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Abstract. Several differe_1t first order formal logics l 'f programs-­
Algorithmic Logic, Dynamic Logic, and Logic of Effective Definitions -- are 
compared and shown to be equivalent to a fragment of constructive Lw

1
<..l. 

When programs are modelled as effective flowcharts, the logics of deterministic 
and nondeterministic programs are equivalenl 

I Introduction 

A number of systems of formal logics which extend predicate calculus have been 

proposed for reasoning about sequential and nondeterministic programs. These include in 

rough chronological order 

1. The infinitary logic Lw
1 

w -- suggested by ENGELER 67 as a logic for 
programming, 

2. Algorithmic Logic (AL) -- defined and developed by SALWICKI, et.al. 70, 

3. µ,-calculus -- defined by HITCHCOCK and PARK 73; extended by DE 
BAKKER 80, 

4. Dynamic Logic (DL) -- PRATI 76, 

5. Programming Logic (PL) -- CONST ABLE and O'DONNELL 78, 

6. Logic of Effective Definitions (LED) -- TIUR YN 80. 

Each of these logical systems actually represents a family of formal logics, instances of 

the family being dete1mined by the choice of a few parameters. The principal parameter is 

the class of programs allowed in formulas. For example, in the case of DL some variants 

which have been considered are 

- regular DL, in which programs are taken essentially to be fini te, possibly 
nondeterministic, flowchart schemes with atomic formulas as tests and with 
simple assignment statements of the form x: = T where 'Tis a term, 

- regular-army DL in which array assignments of the form Tl = T 2 may also occur 
(cf. MEYER and WINKLMANN 80), 
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- regular DL + irr which for eve1y finite flowchart a, the predicate LOOPS a' 
which asserts that a has an in fin ite computation, is included as a:.1 extra atomic 
formula (cf. MEYER and WI'\IKLMANN 80).2 

- recursive-call DL in which programs are taken to be flowchart schemes 
containing recursive caJls with arguments (cf. GREIBACH 75, DE BAKKER 
80). 

In general, such different choices of the parameters lead to logics which differ in 

expressive power. For example, TIUR YN 81 has recently shown that there is a formula of 

recursive-call DL, as well as one of regular-array DL, which is not equivalent to any 

formula of regular DL. On the other hand, MEYER and WINKLMANN 80 have shown 

that regular DL and regular DL + are equivalent in expressive power. MEYER and 

PARIKH 81 have also demonstrated distinctions among the expressive powers of several 

other versions of DL and Lw
1 

w· 

Thus there are genuine distinctions in the expressive, and also model Hleoretic and 

undecidability properties among the various instances of DL. These distinctions 

complicate the problem of comparing the six systems of programming logics listed above. 

For example, the bulk of the literature on AL defined that system in the paiticular version 

where programs are deterministic while schemes. 3 Since the original DL allowed 

nondeterministic schemes, it appeared that DL and AL represented genuinely. distinct 

conceptions of programming logic. 

Nevertheless, we claim that with appropriately matched parameters, DL, AL, and LED, 

are actually equivalent systems. We believe that PL can be incorporated into this common 

framework as well, although its numerous "practical" features make it harder to grasp 

theoretically. 

2
Howcver. LOOPS

0 
may not occur as a test in a program. 

3
Only recentl y has an AL with nondeterministic schemes been considered by MlRKOWSKA 80. 
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These systems can be describe:i in more classical terminology ~ fragments of the 

constructive portion of Lw
1 
w' with the different_ instances of the systems characterized by 

various simple syntactic conditions on infinitary formulas. Thus, we argue that there is a 

common intuition which leads to the DL-AL-LED-PL framework for programming logic. 

In what follows we focus on.this framework.4 

In order to compare the DL-AL-LED-PL frameworks, we restrict ourselves to instances 

of these systems using what we regard as the mathematically most natural and robust 

notion of computability over arbitrary structures, namely computability by effective 

flowcharts. Effective flowcharts may be described informally as generally infinite, 

nondeterministic, uninterpreted flowchart schemes whose basic instructions are assignment 

statements and whose basic tests consist of atomic formulas (including equations). 

Moreover, given a box of the flowchart, one can effectively find the instruction in that.box, 

the number of edges leaving the box, and the endpoints of those edges. For technical 

convenience \Ve require that the signature (i.e., set of symbols occurring, including 

variables) of any flowchart is finite. 

A state provides an interpretation for all function, predicate, and variable symbols. 

