MIT/LCS/TM-214

"TERMINATION ASSERTIONS FOR RECURSIVE PROGRAMS:

COMPLETENESS AND AXIOMATIC DEFINABILITY"

Albert R. Mever

John C. Mitchell

March 1982

Termination Assertions for Recursive Programs:
Completeness and Axiomatic Definability

Albert R. Meyer and John C. Mitchell
Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139, USA

3 March 1982

Copyright (C) 1982 Albert R. Meyer and John C, Mitchell

Keywords: Axiomatic Definitions of Programming Languages, Complete Axiomatization,
Semantics of Programming Languages, Termination Assertions, Recursive Procedures

This work was supported in part by The National Science Foundation, Grant Nos. MCS
7719754 and MCS 8010707, and by a grant to the M.LT. Laboratory for Computer Science
from the 1BM Corporation. The second author is also supported by a fellowship from the
National Science Foundation.

Table of Contents
1. Introduction
2. Assertions About Global Procedure Calls
3. Recursive Programs
4. Completeness
5. Axiomatic Semantics
6. Conclusion
7. Appendix. Completeness for Global Procedure Calls
8. References

10
17
24
26
27
32

Abstract

The termination assertion p<S>q means that whenever the formula p is true,
there is an exccution of the possibly nondeterministic program S which
terminates in a state in which q is true. A recursive program S may declare and
use local variables and nondcterministic recursive procedures with call-by-
address and call-by-value parameters, in addition to accessing undeclared
variables and global procedures. Assertions p and g about calls to global
procedures are first order formulas extended to express hypotheses about the
termination of calls to undeclared global procedures. A complete, effective
axiom system with axioms corresponding to the syntax of the programming
language is given for the termination assertions valid over all interpretations.
Termination assertions define the semantics of recursive programs in the
following sense: il two programs have different input-outlput semantics, then
there is a termination assertion that is valid for one program but not for the
other. Thus the complete axiomatization of termination assertions constitutes an
axiomatic definition of the semantics of recursive programs.

I. Introduction

Many formal systems for proving properties of programs consist cf rules for deriving
partial correctness assertions (cf. [2]). Although these assertions express many interesting
and useful properties of programs, the assertions valid over all interpretations are
technically more difficult to derive than assertions which state termination explicitly. The
first order partial correciness assertion p{S}q means that if the first order formula p holds
initially, and if the possibly nondeterministic program S halts, then the first order formula
q holds after each possible halting computation of S. For even a very restricted set of p, S
and q, the set of valid partial correctness assertions is not recursively enumerable [12, 15].
In contrast, the set of valid termination assertions about while programs has a simple
axiomatization [16]. The termination assertion p<S>q means that if p is true initially, then

there is a possible computation of S which terminates in a state in which qis true.! Since

1Il‘ S is deterministic, then the termination assertion p<{S>q is equivalent to the partial correctness assertion
p{S}q along with the assurance that S halts whenever p is true initially.

the valid termination assertions are effectively enumerable and the valid partial correctness
assertions are not, it is possible that axiom systems for termination assertions may be more

useful for proving properties of programs than partial correctness rules.

In order to integrate correctness proofs into program development, a proof system should
allow the structures of proofs to correspond to the structures of programs. For a
programming language whose basic structural unit is the procedure, a natural approach to
software development is to specify the input-output behavior of all procedures. The
correctness of a procedure P should then follow from the assumption that the procedures
called by P meet their specifications; it should not depend on how these procedures might
be written. Furthermore, once procedure implementations have been shown to satisfy their
specifications, the proof rules should allow one to merge the proofs about procedures into a
prool” about the encompassing program. We consider recursive programs with calls to
undeclared global (accessible everywhere) procedures. Since the meanings of global
procedures are not determined by the calling programs, our preconditions must be able to
express hypotheses about global procedures. To accomplish this, we extend the usual class
of first order formulas to include termination assertions about global procedure calls. The
resulting language, firsi-order assertions about global procedures, provides a convenient
: method for specifying the behavior of procedures and shares many essential properties with
standard first-order logic. In addition, our proof rules show explicitly how to combine a
proof about a declared procedure P with a proof about a calling program S to obtain a

proof about the program which declares P and executes S.

