
MIT/LCS/TM- 211

A NOTE ON EQUIVALENCES

AMONG LOGICS OF PROGRAHS

Albert R. Meyer

Jerzey Tiuryn

December 1981

A Note On Equivalences Among Logics Of Programs

1 December 1981

Albert R. Meyer

Massachusetts Institute of Technology1

J erzy Tiuryn

Massachusetts Institute of Technology and Warsaw University

Copyright (C) 1981 Albert R. Meyer and Jerzy Tiuryn

This work was supported in part by The National Science Foundation, Grant Nos. MCS
7719754 and MCS 8010707, and by a grant to the M.I.T. Laboratory for Computer Science
by the IBM Corporation.

1
Laboratory for Computer Science. Cambridge, Massachusetts 02139, USA

1

Abstract. Several differe_1t first order formal logics l 'f programs-­
Algorithmic Logic, Dynamic Logic, and Logic of Effective Definitions -- are
compared and shown to be equivalent to a fragment of constructive Lw

1
<..l.

When programs are modelled as effective flowcharts, the logics of deterministic
and nondeterministic programs are equivalenl

I Introduction

A number of systems of formal logics which extend predicate calculus have been

proposed for reasoning about sequential and nondeterministic programs. These include in

rough chronological order

1. The infinitary logic Lw
1

w -- suggested by ENGELER 67 as a logic for
programming,

2. Algorithmic Logic (AL) -- defined and developed by SALWICKI, et.al. 70,

3. µ,-calculus -- defined by HITCHCOCK and PARK 73; extended by DE
BAKKER 80,

4. Dynamic Logic (DL) -- PRATI 76,

5. Programming Logic (PL) -- CONST ABLE and O'DONNELL 78,

6. Logic of Effective Definitions (LED) -- TIUR YN 80.

Each of these logical systems actually represents a family of formal logics, instances of

the family being dete1mined by the choice of a few parameters. The principal parameter is

the class of programs allowed in formulas. For example, in the case of DL some variants

which have been considered are

- regular DL, in which programs are taken essentially to be fini te, possibly
nondeterministic, flowchart schemes with atomic formulas as tests and with
simple assignment statements of the form x: = T where 'Tis a term,

- regular-army DL in which array assignments of the form Tl = T 2 may also occur
(cf. MEYER and WINKLMANN 80),

2

- regular DL + irr which for eve1y finite flowchart a, the predicate LOOPS a'
which asserts that a has an in fin ite computation, is included as a:.1 extra atomic
formula (cf. MEYER and WI'\IKLMANN 80).2

- recursive-call DL in which programs are taken to be flowchart schemes
containing recursive caJls with arguments (cf. GREIBACH 75, DE BAKKER
80).

In general, such different choices of the parameters lead to logics which differ in

expressive power. For example, TIUR YN 81 has recently shown that there is a formula of

recursive-call DL, as well as one of regular-array DL, which is not equivalent to any

formula of regular DL. On the other hand, MEYER and WINKLMANN 80 have shown

that regular DL and regular DL + are equivalent in expressive power. MEYER and

PARIKH 81 have also demonstrated distinctions among the expressive powers of several

other versions of DL and Lw
1

w·

Thus there are genuine distinctions in the expressive, and also model Hleoretic and

undecidability properties among the various instances of DL. These distinctions

complicate the problem of comparing the six systems of programming logics listed above.

For example, the bulk of the literature on AL defined that system in the paiticular version

where programs are deterministic while schemes. 3 Since the original DL allowed

nondeterministic schemes, it appeared that DL and AL represented genuinely. distinct

conceptions of programming logic.

Nevertheless, we claim that with appropriately matched parameters, DL, AL, and LED,

are actually equivalent systems. We believe that PL can be incorporated into this common

framework as well, although its numerous "practical" features make it harder to grasp

theoretically.

2
Howcver. LOOPS

0
may not occur as a test in a program.