Given a state, a nondeterministic flowchart defines a set of executable instruction 

sequences. The set of states in which execution of these instruction sequences can finally 

terminate is the set of output states for the given input state. Thus, any flowchart ex defines 

a binary input-output relation Ra on states where 

Ra = {(s,t)I starting in state s, there is an executable sequence of instructions 
in a which finishes in output state t}. 

4
Technica1 results of PA RK 76 for µ -calculus, and MEYER and PARIKH 81 for the constructive fragment 

of Lw
1 

W' show that these latter logics arc incomparable in expressive power. and both arc strictly greater in 

expressive power than logics in the DL-/\L-LED-PI. framework unless the notion of program scheme is 
stretched unreasonably. 
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lJ there is an infinite executable sequence starting in state s, then a is said to loop from 

states. Formal definitions are available in MEYER and WINKLMANN 80, MEYER and 

HALPERN 80, MEYER and PARIKH 80, TIURYN 80. 

Friedman, cf. SHEPHERDSON 73, proposed a notion of effective definitional scheme as 

the most general model of effective computability in arbitrary structures. These may be 

described as the special case of effective flowcharts which are of the form 

if P1 then ASSIGN1 else 
if P2 then ASSIGN2 else 
if P3 ... 

where Pi is a finite conjunction of atomic formulas or their negations, and ASSIGNi is a 

sequence of assignment statements of the form x: = -r with distinct variables x on the 

lefthand side of each statement in the sequence. 

We can generalize effective definitional schemes to be nondeterministic. These 

nondeterministic effective definitional schemes can be informally described as the infinite 

parallel OR of statements of the form 

if Pi then ASSIGNi else ABORT fi, 

where ABORT is a program with empty input-output relation, e.g., while true do anything 

od. Equivalent notions of universal classes of effective procedures on arbitrary structures 

have been proposed by many other researchers. In particular, it is easy to show 

Lemma 1: The following classes of program schemes define the same class of 
input-output relations: 

1. (Non)Deterministic effective flowcharts without array assignments (i.e., 
simple assignments only), 

2. (Nondeterministic) Effective definitional schemes, 

3. (Non)Determ inistic finite flowcharts without array assignments but with 
stacks. 
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Similar definitions and lemma· can be given for the case that ar:ay assignments are 

allowed. These results indicate the invariance of the class of computable input-output 

relations between states defined by effective flowcharts. 

Our main observation is that when effective flowcharts are taken as the notion of 

program in the programming logics listed above, then all can be reduced to a simple 

fragment of constructive Lw
1 

w which we define next. 

Definition 2: Let Lre be the class of infinitary first order formulas defined 
inductively as follows: 

(a).if P1, P2,... is a recursively enumerable sequence of quantifier-free 
formulas of predicate calculus among which there are only finitely many 
free variables, then v{Pil i~l} is a basic formula ofLre' 

(b).ifp,q are fonnulas of Lw then so are , p, pJ\q, pVq, 3x[p], vx[p]. 

Theorem 3: There is an effective procedure to translate a formula of any one 
oft..11.e following formal logics into an equivalent formula of any of Hie others: 

2. DL of deterministic effective flowcharts without array assignments (i.e., 
only simple assignments occur), henceforth called DDL-w/o-array 

3. DL of deterministic effective flowcharts (i.e., array assignments may 
occur) henceforth called DDL, 

4. DL + of nondeterministic effective flowcharts without array assignments, 
henceforth called DL + -l~/o-array, 

5.LED, 

6. Logic of nondeterministic effective definitional schemes (without array 
assignments), 

7. AL of deterministic effective flowcharts without array assignments, 
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8. AL of nondeterministic effective flowcharts without array assignments 
and without the iteration quantifier n. 

We would like to emphasize that according to Theorem 3, DDL-,1/0-array and DL + -

w/o-array are equivalent, viz., adding nondeterminism to effective flowcharts does not 

increase the expressive power of the dynamic logic. 

Although in many programming situations nondeterminism is a significant addition, we 

can explain informally why it adds nothing to the logic of deterministic effective schemes: 

the rich control structure provided by arbitrary effective flowcharts enables a detern1inistic 

scheme ad to "check the results" of any nondeterministic scheme a by carrying out a 

backtracking search. In particular, suppose a is a nondeterministic effective flowchart 

without array assignments whose registers, i.e., free variables, are x = x0, ... ,xn-l· Then 

there is a deterministic effective flowchart ad such that actCx,y) halts iff a(x) can halt with 

the final contents of registers x set to y. Thus the assertion that after a(x) halts, it is 

possible that some property p(x) holds, is equivalent to the assertion that there exist y such 

that a"ct(x,y) halts and p(y) holds. In this way, an existentially quantified assertion about a 

deterministic flowchart has the same expressive power as an assertion about a 

nondeterministic flowchart. 

