gumeot function. b will be bo nd to t if the
second argument is not given, then en will be bound lO the lenglh of the lis:t
that as the first argument. and tem wi be bound to nH (pres mably for use
Jate:r on.)

In Maclisp,, functions with optional or :rest variables ifl be implemented using the lexpr
mechanism. Jn these impfemcntalions it may be necessary ro declare these functions as lex.pm in
order to a urc proper compilation.

The syntax

(defuo nmne macro (orm)
...)

is stiU understood as a way to define a macro. but the nc macro defining macro defmacro is
now the pr-cfcred way w do so. defmacro · docume·nted in chapter 5. page 10.

11.:MACDOC:DFFU 8 :!l ·1UIAU

Dcfmacro Madisp Extensions

5. Defmacro
def aero Macro

defmacro, is a macro-defining macro which aJJows ooe ito define .macros in a more naturaJ
or functional way.

If we want 11.0 define the first macro such that (first x)1 is equivalent to {car x) we cou]d
do

(defun first macro (x)
(1 · s t • ca,r (cadr x)))

or using backquote (page 2)1
,

(defun first macro (x)
'(car .(cadr x)))

Just as backquote makes constructing list structure Jess cumbe:rsome. d'efmacro allows, us to
access lhe '1arguments" to, a macro in a much cleaner mann r. The lirst macro .looks like

(defmacro fir st (1)
• (car • 1))

when defined with defMaCfO.

In genera], the argument list to a macro defined with defmacro is a pattern ~o be matched
against the body of the macro call The symbols in the pattern will be bound 10 the
corresponding components. and then the body of tlle macro C\la uated, the same as is done for an
ordinary macro. Th.at is, for I.he macro call (first (g,et 'frob 'elements)) the pattern (I) is
macched againsr ((g.et 'frob 'elements)). and I gets bound to the form (ge 'frob 'el:ements).

The macro push, which is defined on page 2 as

(defun push macro (form)
(let ({datum (cadr form))

(list (caddr form)))
'(set~ .list (cons datum ,l st))))

could be defined v.•ith. defmacro by

(defmacro push (datum li s f)
'(setq .list (cons ,datum .list)))

Macros. and thus defmacro. are uS<!fi.11 for defining fonns hkh provide syntax for some
kind of control strnclure. For exampl . someone might want a 1imiled itcrarion construct which
incrcmcn~ a rari.ihlc by one unLi1 il exceeds a limit (Ukc the FOR sraccmenL of the BASIC
language). One might want it la look hke

(for a 1 100 (print a} (print(• a a)))

Tii get lhi • one cuukl write a ma ro to lr~mst. le il imo

Ml .:~'1AC 11 OC:DEF r,,c 22

Maclisp Extensions 11

(do a (1+ a) (> a 100) (print a) (print(• a a)))

A macro to do th.is could be ,defined. with

{defun for macro (x)
'{do ,(cadr x) .{caddr x) (l+ , ,(cadr x))

(> .(cadr x) .(cadddr x))
.@(cdd~dr x)))

Alternatively, for cou1d be defined w·th defmac,ro:

(defmacro for (var ower upper . body)
'(do .var .lo~er {1+ ,var) (> ,var ,upper}

,@body))

Defmacro

If a patr,em is not suffident, or if a. more function-like interface is desired, the argument Jist
10 defm.acro may contain ,certain &~keywords. These are analogous to the &-keywords accepted
by defun (see page 8). In this case. the argument list should nol have a doued end (like lhe 'for
example), although the components ma)' lhcmse1ves be patterns.

&,optional denotes the start of optional "arguments" to me macro. Each following parameter
is l11en of tl'1e fonn 1/Qriable, (lrariahle),. (i•ariahl.e defau/1), or (variable defou/1 prese,u-p). default
is a form to be e aluatcd to provide a. va ue of oo corresponding "argmnent" is present [n the
cal]. pr.esem·p is a variable; it will be bound to nil if no argument is pres.ent, t otherwise. Fo'
e:iiamp1e,

(defmacro print-in-radix (x &optional (radix 10.) (•nopoint? t))
'(let ((base ,radix) (•nopoint .•~opotnt?))

(print .x)))

If wuiahle is a pattern. then the 'first form is disal]owed b)Uause it i.s syntactically ambiguous.
The· pattern must be enclosed in a sing eton list Ole: in some implementations. if variable is a.
patlem, de/arllt may be e11aiuatea more than once.

&rest sa. s that the following item s.hou Id be matched 8igainSl the rest of the can. That. is, the
argument list (&rest items) is equivalent 10 the argument ·list items. and the argument list for for
(var !lower upper . body), could have been wr:iuen as (var low,er upper &rest body). &rest
may be easier to read than a doucd li t, and it ano s one oo use &a:ux.

8.aux has nothing to do with paucrn matching. Jt hould come at the end of I.he patltem
(which mus cannot be a doucd list), and may be foH owed by one or more variabJc. binding
ptXifications,. of me form mriable or {variable ~·alue). The ,·ruiab1c wi I be bound to the specified

value. or n II.

&body is identical to &rest, and ·n ccn, in implcmemations may leave some infomrntioll
around for mhc:r programs to use to decide on how that fonn hould be indcmed. The for macro
should be defined wilh &body in pre cn'.:ncc lu &r,est.

The &option.al vmitible bindin are perform. d scqucnwall~. '[bu snmcthing like

(def macro foo (a &opt i ooa 1 (b a)) ...)

will define t1 mocrn I.hat when c.1lkd "hh orl°l:i,• one argument wiH hind hoth a and b 10 that
,rr,g.umc nt Wh n c.ilkd with two arnumcnl'. a will be hound m the> flls.t argum m .u1d 'b will h~

12

bound to the second.

The macro dolist (p~e 23) is defined such that

(do l i st (~r /isl) form-/ fr;rma2 •••)

facljsp Extensions

steps var over the clements of Tisi . evaluating al] of the fomt·i each time (son of like mapc}. It
could be defined with defmac:ro by

(defmacro dolist ((var list) &body forms
&aux {list-var (gensym)))

'(do ((,list-var ,list (cdr .list-var))
(,.var) l

({null , ht-var)) .
(setq ,var (car ,list-var))
, ©forms))

Maclisp Extens·ons 13 Other Definition Facilities

6. · Other Definition Facilities
1defvar variable [inil] (do~umentalion] Special Form

defvar is the recommended way w declare the us of a global variable in a program.
The fonn

(def nr witfable inil)

placed at top, leve in a file is roughly equivalen ·· m

(d,ecl a.re ,(special variable})
(or (bou nidp 'fariab.le)

(set.q l'tlriab.le init))

lf lhe inif fonn is not given, then defvar does not try ro tnitiaUze lhe value of Ute
varlaible, it only dectares it to be special.

docume11tatio11 is ignored in most implementation , aJt:hough it is a good idea to supply it
for the benifit of those implementations that make use of it. It sbowd be a. "string" (e
page 63).

defconst wiriable [initJ [documentation} Special Form
defconst is similar m defvar expect mat if init is given lb.en variable · always et to
have that va ue,. r-<;:gard ess of whether it is .already bound The idea is that defvar
declares a global \1ariab]e, whose vaXue is initlalized to some,thing but wilJ then be
changed during the running of the program. Oo I.be other hand. defconst dcc1ares a
constam, whose ,ralue will never be changed b lhc progl'.am, only by changes to· lhe
program. defconst. always sets variable to the specified value so that if you change your
mind abou wllat the constant value should be, and then you e .aluate lhe defconst fomr
again, variable will ge:t set to the new value.

eva1-whem lim&lisl fonns
evat-wnen is used to specify precisely wbac is to
eva -when form must appear at top level in a file.
of the symbols eval, compile and lload.

Special .Fon11
happen ro the concaining forms. An
times-list can contain any combination

lf eval ~. in times--/ist. then when the interpreter evaluates the eval-when form each of
the forms will b e ah.lated. If eval is not present. then lhe forms wiU be· ignored in the
interpreter. The return . value is not guara teed to he anything in particular.

f compile is in limes-list, then when the compiler comes across the ev.a!l-when form at
compilc·Lime, i will evalualC each of the forms right Lhcn an.d there.

f load i in times-list, then when the com-pilcr comes across the eva1-when form in th
file, it will conOnue process the fonns as if they appeared at top le cl in t.he me. Thus
the rcsull. of compiling. l:hc furms will be placed imo lhe compiler output fi1e so that they
may be loaded later.

!El!:amplcs;

MJ _; TvlAClXlC:Dl:FEXT l] 2l-RJ' .-Sl

Other Dcfinjtion Facilities 14

(eva ,-when (eval compile)
(setsynt~x /" 'macro hack - strings)
(defun hack-strings()

... H

Maclisp Ex-tensions

This wi J foot with the syntax of dcublequote at run-time and compile-time (presumably to
aUow the rest of the file to be read in properly). but when the file is compiled and
loaded the syn~ of doublequote will be unchanged. and the function hack-strings will
not be defined.

(eva1-when (eval)
(defun foo (f~ob)

(and (atom frob} (barf))
(car f r ,ob))) ·

(eval-when (compile)
(defun foo macro (x)

(list 'car (cadr x))))

This. will define foo as a paranoid error checking function when the program is being, run
int.erpreted, but wil[arrange to de.fine foo as a macro at compile-time so thac j wlU
compile ju t like car. When the compiled file is oaded foo will not be defined at all.

(eval-when (eval compile 1oad)
(defprop frobulate frobulate macro macro)
(defun frobulate-macro (x)

.... H
This is ai. way t.o define a macro by hand in Mad:i~p to be present whenever the file is
beitng run or compiled.

11 : l i\ I llll JlEFE, I' 12 2l·JUL·81

M adiSp Extensions IS Setf

7. ·Setf
sett. Macro·

setf pro,· ides a general mechanism ror modifying the c.omponenrs of arbitrary Lisp objects.
A setf r orm Joo ks like:

(s ,etf reference form)

The sett fonn expands into code to evaluate fonn and then modify some Lisp object such
that me form refellnce wou1d ei,•aluate to lhe same ffling. For example:

(setf (car x) 47) -s:;,, (rplaca)I 47)
(setf (,cadr. x) ni, l} "·"'> (rplaca (cdr x) fii)
(setf {get a •zip) 'foo) -"> (putprop, a 'foo 1 zip)
(setf (arr aye all t a l) t) ""'> (store {arraycall t l\li 1) t)
(setf (symeva . foa) bar) .,_,. (set foa bar)
(setf foo b.ar) .,,,.:;,,, (s.etq foo, bar)

The order in which fomi and any fonns found in r-eference are evaluated is not guar.aineed
in any bul the P P· 10 Madisp and N[L implemencaitions of setf. either is tbe value
relllrned b;i the code set(expands imo guaranteed in any way.

setf also knowns how to perfonn macro expansions of any .refere.-,,ce i d.oesn't recogniz-e.
So if first is a macro defined co ,expand as

(first foo) .,, ,> (car fo,o)

then

(setf (first foo) I) ~~> (rp aca foot)

setr s ability to exp.and ma<:ro forms, makes it indispensable when using the defst u.ct macro
(page '6).

Several othe:r common macros are defined to expand into code that i!Dcludcs a sett form. All
lhese olher macros share the · property with setf that in some implementations they are liabl.e to
cva1uate their various sub-forms in an order other than the one they ,were wri ten in. En some
cases you even run the risk of having, some sub-fom1 evaJuated more that OJJte-.

push Macro
push is defined to expand roughly as fol1ow :

(p us h frob refere1zce)

==> (setf reference { cons /rob referem:-e))

The qua]ifications .about order of cvaluarion given for seU a.pp) lo push also:
.additionally, only Lhc PDP·]O and tL itnplcmcntal.ion guarnmee lhrit fo1ms ·n reference
will not be evaluated multiple limes.

11.:~ AC DOC· t: l'F l2 21-JUL-81

Setf

pop

16

po,p, js defined. to exp~d roughly as, follo,ws:

(pop reference)

--> (prog 1 { car reference)
(set f referem::e (cdr reference)))

(prog1. is exp?ained on page 25.)

Maclisp Ex:tensions

Macro

The qualiJieations. gi\len for push about order of evaluation and multiple evaluation apply
ro pop, also.

1L: MC'l)CSITF 1 2]-JUL-81

Madisp Ex~ensions 17 New · uoctioll!S and Special Fonns

8. New Functions and Special Forms
Thi •chapter documents a number of new functions and special :forms that ha been added

to the MacUsp faoguage.

Although many of the functions documented here are shown sh.own as b-cing functions. lher~
is no guarantee Utal any particular isp actually implements them that way rather than as n1acros.

&.l Bit Hacking

AH of the functions in this section operate on integers of any size in Lisp Machine Lisp, but
only on fi:mums •elsewhere. Remember mat all the integers shown here ar-e in octal.

8 1.1 Boolean Operafion.s

The following functions could be (and often are) implemented in tenns of the boole funcOon.
'Their .use tends to produce Jess. obscure oode.

·1 ogand &rest args
Returns die bitawise logic.id and of its arguments. Al least two arguments are required.
Examples:

(logand 3466 707)
(logand 3456 -100)

l' o g 1o r &res args

;,),- 406
•> :3400

Returns the bit wise
required

fogica1 inclusil'e or or ils arguments. At least two arguments are

Example~ •·

(logio~ 4002 67) => 4067

logxor &rest args
Returns the bi awise 1ogica1 exclusive or of its arguments. At least two, arguments are
required
Example:

(logxor 2631 7717) => 6246

logno,t lUlmber
Refums the logical c•omplcmcnt of mmiber. This is the same as logxor'i g number with
-1.
Exru:np]e:

(lognot 3466) ~> 3457

Ml.: 1/\Cl OC: mVFU 51 2HUL-81

Predicates 8 MacUsp Extensions

8.1.2' Byte Manipulation

Se¥era1 fun.cc.ions are provided for dealing with an arbitrary-width field of contig11ous bits
appearing anywhere in an inte~ (in Maclisp. this is res.tricled to a fu:num). Such a contiugous
set of bits is c:aHed a byte. No1e tin lhe term byte is nor being used to mean eight bits but
rather any numlx:r of bits within an integer. Th.ese functions us.e numbers called byte :specifers to
designate a specific byte position withlu any word. Byte specifiers are fumums whose two lowest
octal digits represent the -size of the b. t.e, and whose higher octal digits represem the position of
the byte within a number. counli'ng from the right in bits. A pos:ilion of zero means that the
O)'[e is at the right end of the number. For ex.ample tlle byte-specifier 001 O (i.e.. 10 octal)
refers to the Jo west eight bics of a word, and 'lhc byte·Specifier 1 010 refers to tbe next cigh E bits.
These byte-specifiers will be stylized below as ppss. The ma:;i;:lmlJ[fl reasonable va1ues of pp and ss
are dictated by the Lisp implementation. except of co1.1JSe ss may nm. ' 'overflow'' into the pp field,
so may not ,exceed n (oc,ra!t).

ldb ppss num
Returns the byte •of mim specified with the byte-specifier ppss, as described above.
Example:

(db 0306 4567) ~> 56

dpb byte ppss rium

Returns a new number made by replac~g the ppss bjlte of mun with byte.