3
Only recentl y has an AL with nondeterministic schemes been considered by MlRKOWSKA 80.

3

These systems can be describe:i in more classical terminology ~ fragments of the

constructive portion of Lw
1
w' with the different_ instances of the systems characterized by

various simple syntactic conditions on infinitary formulas. Thus, we argue that there is a

common intuition which leads to the DL-AL-LED-PL framework for programming logic.

In what follows we focus on.this framework.4

In order to compare the DL-AL-LED-PL frameworks, we restrict ourselves to instances

of these systems using what we regard as the mathematically most natural and robust

notion of computability over arbitrary structures, namely computability by effective

flowcharts. Effective flowcharts may be described informally as generally infinite,

nondeterministic, uninterpreted flowchart schemes whose basic instructions are assignment

statements and whose basic tests consist of atomic formulas (including equations).

Moreover, given a box of the flowchart, one can effectively find the instruction in that.box,

the number of edges leaving the box, and the endpoints of those edges. For technical

convenience \Ve require that the signature (i.e., set of symbols occurring, including

variables) of any flowchart is finite.

A state provides an interpretation for all function, predicate, and variable symbols.

Given a state, a nondeterministic flowchart defines a set of executable instruction

sequences. The set of states in which execution of these instruction sequences can finally

terminate is the set of output states for the given input state. Thus, any flowchart ex defines

a binary input-output relation Ra on states where

Ra = {(s,t)I starting in state s, there is an executable sequence of instructions
in a which finishes in output state t}.

4
Technica1 results of PA RK 76 for µ -calculus, and MEYER and PARIKH 81 for the constructive fragment

of Lw
1

W' show that these latter logics arc incomparable in expressive power. and both arc strictly greater in

expressive power than logics in the DL-/\L-LED-PI. framework unless the notion of program scheme is
stretched unreasonably.

4

lJ there is an infinite executable sequence starting in state s, then a is said to loop from

states. Formal definitions are available in MEYER and WINKLMANN 80, MEYER and

HALPERN 80, MEYER and PARIKH 80, TIURYN 80.

Friedman, cf. SHEPHERDSON 73, proposed a notion of effective definitional scheme as

the most general model of effective computability in arbitrary structures. These may be

described as the special case of effective flowcharts which are of the form

if P1 then ASSIGN1 else
if P2 then ASSIGN2 else
if P3 ...

where Pi is a finite conjunction of atomic formulas or their negations, and ASSIGNi is a

sequence of assignment statements of the form x: = -r with distinct variables x on the

lefthand side of each statement in the sequence.

We can generalize effective definitional schemes to be nondeterministic. These

nondeterministic effective definitional schemes can be informally described as the infinite

parallel OR of statements of the form

if Pi then ASSIGNi else ABORT fi,

where ABORT is a program with empty input-output relation, e.g., while true do anything

od. Equivalent notions of universal classes of effective procedures on arbitrary structures

have been proposed by many other researchers. In particular, it is easy to show

Lemma 1: The following classes of program schemes define the same class of
input-output relations:

1. (Non)Deterministic effective flowcharts without array assignments (i.e.,
simple assignments only),

2. (Nondeterministic) Effective definitional schemes,

3. (Non)Determ inistic finite flowcharts without array assignments but with
stacks.

5

Similar definitions and lemma· can be given for the case that ar:ay assignments are

allowed. These results indicate the invariance of the class of computable input-output

relations between states defined by effective flowcharts.

Our main observation is that when effective flowcharts are taken as the notion of

program in the programming logics listed above, then all can be reduced to a simple

fragment of constructive Lw
1

w which we define next.

Definition 2: Let Lre be the class of infinitary first order formulas defined
inductively as follows:

(a).if P1, P2,... is a recursively enumerable sequence of quantifier-free
formulas of predicate calculus among which there are only finitely many
free variables, then v{Pil i~l} is a basic formula ofLre'

(b).ifp,q are fonnulas of Lw then so are , p, pJ\q, pVq, 3x[p], vx[p].