For more restricted control structures which cannot carry out the backtrack search, 

nondeterminism indeed makes a difference: P. Berman, J. Halpern, and J. Tiuryn have 

recently shown that for regular programs, DDL is strictly less expressive than DL. 

In the case that array assignments do occur in nondeterministic programs, our proof of 

Theorem 3 breaks down. The nondeterministic flowchart a may have registers x and also 

assignable arrays, i,e., function symbols f. Again, there is a deterministic "checking" 

flowchart ad such that actCxJ,y,g) halts iff a(x,f) can halt with the final values of registers x 

and arrays f equal to y,g. Now, however, in order to reduce an assertion about a to one 

about ad as above, it is necessary to existentially bind not only the y variables by also the 
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function symbols g. This second order quantification exceeds the l'Ower of DL. But 

Lecause the values of the arrays g differ only finitely from the values of the f, the full power 

of second order quantification is not necessary. If there are elements in the domain of 

interpretation which can serve to represent finite sets, it is possible to simulate this weak 

second order quantification by first order quantifiers. Any infinite set of finitely generated 

elements will serve to represent finite sets, so, aside from the pathological case of 

(essentially) finite domains, we can extend the theorem to nondeterministic effective 

flowcharts even with array assignments. 

Namely, let}: be some finite set of function symbols. A state is n,2.-infinite iff there are 

n elements of the domain of the state such that the set of elements generated by applying 

the functions (which are the interpretations in the state of the symbols) in }: to these n 

elements is infinite. 

Theorem 4: For any n>O and finite set }: of function symbols, there is an 
effective procedure to translate any formula p of the logics 9.-ll. below, into a 
formula p' of Lre such that for every n,}:-infinite states, 

sl=p iff st=p'. 

9. DL + of nondeterministic effective flowcharts, 

10. Logic of nondeterministic effective definitional schemes (with 
array assignments), 

11. AL of nondeterministic effective flowcharts without the iteration 
quantifier n. 

It remairrs an interesting open question whether the hypothesis of n, }:-infinity can be 

eliminated from Theorem 4. Whether the iteration quantifier n makes a difference in the 

· presence of nondeterministic programs is also open, but appears to be of technical interest 

only. 

In the next section we present the main definitions among the logics 1.-11., and prove 

Theorems 3 and 4. 
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Z Definitions and Proofs 

All of the logics 1.-11. are subsets of the following class Luniv of formulas which is 

obtained by combining the features of all the languages. 

Definition 5: Luniv is defined inductively as follows: 

(a).Any atomic formula of predicate calculus with equality is a formula of 

½miv• 

(b ).if a is an effective flowchart, then LOOPS a is a formula of Luniv• 

(c).if p,q are formulas ofLuniv• then so are ,p, p/\q, pVq, 3x[p], Vx[p], 

(d).if P1,P2, ... , is an r.e. sequence of fonnulas ofLuniv• then so are v{Pil i>l} 
and A{PJ i2 l}, 

(e).if a is an effective flowchart and pis a formula of Luniv• then so are <a>p 
and [a]p, 

(f). if a is an effective flowchart and p is a fom1 ula of Luniv• then so are (n a )p 
and (Ua)p. 

Whether a states satisfies a formula p of Luniv• denoted sl=p, is defined in the usual way 

for p of the form (a), (c), or (d) above. 

For case (b), s'F=LOOPSa iff a loops from states. 

For case (e), sl=<a>p iff tl=p for some state t such that (s,t) E Ra; sl=[a]p ifft'F=p for all 

states t such that (s,t) E Ra. 

Case (f) covers the iteration quantifiers of AL. sl=(Ua)p iff sl=(a*)p, where a* is an 

effective flowchart such that Ra* is the reflexive transitive closure of Ra. s1=(na)p iff 

s1=<a
11

>p for all n20, where o:
11 is an effective flowchart such tJ1at Ran = .the relational 

composition of Ra with itself n times. 

This defin es the semantics of Luniv-
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Lre is easily embeddable in al: of the logics of TI1eorem 3, and all are obviously 

embeddable into one of DDL or DL + -w/o-array, so we give precise ddinitions and proofs 

only for these latter two logics. 

Definition 6: DDL is the class of formulas defined by rules (a,c,e) of 
Definition 5 such that the flowchruts a of rule (e) are deterministic. DL + -w/o­

array is the class of fonnulas defined by rules (a,b,c,e) such that the flowcha1ts a 
of rule ( e) do not contain array assignments. 