8.1.J Testing

btt-test x y
Rerurns. t if any of the bits in x and y intersect' that is if their h:1gand is not zero. bit­
test could be (and sometimes is} defined as a. macro such that

[bit-test x y) ~~> (not (zerop (logagd x y))l

8.l Predicates

f1xnump x
Rewms t if x is a. fixnum. This corresponds to a typep, of fixnum.
Examples:

(fixnump I) => t
(fhnump (expt 259. 259 J) "'> nil

flonump x
Rem ms t if .x is a flonum. This corresponds to a typeµ of flonum.
Examples:

(fl on ump 3 . 14) -> t
(flonvmp 17) ~> n l

ote that Lhl~ i~ tiic ~;LmC as floatp in mo t Usps. hkh ha\'t only one Lypc I f firiaiing~
pi ,illl n:.•prr. cmalinn. In Lisp M:ichirn: l.i-p hrn \'Cr, there arc i::nme kind-. t ►f fltming

~R: Ii\ 1 IOC: i 1-'WFU 57

Maclisp Extensions 19 Lisl:S

point num.bers that are nol of type Clonum. flonump will return ·nu for these objocts. It
is probab]y the case that code that is trying to be compatibJe should use floatp in
preference to either flonump or (eq (typep x) 'flonum).

a.rrayp x
Returns l if .r is an array. ote that some Lisps implement ,certain kinds of objects as
arrays: for eX.lmple, PDP· 10 Maclisp .file objec1s arc arrays, and Lisp Machine Lisp
utilizes arrays for . masc trucmres defined with defstruct (page 26) ..

evenp integer
Rerums t if integer is e,•en, nil otherwise. This complemenis the oddp function which
Lisp provides.

<111 &rest a,v
<"" requires at Je-ast two argumellts. ff any argumenL is greater than the next argument.
it r:eturm. nill, otherwise it rewms t. In Machsp,, args sh.ould consi t of ejthcr all fixnums
or all fto.nums.

) ,■ &rest arg$
Similar to < = •

f boundp symbol
ft)oundp returns nil if che symbol symbol in not defined as a function or spcciaJ form. It
returns something non~ni · f symbol is defined. The exact nature of the non-nil object
varies fr-om implemencation to imp,tement.ation.

]t is not dc:fiaed wha:t lboundp rerurns if symbol has a:n auto!oad property and is
otherwise undeine.d.

8.3 Lists

11; st• &rest ,arg:.
list ,creates wha't some people call a "dotted list".

n i st• • foo • bar "baz) "'> (foo bar . 1baz)
(li st• 'foe ' a) ~> (foo . bar)
(list• 'foo) => foo

lisr' makes certain unwieldy compositions of tlle cons function somewhat easier to cype:

(li st• l 2 3 4)

is the same as

(cons 1 (cons 2 (coBs 3 4}))

make- I ht length
make- list crc:ucs a list of nils of lcnglh leugrh. Fxamp1e:

(make-list 3) a.> (nil nil nil)

1'.U.:MAC'DOC: 1EWl-ll 57

Variables zo Madi p Exlensions

nth n list
(nth n Ji.st) rerums the n'th element of list, where the zeroth element is the car of the
list lf n is targer than me length of the list,. nth returns nil. Examples:

(nth 2 '(zero one two three))~> t~o
(nth O •cab c)) ~» a

lilthcdr n li$l

(nthodr n list} cdrs list n times, and returns lhe result. If n is larger l::han lhe length of
the list then nil is returned. Examples:

(nthcdr 3 t(q e rt y)) ~>(rt y)
(nthcdr O '(et a o i n r)) ~>(et a o i n r)

ore that

[nth n l)

liS the same as

8.4 V ariabies

let

(car (nthcdr a /))

(1 et ((mr-1 wil-1) { m~l rol-2) •••)
form-I
form-2
-. .)

Special Fonn

binds WJl'"l oo the value ,of mH. v r-2 to the value of vaf-2 ere. and. e alua[es each of
lhe form·i m that binding cnvironmenL Tim is. it. is equivalent to

((lambda (,'at-I wzr-2 •..)1

fomr-1 fomr-2 .••)
val-I va/.2 •••)

bul displays the values. in cJose prox.imity to the variabie:s.

Ole tlrnt similar to do, a declaration is aUowed as the first form m a !et body ..

1 et• Special Form
tet. has a Sj,·ntax id.eruical m mat of let, bm binds the vadables in sequence rather than
in parallel. Thu.s,

is Hke

(let• ((a (foo}) (b (bar a)))
(computate ab)}

11 .: UCI 10C: . FWFU 7

Madi~ Extensions

((lambda (a)
((1 ambda (b)

(computat.e a b))
(ba.r a)))1

(foo)),

21 Flow of Control

p ,etq Special Fomz
pse,tq is similar to setq. In the multh·ariable case however, the variables are set "in
parallel" rather than sequentuaUy~ first all the fonns are evaluated. and then lhe symbols
are set to the resulting values. For ,example:

(set.q a 1)
(s,etq ID 2), ·
(ps ,etq a b b a)
a "> 2
b, -> 1

8.S Flow of Control

8.5.1 Conditionals

if predicate-form 1he11-form [else-fonn] Special Form
if is a com1enient abbreviation for a simple coRd which does a binary branch. predicate­
/om! is evaluued, aod if the resuk is non~nH, then rhe,i~Jom1 is valuated and tlt.at r•esu1t
r,c-tlilmed, otherwise else-fonn is evaluated and chat res.ulc returned. If no else-form is
specified and predicate-fonn evaluates to nu. then nil is r,etumed. if can (and usually is)
defined as a macro such tba:t

and

(i f pred t.hen else)
""> (cond ,(pred 1he11) (t else))

,(if pred tlzen)
.. ;:> (c.ond ,(pred then) ,(t A' l))

or

.Jf there are :more than three subfonns, ·r assumes that more than one othenvise fonn was
intended: they w·u be tre.a~cd as an implicit progn. For example,

(i, f' p r: el e2 e3)
--> (conid {p c), (t el e2 eJ)),

There is dis.igrermcnt as to whether Lhis constitutes good programming style, so jt is
po.,sibl<' that tJ i I.1st ,rariant may be disallowed.

U.: 1ACD C; EWFU 57 :!l·JUL-81

Flow of Control 22 Madisp Extelilsions

8 5.2 Selection

se 1 ectq key-fomJ efauses... Special Form
se1ectq is a conditional which chooses one of its clauses ro execute by comparing the
value of a form against various oonstancs. Its fonn is as follows:

(s1:rllectq key-fomi
(resl consequerwfomts. ..)
(test consequem-forms.. ••)
-..)

The first lhing se1ectq does is to evaluate kerfon11; call the resulting ·value: key. Then
selectq, considers each of the clauses in rum. llf key matches the clauses lest, the
aonscqucnts of tltis clause ar-c ~ ·aluated, and selectq rewrns the value. o the 1ast
consequenL If there are no matches, sel,ectq rerums nil.

A resr may be any of

a symbol odnteger The symbol or integer is compared wilh key. Symbols are
compared using ,eq; integers are compared on lhe -same basis that
equal uses-equal types and equal 1,1alucs. Note that t and
oth eMise are ~cepdons ber-e.

a list The list should contain 1only symbols and integ,ers, which are
compared as above.

tor otherwise The symbols t and otherwi,se are special keywords which match
anything. Either of tlu:se may thus be used ·ro signify a 0 dcfau t.,
clause. which to be usefu should be ·we lase dause of th" selectq.

Examples:

(defun count-them (n)
(selectq n

(
10 • none)

(l I one)
(2 two)
f (3 4) 'a-feil)
{t •many)))

(count-them Z) ->
(coun t-them 3) ;>
(count-t~em 7) ~>

(selectq •one
fl integer-one)
(one •symbol-one)

two
a-re111
many

(t 'something-else))
,.> symbol -one

if lhc key bc"ng tcst('d again. t and the va ue of /r.('J"-fom1 are all of the 1;amc type. ca.seq
hould e used, a it ma , prmlu c more cfficknl code dtpcnding <-Hl Lhe impl 'mcnwtioa.

' l11i · 1 1mc in Pl >P· U M.iclh,p. ""hkl1 ha. IHI p1 imiliH:' pr~uical Lhal impkmi,;,nt, ihc
t pl: or cnrnp:1ris1 n 1hm selectq us • . Jn Lisp ~l.ichinc Usp ;111J fol1k · T.1clisp I.here
slmnld he nu dilr rcncc unlc big.muns arc used. Pre cmly. b1gnt1m do nut work

. 11: U "ll(C:N ;\ F '57 21-J 11.-81

Maclisp Extensions 23 Row of Control

an~ry,ray, but this is expected to be fixed

ca.seq key-fonn clauses... · Special Form
caseq i lhe same as selectq except that it requires all of the keys being compared to b
of the same type. I is also an error for t:be value of key-fenn co be of a different type
Iha the: ke,fs in lhe dauses.

Currently, in aH but the PDJX 10 implementation, caseq is unplemcnted in tenns of
selectq so does not provide this consistency chccling. any quaUfications given for setectq
apply to caseq.

lo PDP..10 Mac.lisp. ca.seq does no accepc the othel"',vise keyword; it is nc.cessary for t
to be used. It also does not accept bigrmms.

8S.3 Iteration

do11st SpecUJJ Form

doUm

loop

dolist · like a cross between mapc and do,,

(dol is t (l'ar list) body; ..)

e'Valuates the forms of body for each element o list. with var bound to the successive
eJements. body is treated as a prog ,or do body so it H1ay contain prog tags, and c-alls
to retum, which will return from lh.e dolist.

Special Form
d1otirr:es. performs .integer s.tepping, and is otherwise: similar to dolist.

(dot :i mes (var couhl) body_, }

evaluates body count times: mr takes on values sta:rtiug with zero, and stops be.fore
reaching cau,rt. For example.

(dotimes (· (// m n}) (frob i))

is equivalent to

(do ((i O (l+ i))
(count (II m n)))

((not(< i cou~t))l
,(frob i H

ex.cept th.at the name count is not used.

dotimes is similar to dolist in that the body is created as if it were a prog or do body.

Macro
dolist and dotimes arc convenient for simple cases. where the extra syntax nccc-ssitalcd by
mapc or do is an annoyance. F<1r complicated ca cs.. the loo,p macro m iy be desirable.
h. prmidc for lhC' stcpp111 of nm] ipk \lariahks. cilhcr in soquc111: rir in para k. and
method. for pcrlhnuing \,ffiou s,irts of ·,crnmutni 111. : u1.:h as collt1c:ting a li-.l, :.11mming.
.m co1.rn1mg; more than one uch ,1c-cumul:1tim1 w be performed. and tbey need nut be
.iccu1m1lalcd "in sync" wilh 1.hc it ration. Fur example.

2l·Jlll -81

Flow of Control 24

(lo,op for x in 1 as y - (f x) col ect (cons :ii y)),

produces a result like ·

(do ((• ' ist• (cdr •list•)) (x) (y) (•result•))
((null •list•) (nre verse •result•))

(setq x (car •l·st•))
(setq y (f x)) ·
(setq ·•result• (cons (cons x y) •resu t•)))

faclisp Extensions

does. loop is extremely complicated so is nol documented here; fuU documentation Olay
be found in MIT Laboratory for Computer 'Science Technical Memo 169' (January 1981).

8.5.4 on· Lo,cal Exits

•ca tc Iii tag form Special Fo.rm
The •catch special form is used with •throw tO perfonn non-Jocal ex.its. tag is evaluated,,
and then form is ,evaluated. If during the e aluation of Jom1 a {'•throw tag Yalue) is
done, then the ••catc h returns value.

•th row tag value
Evaluation of (•throw tag value) causes a pending •catch of tag to return value ..

• catch and throw arc slightly more gene1a vers · ons of the standard MacUsp catch and
throw s.pec:ia] fomis. They are more general. in that the tagS given to them are evaluated, and
thus need not be written into me code. but can be passed in. Additionally, the di.fferenc.e in
argument ordering c-an make for more readable code. viz

(•catch ·exit
moby-big·hairy-compualion-­
lhal·is-c-ontf11ued-over­
many-lines),

~Jsp Machine Lisp, PDP· 10 Maclisp. alld NIL support '"catch and •.throw as the ba:sic c.a:tch.ing
and throwing primitives· catch and hrow arc impJementcd as macros in terms of them. Multi.cs
Maclis.p implemcncs •catch and •ttirnw as macros ·n tcnns of the existing catc · and thr,ow
special fonns: thus i[is impossible for '",catch and •throw on Mu]tics to aocept anything but a
quoted atom for the .tag.

It is advisable for •catch and •throw to be used in preference to catch and throw; at ·some
future time it · anticipated rhat catch and throw will be change.d to be equivaJent m •catch and
•thrrow. 111c names •catch and •throw arc c;,,:pccted to remain valid indefinj ely.

unwt nd-p,rotect form c/eanup--form.s... Special Fonn
unwind-protect evaluates Jonn and .rcmms lh3t re ult as its value.. When contro] return
from the unwind-protect for an reason, ~~'nether it be a nonna1 return. or a 11n11~Jocal
,exit niuscs by a •throw or an error. the clemmp-fonns wm b~ cva uatcd. unwind-protect
can chu he used for "bi1nll,ng'' something which i. 1Hn rcany hindublc as a \"ariable, or
k1r pcrf{uming !!,om nc C!-~-;1ry 1..k.1m1p iii.: ion. :u h ,is clu~ing a file ,.
fa11 nplc:

H: 1/\Cl)O .."; EWI·· l 57 21· UI .· I

Madisp Ex tensions 25

(u n\ll i nd-pro,tect
(progn (turn-on-water-faucet)

(compute-under-running-water))
(turn-off-water-faucet))

8.6 Miscellaneous

Miscellaneou

p,rog1 first forms... Special .Form
prog1 is similar to rprog,2, only without lhe first argument. Al of l:he argument to ,prog1
are e\·a1uated just as they would b-e for progin. however. the value returned by prog1 will
be the aluc of the first r om:t rather than the fast For example:

(rplaca x (progl (cdr x) (rplacd x (car~))))

can be used to exchange the car and the cdr of a. cons.

1expr-fu cal· fimction &rest atgs
expr-funcall is a cross beween funcall and a.,pply. (lexpr-foncall func1io11 arg·J a,g-2 ...
ar~n list) calls the function function on arg-J through arg~11 followed by lbe elements of
list for example

(1exp,r-funca1,l list 'a 'b '(c d)} .a> (a b c d),
(lexpr-funcall 'plus 3 4 •(2 1 OJ) ~> 12

ote mar rwo argument 1!e.xpr-funcalli i the same as apply, and that llexpr-funcall with
a li.ist argumenl of nil is essentially h.rncall.

w 1th o u t-1 n t e, r r up ts forms ...
This provides a convenient way of executing some
evaluated as with progn and the va ue of me Jast fom1
the evaluation wit! be performed an atomic operation.

ferro ·r condilion·name fem1at-.stri11g &rest formaf6args

Special Forni
cod.e unimerrupriibly. fonns are
is returned. It is guaranleed th.a

•ferr,or pro.1ide a mechanism for signaUing errors using format (page 47) lo generate the
error message.. co11dilio11-name is used to specify the type of condition which is to be
signaled; no mechanism for lhi ex1sts in Madi p. Ho vcver, condilirm·rwme may be n·1.
in which case an unc-orrectablc error occurs-nil is ·lhereforc I.he oruy alue of coudilio11·
name guaranteed to work. everywhere.
Example:

(ferror oil '''%%% Compi 11er error - cal 1 ~S '%%%"
(get ' compiler tma~ nta1ner))

21· LI i .· 'I

Dcfstruct 26 Mac isp Ex.tensions

9 .. Defstruct

9.1 Introduction

The features. of de,fstruct differ slight1y from one Lisp implementation to another. However
defstruct makes 1L fairly easy to write compatible code if me user doesn't rry .o exercise any of
lhc more ese>[eric: featu~ of bis particular Lisp unplemeruation. The differences v.riU be pointed
out as they occur.

One difference that we must de.a: with immediately -: tlte q oestion of packages. defstruct
makes, use of a large number of keywords, and on the Li. p Ma~hine those keywords are all
interned on the keyword package. However. for the purpo-ses of compatibility, the Lisp Machlne
defst,ruct will allo the keywords to appear in any packa,ge. The Lisp Mach.ine programmer is
discoma,ged from writing keywords w·thoul. colon • unless the code is to be transported to another
Lisp .implememation. aasses of s.ymbols ·that defstruct a-ears as keywords will be noted as they
occur.

Other package roJate.d issues will be dealt with. later.