We present a complete axiomatization of termination assertions about programs which
include local variable declarations, calls to undeclared global procedures, and
nondeterministic recursive procedures with call-by-address and call-by-value parameters.
The axioms and rules of inference are sufficient to prove all termination assertions which
are valid over all interpretations. In this respect, our completeness theorem contrasts with

the usual "relative completeness™ theorems for partial correctness assertions (e.g. [6]). That

is, we do not need to restrict ourselves to special structures and do not have to assume that
the first order theory of any structure is given as axioms. As a resuli, our completeness
theorem (Theorem 1) demonstrates that the valid termination assertions for recursive
programs are recursively enumerable, This theorem extends the similar completeness

theorem (Theorem 6.4) of Meyer and Halpern [16] for while programs without procedures.

The fact that the valid terminations assertions are so constructive suggests that they rﬁay
suffer limitations in p;‘m’iding information about programs. The following example
illustrates the uses and shortcomings of [irst order termination assertions. Let 4X denote
the conjunction of axioms for addition, proper subtraction and order for natural numbers
using constants 0 and 1. Let n denote the numeral for n, ie, n=1+14+..+1 where 1
appears n times. For any natural number n, the assertion

(AX Ax=0) <S> (y=0%)

is provable from the axioms of Theorem 1, where S is the recursive program

square
decl P = (val u, addr v): il u=0 then v: =0 else P(u-1,v); vi=v+u+u-1 fi
do

P(x.y)
end.

However, the more general termination assertion stating that Ssquam computes the squaring
function cannot be deriveﬁ from these axioms and indeed is not valid under any set of first
order hypotheses about natural numbers. That is, let p be the formula

(sq(0)=1) A ¥x[sq(x+ 1)=sq(x) +x+x+1].
Then the termination assertion

(AXAp) Sggyare” (v =5q(x))
is valid whenever the variables are interpreted as ranging over natural numbers and the
arithmetic operations are given their usual meaning, as is easily proved by induction. But
this assertion is not valid over arbitrary interpretations, even if AX is allowed to be any

infinite set of first order formulas true about natural numbers. In particular, there is a

nonstandard interpretation that satisfics all first order formulas true of natural numbers,
but in which x may be an "infinite" integer. In this interpretation, the program Ssqum will
not terminate since it cannot produce 0 by subtracting 1 from x any finite number of times.
Hence (AXAp) <Sggare” (¥ =59(x)) cannot be proved using inference rules that are sound
for all interpretations, This inherent limitation of uninterpreted first order assertions is

emphasized in the well-known paper of Hitchcock and Park [13],2

The fact that first order termination assertions are easily axiomatized depends heavily on
the compactness of first order logic. Compactness ensures that whenever a first order
assertion p implies that a program S halts, it is because p implies a fixed bound on the
depth of the execution of procedure calls in S. As a consequence, there are many
termination assertions p<S>q which are valid over specific interpretations such as the
integers, but which cannot be proved from first order properties of the interpretation since

S may not always terminate within a bounded number of calls (cf. [14]).

Despite their shortcomings, valid uninterpreted termination assertions express many useful
properties of programs. In particular, Theorem 2 shows that termination assertions suffice
to define the semantics of recursive programs in the sense of Meyer and Halpern [16]. This
theorem extends Theorem 5.1 of [16] to programs with calls to global procedures and lends
support to the thesis that practical programming languages may be defined axiomatically.
Furthermore, the relative simplicity of our proofs when compared with proofs of analogous

theorems for partial correctness assertions suggests that termination assertions are more

2Il follows from this example that although induction over termination assertions is valid for the standard
integers, it is not sound when the usual notion of termination is applied in nonstandard models. When a
different view of termination is taken, however, induction is valid in nonstandard models. In this alternative
setting, induction is a crucial rule of inference. For the first order language of arithmetic with termination
assertions, the axiom system that is obtained from the Peano axioms with induction over arbitrary assertions
in the language is adequate to prove termination of typical example programs [3]. In fact. this system can be
proved complete for all formulas which are valid for a natural notion of nonstandard computation [1, 7). In
the present paper, however, we restrict our attention to the usual definition of termination and consider
validity over arbitrary interpretations.

suitable than partial correctness assertions for axiomatic definitions of scmantics.