To prove Theorem 3, we describe translations between Lre and DDL, and between Lre 

and DL + -w/o-array. 

The translation from Lre actually takes formulas of Lre into the intersection of DDL and 

DL + -w/o-array. It is obtained trivially frolJl the observation that the atomic formula V{Pil 

i2l} of Lre is equivalent to <a>true where a is the effective flowchart 

if P1 then x: =x else 
if P2 then x: =x else 
if P3 then x: =x else .... 

The translation from DDL to Lre is based on 

Lemma 7: The following formulas are valid for any flowchart a and formula 

P of Luniv: 

1. <a>(pvq) = (<a>p V <a>q), 

2. <a>3x[p] = 3z[<a>(p[z/x])], where z does not occur in a or p, and 
p[z/x] is the result of substituting z for x in p. 

In addition, the following formula is valid for any deterministic flowchart a and 
fonnula p of Luniv: 

3. <a>,p = (<a>true A ,(a)p). 

The equivalences of Lemma 7 allow one to "move the <>'s in" thereby converting an 

arbitrary formula of DDL into an equivalent formula built solely by first order constructs, 

i.e., the rules of Definition 5.(c), starting from formulas of the fonn <{31> ... </3n>P where Pis 

an atomic formula of predicate cakulus. But a formula of the form <{31> ... </3n>P is 



eqL1ivalent to an r.e. disjunction of formulas <ai>P where ai ranges o.1er the terminating 

i11struction sequences of the program f3 1; ... ;f3n- Each formula <a?P, where ai is a finite 

~equence of assignments and atomic tests and P is quantifier free, is equivalent to a 

quantifier free formula of predicate calculus, cf. PRATI 76, MEYER and PARIKH 80. In 

this way DDL translates into Lre· 

The translation from DL + -w/o-array into Lre proceeds by induction on the definition 

of DL +. The only interesting case in the basis of the induction is for formulas of the form 

LOOPS a . These are obviously equivalent to the r.e. conjunction of the quantifier-free first 

order formulas which assert that a terminating instruction sequence in a is not executable. 

The essential step in the inductive definition of the translation is<>- elimination. Let a 

be a nondeterministic effective flowchart without array assignments and let p be a fonnula 

of DL + -w/o-array. By induction, we may assume there is a formula q of Lre equivalent to 

p. Let x0, .. . ,xn-l be ajl the variables occurring in flowchart a. It is easy to define an r.e. set 

of quantifier-free first order formulas {Pil i2:0} and an r.e. set of terms { Ti) i2:0, j<n} such 

that for all j<n and states s, s t= Pi iff it is possible for a, started in state s, to terminate with 

the te1minal value of xj equal to the value of 7\j in states. 

Let y0, ... ,y n-l be new variables which occur neither in a nor in q. The reader can easily 

check that 

3Yo···3Yn-1[ Vj{Pi A (A. YJ· = TjJ·)} A q[yo,···,Yn-l/xo,···,xn-11] J<n , (1) 

is equivalent in all states to <a>p. 

We remark that introducing quantifiers in fonnula (1), or indeed any such formula 

. which accomplishes <>-elimination, is unavoidable. This follows from the fact that the 

quantifier-free fragment of Deterministic DL + -w/o-array, which is equivalent to 

quantifier-free Lre• is strictly weaker than the quantifier-free fragment of DL + -w/o-array, 

(cf. MEYER and WJNKLMANN 80). 
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This completes the·proof of Theorem 3. 

In proving Theorem 4, we note Jiat all of the logics 9.-11. are no more expressive that 

DL +. We therefore only describe the translation of DL + into Lre· 

As in the proof of Theorem 3, the translation is given inductively. The only interesting 

case is <>-elimination. 

Let p be a formula of DL + and let a be a nondeterministic effective flowchart. By 

induction, let q be an Lre formula equivalent over all n,I-infinite states top. According to 

Lemma 1 we can find a nondeterministic effective definitional scheme which defines the 

same input-output relation as a. This effective definitional scheme is an infinite parallel 

OR of finite deterministic programs ai of the form 

if Pi then ASSIGNi else ABORT fl 

where ASSIGNi is a finite sequence of assignments. 

Obviously <a>p is equivalent to the Luniv formula 

vi<a?q. (2) 

It is not hard to show that any formula <ai>q is equivalent to a formula of Lre, but this 

still leaves the difficulty that (2) is an infinite disjunction of Lre• not first order, fonnulas, 

and Lre is not closed under infinite disjunctions. We could eliminate this difficulty if the 

integer variable i in <ai>q could somehow be taken as a variable of DL, for then the infinite 

disjunction over i in (2) could simply be replaced by an existential quantification of i. With 

the aid of the hypothesis of n,I-infinity, we will accompiish this as follows. 