9~ A Simple Example

def·struct Macro
defstruct is a macro delmi.ng macro. The best way 1LO explain how it works is to show a
sampk call to defstrucl. and then to show what macros are defined and what. each of
them does.

Sample call '[O defstruct:

(defstruct (elephant
color
(she 17.)
(name (gensy1m)))

f type H st))
•

This form expands iinto a whole rat's nest of ruff. blllt the effect is to define fi e macros: coror,
size, name, make-elephant and .alter-etephant ote that there were .no symbols make·­
elephant or alter-elephant in 'I.he original form, they were created by defstruct. The definitions
of color, size and name are easy. they expand as follows:

(color x) ~~> (car x)
(si~e x) 00> (cadr x)
(name x) ~~> (caddr x)

Vou ca.n sec that defstruct ha decided to imp1cmenl an elephant as a hsL nf three things: its
co!or. its izc and it name. The cxpan io!l of make-elephant i somewhat harder to exp ain
let's look at a few cases:

r,,11.: f\1 .,\ 1 ·1 >OCDF.FSTR 58 _ l & J Ul .-81

Mac lisp Extensions

(mak•e-el ephant)
(make-elephant color 'pink)

27

(make-e · ephant na.me I f red size 100)

yncax of defstnm

=~> {list ni 17. (gensym))
"'o (list 'pi nk 17 . (gen sym))
==> (H st nn 100 'fred)

As you can see, make-elephant takes a "setq·styie" list of pa:rt names and forms, and
expands into a call to list that consIDJclS such an elephanL ote th.at the unspecified parts get
defaulted to pieces of code specified in the original c-.all co def struct. Note: also that the order of
the se.i.qTstyle arguments is ignored. in constructing the call ro list (In the example, 100 is
evaluated before 'fred e en though 1f:red came first in the make-elephant form.) Care should
thus be Eakcn ill using code with side effects within the scope of a make-elephant. Finally, take
note of the fact Um me (gen-sym) is evaluated e~ery time a. new elephant ts created (unless, you
override it}.

The explanation of what alter-elephant does is delayed until section 9.4 . .3, page 3 .

So now ;•ou know how to construct a new elephant and how co ,examine lhe parts of an
elephant. but bow do you change the parts of an a1ready existing elephant? The answer is to 11-se
the setf macro (chapter 7, page 15).

(setf (name x) 'bill)

which i£ wh.a you wanL

~:> (rplaca (cddr x) •bill)

And tha.t is just about all there is to defstruct~ you now know enough to u e it in your code,
bm if you want lO know about al) jts in,teresting features, the.n read on.

9 .. 3 Synta or defstruct

The general form of a defstruct form js:

(def s tr u c \ (name option- I option-2 • . • option-n)
slot·descript.ion· I
slo1·description-2

name must be a symbol, it is used in con.stmcting names (such as "make-elephant") and it is
gh'cn a defstruct-description property of a structure that describes the scrucmre completely.

Ea.ch option-{ is either the atomic name of an option or a list of the fonn (option-name arg .
resl). omc opLions have dcfau1t..s for arg~ some . ill complain if they are presem without an
argument: some op ·ions complain if they are prcscm witli an argument nc interpretation of re-st

up to !he option m quc.stiun, but usuaUy it is expected to be nil.

Each lot-d criptio11-j is either th atomic name of a slOl in I.he tructurc, or a lis l of the
form (s/o,-.11mm.- iuit•cr,dt). or a list of bj tc field spcdfi aLion . inihlide is u.,;cd b}'' c:onstn1cmr
m;,cros ism:h ,t make-el pl,anO en Jni1iali1c s!nl nrn specified in lhc call lO thC' c1ms.1rncwr. I

· 1J1c i11i1·wdi• i- nut ,p rilled. then 1hr :.hn i~ lniti.1li:tcd to wllalC\Cr is 111 ust com.:-11ic111. (In (he
elcph"nt cx:unf)lC', ~irn.:1: lh 1n11.-wrc ·.1s a IL l, nil \':.ts u:cd. lr th~ 'itruclurc h;id bcc-n a
fi ·rium urray, sL1ch ~!nt would be fllkd with zeros.)

.!1-JUl.·81

0 ptions to defst:ruct 28 Madisp Extensions

A byte field specification looks like; (/ie/d~name ppss) or (field-name ppss inil·code). ote that
since a byte field spccificatio!l is a1ways a list, a list of byte field Specifications can never be
con fused with me other cases of a sh:it description. The byte field feature of derstruct is
explained m cletai.l in -section 9.5 pa~ 38.

9.4 Options to defstmd
'

The following sections docwmmt each of me options defstruct understands in detail

On lhc is:p Machine. aU these defstruct Options are interned on the key!,\lord package,

9A.l type

The type option specifies whal kind of Lisp object defstruct is going to ust: to implement your
s1n1cture. and how that implementalion is going lo be carried out. The type option is illegal
without an argument U the type option is not specified, then defstnJCt will choose an
appropriate default (hunks on PDP· IOS, arrays on Lisp Machines and lists on Multics). le is.
·possible for the us.er to ceach defstruct new ways to implement structu.res. lhc inler-ested reader ils
referred to section 9.8. page 42, for more infunnation. Many usefu] types have a1ready been
defined for the user. A tBble of dles-e "built in" types follows: (On the Lisp Machine all
dcfstruu cypcs are interned on the keyword pack.age.)

list

named-list

All imp.ltmer1t.alion.s
Uses a lisL This is the defauJt on Multics.

All implememation.s
Like l'ist, ex.cept the car of each instance of this txucture wir be the name
symbol of the structure. This is the only ''named" structure cype defined on
Mullics. (See lhe named option documented. in section 9.4.7. page 35.)

. All implementations
Creates a bmary tr,ee ,out of cooses with the slots as lea es. The theory is To

reduce car-cdririg to a minimum. The include option ,(section 9.4.6, page 33) does
not work with Shllcwres of this type.

l1tst• .All implemeruotiom
Similar to list. bu L tlle lasi slot i.n the structure will be placed in the cdr of the
ftnal cons of the list. Some peop]e can objeccs of this type "dotted lists'. The
include option (section 9.4.6. page 33) does not wart w.ith structures of this type.

array .A II implnnentotions
Uses ~n array obJcct (mu a ~ymbo,1 with an ru-ra_ properly). ·111 is is the default on
JLp M;:i hines. Usp Machine use~ may want to :rec the make-array option
documerned in seclion 9.4.8, pag~ 35.

ti.: 1 \ CIXK:I rr- · 1 R si

Madisp Extensions 29 Options to defstrlJCl

fixnum.-array All implememations
Like array. excep, it uses a ftxnum array and thus your structure can only c-ontain
fix.nums. On ·usp • achines defstruct uses an art-32b rypc array for this type.

flonum-array All implementolio,1s
Analogous 'to fixnum- array. On Lisp Machines defstruct uses an art-float type
array for this type.

un-,gc array PDP-IO only
Uses. a nil cype array in te-.ad of a t type. 1ote that thi type does not exist on
Lisp Machines or Multics, because un·gar'ba:ge-coHected arrays do not work in
those implementations.

~~ M~W*
Uses a hunk.:. This is the default on PDP· !Os.

named-hunk PDP·IO onlp
Like hunk. except the car of each instance of this structure will be tlle name
symbol of the trucrure. This can be used with the (stat,us usrhunk) feamre of
PDP-10 MacUsp to giYe the user Usp Machine-like named structures. (See the
named option documented in scotion 9.4.7, page 35.)

sfa PDP'- JO only
Uses an SFA. The construct.or macros for this type accept the keywords sfa­
functia,n and sla-name. Their arguments (evaluated. of course) are used,
res-peciive, y, as the function and ·I.he printed repr,esentation of the S A. See also
the sfa-function (section 9..4.9, page 35) and sfa-name (scc:Lion '9.4.10, page 36)
options.

named-array Lisp Machine only
Uses an ar:ra;r wi . the named structure bit set and stores the name symbo] of the
structure in the first element. (See me make-array option documented in section
9.4.8. page 35.)

array-leader Lisp Ma.chine only
Uses oo array with a leader. (ee che make-array o_ption documented in section
9.4.8, page 35.)

named-array-leader lisp Machine only

fixnum

Uses an array with a leader, sets the named strur;ture bit. and stores the name
symbol in element l of r.he leader. (See the make-array option documentcd in
sect.ion 9.4.8, p~e 35.)

• JJ impleme11ta1ions
·1nis. iypc allow one 10 use ihe byte field ream:rc of deFstruct to deal symlJ.o!k IJy
with fixnum thilt arcnl actuany stored in an~' 1rncture at all. Esscmially. a
strucnire of type fixnum h.is cxacUy one slot ·111i alto\ the opc,,.uiu11 of
rclricving the· cnntcm~ of that :loL lo be optimi1.cll ;n ~,} in [1 the idcmity
pcrnition. cc- ·crtiun 9.5. page 38 fur more infnmrntion al.mul l•.! field .

Ml: 1A ·noc:DITSTR 58 .. J-JUL·R I

Options w defstruct 30 Madisp Ex tensions

external Mulllcsonly
Uses an array .of type external (only Multics Lisp bas these). Constructor macros
for snucrures of Ibis kind take I.he extemal-ptr keyword to 1cn ihem where the
array is to be -allocated. (See section 9.4.2, page 30, for an cxpJanation of
constructor macro keywords.) See also the external- ptr option described in section
9.4.11, page 36.

9.A. 2 constructor

The co'lflStructor option specifies the name to be given lO the· constructor macro. Without an
argument.. or if the option is not prt'SCnl, the name defaults rco the concatenation of ••make~" 'Witll
me name o tbe structure. If the option is given witb an argument of n'I, then no constructor is
defined. Otherwise the argument is the name of !he con tructor to define. Normally the syntax
of che constructor def struct defines is:

(constructor-name
keyWCJrd-1 code- I
key¥1Grd-2 code-2

1r.t)llMOrJ.n code-n)

Each keyward-i must be the name of a slot in the strucrure (not necessarily the .name ,of an
accessor macro· see the cone-name option. · section 9.4.5, page 33), or one of the special
keywords allowed for the particular c,ipe of structure being ,constructed. For each keyword lha't is
the name of a slo1., the constructor expands imo code to make an instance of lhe stmcture using
code---i to inrnalize slot keyword- I. Unspecified slots defa It to the fonns gi\lcn in the original
defstruct form. or. if none was given there. to some cooveni.ent value, such as nH or o.

For keywords that are not names of slots. the use of the corresponding code aries. UsuaHy
it controls some aspect of the instance being constructed that is not otherwise c;onsi.rained. See,
for examp]e, the rnake-array option (ection 9,4.8. p,age 35). the sfa-functton option (section
9.4.9, page 35, or Lhe extemal-ptr option (section 9.4.11. pag 36).

On ·the Lisp Machine all such constructor macro keywords (those lhat are not che names of
s?ots.) are in terned on the keyword package.

Jf Lhc co11structor option is given as (co,nstructor name arglist}. then instead of maJdog a
keyword driven consLrucmr, defs1ruct defines a "function style" co11slfi1c:tor. The argJisr is used
ro describe what ~1c arguments to the construcmr will be. n the simple t c.ase somelhin,g J'ke
(constructor make-too (a b c)) defines make-foo to he a lhrec argument consrrucoor macro
whose a.rgllmc_nts are used to iniliali..ie the slo~ named a. b and c.

rn addition, Lhc keywords &optional. &rest and &aux arc recognized in me argument list
They work in the wny you might cxpccL. but there arc a few fine points worthy f Cllplanation:

(constructor make-foo
(a &optional b (c 'sea) &rest d &aux e (f 'eff)))

·I11is tk fi n make- foo tu b a con. m1ctor or one or more ,)r<1 umcnt . ·me fin.L ,irp.umcm. is u~cd
to i 1ili.1li1e the a . lo t. The .c·rnnd ar11umcm i u,;.~d Lo 111i lializl! the b slot. I f there isn't an;i
se nuc.J ,ng l1mc1u. l11"n he de fault , ;, Im~ gi \' n in lhc hndr ,r I.he defs ruct ir) ~en) i_ t1scd

- l-J LI 1.-81

Madi p Extensions 31 Option m defstruct

instead. The third argument is used LO initialize the c · lot If lherc isn t an third argument,
then the symbol sea is used instead. The arguments from the founh one on are coUected into a
list and used co initializ.e the d slot. If there arc three or less argument.S, then nil is placed in the
d sloL Toe e s1ot is not initialized. Jfs alue will be something convenient like nil or 0. And
finally the f slot is initialized to conilain the symbol eff.

The b and e cases were carefully chosen to allow the user to specify a11 possible behaviors.
NoLe that th &aux " ariables" can be u ed to completely \'Cmde the default imt.ializadons given
tn the body.

Since there is so much freedom in defining constructors th.is way, it wou1d be cruel to only
allow the constructor option to be gh1en once. So. by special dispensa ion. you are a.Uowcd to
gi e the oonstrnctor option more than ,oQoe, so I.hat you can define several different constructors.
each with a di.ff erent syntax.

ote that even these "function scy]e" constructors do not guarantee that their arguments win
be valuated in the order tha:t you wrote mem.

9 4 3 alte.iant

The alterant option defines a macro, that can he used lo c.hange che alue of everal slots in a
cruc,turc cogclhcr. Without an argument, or if Lhe option is not present, the name- of Lbe aheram

macro defaul.ts co che concacenation of ".alter·" with che nam.e of the structure. If the option is
given with an argument of nil then no alterant is defined. Otherwise che argumen is. the name
of the alterant Lo define. The syntax or lhe altcrant macro defstruct defines is:

(alteram-name code
sloNwme-1 code-/
slor-name·2 code-2

slot· name-11 codtn1)

code should e-.-a.Juare ro, an instance of the structure eacll code-i is evaluated and ch.e resutt .is
made co be the value of slot sloM1ame-i of i.hat structure. The s ors are aU altered io parallel
after aU code has been evalualed. {Thus you can use an alte:rnnt macro to exchange me contents
to two slots.)
Example:

1(cjefstr,uct (lisp-hacker ,(typ1e 1 · st.)
cone-name
defau 't .-pointei:­
aHerant)

(favorite-macro-package nil)
(unha.ppy? t)
(number-of-friends 0))

(setq isp hack er (make-lisp-hacker))

ow we ·~m pcrfcmn , transform f Lln:

Ml.: 1.\Cl>OC;I l"F Tit 58 :!l ·JU l.·81

Options to defstruct 32

(alter-lisp-hacker lisp-hacker
favorite-macro-package "defstruct
number-of- frt8nds 23.
unhappy? nil)

~~> ((lambda (G0009)
((lambda (GOOll 60010)

{sst {car G0009) "defstruct)
(set (caddr GO0O9) GOOtl)
(setf (cadr 60009) G0010))

23.
n l))

i sp-hacker)

aclisp Extensions

Although it appears from Ibis examp,]e that _ your fonns will be evaluated in the order in
which you wrote them, this is no gµ;atarueed.

AJ1terant .macros are panicurarly good at simuha11eously modifying severaJ byte fields that are
al1ocated from the same word. They produce better code than you can by simply wri'ling
consecutive setfs. They also produce better code hen modifying several slots of a structure lb.at.
uses the but-first option (section 9..4.15, page 37).

9.4.4 default-pointer

Nonnally the accessors are delined to oo rnacr-os of exactl one argument (They check!) But
if the de fau It-pointer option is present then they will accept zero or one argument When used
will one argum nt, they behave as before, but. given no arguments, the.y expand as if 'they had
been cal1ed on the argument ro the de'fault-pointer opti.on. An example .is probably called fo:r:

(defstruct (room (type treeJ
(defau 't-pointer ••current-room••))

,{ room- ~ame 'y2)
(room-contents-list nil))

ow the accessors expand as follows:

(room-name x)
(room-name)

=:> (car)I)
=~> (car ••curre~t-room••)

mr no argument is giv·cn co lhc default-pointer option. then the oame of 'the structure is used
as the "default pointer''. defautt-pointer is mos.t often used in this fashion.