2. Assertions About Global Procedure Calls

First order logic with global procedures will be seen to be a syntactic variant of standard first
order logic. A first order signature is a set of function symbols f},f;,.. and relation symbols
E.,R,.... with associated arities. A signature for first order logic with global procedures, or
more simply signature, is a first orcer signature augmented with a disjoint set Py,P5,... of
procedure variables. Each P has an associated number of value parameters vp and address
parameters ap. First order assertions about global procedure calls q are defined by the
grammar

q = first-order-atomic-formula | qvay | —q | vx[qy] | <P{tx)>q

where P is a procedure variable, t=t1,...,t,i,p are first order terms, and X=X Xy, ATC
variables. The construct <P(1,x)>q is intended to express that formula q is true after calling
global procedure P with value parameters t and address parameters x. Additional symbols
uch as A, D, = and 3 are considered abbreviations for the appropriate combinations of Vv,
= and ¥. To demonstrate the axiomatizability of termination assertions about programs
with recursive procedures with parameters, we have chosen to consider recursive
procedures with call-by-value and call-by-address parameters. To be consistent in the
«design of our programming language, we also consider call-by-value and call-by-address

parameters in undeclared global procedures.

A few words of motivation are in order before presenting the formal semantics of assertions
about procedure calls. The possible meanings of undeclared procedures should be as
general as possible so as to include procedures written in any reasonable language.
However, in order to prove common properties of procedures with value and address
parameters, it is necessary to restrict the ways in which procedures may depend upon their
parameters. It might be possible for a procedure in some language to test the length of an

identifier passed as a parameter or to determine the lexicographical ordering between a pair

of actual parameter names, Il a prozedure can recognize the names of its parameters, then
simple properties such as

YX(<P(x P true) D wy(KP(yP>true)
may fail. Since capabilitics such as testing the names of actual parameters go beyond the
intentions of call-by-value and call-by-address, we prohibit them. For simplicity, we also
insist that undeclared global procedures be explicitly parameterized, 1.e. the meaning of an
undeclared procedure call is independent of the values of any variables other than the

actual parameters.

The behavior of a procedure depends on its address parameters quite differently from the
way the procedure depends on its value parameters. For example, suppose that procedure
P has two call-by-value parameters, and that the contents of x| and x, are equal to the
contents of y; and y,, respectively. Then the call P(xy,x,) should have the same effect as
P(y1.¥7). To see that call-by-address is different, consider a program which declares the
following procedure
dec! P = (addr u,v): (if u=v then v;=0;v:=u) do ... end

with two address parameters. Suppose that x and y are variables with equal values prior to
a call P(x,y). Because both parameters are passed by address, the call P(x.y) returns with x
and y set to zero iff x and y share the same location; otherwise the procedure has no effect.
This example shows how a procedure may detect, and hence may depend arbitrarily upon,
which of its call-by-address actual parameters share locations. Therefore, we assume that
the behavior of a proceduie call depends only on the values of the actual call-by-value
parameters and depends only on the values and sharing of addresses of the actual call-by-

address parameters.

The possible behavior of a procedure with address parameters may be characterized using
equivalence relations on finite sets of integers. For any vector of variables x =x,...x; (not
necessarily distinct), we define the address sharing relation E, on {1,...k} by

1Ej iff x; and x; are the same variable.