Each formula <ai>q can be transformed using the equivalences of Lemma 7 so that all 

the occurrences of <ai> appear in the context 

(3) 

where the Gm are quantifier-free formulas of predicate calculus. Let the formula obtained 
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· ill this way be denoted qi, so that fc,rrnula (2) is equivalent to V iqi. (The transformation is 

unifonn in i, so the same set of disjunctions v mGm occur in each qi.) in order to eliminate 

the outermost disjunction in (2) we use the assumption of n,L-infinity nf states. 

Let y = y 0, ... ,y n-l • and z be n + 1 individual variables which occur neither in a nor in qi, 

and choose some effective enumeration r 1(y), riy), ... of all the terms over y U 

(signature(a) - variables(a)), i.e., the terms with function symbols from a whose only 

variables are from y. 

For k,i~ 1, let Dk i(y,z) be a quantifier-free formula of predicate calculus which 
' 

expresses the following property: "z is the value of the kth term (in the above enumeration), 

there are exactly i distinct values among those first k terms, and k is the least integer with 

the above two properties". 

Let q' be a formula obtained from qi by replacing every su bformula of the form (3) by 

the r.e. disjunction 

V{Dk/y,z) /\ Gm) j,k,m~l} 

where Gmj is a quantifier free first order formula equivalent to <a?Gm. Note that by the 

unifonnity in i of the definition of qi, it follows that the same q' is obtained for all i. 

In q' we have apparently eliminated the index i, but it will be coded in the values of 

variables y and z. This coding is possible because, by definition of Dkj• for every state s 

there is at most one pair of integers kj~l such that st= Dkj- Moreover, for every n,L­

infinite state s and for arbitrary kj~l. si= 3y3z[Dk/y,z)]. Thus in n,L-infinite states we 

can code any pair of integers by using the formulas Dkj· 

We use the above observation to code the value of index i. Let q" be the formula 

3y3z[V{Pi /\ Dk/y,z)I k,i~l} /\ q'] 

where Pi is tJ1e test portion of ai. 
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We claim that for every n,L-infidte state s, 

sl= vi<ai>q = q". (4) 

In order to prove the claim (4), let us assume that sl= <a?q for a certain i~ 1. Let a = 
aO•···,an· l be the generators of an infinite substructure in s, let b be the i-th distinct value in 

the sequence T1(a), Ti(a), ... and let k~ l be the least integer such that b = Tk(a). Let si be 

the state in which y has the value a, z has the value b, and all other symbols have the same 

interpretation as ins. We have sil= Pi/\ Dk,j(y,z) because sl= Pi and y,z do not occur in Pi. 

In order to see that sil= q', it is enough to observe that for any r.e. set of formulas {Gml 

m~ l}. 

Sil= V{Dk/y,z) /\ GmjLi,k,m ~ l} iff SI= <ai)V mGm. 

In this way we have proved sl= q". The other half of the equivalence (4) is proved 

similarly. 

3 Conclusion 

Having reduced essentially all the various programming logics to the Lre fragment of 

infinitary logic, it is easy to deduce a body of model theoretic and undecidability results 

about programming logic from known results for infinitary logic. Moreover, the reduction 

to Lre is sufficiently straightforward that various infinitary proof theoretic results can also 

be carried over directly to programming logic. 

We interpret these results as evidence that no very new model theoretic or recursion 

theoretic issues arise from logics of programs on first order structures. 

Neve1iheless, we believe that the problem of developing fonnal systems for reasoning 

about programs offers significant challenges in at least two directions. First, to be true to 

the purpose for which high level programming languages were originally developed and 

continue to be developed -- namely for economy and ease in the expression of algorithms --
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): is important to develop proof mei.i1ods for dealing with high level programs as textual 

objects. This has in fact been the focus of the bulk of the literature on program correctness, 

although many of the complex features of modern programming languages have yet to be 

adequately addressed. (In our treatment we assumed in effect that the high level programs 

had already been transformed into effective flowcharts, and thereby we avoided the 

challenge of developing a proof theory.) A second challenge involves programs operating 

on higher-type domains which are often assumed to satisfy "domain equations'' which 

appear inconsistent with standard set theory. Development of appropriate logics for 

reasoning about such domains has just begun, cf. SCOTT 80, and seems an intriguing 

subject for further research. 

Acknowledgement. We are grateful to Piotr Berman for his comm.ents. 
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