Theorem 3: There is an effective procedure to translate a formula of any one
oft..11.e following formal logics into an equivalent formula of any of Hie others:

2. DL of deterministic effective flowcharts without array assignments (i.e.,
only simple assignments occur), henceforth called DDL-w/o-array

3. DL of deterministic effective flowcharts (i.e., array assignments may
occur) henceforth called DDL,

4. DL + of nondeterministic effective flowcharts without array assignments,
henceforth called DL + -l~/o-array,

5.LED,

6. Logic of nondeterministic effective definitional schemes (without array
assignments),

7. AL of deterministic effective flowcharts without array assignments,

6

8. AL of nondeterministic effective flowcharts without array assignments
and without the iteration quantifier n.

We would like to emphasize that according to Theorem 3, DDL-,1/0-array and DL + -

w/o-array are equivalent, viz., adding nondeterminism to effective flowcharts does not

increase the expressive power of the dynamic logic.

Although in many programming situations nondeterminism is a significant addition, we

can explain informally why it adds nothing to the logic of deterministic effective schemes:

the rich control structure provided by arbitrary effective flowcharts enables a detern1inistic

scheme ad to "check the results" of any nondeterministic scheme a by carrying out a

backtracking search. In particular, suppose a is a nondeterministic effective flowchart

without array assignments whose registers, i.e., free variables, are x = x0, ... ,xn-l· Then

there is a deterministic effective flowchart ad such that actCx,y) halts iff a(x) can halt with

the final contents of registers x set to y. Thus the assertion that after a(x) halts, it is

possible that some property p(x) holds, is equivalent to the assertion that there exist y such

that a"ct(x,y) halts and p(y) holds. In this way, an existentially quantified assertion about a

deterministic flowchart has the same expressive power as an assertion about a

nondeterministic flowchart.

For more restricted control structures which cannot carry out the backtrack search,

nondeterminism indeed makes a difference: P. Berman, J. Halpern, and J. Tiuryn have

recently shown that for regular programs, DDL is strictly less expressive than DL.

In the case that array assignments do occur in nondeterministic programs, our proof of

Theorem 3 breaks down. The nondeterministic flowchart a may have registers x and also

assignable arrays, i,e., function symbols f. Again, there is a deterministic "checking"

flowchart ad such that actCxJ,y,g) halts iff a(x,f) can halt with the final values of registers x

and arrays f equal to y,g. Now, however, in order to reduce an assertion about a to one

about ad as above, it is necessary to existentially bind not only the y variables by also the

7

function symbols g. This second order quantification exceeds the l'Ower of DL. But

Lecause the values of the arrays g differ only finitely from the values of the f, the full power

of second order quantification is not necessary. If there are elements in the domain of

interpretation which can serve to represent finite sets, it is possible to simulate this weak

second order quantification by first order quantifiers. Any infinite set of finitely generated

elements will serve to represent finite sets, so, aside from the pathological case of

(essentially) finite domains, we can extend the theorem to nondeterministic effective

flowcharts even with array assignments.

Namely, let}: be some finite set of function symbols. A state is n,2.-infinite iff there are

n elements of the domain of the state such that the set of elements generated by applying

the functions (which are the interpretations in the state of the symbols) in }: to these n

elements is infinite.

Theorem 4: For any n>O and finite set }: of function symbols, there is an
effective procedure to translate any formula p of the logics 9.-ll. below, into a
formula p' of Lre such that for every n,}:-infinite states,

sl=p iff st=p'.

9. DL + of nondeterministic effective flowcharts,

10. Logic of nondeterministic effective definitional schemes (with
array assignments),

11. AL of nondeterministic effective flowcharts without the iteration
quantifier n.

It remairrs an interesting open question whether the hypothesis of n, }:-infinity can be

eliminated from Theorem 4. Whether the iteration quantifier n makes a difference in the

· presence of nondeterministic programs is also open, but appears to be of technical interest

only.

In the next section we present the main definitions among the logics 1.-11., and prove

Theorems 3 and 4.

8

Z Definitions and Proofs

All of the logics 1.-11. are subsets of the following class Luniv of formulas which is

obtained by combining the features of all the languages.