It is also useful to define the congruence of vectors of variables x =xy,...,.x, and y=yy,... ¥,y
by

x==y iff k=mand E;=E,.
The number of distinct variables in x is the number of equivalence classes of E,, i.e. the
index of E,. If procedure P has k address parameters and x and y are both vectors of
variables of length k, then P(x) necessarily produces the same result as P(y) iff E,=E, and

x; has the same value as y; for 1<i<k. When x = xy,...x, is a vector of distinct variables

Xap
andt = Laensty, @ Vector of terms, the possible results of a call P(t,x) to a nondeterministic
procedure P may be characterized by an "input-output” relation. Informally, a tuple
<t,x,y>, where y=x, is in the input-output relation of P iff the call P(t,x) can return with the
address parameters equal to y. Since a procedure P can distinguish between any pair of
possible address sharing patterns, we use a set of input-output relations to describe the

behavior of P, one for each possible address sharing relation among the address parameters.

The precise semantics of first order logic with glt:;bai procedures is most easily defined by
associating a first order signature with cach signature that contains procedure names. Let P
be a procedure name. The associated set of input-output relations
%p = {Pg | E is an equivalence relation on {1.....ap}} ‘

is a set of first order relation symbols, one for each address sharing relation. The arity of
each Py is vp+2ap. If Py and P, are procedure names in signature £, then Pp, and Rp, are
assumed to be disjoint. Furthermore, each is disjoint from the set of first order relation
symbols in L. If £ is a signature, then the associated first order signature Lp consists of all
function and relation symbols of £, together with all relation symbols in %p for each P in L.

Note that Lp contains no procedure names.

A first order state o for a first order signature is a domain D1 with functions f°1 and
relations R®1 of appropriate arities on D! corresponding to the function and relation
symbols of the signature, and with element x°1 for each variable symbol x. A state with

procedutre environment (or more simply state) ¢ for a signature £ with procedure names is a

first order state for the associated first order signature Lp, with the added restriction that
F:(t,x,y) is false unless the values of x and y are consistent with E. More preciscly, for all b
¢ (D?)P, and ¢, d € (DY)7P,

if <b,c,d>€P;” then, for 1<ij<ap, iEjimplies dj=d; and ¢;=c¢;.
We use o{d/x} to denote the state o that is identical to o except possibly at x and such
that X% =d. Satisfaction of a first order assertion q about global procedure calls by a state
¢ is defined inductively exactly as for first order formulas, with one extra case for
procedure calls. Namely,

o=<P(t,x)>q iff 3d € (D) such that (l';'r‘m"',,i::'I)EPEMﬂr and o{d/x} =q.
We interpret <P(t,x)>q to mean that q is true after calling P with t and x. The definition
above forces the results of P(L,x) to depend only on the values of explicit parameters t,x and
address sharing pattern E,. Furthermore, a call P(t,x) may only alter the values of address

parameters x.

As usual, we write I' k= p for a set of formulas I' to mean that if ¢ = q for every g€r’, then

o E=p.

As for ordinary predicate calculus, the axiomatization of assertions about global procedure
calls includes a universal instantiation axiom which involves substitution of terms for
“variables. The substitution of terms in first order assertions about global procedure calls
raises a few extra complications. Since the construct <P(t,x)>q is well-formed only if x is a
vector of variables, it is impossible to substitute terms for address parameters directly. In
addition, substituting some address parameter x; for another address parameter Xj may
change the address sharing rclation. As a consequence, replacement of one address
parameter by another has a different semantic effect from first order substitution. For
example,
vx,yR(x,y) D ¥xR(x,x)

is a valid first order sentence. But since a procedure P may detect sharing,

vx, y<P(x, v > true D ¥X$P(x x> true
may not be true if both parameters are call-by-address. We circumvent this problem by
defining a substitution on assertions with global procedure calls which differs from strict

syntactic replacement but which has the same semantics as regular first order substitution.