Mt.: fl.L\ ' DOC;llFl-'STR 58 2 -JUL-81

· aclisp Extcn.sfons 33 Options co d.efsLruct

9.4:S cone-name

Frequeotly a1l dle accessor macros of a structure will want ~o have Jlamcs that begin Ehc same
way; usuaUy with the name of the scrucrure followed by a dash. The cone-name option aUo s
!.he user to specify chis prefix. Its argument should be a symbol whose print name will be
concatenated on.to the front of Ille slot names hen forming, I.he acressor macro names. If lhe
argument :ir 001. given then the name of ·me structure followed by a dash is used. Jf I.he cone­
name opili.on is not present. then no prefi;.; is ll'.Sed. · n xamp1e mu trates a common use of the
cone-name option along with the default-pointer option:

(defstruct (location defau t - po· ter
co oc - name)1

(x 0)
(y 0)
(z O))

Now if you say

(setq location (make-location x 1 y 34 z 6))

it will be the case that

(1 ocation-y)

will return 34. otc wcU that rhe name or the slot ("y'') and the name of the aocessor macro for
lhat sJot f'locatiowy") are diff'ereot.

9.4.6 in,clude

The include option inserts rhe definition of its arg1!llllcnt at the head. of the n w struc . re's
definition. In other words. the firsc slots of the new suucrure are equivalent co (i.e. have the
same names as, have lhe same in.its as, etc.) lhe lots of the argument ·to the include option.
The argumcm to the include option must be the name of a prcvtousJy defined s1n1cru.re of lhe
same type as the nc one. If no cype is specified in I.he ne\ structure then it ic; defauhed o
that of the included one. It is an error for the include option to be presenL without an
argmnenL ote that include does not work on certain lypes of ·structures (e.g. structures of type
tree or list·•). ote al o that the cone-name, default- pointer. but - firrst and callab e­
a.ccessors option only apply w the acces ors defined in the current defstn1ct~ no new accessors
are defined for the induded slots,

Optio to defstrucl

An example:

(defs ruct (person (type list)
cone-name)

name
age
sex)

34

(defstruct (spaceman (include person)
default-pointe ..)

helmet-size
(favorite -beve rage · ang))

_ ow we can make a spaceman like this::

(setq spaceman (roake-spacema~ name •~uz~
age 45.
sex t
helmet-si ze ll.5))

To find ,out buerestir.g mings about spacemen:

(h,elmet-size}
(person-name spaceman)
(favorite-beverage x)

~, (caddd r spaceman)
~:> (car space an)
~:> (car (cddddr x))

Mac lisp Extensions

As you can :ec I.he accessors defined for the person structure have names that swt will
"person-'' and they only take one argument The names of the ac.oessors for the last two &lots of
che spaceman stn.1cture are the same as me slot names but lhcy aUow their argument ro be
omitted. The acc-essors for the first mree slots o the spaceman stmc ture are the same as the
accessors for me person sirucwre.

Often, when one structure includes another. lhe defaull initial values supplied by the induded
,uucture will be ndesirable. These default .initia values can be modified at 11.he time of inclusion

by gi in:g e indude option as:

(inc ude name 11e-w-i11it-.l • • • n~iniN1)

Each 12ew-i11it-i i either the name of an inc1uded slot or of the fonn (.i11cJuded-sfol·name new-inil).
If it is j1.1s1 a sloL oame, then in che new uucrnrc (lhc ooe doing lbc including) that slot will
have no initial arlue. [f a new initial value is given, then that rode replaces lbe old initial value
code for that slo l in the new strucrure. The included struc tu.re tS unmodified

~ ·JUI ·, l

Madi p Extensions 35 Options to defslruct

9.4.7 named

This option teils defstruct that you desire your suucrnre to be a ••named structure". On
PDP-lOs this means you wani >rour truccure implemented with a named-hunk or named-list
On a isp Machine this indicate that you desire eilher a named-array or a narned-array­
leader or a named-list. On Mutlics tbi indicates that you desire a named-list. defstroct bases
its decision as to what named type to use on whauwer value you djd or didn't give to the type
option.

It is an error to use ·thi· option widt an argument.

9.4.8 make~array

Available only on Lisp Machine . this option allows the user ,o control those aspects of the
array used to implement the structure that are no[otherwise constrained by defstruct (such as the
area it is to be allocated in).

The argument oo the make-array option should be a list of alternatin2 keyword symbols to
the Lisp Machine make-array luaction sec the Usp Mac:hine manual), and fom1s· whose ruues
are ta be the arguments ro those keywords. For example, (make-array (:type ·art-4b)) would
re-quest rhat we type ,of the array bt art-4b. ote that the keyword s;imbols arc m,1 evatuated.

Comaructor macros for srruclures implemented as arrays all allow the keyword make-array to
be supplied. hs argument is of the s.ame fomi a the make-array option. and attributes specified
there (i.n lhe constructor f-orm) wiU override mo~ given in the defstruct form.

Since i1 is sometimes nroessary to be able co specify I.he dimensions of the array thal
defstn.1ct is going to construct (For structures of type array-leader for example) t:he make-array
option or consm1cror keyword attep tbc additlonat ke words :length and :dimension (they mean
lhc same thing). The argumenL IO this pseudo make-array keyword will be upplied as che first
argument co lhe make-array function when lhc consm1ctor is expanded.

defstruct chooses :rppropnale defaults for chose attributes not specified in the defstruct form
or in lhc constructor form, and defstruct m1crrides any" specified attributes that il has to.

,.4.9 fa-function

Available only on PDP· lOs, this option allows the user lO specify the fim lion lhar will be
us-ed in suuctures of type sfa. Jts argumenl should be a pie c of code that evaluate m the
desired function. Constructor macros for lJiis type of tructure will rake sfa- function as a
kcyv..·ord whose argument is also the code m evaluate to gel the function. ovcrridi ng any supptied
in. the original defstruct fonn.

If sfa-function i out present anywhere, then the c:onsmtctor will use lllc n.imc-symbol of ll'.IC

structure as chc function,

Ml.:\1 \CllOC:DFI ' 1 R 5, :!HUI -81

Options [0 defstruct 16 M.aclisp Extensions

9.4.10 sfa-name

Available only on PDP-lOs, th.is option allows the user to specify the object that wil] be used
in the prhued representation of struc-tu:res of type sfa. I.is argument should be a piece of code
that evaluales to that object Construclor macros for this type of structure will take sfa-name as
a keyword whose argument is also the code to eval:uate to get the object to use, overriding any
supplied in me original detstruct" form.

U sfa-name ii noL present anywhere, then the constructor will use dle name-symbol of th.e
structure as the function.

9.4.11 e temal~ptr

Available only on Multics. lhis optioo is used with scrm::tures of type external. [cs argument
·should be a pieoe of code that e,•aluaies to a fi:mum "packed poincer" pointing to Ille first word
of the external array the defstiruct is to construct Constructor macros for this type of structure
wm take extemal-ptr as a keyword whose argument overrides any supplied in the original
detstruct form.

If exttirnal-ptr is not present anywhere. theo the constructor signatcS a:n error when it
expands.

Toe size-symbol option allows a user to specify a symbol whose value will be the "size .. of
the stn1cture. The exact meaning of lllis va.rie-s, but in general this number IS the one you would
need to know if you were going to allocate one of these structures yourself. The symbol wiU
have this value both at oompi]e tim.e and at nm time. If lhis option is present without an
argument, du::n •£be name of the slnlcwre is concatenaied with "-size" to produce the symbol

9.4.13 size-macro

Similar to size-symbol. A macro of no arguments is defined U1at expands inro the size of
the srrur:mre. Th.e name of this macro defauJts as with siZie-symbol.

9A.14 initial-offset

This option allows you ID ten defstruct EO skip over a certain number of slots before it starts.
al.locating t11e slots descr:ihcd in lhe body. Jbis option requires an argument, which must be a
fix nun, which is the number of sloes you want detstruct m skjp. To make us!! of rhis option
requires. thm _ ou have some fumi1iarit with how defstnict is implementing you tructure
otherwise you 1J1 ill be unable to make use of the: slots that defstruct ba kft unused.

!] -JtJL-81

Madisp Extensions 37

9.4,15 hu:t·first

This option is best explained by examp,1e:

(defstruct {head (type list)

nose
mouth
eyes)

(defau t-pointer person)
(but-f "rst perso~-head))

So now the accessors expand like this;

(nos,e x)
(ll ose)

;;> (car (person - head x)}
;~> (car (person-head person))

Options w defsU'Uct

The lheory is that but-f:irsfs argument will ik.ely be an accessor from some other tructure,
and it is never expected that this stn.Jcture wm be found outside of that slm of that other
structure. (In the exampl~ I had in mind that there was a person structure which ha a slot
.accessed by person-head.) It is an error for the but-first option to be US<!d without an
argument

This option c;onlrois whether the accessors defined by defstruct will work as "fimctiooa
arguments". (As me first argumem to mapca.r. fur example.) On the Lisp iachinc accessors arc
caUabie by default, but on PDP-lOs jr is expen ive lo make this work, so they arc only callable i(
you ask for iL (Currently oo uJtic:s lhc feature doesn t work at all ..•) The argument to this
option is nu oo iodicate lhal the feature should be wrncd off. and t to turn lhc feature on. If
the option is present with no argument, then lhe feature is turned on.

9.4.17 cval·when

Nonnally the macros defined by defstruct are defined at eval·timc. compile-Lime and at foad­
time. This option anow the user co control lhis behavior. (eva1.-when (eval compi e)) for
example, will cause the macros to be defined only when the cude is nmnin in1c,preted and
inside the compiler. no trace of defstruct wdl be found hen running compiled cod~.

Using tlle eval'-when option is preferable co wrapping an eval-when around a defstrucl
form, since nesu:d eval ~whens can interact in unexpected way .

;I 1-1- 'IR -.- 21-J l lI· I

38 Maclisp Extensions

9.4.18' property

or each SLructuie defined by defstruct, a property list is maintained for lhc recording of
arbitrary propertie about that structure.

The property option can be used to give a defstruct an arbitrary property. i(property
proper{J~n.ame vail,e) gives the defst uct a property-name propeny of ,ralue. either aigwnent is
evaluated. To access the- propcm- list. the us.er will have co look inside lhe defstrnct-descrlptlon
structure himself, he is referred to section 9.7, page 41, for more information.

9.4.1'9 AT pe Used A An Option

ln addilion to the options listed above, any current1y defined t:irpe (a legal arg\l'rnent co the
type option} can b-c used .as a opcion. This is mostly for compatibility with the old Lisp Machine
defstruct. It allows you to say just type when you should be saying (type type). Use of Ihis
feature in new code is discouraged. It is aP err-or to giv,e an argument to a type used as an
option in this manner.

9.4. 20 0 t her Options

Finallr. if an option isn't found among those listed above. defstruct checks ilie property list
of the name of the oprion LO see if it has a non-nun defstruct-option property. Jf ls, doe:s have
such a propeny, then if the option was of the form (oprion·name value), it is treated just. like
(property optiott·nmne value). Thal is. the defstruct is given an option-name property o,f value.
It is an error lO use such ao option without a value.

This provides a primitive way for me user to define his own options m defstruct. Several o
the option list.ed abo-.•e are actuaUy implemented using th.is mechanism.

9.5 Byte Fields

On fulrics, I.he byte field feature will not work unkss the user has arranged IO define the
functions ldb and dpb (section 8.1.2. page 18). They are noL yet prescnL in the default
environment. but the,· are a ailable as part of me ex.tens.ion ibrary (section 11.2. page 59).

The b,1te field feacure of defstruc1 allows the user to specify that several slots of his structure
are bytes in a fixed point number stored in one elemcn of lhe si:rucLUre. For example, suppose
we had the fo11owing structurie:

(defstruct (phone-book-entry (type list))
nanie
addre·ss
(e.r ea~ cod ,e 617.)
exchange
1 i ne-number)

·1 his. will v.(lrk jusL Jim.'. Fxccpl you notice 1.haL an area-code and an exchange ar both ah ays
les-; U''l.m IOOO.. , ml . o buLh t·,1n ca<,;il~• fi in 10. bits .• md the line-number i always k:ss 1han
10000. arid c,m 'llrns 1il in 14. bits. '11,u you cam pad: an tlwcc parts of a phone number in 34.

Ma lisp &tensions 39 B tc Fields

bits. If you have a lisp with 36. bit fixnums, the ll you should be able to pu me entire phone
number in one fixnum in a structure. detstruct allows)'OU m do this as foUows:

(defstruct (p~one-book-entry (type list))
name
address
((area-code 3012- 617.)

(exchange. 1612)
(ine-number 0016)))

Tlle magic: numbers 3012, 1612 and 0016 are byte specifiers suitable for use wich the fu ncl:ions
ldb and dpb (page 18). Things will expand. as follows:

(area-code pbe)
(exc han1ge pbe)

•~> (ldb 3012 (caddr pbe))
;;> (1db 1612 (caddr pbe))

(make-phone-book-entry
name 'lfre~ Derf(
address •1259 Octal St.I
exchange ex
line-number 7788.)

=-> (Hst • · Fred Derfl '125,9 Octal St. (dpb ex 1612 U5100017154})

(a liter-phone-book-ent"ry pbe
exchange ex
line-number ln)

~~> ((lambda (G0003)
(set (caddr G0003)

(dpb ex 1612 (dpb n 0016 (caddr 60003)))))
pbe)

d.efstruct ·lrles lo be maxim.any de er about co11structing and a.Jeering true urcs with byte
fi.elds.

1lle byte spc,cifiers are actuaU;• pieces of code that are expected to c,,aJuate to byr.c specifiers,
but defstruct v,,ilJ try and understand fixnums jf you supply th m. (In the make-phone-book
erample, defstiruct was able to ma.ke use of Us knowlcd0 c of I.he line-number and area-code
byte specifiers to assemble the consrant number 115100017154 and produce code to just deposit
in we excha111ge.),

A nil i11 the pace of the byte sp~ificr code eans l define an acccssor for the entire word.
o we could say;

1l .:, •l1 (.'l)C1L':llFI IR SS _J -JUI -, '1

About Autoloacling 40

(defstruct (phone-book-entry (type istJ)
name
address
{(phone-number nil)
(ar ea-code 3012 617.)
{exchange 1612)
(line-number 0016)))

to enable us to do things like:

(setf (phone-number pbel) (phone-number pbe2))

ro caus(Lwo cnuies U> ha e the same phone numbers.

Maclisp Extensio11s

We could also have said just~ ((phone-number) ...) in that last defstruct, but the feature of
nit byte Specifiers, allows you m suppl;• initial values for the mire]ot by saying; ((name nil mil)
...).

Cons1.ruccor macros initialize words divided mto byte fields as if they were deposited ill the
following order:

) Init.ializations for 'the entire word given in the defstruct form.

2) Initializations for lhe byte fields given in the defslimct f"orm.

3) Initia]izations for the end.re word given in the ,c:onsm.ictor macr-o form.

4!) Initializations for the byte fields gi•ten in 'the construetor macro form.

Alteram macros operate in a simi1ar manner. That is, as if the entire word was modified first,
and then the byte fieJds were deposited. ResuJts, will be unpredictable fo constructi!l8 and altering
if byte fields that overlap a-11e gi11en.

9 fi About Autoloading

This section only applies to PDP· IO and Mu'ltics Lisp,.

If you Jook ac the propert;1 lists of the macros defined by defstruct. you v.11J find th.a:r they
are all ha vc m aero propcnics o.f one of four funcliori s: defstruct-expand - ref-macro. defstruct­
ex pand-con s- macro. defst1ruct-expand-aUer-macro and defstruct-expand -slz.e -macro.
These functions figure out how to expand tlte macro by examining the property li t of the car of
the form I.hey are asked lo expand. defstiruct- expand ref-macro. for example. lool for a
defstruct- slot. propcrt)', which hould be a cons of lhc fonn {structure-name . slol·name).