Definition 5: Luniv is defined inductively as follows:

(a).Any atomic formula of predicate calculus with equality is a formula of

½miv•

(b).if a is an effective flowchart, then LOOPS a is a formula of Luniv•

(c).if p,q are formulas ofLuniv• then so are ,p, p/\q, pVq, 3x[p], Vx[p],

(d).if P1,P2, ... , is an r.e. sequence of fonnulas ofLuniv• then so are v{Pil i>l}
and A{PJ i2 l},

(e).if a is an effective flowchart and pis a formula of Luniv• then so are <a>p
and [a]p,

(f). if a is an effective flowchart and p is a fom1 ula of Luniv• then so are (n a)p
and (Ua)p.

Whether a states satisfies a formula p of Luniv• denoted sl=p, is defined in the usual way

for p of the form (a), (c), or (d) above.

For case (b), s'F=LOOPSa iff a loops from states.

For case (e), sl=<a>p iff tl=p for some state t such that (s,t) E Ra; sl=[a]p ifft'F=p for all

states t such that (s,t) E Ra.

Case (f) covers the iteration quantifiers of AL. sl=(Ua)p iff sl=(a*)p, where a* is an

effective flowchart such that Ra* is the reflexive transitive closure of Ra. s1=(na)p iff

s1=<a
11

>p for all n20, where o:
11 is an effective flowchart such tJ1at Ran = .the relational

composition of Ra with itself n times.

This defin es the semantics of Luniv-

9

Lre is easily embeddable in al: of the logics of TI1eorem 3, and all are obviously

embeddable into one of DDL or DL + -w/o-array, so we give precise ddinitions and proofs

only for these latter two logics.

Definition 6: DDL is the class of formulas defined by rules (a,c,e) of
Definition 5 such that the flowchruts a of rule (e) are deterministic. DL + -w/o­

array is the class of fonnulas defined by rules (a,b,c,e) such that the flowcha1ts a
of rule (e) do not contain array assignments.

To prove Theorem 3, we describe translations between Lre and DDL, and between Lre

and DL + -w/o-array.

The translation from Lre actually takes formulas of Lre into the intersection of DDL and

DL + -w/o-array. It is obtained trivially frolJl the observation that the atomic formula V{Pil

i2l} of Lre is equivalent to <a>true where a is the effective flowchart

if P1 then x: =x else
if P2 then x: =x else
if P3 then x: =x else

The translation from DDL to Lre is based on

Lemma 7: The following formulas are valid for any flowchart a and formula

P of Luniv:

1. <a>(pvq) = (<a>p V <a>q),

2. <a>3x[p] = 3z[<a>(p[z/x])], where z does not occur in a or p, and
p[z/x] is the result of substituting z for x in p.

In addition, the following formula is valid for any deterministic flowchart a and
fonnula p of Luniv:

3. <a>,p = (<a>true A ,(a)p).

The equivalences of Lemma 7 allow one to "move the <>'s in" thereby converting an

arbitrary formula of DDL into an equivalent formula built solely by first order constructs,

i.e., the rules of Definition 5.(c), starting from formulas of the fonn <{31> ... </3n>P where Pis

an atomic formula of predicate cakulus. But a formula of the form <{31> ... </3n>P is

eqL1ivalent to an r.e. disjunction of formulas <ai>P where ai ranges o.1er the terminating

i11struction sequences of the program f3 1; ... ;f3n- Each formula <a?P, where ai is a finite

~equence of assignments and atomic tests and P is quantifier free, is equivalent to a

quantifier free formula of predicate calculus, cf. PRATI 76, MEYER and PARIKH 80. In

this way DDL translates into Lre·

The translation from DL + -w/o-array into Lre proceeds by induction on the definition

of DL +. The only interesting case in the basis of the induction is for formulas of the form

LOOPS a . These are obviously equivalent to the r.e. conjunction of the quantifier-free first

order formulas which assert that a terminating instruction sequence in a is not executable.