Since Lhc defstruct fonn only c ·pand inw putprops of ihc desired functions (in te-ad of
actuall;i con tru ling a full-fledged definition}. loading a compiled file containing a defst,ruc:t
merely dd a few propcnie cu ome symbols. The run time cnvinmmenl is not needlessly
cluucrcd with uriwan1cd list tm tur ,,r ubr objccl.5. If the user lhinks he may wish to use any
ol the ma rm, uc-fmtd by delstruct after compiling hi~ file. he n ·J unty gi\'c Lh rn1 e~pmu.ling
fi.11mions amuln.1d pmrcrti of lhc name of Lhc file cnm,umng defstruc.t hsdf.

11 : l '\Cl1OC:DFl·S 'R 58

Maclisp Enensions 41 The defstruct-description Suuctu:re

For purposes of using defstruct interpreted the two symbols defstruci and detstruct­
define-type should be give11 similar auro]oa:d properties. Thus si symbols with autoload
properties suffice lO make deifstfuct appear loaded at all tunes.

9.7 The defstruct·descriJtfon Structure

This sec-lion dist:usse me internal structures u:sed by defstrnct Lhat might bf useful to
programs thal want to 'nterface: to defstriuct nicely. The information in this section is also
necessary for anyone who is thinking of defining his own S!Jl.lcrnre types (section 9.8. pa,ge 42).

i p Machine programmers wiU find tha the symbols found only in this section are all interned
in the "sy Iems-intemals" package.

Whenever the user defines a new structure using defstruct. defstruct c:rcaces an instance of
the defstruct-deseription structure. This structure can be found as tlte defstruct-description
propercy of tile name of lhe srrucrure; it contains such us.eful mformation as the name of the
structure, lhe num her of sloes in the structure, ere.

The def struct-desc nption structure is defined something like this: (This is a bowdlerized
version of the real lhing, I have left out a lol of things you don't need lO know unless you are
acmally readi:ng the code.)

(defstruct (defstruct-description
(default-pointer description)
(cone-name defstruct-description -))

name
size
pr op,e rty-a 1 i st
slot-a.list)

The name slot c:ontains the· :Ymbo] supplied by the user to be the name of his structure.
something like spaceship or pho1'le - book-e-ntry.

The size sim comains lhe LOral number of slots in an inSIM1ce of mi'3 kind of structure. This
is not th same number as that obtained ftom the siz:e-symb-ol or size-macro options to
defstruct. named strucrure, ror example, usually u.ses up an eiritra location to store the name
of the strocture. so the size-macro option will get a number one larger than ttm stored in the
def st met description.

The property-altst slot contain an aii:sc with' pairs of the form (propeny--name • properly)
containing prnpertie placed there by the property oplion to defstruct or by property names used
as options to defstruct (cc section 9.4.18 page 38. and scclion 9.4.20, page 38}.

The s1ot-alist slot contains an alisc of pairs of the form (slo1·rwme . slo1-desciip1ion). A sfot­
desrriplio11 is an instance of lhc dels!.ruct-slot-description strucmre. The defstruct-slot­
descrlpUon struc:um:: i denned somctlling like this: (.inolhcr bowdlcriicd defstl'l ct)

H.:i\1i\CI)OC:Dl -1 STR 58 :!I-JUI.·, 1

Extensions to defscruct 42

(defstruct (defstruct-s ot-description
(default-pointer slot-description)
(cone- name defst'f'uct-sl ot-dlescri pt ion-))

riumber
ppss
i nit-code
ref-macro-name)

Madisp Extensions

The number slot contain the number of the location of th.is slot in an instance of the
structure. Locations are numbered wring wilh 0, and continuing up to one less than the size ,of
the structure. Toe actual locatiou of tlle s]ot is de£ermined by the refereoce consjng code
associated with dte type of the structur-e. $ee ection 9'.,8, page 42.

The ppss slot c-0ntains the byte spedfier code for this. slot if th_is slot is a by1cc field of its
location. If this sJot is the entire location. then the ppss slot contains. nil.

The init-code slot contains the initialization code supplied for this slot by the user in his
defstruct Form.](there is no inicializalion code for this slot then the init.-code slot contains the
symbol %%defstruct-empty%%.

The ref-macro-name s.101 contains \he symbo1 that is defined as a macro Om expands into a
re rerence ro this s!oL

9.8 Extensions to defstruct

defst.ruct-def1ne-typ,e Macro
The macro defstruct-define-type can be used to teach defstruct about new types. it. can
use to imple:ment structures.

9.8.1 A Simple Example

Let us st.an bi' examining a sample call to defstruct-defi,ne-type. This is how the list cype
of structure might have been defined:

(defstruct-defi~e-type 11st
(cons (initialization-list description keyword-options) list

(cons 'list 1n·t·a11zation-list))
(ref (slot-number description argurne~t)

(list 'nth slot number argume~t)))

·n,is. is lhc minlmal example. We have pro,1idcd de'fstruct w'th t o pieces of code. one for
consiJJg up fonm, 10 construct instances of the Lrocrure-, Lile mher lO cons up fonns to reference
various clements of the structure.

From the example we can sec lhal tile cons1.ructor consing code i. going lO be run [n an
1."11\ iwnmcnt \\h~•r, • lhc \ ,1ri,1hl~ initialization - list i. hound ln 11 11st whkll ls lhc initialit.iliom lo

the slot. of the strumirc arrnngcd in order. ' lhc vari:1hlc description will he bmmd w I.he
defstruct-descripl1on strnc[urc fur the tructurc we arc ccm. 111 , 11 cnnstrnctur for. (C'C srctitm
9.7. p;1sc- 4L ·11w binding uf th..:- \ilriahl keyword-options will be dcscril i:!.l later. !so 1.hc

r,,.11 .:ti.-11\CI >OC:DEFS'J'lt SH 2HUJ .~81

M.aclisp Extensions 43 Eiuen ion ro def! crucr

s.ymbo] list appears after the argument list, this conveys some information to defstruct about bow
the construc:tor c-0ns.ing code wants to get called

Toe .reference consing code gets nm with ihe variable slot-number bound co the number of
the slot thal is to be refcFenced and the variable argument bound to lhe code dun appeared. as
the .argument to, the ac:ccssor macro. The variable description is again bound to the appropriate
in.stance of the defstruct-descrlption strucnm:.

This sunple example pl'Obably teUs you enough to be able to go ahe.ad and implement other
structure cypes, buL more details. follow.

9.8.2 Syntax of defstru,ct·define-type

The syntax of defstruct-deline-type is

(clefs tru ct-def i ne•-type type

oplion-1

op.tio11·n)

where each. opfiotJ•i is either the ymbolic name of an option or a list of the fom, (aption-i •
ml}. ,(ctua.Uy option-i is tbe same as (oplio11-11,) Different options interpret rest in different
ways.

Toe symboJ type is given a defstruct-type-description property of a soucwre that describes
the type completely.

'9.8.3 Op ion to, ddstruct·define·type

This section is a catalog of all the options c:unently known about by defstruct-define-type.

9.8.3.1 co,os

The cons option ru defstruct-define type is how the user suppJies defstruct with Ille
necessary code that iL needs to cons up a form lb.at wm conscruct an ii:manc,c of a structure of
this type.

The oons option has the syntax:

(cons (i11its description keywords) kind
body)

body i some code chat should construct and rclum a piece of code 1hat wil1 consu:uc:t,
i11iliali1.c and rc1urn an instance of a structure of this type.

he syrnhol iml'f will h hound tu lhc code th,n tl t' wnstruclor ctm 'Cr huul<l use lo initiali1c
the lu~ or the tnit·tmc, 'i he c act orm of thi H1£t11nrnt L lklcrmi11cJ h}' Th(' 'j mhul ~ i11d.
Theri :i~ curr 1111,- l~ u kind uf iniualiza tion. 'there 1 Ihc list kin,I. wl11:rc imll i. hllUlld lO a
li:1 of mi{iali,ution.. in the con~ .ct order. will\ nils in uninili.11 im..l ~Im . nd there i. I.he a'list

Ml. : \,\Cl> C; DFI ·. TR 58

Extensions to defsl!Uct 44 Maclisp Exteoslons

kind, , where in(ls is bound to an alist ith pairs of Ille fonn (sloM1umber . inil·code).

The s. mboi description wi11 be bound to the instance of the def struct-descri ption structure
section 9. . page 41) that defstrruct maincains for this partiC'Ular structure. This is so that the

constructor oonscr can fl nd om such things as the to ra1 size of the struc-wre it is supposed to
create.

The symbol keywords will be bound EO a alist wilh pairs of the fom1 (keyword . value}.
where each key..,wd was a keyword supplied to lhe constructor macro that wasn't !he name of a
sloL, and 11alue was lhe ''code" that fo11owed the keyword (See section 9.8.3.S. page 45. and
'Section 9.4.2 page 30.)

It is ao error nor co supply tlle cons option to ciefstru:ct -define-type.

The ref option to defstruct-define-type is how the user supplies defstruct with me necessary
code that il needs LO cons up a form char wiU reference an instance of a su-ucture of this type.

The ref option has the syntax:

{ ref (mmiber destriptiDn arg--1 • . . arg- n)
body)

bod)' is some code that should consuuct and return a piece of code mat wi11 ref.erenc,e an
instance of a srrucrure of tms type.

The symbol number will be bound to cb.e location of the :slot that Ute is to be referenced.
This is the same number that is round in the numoer slot of the defstrnct-slot-description
scmclUre (secrion 9.7, page 41).

Toe symbc1l de:s:cripfion wiU be bound to the Inst.ance of the defstruct-descrlption struclll!'e
I.hat defstruct maintains for thfa pankular sUllctllre.

The symbols arg-i are bound to the forms supplied to the accessor as arguments. omIBiliy
there should be only one of these. The last argument is the one that will be defau]ted by the
default-pointer opcion (sec:Lion 9.4.4. page 32). defstruct will check that I.he user has sup,plicd.
exactl)1 n argumcncs to the accessor macro before calling the reference consing code.

It is an error not w supply the ref option w defsu-uct-define-type.

2HUL·8]

Maclisp Extensions 45 Extensions to defstruct

9.83 3 overhead

The overhead option co· defstruct-define-type is how the user declares lO defstruct tha1. the
impJemem:.adon of this particular rype of structure "uses up'' some number of slots 1ocations in the
object acLually constructed. This option is used by various "named'' types of stnictures that store
the name of the structure in one 1ocation.

The syncax of overttead is:

(overhead 11)

where n is a fixnum that says how many locations of overhead th.is type needs.

Thi number is only used by the size-macro and size-s,ymbo,I options ta defstruct See
'Section 9.4.13. page 36 and section 9.4.12, page 36.)

9.8.3.4 named

The named opdon co de'fstruc ~define-type conLrors me use of the named option to
detstruct. With no argument the named option mean that this type is an acceptab1e ''named
structure". With an argument as in (named lype-11ame), l:be s.ymbol type-name should be that
name of omc other stmcture type that defstruct shou1d use if someone asks for the named
,rersion of this iype. (For example, in the definition of the list type the named option is used
like this: (named named-Hst).)

9.8.3.5 keywords

The keywords option to defstruct-define-type aUows the u er to define constructor keywords
(section 9.4.2, page 30) for this cype of structure. (or example Lhe make-array constructor
keyword for cructur-es of type array on Lisp Machines.) The syntax is:

(keywords keyword-I ..• fceyword-n)

where each keyword-i is a symbol that the constructor censer expects to find in the keywords aUsc
(section 9.8.3.l page 43).

9.8.3.6 defstruct

1l1c defstruct oplion rn defstruct-define - type allows the u er lo run some code and return
some forms as part of the expansion of the clefstruct macro.

The defstruc,t option has 1.hc ·symax:

(def St r U1C t (descripliOJl)
body)

/1 dJ i. a piece :1 r cock thrn will he nm \\ hcncvcr defslruct tc; expanding :, defslrucf form
tJ1 '1l d ·fi ne:-. ,i -;1ructure of Lhi 1yp '. ·m ") mbnl d1 1\{·111•fwn v. 1!1 be h11und lo th · 111 1w1c~ 1f lhc
defstruct - dc?scription ·trw:ture th:1 L defstruct m,limain 1;,r lhis p,mkul.ir strucmrc.

Extensions m defsfl'U.i::t 46 hdisp Extensions

The va1ue returned by the detstruct option should be a list ,of forms m be included with
those that the defs~ruct expands into. Thus, if you only want 10 nm some code at defstrocl
expand wne. and you don·t ~am to actua11y output any additionai code. then }'OU shou[d be
careful to rerurn nil fmm lhe code in chis option.

11.:Ml\CDOC:DEF IR 58 21-J L-81

Maclisp Extensions 47 Format

10 Format
format destinaUon control·.sfri11g (an. -number·of tugs)

format is used to produce fonnattcd output format oUlputs 'the characters or control·
stri11g, except thar cilde ("-") introd ces a directive. The character afler the tilde.
pos ibly prcc.eded by arguments and modifiers. specifies what kind of formatting is desired.
Some directives use an ekmem of args to create their output

The output is sent lo destination . If desti11atfo11 is nil, a string is creaced which contains the
output (see section lOA on format and strings, page 7). f tfes{inatian is t. me ouLpuL is sent LO
lhe ''default output destination". which in Madisp is !'he utput filcspec nil-the tcnninal
(controlled by me ariable "W) and outflles (cm:U.rolled by " r). With those excep ion . destir1ntion
may be an. legitimate output me specification.

A directive con ists or a tilde, optional decimal numeric pa.rameter separated by commas,
optional colon (":") al]d atsign ("@''') modifiers. and a single character indic"'3.tiog what kind of
directive this is.. Th,e alphabetic case of th.e character is ignored. Examples of control trings:

This is an S directi e with oo paraineters
This is an S dire:cth·e wkh two parameters, 3 and 4,

and both lhe colon and atSign Hags,

formai includes some extremely complicated and spcciali.z.ed fealUre . Jt is not necessary to
understand all or even most of ics features oo use format efficiently. The beginner should skip
over anything in the foUowing documcnc.ation mac is noL immediately useful or clear. The more
sophislicaled features are t.here ror 1tbe c-0nveni.ence of programs with complicated formatl\ng
requirements.

Sometimes a numeric parameter is, used to specify a haracter, for in tan e me padding
character in a right~ or 1 ft~justi ing operation. [n I.his case a single quote (') ollowcd by lhe
desired ctiaractcr may be IJSCd as· a numeric argument For c :ample, you can use

•-5 'Od"

to print a decimal number in five coiumns \\1th leading zeros (the fir.;t two parameters to - D are
the number of columns and the padding eharacter}.

In p1ace of a l.l.umeric parameter to a dircc:ti e, au can put the letter v which takes aa
argument from args a_s a parameter tie the directive. onnaUy th' should be a number but i
docsn·t really have to be. TI'li foarure allows ar:' able colurnn·wi.dth and tlle like. 1 o, you can
use the character # in p1acc of a parameter; it repre ents the numbl:!r of argument remaining to
be processed.

It is po~sible w have a directive name of more than one character. The name need simply be
enclo cd in back lashes ("\ ''}" for example,

(Format t "-\now\" (status daytime)}

/1..$ alw, y~. ~i"i.C ls. lgnnrcd here. ·mere i nn w~1y to qun1~ ,1 ncksla. h in :-i.u 11 .1 constnicL o
mull1 ·ch;1nt.:tcr up ratub cumc with format.

21-J Ul.·81

The Operat.ors 48 Maclisp Ex tensions

Nore that the characters @, #, and \ which arc uS<:d by format arc special EO rhe default
Mui.tics input processor, and may need to be quoted accord1ngly when typed in (normally, with
\),

Once upon a time, \'arious strange and wonderful mterprel:ations were made on conlrol·slring
when it was neither a string nor a symbol. Some of these are till supported for compalibiHty
with exJsting code (if any) which uses chem; new code. however. should only use a string or
symbol far ton1rol-s1ri11g. ·

This document describes an implementation of format which is currently in use in Madisp
(both PDP· 10 and Multi.cs), and is .intended to be transport.ed to TJL. It thus is oriented towards
the Maclisp dialect of Lisp. The beha,·iour of format operators should be fairly consistent across
Lisp diaJectS; emrics documented here other than format. however, exist only in lhe: Madisp
implementation at this time, although lhey could be added to other format implementations
wil:hour difficulty.

10.1 The Operators

Here are the operators.

-A arg, any Lisp object, is prinled v.ithom slashlfication (like princ). ~nA inserts spaces
on the right if necessary, lo make lhe column width at least n.
-mim:olcolil1c,mit1pad.padtharA is the full form of -A. which allows aleborate control
of lhe padding. The tring is padded on the right wilh at]ea.st mi11pad copies of
po.dchar: padding chara-ccers are then insencd coli!rc characters at 1.'I cime unr.i.1 the total
width is at ?east miJ1col. The defaults are 0 for mincol and mi11pod, 1 for colim:. and
space For padchar. The acsign modifier causes the output to be rightajustified in the
field instead of 1cfl-juslificd. {The same algorithm for calculating how many pad
charactcIS to ourput is used.) Thl! colon modifier causes an org of nil 1.0 be output as
o.

-S "lllis is identical to -A cxccpL thac it uses prin1 instead of princ.

~D Dccjmal integer outpuL arg is printed as a decimal integer. ~11,m,0D uses a column
width of 11, padding on the left with pad-character m (dcfaulL of pace), using me
character o default comma) to separate groups of three digits. These commas are
only inserted if lhe : modifier is present Additionally, if the @ modifier is presenl,
then the sign character will be output unconditionally: normally it is only output if
the integer is negative. Jf org is not: an integer. then lt is out.put (using princ) right­
justified in a field n wide, using a pad-character of m. wllh base decimal and
•nopoint bound to, l

--o O::tal integer output. fost like -~-

~P]f arg is not 1, a towcr·case "s" is printed. ("P" i for "plural",) ~:P docs cbc Somle
thing. afl~r backing up an argmner1t Uilcc "-:•·•. below): it prints a lower-case s if
the kilt argumcm was nm I. ~@P prinlS "y" if lhc argument is I. or "ie " if ill is
not. -:@P due the same thing. bur backs up firsL
Example:

(format nil ~-o Kitt-:0P" 3) -> "3 Kitties"

1\11 .:FOI~ ~1 \T:FO!H,1AI' PltO! .OG 21-JUl.·81

Maclisp Extensions 49 The Operators

.., • - • ignores one arg. ~ 11 • ignores. the next n arguments. n may be negative. ~: •
backs up, ooe arg; ~ n:• backs up n args.

~nG "Goes to" the nth argument --0G goes back to the first argument in args.
Directives after a ~·11G will take sequential arguments after the one gone to. Note
rhat lhis oomm,md, and -•, only affect che "local" args. if ''control" is wilhin
s.omething like ~{,

~% Outputs a newline. -,a% outputs n newlines. o argument is used.

-& The -'!rash-line operation is performed on the output stream. -n& outputs n -1
newlines after the fresh-line. The fresh-line operation says to do a erpri unless the
cursor is at the Stan of the Hne. This operation wiU vinuaUy always succeed in
Maclisp. since all Maclisp Ole arrays kno their charpos. lmp1cmcntcd by format­
fresh-lin e, page 56.

~X Outputs a space. ~n·X ou puts rz paces. o argument is used.

Outputs a tilde. ~n- oucpucs n tildes. o argumeot is used.

-newline
Tilde immediately followed by a carriage return ignores the carriage return and any
whitespace at th btlginning of rhe next line. Wi~h a :. the whitespace is left in place.
\ ith an @, the carriage rerum is k:ft. in place. This directive is typically used when
a format control string is too ong to fit nicely imo one Jine of the program:

(format the output-stream "-&Th4s is a reasonably~
long string ... %")

which is equivalent to formating the string

11 ~& This is a reasonably 1 ong s. tri n,g~% 11

~I OurpuLS a formfeed. ~nl outputs n fonnfeeds. No argument is used This is
unplementcd by format -formfeed, page 56.

~T Spaces over lo a given column. The full fonn is ~des1itzatiotl ,i11creme11tT. which will
outpul sufficie.llt spaces to mO\'e lhe cursor to column destilwlio11. 1 f the cursor is
already past col11mn des1inatio11, il will omput space-S co move il to column
destination + i11cremem •k, for the sma11esl integer value k poss.ible. lncremtnt defaults
ro 1. "]bis is implemented by the forma -tab -to function, page 56.

~Q ~Q use - one argument. and applies it. as a function to params. lt could thus be used
to. for example. get a Specific printing function interfaced ro format it.haul dcfinmg
a specific operator or i:hat. operation. as in

(format t ff-&; he fro~ -vQ is not known.~%"
frob 'frob-printer)

he prinung function hould obey lhc conventions described in section 10.3 page 5 .
otc that the fimclion w - 0 follm s me argumcnu it will get because they arc

pa d in as format p::immeler:s whld1. get coll ted before lhc t,pcrn t 1r' argument

-i[-(wn-;s1rl ~; ... -;l1111-] is a :,;ct of ,lltcmalivc cnn1ro.l . tring:. The .ihcrn,11he~ (c,1lkd
ltJU.\r\) , r · .-.cparntcd b~ ~; amJ the i.;011su1u.:L i~ terminated l y ~]. I :nr c"ampk.

''-[Siamese ~;Mame -;Persian ~;Tortoise-Shell ~;Tigor -;Yu-Hsiang ~]kitly".
·nu: arg lh uh rnaurc i~ clcttcd; 0 . cl<' lS lhc fir L If a num~ric pr1ramc1cr ;.,, given

H .:FOR 1,\'I :I-OR 1A'l OPS 2Hlll· 1 l

The Operators 50 Maclisp Exten-sions

(i.e. ~nD. men the parameter is used instead of an argument (lhis is useful oo]y if•
the parameter is "# "). If arg is ou of range 110 alleroati\'e is selected. After the
selected a1temalive has been processed, the control string oontinues. after the -].

-£strO~:s1rl-; ... -~stm-::defeulr-] has a default case. f the last ~; used to separate
clauses is instead ~:;. then the last clause is an "else'' clause, which is perfonned ii
no other clause is sclccEed. For example, "~[Siamese ~;Man>< ~;Persian
-:Tortoise-Snell· ~;Tiger -;Yu-Hsiang ~:;Un.known -I kitty". ·

-[~tagOO.tagOI, ... ;strO~tag/0 ,. •. ;str/... -] allows rhe dauses to have explicit tags. The
parameters co each ~: arc numeric tags for che clause which foUows it. Thal clause is
processed which has a t.ag macching lhc argumenL]f - :al ,a2 ,bl .b2 , ... ; is used, then
me following clause is tagged not by sing]e vaJues but by ranges of values al through
al (inclusive), bl through bl. e-tc. --:; with no paramc1ers may be used at the end
to denoce a default clm.1:se. For example, ''~{-'+,'-,'•, ·1/;operator ~ 'A,'Z,'a,'z;letter
- ·

10,'9;digit ~::other -]".

-:[Jalse -;11·ue~] se1eccs lhe false contro string if arg is nil. and selects the troe
control string otherwise.

-@[true~] tests the argument. If it is not nit then the argumem is not used up,
but is I.he nexl one to be processed, and rbe one clause is process.eel. If it is nil, then
the argument is used up, and the clause is nol prioc.essed.

(setq prinlevel nil prinlength 6)
(format n i1 "~@[PR INLEVEL"-~0-]~© [PRINLENG,TH----0] 0

prinlevel prinlength)
;> " PRINLENGJH;6tt

~R If chere is no parameter, I.hen arg is printed as a cardina] Englis.h number. e,g. four.
Wh.h che colon modifier, arg is printed as an ordillill number e.g. founh. With the
atsign modifier. arg ls prlmed as a Rom.an numeral. e.g. JV. Wilh both acsign and
colon, org is printed as .an old Roman numeral. e.g. llll.

If there is a parameter. !hen it is the radi.x in which to print the number. The !lags
and any remaining pammet.ers arc u~d as for the -D direc[ive. Indeed, ~D is the
same as ~ 10A. The fun fmm here is therefore ~radix, mhicol ,padchar ,comm.acharR.

-c arg is coerced I.Cl a characler cod . With ao modifiers. -C sjmply outpuLS this
character. ~@C outputs I.he character so it can be read in again llsing the # reJder
macro: if there is a named character for it, thal will be used. for example
"#\Return": if not, it win be output like ":#/A". ~;,C outpLlts the character in
hurnan·rcadabk Form, as in "Rclum". "Meta- ". ...~@C is like ~:C. and
additionally might (if warranted and if it is known how) parenthetically si:atc how the
character may be typed on I.he u cr's keyboard.

lo find 1he name of a char.actcr, ~C lonlcs in two places. lie first is the valw~ of
the symbol which is d1c ,a1L1c or format:•/# -var, which i inillali,cd to he I.he
vari.ihl • wllkh the If reader m.1c-iu 'Ll!>C!-i. ll h, n111 ncci::-.sm} fo r the "'ahR of
iormat:·•; 9 -var to b~ hound. The sccnnd p1,,cc is "'format-chnames; I.hi is used
primarily to h .. mdlC' non-priming characters. in c.c i:? the # m:u.lc.r macro is riol loajcd.
Uwh uf lhC'!-c ;ire u·li,1~. 11r 1.hc form ((mum • (·odr) (ihlm!' . cod(·) ...).

21-JLJ .·81

Maclisp Extensions Sl The Operators

The Maclisp lL format has no mechanism for elling ho a particular c.harac ~r
needs to be yped on a keyboard, but it does provide a hook For one. ff the value of
format:•top-char-printer is not nil, then it will be caUed as a function on two
arguments: che character code, and the charac er name. If there were bucky·bits
present. then they will. have been stripped off uni ss there was a defined name for the
character with lhe bits prescnL The funcuon should do nothing i normal cases, but
if it does it should output two spaces, and tllen the how-m-type--it·in description in
parentheses.- See section 10.3, page 54 for inrormation oo how to do output wiLhin
format.

-< -mincol 1coli11c,rninpad,patkha_r<text~> justifies texl within a field mfncol wide. text
may be divided up inm segments with --;-the s-pacing is evenly divided between the
t.e:icc segments. WJth no modifiers, the leftmost text segment is left justified in the
fieJd, and the rightmost lext scmnent right justified: if mere is only one, as a pecia1
case, iL is right justified. The colon modifier causes spacing to be intr-oduced before
the first text scgmen L; the atsign modifier causes spacing 10 b-0 added after the last
minpad, default 0, is the minimum number of padchar (def.lull spa.oe) padding
characters Lo be outpuc between each s.cgmenL I I.he total width needed to satisfy
these consl1"'ainlS is greater lhan mincol, then mincol ls adjusted upwards. in coliw:
increments. coiinc defaults co 1. For example.

(orrnat n'l "-tO<foo~;bar->") c> 1'foo bar 1

(format nil "~10:<foo~:bar->") a;;> fl foo bar"
(format nil n ... 10 :@<foo~;bar~>''} ;> II foo bar ••
(format nil " ... 10 <foobar;v> n) "> II foobar 11

(fo ,rmat n • 1 "-lD:@<foobar->n) "'> 11 foobar "
(format nil $---10 O I > •<--3f->fl 2.59023) "'-> "$••··••2. 5,911

If ~A is used within a ~< construct.. then only tllc c]auses which were completely
processed ace used. For example,

(format nil u,._,15 <-S-: """"""" S- ~ _,.S-:> II 'foo)
-"'> F00'1

(format nil .. .,.15<-s-; - ..,....,.s- :- -S->'"' 'foo ''bar)
o> "fOO BAR"

(format nn "' 15,<-:S- i ..., ill"Ws-,; _ _S-> 11 'foo 'bar 'baz)
'->· ,;FOO BAR BAZ'

]f lhe first clause of a -< is terminated wilh -:· instead of ... ;, then it is used in a
spcciaJ ay. AU of lhe clauses are processed lsubject to -A. of course.) but lhe first
one is omitted in pcrfonning lhc spacing and padding. When the padded result has
been dctcnnined. then if ii wm fil an the curren line of output, it is outpu and the
tcx for the first clause i5 discarded. If. howe er, the padded text Vi ill no fl on the
currc1u line. then the text for the first dause is outpn b fore the pt1ddcd tcxL The
first cl use oughl to contnin a carriage return. The first claus is always processed,
and so all.Y ;irgumcms it refers w wilt be used; the dccisiun is whC'th ·r [use the
rc-suhi11~ piece t f lCXt nOl whether to proci.:. !'.. Lhc rir..1 chm ·e. If the ~:; ha. a
numerir p.ir.inwtc 11. 1.hc-n ll1 · p:1dLlcJ text must nt ,in 1.llc LlLrrcn1 line with 11

char,H.:lcr rw!liliou: lO ~pare tu ,L1°oid outpuuing I.he' first cl,m. e's 1c , Fm example.
the control string

:.HUI-, I

The Operators 52 Ma~ lisp Extensions

can be used oo print a list •Of ilcms separated by commas. wimout breaking items over
line boundaries. and beginning each Jine wich ":; ". The argument 1 in -1 :;. accounts
for I.he width uf the comma which will follow the justified item if it is, nm the last
element in the list, or the period if it is.]f -:; has a second numeric parameter.
then it is used as the widlh of the line, thus overriding ilie natural line width of the
oulpul stream. To make the preceding example use a line width of 50, one would
write

-{~<-"" · .. ~ 1 co,· • -S~>~"" -} ~"' 11
lr.i11 ,, ,ui ., ' I • /lo

! ote th.al the segments -< breaks the output up imo are computed "ou[of context"
(lhat is, chey are first recursively formatted into striogs). Thus, it is not a good idea
for any of the segments to contain relative-positioning commands (such as -T and
~&), or any line breaks. If ~:; is used to produce a prefix slliog, il also should not
use relative-postuonrng commands.

~{slr -}
Thjs is an iteration construct Toe argu:men should be a list which is used as a set
of arguments as if for a recursive can co format. The string sir is used repeatedly as
the conrro] string. Each iteration can absorb as many elements of the list as it likie
lf before any iteration step Lhe list is empty, chen the iteration is lermin,ued. A~. if
a numeric parameter ,1 is given. cbeu lhere will be at most ,i repetitions of processing
of str.

-:{str-) is imilar, bul the argument sbould be a list of sublists. AL each repetition
step one sublist is used as the set of arguments for processing, str; on the next
repet.it.ion a new sublist is used, whether or not all of the Jasr sublist had been
processed.

-@{str~} is similar ro -{s:1,--} but instead of using one argument which is a. list.
all lhe remaining arguments are ~.sed as the list of argumems for the iteration.

-:@{slr~} combines the features of ~:{sir-) and -@{sir~). AU the femafaing
arguments arc used, and each one must be a lisl On eacb iteration one argument is
uS-ed as a li t of arguments.

Tcrminaling the repetition construct with ~:} insu~ad of ~} forces str to be processed
at least once even if the initial list of afgl..lments is nuU {however, U wm noc override
an explicit numeric parameter of zero).

If sir is null. lhen ail flrgumem is used as str. lt must be a sering, and precedes any
arguments processed by lhc ilcralioa. As an cxarnp,le, lhc foUowing are equivalent:

(apply (function format) {list• stream string args))
(format stream n-1{-:}~ string args)

·mis will u,;;c string a11, a rhrmaui11g stri11g. The ~1 { ~.ays i11 will be pr1 K'.'CS~d at most
once. and I.he -:} ··1;is it will be pniccs ctl t11 kaSl once. Therefore Tl is proct cd
c acLly one , using arQs a !he .-irgumcnts.