The essential step in the inductive definition of the translation is<>- elimination. Let a

be a nondeterministic effective flowchart without array assignments and let p be a fonnula

of DL + -w/o-array. By induction, we may assume there is a formula q of Lre equivalent to

p. Let x0, .. . ,xn-l be ajl the variables occurring in flowchart a. It is easy to define an r.e. set

of quantifier-free first order formulas {Pil i2:0} and an r.e. set of terms { Ti) i2:0, j<n} such

that for all j<n and states s, s t= Pi iff it is possible for a, started in state s, to terminate with

the te1minal value of xj equal to the value of 7\j in states.

Let y0, ... ,y n-l be new variables which occur neither in a nor in q. The reader can easily

check that

3Yo···3Yn-1[Vj{Pi A (A. YJ· = TjJ·)} A q[yo,···,Yn-l/xo,···,xn-11] J<n , (1)

is equivalent in all states to <a>p.

We remark that introducing quantifiers in fonnula (1), or indeed any such formula

. which accomplishes <>-elimination, is unavoidable. This follows from the fact that the

quantifier-free fragment of Deterministic DL + -w/o-array, which is equivalent to

quantifier-free Lre• is strictly weaker than the quantifier-free fragment of DL + -w/o-array,

(cf. MEYER and WJNKLMANN 80).

11

This completes the·proof of Theorem 3.

In proving Theorem 4, we note Jiat all of the logics 9.-11. are no more expressive that

DL +. We therefore only describe the translation of DL + into Lre·

As in the proof of Theorem 3, the translation is given inductively. The only interesting

case is <>-elimination.

Let p be a formula of DL + and let a be a nondeterministic effective flowchart. By

induction, let q be an Lre formula equivalent over all n,I-infinite states top. According to

Lemma 1 we can find a nondeterministic effective definitional scheme which defines the

same input-output relation as a. This effective definitional scheme is an infinite parallel

OR of finite deterministic programs ai of the form

if Pi then ASSIGNi else ABORT fl

where ASSIGNi is a finite sequence of assignments.

Obviously <a>p is equivalent to the Luniv formula

vi<a?q. (2)

It is not hard to show that any formula <ai>q is equivalent to a formula of Lre, but this

still leaves the difficulty that (2) is an infinite disjunction of Lre• not first order, fonnulas,

and Lre is not closed under infinite disjunctions. We could eliminate this difficulty if the

integer variable i in <ai>q could somehow be taken as a variable of DL, for then the infinite

disjunction over i in (2) could simply be replaced by an existential quantification of i. With

the aid of the hypothesis of n,I-infinity, we will accompiish this as follows.

Each formula <ai>q can be transformed using the equivalences of Lemma 7 so that all

the occurrences of <ai> appear in the context

(3)

where the Gm are quantifier-free formulas of predicate calculus. Let the formula obtained

12

· ill this way be denoted qi, so that fc,rrnula (2) is equivalent to V iqi. (The transformation is

unifonn in i, so the same set of disjunctions v mGm occur in each qi.) in order to eliminate

the outermost disjunction in (2) we use the assumption of n,L-infinity nf states.

Let y = y 0, ... ,y n-l • and z be n + 1 individual variables which occur neither in a nor in qi,

and choose some effective enumeration r 1(y), riy), ... of all the terms over y U

(signature(a) - variables(a)), i.e., the terms with function symbols from a whose only

variables are from y.

For k,i~ 1, let Dk i(y,z) be a quantifier-free formula of predicate calculus which
'

expresses the following property: "z is the value of the kth term (in the above enumeration),

there are exactly i distinct values among those first k terms, and k is the least integer with

the above two properties".

Let q' be a formula obtained from qi by replacing every su bformula of the form (3) by

the r.e. disjunction

V{Dk/y,z) /\ Gm) j,k,m~l}

where Gmj is a quantifier free first order formula equivalent to <a?Gm. Note that by the

unifonnity in i of the definition of qi, it follows that the same q' is obtained for all i.

In q' we have apparently eliminated the index i, but it will be coded in the values of

variables y and z. This coding is possible because, by definition of Dkj• for every state s

there is at most one pair of integers kj~l such that st= Dkj- Moreover, for every n,L­

infinite state s and for arbitrary kj~l. si= 3y3z[Dk/y,z)]. Thus in n,L-infinite states we

can code any pair of integers by using the formulas Dkj·

We use the above observation to code the value of index i. Let q" be the formula

3y3z[V{Pi /\ Dk/y,z)I k,i~l} /\ q']

where Pi is tJ1e test portion of ai.