U :FOl~~v1,\T:FORM 1\T 01-'S 21-J U l.·81

Maclisp Extensions 53 Tbe Operators

· -} Tenninates a -{.]t is undefined elsewhere.

~"' This is an escape construct If mere are no more arguments rem tti ning to be
processed then the: immediately enclosing ~{ or ~< construct is terminated.. (In the
lauer case, the ~< fonnatting is perfoimed,, but 110 more clau e ar processed before
doing the justitkalion. The -"' should appear oniy at lhc beginning of a -< clause
because h aborts the entire clause. Il may appear any here in a ~{ constrncL) lf
there is no such enclosing construct,, then che entire fonnatting operation is
temiinatoo •.

f a nume.ric parameter is given, then termination occurs if the parameter is zero.
(Hence ~"" is the same as - # ,.. .) If rwo parameters arc given lennination occurs if
they an: equa1. lf wee are given, lermillation occurs if !he second is between the
other two in ascendjng order.

If ~" is used within a ~:{ construcl then it merely terminates the cmrenL iteration
srep (because in the standard case it rests for remaining arguments of the current s1ep
only); the next iteration step comm nces immediately. To terminate the entire
iteration process, use ~:A.

~F ou:tpulS arg in free-fonnat Hoating-point rzF ouLputs arg showing at most n digits.
-n:F will show xa.cEly 11 digits. No olber vmiations are guaranteed at this time:
neither is the exacl illlcrprerauon of "· [t is reasonable to use thi , howe\ler, when
one dcsi.re to print a flonum without showing lors of' insignificant trailing digj.ts: f:or
example,

(format nil ~-6f' 269.258995) ~> "259.269"

~E Ompurs arg in exponential nocation; e.g., "2.5925Se + 2''. ~nE int.crprets 1J the same
as -F. o othor parnmerers or flags arc guasantced at this time.

~$ (That's a dollar sign.) -rdig,ldig ji.e-Jd,padcha,$ prints arg, a flonum, with exactly rdig
digics after the decinfat point (dcfauh is 2). ac least !dig digits pr.xeding the decimal
point (default is 1), right justified in a field field c-0'umns long,, pJddcd ouL witll
padcl,ar. The colon modifier says that we should cause the sign character to be left
justified in the field. The atsiga modifier says that we should a]waIS output the sign
characlcr. The ltiig allows. olle ro specif}' a portion of the number which docs not get
zero suppressed.

-\ Th.is is not really an operator. If one desires o use a muUi·charactcr lorma operator
it may b~ pla.ced within backslashes, as in -\now\ for the now operator. Se-0 page
41.

21-J' 1- '!

0 tller • ntries 54 Maclisp Extensions

10.2 'Other Entries.

?format destimuion control-slring (Any-number-of frobs)
This is eguivalenl to format except £hat destination is ilnel))reted 'like the s.ecand argument
to print-nil means "the default". and. t means ''the lenninal". This only exists io
Maclisp at the moment

10.3 DeflflJng your own

define-format-op
This may be used in two formats:

(define-format-op operator w:rlisi body-famts .•.)

and

(defi ne-fo ,rrnat-op operator ,fo.-1111m-characte~code)

Macro

The operator may be lhe Hxnum code for a character, or a symbol with the same print·
name as the operator. Whichever, it is canonicalized (into upper case) and win be
interned imo the same obarray/package which format resides in. or example:, the format
operamr for tilde could be defined as

(define-format-op,~#/~)

where '' # /~'" represents the fixnum character code for tilde.
For the firsl format, the type of operator is determined. by decoding var/isl. w'b.icb may
ba,,;,e one of the following fonnats:

(params- ~,arj1

An operat.or of exactly zero arguments; para.ms-var will get bound to the
parameters list.

(paroms-wir arg-1•an
An operator of exactly one argumcn r. pa.ra1~w1r will get bound to tlie
parameters list, and arg-,wr to the argumenL

(pa.rains- 'JQl' • args-w1,:)
n operator of a variable number of args; params-mr will get bound to the

parameters list. and args-\•ar to [he remaining arguments to format (or to ~e
rectirs:i't'e -{ arguments). The operator should return as ilS value some sublist
of a:rgs-wu, so ·mat format knows how many were use.d.

A dcfrnition for the appropriate function is produced ilh a bvl derived from lhe variab1es
in •·urlist and a body of hody-fonns. (The argumcnl ordering in the function produced i
compatible with thal on I.he Lisp Machine, which is arg-var •(if anr) lirst. and then
pa rams-var.)

standard-output Variable
Output rrom format operators should he . nl to Lhc . trcmn 'I hich t the valu~ of
sla nd. rd - ou tpu l. I 11 lhc · u l 1 i . im 11km e ntal.ion uf formal this \' :1 lue m · y somc ti me~ be
an ohjccl hkh is nm ~11i!.,1bl for bcin fi d tu sm1uJimJ 1.isp ouLrut rurn.:tit'fl (~.g.,
princ): format h,1s ckfinhion r \'ilrlcaus outpill functions which lrla11Jlc thi:. case properly.
,lll<l m, } hr m,c<l li,r dcfinmg up r.ttur whi h will work comp.itibly in 1u!tic_ M c I p.

Mt.: l·'OR l r+nR 11\ I' PLIIU)QC

Maclisp Extensions 55, Defining your own

The are documented below. ate that. because of lhe way fo,rmat interprets i
destination, it is noc necessarily safe co recursh•e1y c-aU 'format on the a:tue of standard -
output 'n PDP-10 MacJisp. h is safe. however; ,o us,c ?forma (page 54) instead, or to
call format with a desli11ation of Ille symbol fomn1at

Maclisp format wi11 also accept a destination of format to mean "use the format destination
a1ready in effect". This is primariJy for the benefit of Multics Ma-clisp, since lhere the value of
standard- output cam1or, be passed around as a stream. The rormat operator now. which primes
me currenL time. could be denned as

(define-format-op now (params)
params ; unused
(let ((now (status daytime)))

{format 'format "~2 '00:~2,'0D:~2 'ODrt
(car no~) (cadr now) (caddr now))))

with the result that

(format ni "The currant time is ~\no\. ')

could produce the string

'The current time ·s 02:59:00."

format: co,fon-fla.g Variable
format: au 1 g -flag Variable

These tell bether or not we have .seen a colon or atsign re pecti ely while parsing Ille
paramerers to a format operator. The;' are only bound in the tople cl c.a11 ta format, so
are onl really vaUd when the format operator is first c-al1ed; if the operator docs more·
paramecer parsing (like ~[docs) their va1ucs should be sa\'ed if the. win be needed.

These variab]es used to be named just colon-flag and atsign-flag. fo the interest of
uansportins format code to Usp implementations with package . their names have been
changed. Thus, in either implementation one references them wji.h the "format:" at the
front of lhe 1::1ame. which ia Maclisp is jrust part of lhc prin -name.

The params are passed in as a list This list. however. is temporary storage only. If it is
going to be passed back, it must be- copied. fo Maclisp and - IL, i1. is an ordinary list which. in
PDP-10 Madisp. wm be reclal_me-d after the operator has run. On the U p Machine, it will be a
List-pointer into an art-Q-list array, poss:ib]y in a temporary area. TI1us, although it is safe o
save \t.ilucs in this list wirn rplaca, om: should not e er use rplaod on it, cilher expHcit.]y or
implicitly (by use of nconc or nreverse).

Conceptually, format operates by pcrf<lnniog oucput to some stream.]n practice, thi is what
occ1.1rs in mo l implementations: in Macli p, there are a few special SFAs used by format. This
may not b po ihk in aU implcmcm..iticms. howc~·cr. To get around Lhi . format has ai

mechanism for aUowing the oulpul to go to a pseudo· trcam, and supplic a sci of function
which will interact whh Lhese when lh.cy are used.

_ 1-JLJI.· I

Defining our o,wn S6 Madisp Ex.tensions

format-tyo charo:cter
tyos character lo the format output destination.

for ,,at-pr1 nc object
princs object to the format outpuL destioation.

fo1rmat-pr1n1 object
prin 1 s /rob w lhe, format output destination.

f o, r at -1 c p r 1 n c string capitalize?
This outputs string., which musL be: a string or symbo, LO lhe format output destination
in lower-case. If capitalize? is not nil. then the first character is converted ro upper case
rather man lower.

format-terpri
Does a terpri to the format ou lpu t destination.

f ,o rma t-c harp o s
format-11nel

Rewm the charpos and linel of lhe format outpu . destination. Since in the Madisp
implementation multiple output destinations, may be .implicitly in use (ia outfiles for
instance) !his aucmpts to choose a representative one. The terminal is preferred if it is
in olved.

format-fresh-line
This performs the fresh-line operation to lhe default format destination. In PDP· IO
Maclisp. this first wil] u-y the t,esh -,ine operation if the destination is an SFA and
suppons iL Otherwise. if the destination is a lerminal or an SFA which supports
cursorpos.. it ,,.,in rry (cursorpos 'a). Otherwise. ir wiU do a te;rpri if the charpos is
not a. Jn the Madisp imp1eme.ntation, where muhip1e outpul dcstiuac.ions may be
implicitly invoJved (via outfiles. .for instance). this hand]es each such destination
separately.

format - tab-to (fixnum de_sti11a1iot1} (Optional increment?')
This. implementS ~ T to the current format destination (q.v.). [n PDP· IO Mm:lisp, this
operation on an SFA will u e the tab- to operation if it supponed, passing in argume:nts
of deslil,alion and i11creme111 tas a dotted pairt otherwise, charpos will be used to
compute the number of spaces w be outpuL If charpos is nol supponed, two spaces will
be output

for at-fo rnfeed
Pcrfonns a formfeed on lhc format output destination. 1n Muilic:s Maclisp, this will
nonnatly just tyo thr character code for a fonnfecd. [n PDP·]0 faclisp. lhls will use the
formfeed operation if tllc dcstinmion is an FA and supports it. ot.hcN•i e it will do a
(cursorpos 'c) if the dcstinalion js a rrY file array (or an SFA) and support.-; it,
mhcrwise: it simply omputs Lhc c11ara<:ter code for a formfoed.

21-Jlll .·81

Maclisp Extensions 57 Fonnat and crings

format - fl ate Macro

(format -fh -tc fotml form:2 . •• fomm)

Toe fomis are valuated in an environment similar Lo tha1 used in ide of format: the
Yarious forma.t outpu -performing routines such as format-tyo and forrnat-princ may he
US\!d to "perform ouq>ut". In all but the Mu tics Macli p i.rnpkm ntatlon, standard­
output will be a treaJll which simply counts lhe characters outpm- h will onJy support
me ty,o op ration.·

10.4 Format and trings

[n t:he PDP· 10 Maclisp implementation. format has provision for using a user supplied string
implementation. ormally, format expects to use symbols. Howel/·er, if (fboundp 'stringp is
true, lhcn format will use lhe stringp predicate to see if i argumem is a Ering. !f that is the
case, then the function string-length ill be used to find tht: size of the string and char-n wi11
be used. to fetch characters out of the string. Both of lhcse routlnes should ha 1c been declared
fix:num when compiled (i.e. be nc.aJlab]e). ImeraaUy, t iS are ordered nch that string·ness is
independent on atomic-ness. In addition, the character routine may be used lo canonicaHze
something Lo a character code.

The Multics imp1cmentation is s.imilar to che PDP· lO Madlsp implem ntation. buL uses
different routines: string!ength ro et the size of the srring (or sym o]), and getcham to fetch a
character out of the string. The character routine is not used.

•rormat-str 1 n,g-ge neira tor Variable'
This variable, which existS only in the Maciisp implememation of format, should have as
its value a functio11 to convert a list of characters to a "sering'' to be returned by format.
In lhe PDP·lO implementation. this defaults to maknam, but may be modified ·r
" trings" are being suppom::d. In the ultics implementation it. is a function which does

(ge t _pn.ame (mak n arn character,,fist})

a.ad may be modified, if desired to something more cfficienL In the PDP-IO
implementation the list of cl1aractcrs should ncithcr be modified nor rcwmed co free
storage as it wil1 be reclaimed.

The PDP· 0 Madisp hack of rcmming an unin e:rned }'fli.bol which ha it lf as its a ue
and a + internal-string-marker propeny is noL handled here: it is done by the outer call
co format i sclt~ and onl if the rccumed " tring" is a ymbol and the \'alue of •format
string-generator is maknam. This is done so as to not add unnecessary overhead to
hnema1 usc,cs of "srrings" by format

'The name of I.hi. variable diffc-rs fmm that of other uscf"accessible format variables for
hi 1orical re~ ·011s: it will noc be changed, bcraus.e it oni;• cxi. ts in Ma lisp.

,l-JIJI.· I

System Differences 5.8 adisp, Ex11ensions

11.· System Differences
This chapte.F describes differe:!lc-es you may encounEer in using these Lools in each of the

various Usp dialects in which · they have been implemented. One section is devoted to ca~b
implementation. and a final section deals with transporting code between them. The system·
specific sections are broken into parallel subsections.

Since not all of the tools documented herein will be a part of the default Lisp environment.
me first subsection sirnpl)• d~scribcs how oo make them available. This wiU in generat involve
plating a form ar the head cf a source file lo establish the appropriace read&tirne and compile-lime
environmcnL

Toe next subsection Lists a number of miugs 10 watch out for in using a particular
impleme.ntation or in writing transportable code. It deals with miscellaneous incompatibilities
rclawd to these tools and to me Lisp implementations in general. Some options which are specific
only m a ing]e implementation are documented here.

The final subsecti.on contains references ro othe:r sources of documentation. including that
wb.ich is available onli.ne.

11.1 PDP 10

PDP-IO Maclisp is currently in a state of Hux with regard to how these tools are provided and
exactly where the~· arc 10C""'1ted. Some arc pre..~enL in the default environment while olhers must be
requested e:x-plicirly. Check lhe onlinc documentation for tbe current status.

11.1.l \Vhere To Find It

The sharps.ign and backquote reader macros are present in U1e dcfaulL environment. loop and
format have auto1ood properties. Man. of the functions and special forms descnbed in chapter 8
are present native) or arc autoioadcd from. I((LISP) MLMAC) (for Ma Lisp MACrosJ. The rest
ma;• be loaded from { (LISP) UMILMAC) (for User MacLisp MACros). defstruct may be loaded
from ({ LISP) STRUCT).

To use the bit-test, dolfst. and dotirnes macros, plaoe tlt:e following fonn at the head of the
source file.

(eual-when (eval compile) (load •<c isp) umlmac}))

To use defstru:ct. include the following fonn.

(eval-when (eval compile} (load '({lisp) ~truct))J

This will cause defstruct w be present during the inlc.rpretacion or compUation of a fiJe. To use
defsUllct during debugging of lhc compiled file, ~e sccllon 9.6, page 40.

ML:M ,\CDOC:Dl!--'.f-S 46

M.a lisp Extensions

11.tl Tirings To Watc'b Out .For

def un&-check- arg,s Variable

59

The "e::K: tended defun" facility (page 8) provides little or no argument count checkjng for
functions by defau1L By setting this variab]e to t. rhe funcLion being defined will com.ain
additional code which will pro ide a more meaningful error message when the function is
cal]ed wich the incorrect number of a.rgui:nents.

A feature is provided whereby sequences of characters surrounded by balanced double-quotes
are read a:s un·imemed symboJs which arc bound to t.hcmsdvcs. This llrovjdes partial
compatibility with newer isps that have strings. They are primarily useful as arguments to pri.nc.
load. and format, and arc not intended oo be used as first~cJass data abjects as on those systems
which suppon them nati. vely.

11.1.3 Further Documentation

For the latest changes to chis implementation. see the file . INFO. ;LISP RECE NT on any ITS
system. Earlier editions of th.is file are archived in . IN FO. ; LISP NEWS. The file . INFO. ; LJSP
FORMAT contain a cltart of the fonn l operators suitable for prinl:iog on ao asdi console. Toe
files . INFO. ; LISP LOOP and L BDOC; STRUCT > contain the BoHo source for the loop memo
and the defstruct portion of mis memo. Perhaps somcda;1 !.hese will be replaced by something
formatted for a console.

11.2 Multics

The Multics implementation is also changillg. /\S of this wrlring, only some of the ex~erisi,ons
described in this document. are a ailablc from che standard librnri~~ but we expccl the remainder
to be installed in lhe near future. Ch.eek me onUne documentation for the current status.

11.2.J ,vhere T,o Find It

On1 a fe or the improvements to Multics adisp since 1974 are now a pan or the default
en\lironmcnt. Primarily, me-! arc ll\e special forms which need lo be plimitiveir understood by
the compiler. such as eval - when and 1.m ,ind -protect and ce.rcain imple functions such as list .
The special forms let and let• are also in the default environment The other o1 documented
hero may be accessed by lhc MuJtics Lisp special form %include. This fonn cau~es a text file to
be inserted inUnc during the interpretation or compilation of a file. The form;

(%include lib rary)

can be placed al the front of any file of lisp code I.hat wanes lO utili?.e all of the features
documented here. This furm will arrange for the corr~t cva,-time. compilc~limc ruid run-umc
<?nvimnmcnts to br prcsem whenever the file is being proc:e. td in an;• ay. T< arrange for tM
ext.ended en runmcru to be present whenever I.he Ii p interpreter is being used, U1is form may be
placed in 1,hc fik start_1..1p. 11 i sp in the user' hume dirccmry.

I.: L\CD :I lFI "S -U, -1 ·Jl l l.·8I

Multics 60 Maclisp Extensions

Since the %include form is unique m the Multics impkmentation. a variant on lhe foUowing may
be used to allow ihe file lO also read into other Lisps:

(eval-when (eval compile) (or (status feature Multics) (read)))
(%include library)

Those Multics Lisp users who wish to be more selective about the facilities they use ma.y instead
use the form ·

(%include module)

where module is one of bac'kquote, sharpsrgn., defiun. defmacro. defstruct, setf, format, or
loop. Selecti e loading of packages may be desired to prevent name or syntax cl.ashes or to speed
compilation. ote that some packages will Joad others as needed. For instance. defstruct will
load setf.

%include uses the tra.n&lator search list to find lhe file to be induded. To see l:he full
palh.n a.me of the file which is found. E;rpe

where_search_paths translator backquote.incl.lisp

The actual object segments ar-e bound together as bo'Unli_ 1 i sp_ ibrary_.

where bound_lisp_library_

will find the full pathnarue uf this segment.

The modu1es listed above: ma.y be broken into wee categories: read-time (backquote,
sharpsign),. compile-time (defun. defmacro. satf, defstruct, loop), and nm-time (format}.

The bcha\•ior of me include file for each module depends upon its type.. For read-time and
compile-time files. lhe include file will load the file at eva1·time or compilc·time, bm wiH not add
any forms to Lhe objccc segment. or run·time files, the include file wiU place a form in the
object s.egmenL which will load t.he desired module, either clireccty or via an aucoload property. It
will also pro..,id~ lhe appropriate function declaration. for I.he compiler.

To use an e a]-time or compHe-time module at run~time. you can typ (%include module) to
the interpreter or place chis fonn in a file to be re.ad imo the interpreter. such as the
st a.rt_up . l · s p file. AlEematc!y. you can load the obj1ecl segment direcc.ly. as in (load
")exl>object>lispi_bacl<quote_"). but thi:s is nm recommended since it requires specifying an.
abso1u e pathname.

ll.2.2 Things To ,vatch Out For

The characters sharpsign I(''#") and at.Sign (''@'') are default eras~ and kin characters on
Multics.]f lhc- c:haracLcrs are being u cd far inpm editing you wj l have to type .. \#" or
"\@" lO enter them. Uk wise. remember lhat to dirccth1 enter a backslash, o mus.l be typed.

Most other Lisp readers translate]owercase characters ro upp~rcasc characters in symbol
name~. 11,~ folt ic-. irnpkmc-nc tiun dOl's not do this ca-sc Lramlmion by default This form wm
mudif}' lhc readuiblc to orrcctly re.id files which are wrincn in uppercase·:

21-JUl.-81

Maclisp Extensions

(do {(i #/a (1+ ")))
((> i #/z))
(setsyntax (: i #040)

61 Multics

(boole 7 (apply 'status (list 'syntax i)) #0500)
i))

The yntax. used for reading strings is also different from ths used elsewhere. In other Lisps,
the / characwr ill quo~e the next character, so /" wi 1 insert a double quote character into a
string. 1n Multics lisp me / character loses its sp{!Cial mearung and is intefl)retcd as an ordinary
alphabetic. To rnse.rr a double quote character imo a string, the charac er is typed twice
following the 1u1tics system convent.ion.. This inc:omp.itibilit.y arose since the implementation of
su-ings in Multics Lisp predated tlleir implementation else here.

While no i11stal1ed facility is a: ailable iU the moment for rcsoMog these syntax differences,
the autllors ha e a private reader which is compatible with the PDP-IO case and sering yntax.
Contact one of them for more in formation,.

When the ultics isp compiler needs to generate an anonymous function. it creates a
symbol to put the definition on. This will occur whc:ne1i·er a function ts passed as an argumen ·
using (function (lambda ..•)), or when using (defun (11ame prop) ... }. for example.
Uofortumnely, you get the same name every time you run the compiler. Doing

(dee l are (g1enp ref ix unique-riame))1

will fix thi problem; the compiler will then use unique-name as a basis for its generated .names.
For example. lhe loop module does

(declare (genprefix loop-iterat·on/1-))

so that the compiler will generate names loop-lteration/l 1, loop-iterationll-2 etc.

error works incompatibly. The econd argu.111cm is output followjng the firs rather than
before, as is done elsewhere. It is r,ecommcnded that you use terror instead, or de-fine your own
error ignalling primitive. This is often a good thi.ng to do anyway.

The default setting of I.he •rs.et switch is nil. You may find jt hcl:pfu1 to wm i on in your
s tart_up. 1 • s.p.

lf yo find a symbol. which ha become mystcriousl. unbourid. chances are that you have
taken lhc car of a symbol or bignum someplacae. The objocc returned by such an operation is the
special mar:ker cored in unbound value eels.

The recenlly wriuen Multic comfiland di sp ay_ 1 i sp_abject_segment (short name
dl os) may bt used to examine the co:mcnts of compiled Lip object segments. L is qui.le useful
in verifying th.c proper execution of complex macros and compile time facilities.

Ml.: M IJOC':l lll VS 1(1 21-JLII.· 1

Lisp Machine 62 Madisp Extensions

11. 2.3 Fu.rther Doc u:me11tatioo

Online Lisp documentation resides in the directories >e xl >info and > doc> info. The info
segment 11 sp. changes.info describes the latest changes ro the Multics implementation.
1 isp_manual _update.info describes earlier changes. A collection of segments

1 sp_module. info, where module is as above. repeat the documentation contained in this
manual. Finally, the segment di splay_ l i sp_objiect_segment. info describes the
display_ iii sp_object·_segment command.

These segments may be perused by means ,of the he 1 p command. For instance, type
'help lisp. chan g:es" to view the first of these segments.

11.3 Lisp ,achine

On the Lisp Machine. everychlng de~ribed in mis document is a pan of the dcf.autt
environment ·o changes need be made to source files.

Further documentation may be found by consulting the Lisp Machine Manual. the LMMAN
dh-ec{ory on lhe AI macllinc, and finally the source code itself. The Zmacs command Mei:a­
period will prornp L for a function or variable name and read the source file in which it is de.fined
i.nco a buff er.

11.4 Hints On Writing Transportable Code

This section contains some hard· knocks know !ed_gc gathered by the authors over many tea­
filled nights of grief. While we have done our best to distill some coherent advice from ou:r
experience, there are no easy answers.. This is at times a black art.

o doubt there are leelrnjques (and pitfalls!) which we have overtook.cd. lf you have
something which could be' added lO lhis section, the authors wou!d like to bear ftom you.

11.4.1 Condifomallzation

Ultimately. despite cveryomfs best effons, you are likely to find l:hal your code must be
conditionalizc-d in some manner. In this cve11tualiLy there are a couple of lliings w be aware of.

The sharpsign reader macro (chapter 3, page 5) is ,a very handy tool for conditionalizin,g oode
for dlffcrem sites.. However. its indiscrimjna:nt use can result in highly unreadable code.
Frcqucntl . when it seems that condilionali1..ations are going LO nc.cd to be sprlciklcd throughmn a
piece of code, iL is possible to identify a common pattern between [hem, and replace lhcm with
an appropriaccly defined macro. This macro will have a d-cfinition lhat wm be condittonalized for
each site that lhe t:ode mns, and wm sen·e Lo localize !he ugly implcmcmation dc:pendcm details.
Somc,timcs I.his opc,alion adually imprrnies the readability of the code. since it forces the
progr.immcr lo give a narnc to a paucrn pr-cscnt in many places,

As an c>:.unplc, me followinn- m,1cro provides a sysccm-indc-pc1uJem w.ly of dclcnni11ing the
screen size of a consule stream.

r,.,11 .: l ACDOC; IJll -' FS 46 21-JUJ.·Sl

Mactisp Extensions 63 Hines On Writing Transp ,:1bJe Code

'(defmacr•o scre e -size (stream)
M+ITS '(status tysize ,stream)
#+L1spm "(mult~ple-value-bind (width height)

(uncal ,st earn' :size-in-characters)
(cons height width))

#-(or ITS Lispm) ''(80 .. 24.))

Another probl.em wii.h using any of the conditionaiization fealures of the sharpsign reader
macro is the fact lhait .although something like

#+Ntl Jonn

does cause lhe form form to be jgnored in Lisps that aren't of me rL varieLy, it is nevertheless
necessary Chat Jann be readable in those ocher Lisps. In other words, if fom1 contains the use of
a reader s ntax mat is cmJy upponed in TL. then it won't work to condilionaliic form in this
manner, becau e other Lisps are going to have to parw it

Current] • a frequent cause of such problems is ti.le use of a special cha.racier name after # \
that isu t univers:a ly understood.

[n some sin ations, large portions of a program will need lo be written clifferently from system
co s stem. Often such portions will deal with issues of operating ystem interface, uch as console
or file ~/o. In su h cases. il is best lO define a common inc rface to lhis portion, so that this
code may be factored out into separate files.

Jl.4.2 Odds and Ends

Avoid direccly mserting imo your code con tams which are specific lei the byte, word, or
pointer iie of a machine.. For insrance, use (rot 1 -1) instead of _ 43 to reference lhe most
negative fixnum on a PDP~ 10. Similarly., use (tsh -1i -1) for the mosL positive fixnum and
(haul.ong (rot 1 -1)) for the number of bits in a fl num..

There ls only one reliab e way to define a function l:hat ignore one or more of ics arguments
without comp aim from the compiler:

(defun ignore-second-arg (first second th rd)
s,e,con d ; ignored
(ist first third))

Other com'c:n ions do not work uni ersaHy.

ot an Usps have string . However. in most, t xt surrounded by doub1equotc wiU read in
as some kind of object which wiH print om again in a readable formal. Thi object · uicablc for
pa ing LO functions such as princ and format, bul cannot be univc:rsalhr guaranW('d to behave
reasonably with function uch as equal.

[n aclisp, l.hc dcf.:llll yntax of the colon harnctcr i alpha ctic, bu it has pccial meaning
on the Lisp ~ achinc. Don·· u it in Lhc name of a . } mh< J unlc~ you kntl\l, 'I\ hat yuu arc
doing.

21-JI L-81

Hints On Writing Transportable Code 64 Maclisp tensions

If ·colons are being used only for denoting k~words, then it is useful to give colon the syntax
of wbiteSpace ouE.Side the Lisp Machine. "!'hi_s can be- accomp1isbed with this Maclisp form:

(setsyntax I I: I • I I n11)
'

Don'l leave control-V's (circle-plus on the Lisp Machine) lying around randomly. like in vaJret
strings. They h.ave special syrnactic meaning on the Lisp Machine.

All PDP-10 Madisp compiled output C' FAS l ") files use the same format t is therefore
possible to transpon the compiled file between PDP~lOs (e.g., from an ITS to a TOPS-20). if the
code contained £.herein is not conditionalized on chose differences. lbe source code for loop, for
example, doe not contain an)' # + or # - conclitionalizations which distinguish between any
PDP·lO implementations; the FASL file for loop used on TOPS~20 and TOPS·lO silC'S is the same
one used on lTS.

11.: lt\CDOC:DIFJ· 46 2H'lH.·81

Maclisp Extensions

•c~tcb Special Form·. . . •
"format-sering-generator Variable
•rset Variable . . • • • • •
*throw Fu11ctfo11. • • • •
<..:: Function • • •
>= Function •••
?format Function •
arrayp Fwrclion .
bit-test Function ,,
case translation .
caseq Special Form
cbar-n Furrctlo11. .
character Funclion
defconst Special Forni •
define-fonnat-op Macro .
dcfmacro Macro. • • • • •
defstruc:r Macro • . . • . •
delstrnct-define-type Macro .
defun Special Form ...•..
defun&-check-args Variable .
defvac Special Fonn . . •
dolist Special .Form . .
dotimcs Special Form •
dpb Function . . • . .
enor Function. . . • •
eval-whcn Special Form. • • . •
evcnp Frmcl«m • .
fboundp Function . •
ferror Functio,r . .
fimump Function.
flonump Fu11crion.
format Ftmction. •
fom1at-charpos Function ••
format-flatc Macro
forrnat-fonnf~~d Function
fonmn- resh-lmc FurJ.ctirm •
formaHcprinc flmction. •
fonnat-linei F-tmction.
format-prinl Func-Jion •
forma -princ FimcJion • •
fonnat-tab-Lo Fu11ctlo11. •
fonnat-lcrprl flmr:licm .
fnnnat-l!,'O Flmclirm . .
lonmu:*/ # - var Variablr.
forrnac:•10p- ch,ir- printcr · 'ariable .
fnrmac:.1ts1gn - lhg •'oriubfe •. •.

65

Index

Index

I I I 124
• 51

.• 61
• 24-

.. 191

.19

. 54
-I' I -Ii • i "" .19

. . 18
•. 60
. . 23

. 57
. ••. 57

.13

. 54

.10

.26

.42

. 8

. 59

. !3
• ••• 23

• 23
.18
. 61
.13

. .. 19
.19

. • 25. 6
... 18

. .18

. .47
. 56
. 57
. 56
.56
. 56
• 56
. 56
. 56
. 56
.56

.. 56
. 50
. SI
. 55

2J·JUI ·111

Index

f ormat:colon- flag Variable. . . .
genprefi.x. Compiler Declaration .
if Sp.ecial Form . •
ldb F1mclion. . .. •
let Special Form • • •
[et" Special Form .
lexpr-funcall Function.
bst* Hmclion . . •
logand Function • •
logior Fur1ction •
lognot Function •
logxor Function .
loop M a·cro . . • ,
make-list Ftmctton
nth Funclion . ••••
nthcdr Fum:tion • • .
package prefix . .
padcages
pop Macro
p.rogl Special Form
psctq Special Fonn. . . • • • • •
pu h Macro •
seledq Special Form .
s.etf Macro . ••...
standard-output V:ariable .
string-length Fu,u:tian.
su-ingp Function. . . . • • •
strings •••••
unwind-protect. Special Form .
witltout-inre:mipis Special Form.

66, Macli.sp Extensions

55
61
21
18
20
20
2S
19
17
11

., • • 7
17
23
19
20
20

i i ii' !ii! 'I! 631
• .26, 28 30, 41. 55

. . . • • . 16
25
21
·S

. . . . • • 22
15
54
57
57

. 59. 6,1, 63
24
25

2]-JUl.-81