13

We claim that for every n,L-infidte state s,

sl= vi<ai>q = q". (4)

In order to prove the claim (4), let us assume that sl= <a?q for a certain i~ 1. Let a =
aO•···,an· l be the generators of an infinite substructure in s, let b be the i-th distinct value in

the sequence T1(a), Ti(a), ... and let k~ l be the least integer such that b = Tk(a). Let si be

the state in which y has the value a, z has the value b, and all other symbols have the same

interpretation as ins. We have sil= Pi/\ Dk,j(y,z) because sl= Pi and y,z do not occur in Pi.

In order to see that sil= q', it is enough to observe that for any r.e. set of formulas {Gml

m~ l}.

Sil= V{Dk/y,z) /\ GmjLi,k,m ~ l} iff SI= <ai)V mGm.

In this way we have proved sl= q". The other half of the equivalence (4) is proved

similarly.

3 Conclusion

Having reduced essentially all the various programming logics to the Lre fragment of

infinitary logic, it is easy to deduce a body of model theoretic and undecidability results

about programming logic from known results for infinitary logic. Moreover, the reduction

to Lre is sufficiently straightforward that various infinitary proof theoretic results can also

be carried over directly to programming logic.

We interpret these results as evidence that no very new model theoretic or recursion

theoretic issues arise from logics of programs on first order structures.

Neve1iheless, we believe that the problem of developing fonnal systems for reasoning

about programs offers significant challenges in at least two directions. First, to be true to

the purpose for which high level programming languages were originally developed and

continue to be developed -- namely for economy and ease in the expression of algorithms --

14

): is important to develop proof mei.i1ods for dealing with high level programs as textual

objects. This has in fact been the focus of the bulk of the literature on program correctness,

although many of the complex features of modern programming languages have yet to be

adequately addressed. (In our treatment we assumed in effect that the high level programs

had already been transformed into effective flowcharts, and thereby we avoided the

challenge of developing a proof theory.) A second challenge involves programs operating

on higher-type domains which are often assumed to satisfy "domain equations'' which

appear inconsistent with standard set theory. Development of appropriate logics for

reasoning about such domains has just begun, cf. SCOTT 80, and seems an intriguing

subject for further research.

Acknowledgement. We are grateful to Piotr Berman for his comm.ents.

4 References

1. BANACHOWSKI, L. et ai. An Introduction to Algorithmic Logic;
Metamathematical Investigations in the Theory of Programs, Mathematical
Founda,tions of Computer Science, Banach Center Publications, vol. 2, (ed
A. Mazurkiewicz and Z. Pawlak), Polish Scientific Publishers, Warsaw, 1977, 7-
100.

2. BERGSTRA, J., TIUR YN, J. and TUCKER, J. Floyd's Principle, Correctness
Theories and Program Equivalence, MathemaLisch Centrum, IW145/80. To
appear in Theoretical Computer Science, 1981.

3. CONSTABLE, R.L., and O'DONNELL, M.J. A Programming Logic,
Winthrop Publishers, 1978.

4. DE BAKKER, J. Mathematical Theory of Program Correctness, Prentice-Hall,
1980.

5. ENGELER, E. Algorithmic Properties of Structures, Mathematical Systems
Theory, l , 1967, 183-195.

6. ENGELER, E. Algorith mic Logic. Jn de Bakker (ed.) Malhematica! Centre

15

Tracts (63) Amsterdam 1975, >7-85.

7. GALLIER, J. H. Nondetcnninistic flowchart programs ·vith recursive
procedures: semantics and correctness, Theoretical Computer Science, 13,
2(1981), 193-224.

8. GREIBACH, S. Theory of Program Structures: Schemes, Semantics,

Verification, Lecture Notes in Computer Science, 36, Springer Verlag, 1975.

9. HAREL, D. First-Order Dynamic Logic, Lecture Notes in Computer Science
68, Springer-Verlag, 1979.

10. HAREL, D., A.R. MEYER and V. PRA IT, Computability and Completeness
in Logics of Programs: Preliminary Report, 9th ACM Symp. on Theory of

Computing, Boulder, Colorado, (May, 1977), 261-268. Revised version, M.I.T.
Lab. for Computer Science TM-97, (Feb. 1978), 16 pp.

11. HAREL, D. and V. PRATT, Nondetenninism in logics of programs, 5th
Annual Symposium on Principles of Programming Languages, January 1978,
203-213.

12. HITCHCOCK, P. and D. PARK. Induction Rules and Termination Proofs,
Automala, Languages and Programming, (ed M. Nivat), American Elsevier,
New York, 1973, 225-251.

13. KEISLE.R, H.J. Model Theory for l nfinitary Logic. North-Holland Publ. Co.,
Amsterdam 1972.

14. KFOURY, D.J. Comparing Algebraic Structures up to Algorithmic
Equivalence. In Nivat (ed.) Automata, Languages and Programming. North­
Holland Publ. Co., Amsterdam 1972, 253-264.

15. KFOURY, D.J. Translatability of schemes over restricted interpretations.
Journal of Comp. and Sys!. Sc. 8 (1974), 387-408.

16. MEYER, A.R. Ten thousand and one logics of programming. EA TCS Bulletin,

11-29; M.LT. LCS TM 150, MIT Laboratory for Computer Science,
Cambridge, Ma., February 1980.

16

17. MEYER, A.R. and J. Y. HALPERN, Axiomatic Definitions of Programming
Languages: A Theoretical A,sessment, (Preliminary Report) Proc. of Seventh
Annual POPL Conj, January 1980, 203-212; M.I.T. LCS TM 163, April, 1980,
34 pp.; to appearJACM (1981).

18. MEYER, A.R. and R. PARIKH, Definability in Dynamic Logic, Proc. of ACM
Symp. on Theory of Computing, Los Angeles, Cal., April, 1980, 1-7; to appear
lour. Computer and System Science (1981).

19. MEYER, A.R. and K. WINKLMANN, On the Expressive Power of Dynamic
Logic, Preliminary Report, Proc. of the 11th Annual ACM Conj on Theory of

Computing, Atlanta, Ga., May 1979, 167-175; M.I.T. LCS TM 157,
February,1980, 36pp; to appear Theoretical Computer Science (1981).

20. MIRKOWSKA, G. Complete Axiomatization of Algorithmic Properties of
Program Schemes with Bounded Nondeterministic Interpretations, 12th
Annual ACM Symp. on Theory ofCompULing (1980), 14-21.

21. PARK, D. Finiteness is mu-ineffable, Theoretical Computer Science 3, 1976,
173-181.

22. PRATI, V., Semantical considerations on Floyd-Hoare logic, Proceedings 17th
Symposium on Founda,tions of Computer Science, Houston, Texas, October
1976, 109-121.

23. SALWICKI, A. Formalized Algorithmic Languages, Bull. Acad. Pol. Sci.,Ser.
Math Astr. Phys. 18, 1970, 227-232.

24. SCOTT, D. S. Relating Theories of the 'A-Calculus, in To H. B. Curry: Essays
on Combina!Ory Logic, Lambda Calculus and Formalism, eds. Seldin and
Hindl~y, Academic Press, New York, 1980, 403-450.

25. SHEPHERDSON, J.C. Computing over abstract structures: serial and parallel
procedures and Friedman's effective definitional schemes, In Shepherdson and
Rose (eds.) Logic Coiloquium 73. North-Holland, Amsterdam, 1973, pp.445-
513.

26. TIURYN, J. A Survey of the Logic of Effective Definitions, MlT/LCS/TR-
246, MlT, Laboratory For Computer Science, Cambridge, Mass. , September

17

1980.

27. TIURYN, J. Unbounded pr0gram memory adds to expressive power of first­
order Dynamic Logic, Proce 0 dings 22nd IEEE Symposium on Foundations of
Computer Science, Nashville, Tennessee, October 1981, to appear.