We use Free{q) to denote the set of variables which occur free in an assertion q about
global procedure calls and q[t/z] to denote the result of substituting the term t for free
occurrences of the varizﬂr;lc z in q. Formally, Free(q) and q[t/2] are defined by induction on
the structure of assertions. These definitions are standard for all cases cther than <P(s,x)>q.
We define Free<P(s,x0>q) ;i = Free(q) U Free(s) U {x}. The definition of substitution for
<P(s,x)>q is straightforward if t is a simple variable not among x=x,,....X or il z is not
among Xy,... Xy, namely,

(S1) (KP(sx)p>q)t/z] ::= <P(s[t/z).x[t/z2])>(q[t/z]).
Otherwise, we define

(S2) (KP(sxpPq)t/z] ::= vw(t=w 2 (KP(s,x)>q)[w/z])
where w is a fresh variable which does not occur in t or <P(s,x)>q. By choice of w, the
recursive substitution in (S2) may be done according to rule (S1). Note that in general
q[t/z] may have more connectives and quantifiers than q. However, if v is a variable which
does not appear in q, then the assertion q[v/z] is the same length as the assertion q. This is
critical to proofs by induction on the length of assertions. Furthermore, if v does not occur
in g, then g[v/z][z/v] = q. A straightforward consequence of the definition of substitution
is

Lemma 1: (Substitution) Let q be a first order assertion about global procedures,
taterm and z a variable. Then for any state o, ok=q[t/z] iff o{t®/x}=q.

This lemma is critical in establishing the soundness of the instantiation and substitution

axioms presented in Lemma 2 as well as the assignment axiom in Theorem 1.

The axioms for first order logic of Enderton [9], for example, may be augmented to a

complete system for first order logic with global procedures,

10

Lemma 2: All generalizations of the following axioms, together with the
inference rule modus ponens, form a deductively complete proof system for first
order logic with global procedures. That is, I' &= piff T = p for any set {p}uUr of
first order assertions about global procedure calls,

P1. Propositional tautologies,

P2. wxq 2 q[t/x],

P3. ¥x(p D q)D(v¥xp D vxq),
P4. gqDv¥xq for xnotfreein q,
Py X=X

P6. x=y D(rDs) whererisa first order aromic formula and s is the
formula r with zero or more occurrences of some
variable x replaced by another variable y,

Pl. s=tAx=yAu=vA<{P(ExP>x=u) D <P(tyP>y=v wherex=y,

P8. <P(tx)>q= IyKP(tx)>x=y A q[y/x]))
where y is a vector of variables which
are not freeintxorqand y = x.

The proof of Lemma 2, given in the Appendix, follows the usual Henkin-style construction

of a state satisfying a given set of formulas.

3. Recursive Programs
Recursive programs have abstract syntax
Su= x:=t | p? | P(ty) | SiS; | S4US, | decl DdoS end
where declaration D is given by
Du= xinitt | P=B
and procedure abstract B has form
B::= ({val x,addry):S).

11

The statements are assignment, test, procedure call, concatenation, union and declaration.
Union denotes nondeterministic cheice of 5y or S, i.c,, execute Sy or S,. The test p? allows
execution to continue iff p is true. In practice, one would require that p be effectively
decidable, e. g. quantifier free, but this restriction is unnecessary for the results presented
here. However, we do require that p be free of calls to prucudures.3 Informally, the
ceclaration decl D do S end declares a local variable or recursive procedure with scope
S. The variable declaration x init t defines a new local variable x with initial value t. The
procedure declaration P = {(val x, addr y) : S) declares a possibly recursive procedure P
with formal value parameters X =xy,...,X vp formal address paramcters y=y 1,...,}';3[] and body
S. A procedure declaration P=B is considered syntactically well-formed only if B has
exactly vp value parameters and ap address parameters. In order to use global procedure
variables to reason formally about declared procedures, we also require that declared
procedures, like global procedures, be explicitly parameterized. This requires that all
variables which occur free in the body S of a procedure abstract B also appear in the
parameter list (val x, addr y) of B.

Many statements common to Algol-like languages may be considered syntactic
abbreviations for recursive programs, as is well known (cf. [8], [18]). For example, the

‘ statement if..then..else..[i may be written
ifpthenSyelseS; i = (pnS) U (—p%Sy)
Thus the axioms of Theorem 1 may be considered complete for recursive programs with
il..then..else..fi in addition to the statements listed in the grammar above. The while

statement may be expressed using recursion by

3"'-r’apfilhc:rut this requirement, it is possible to write programs without sensible semantics. Consider the
following program which declares a parameterless procedure P,

decl P = ((KP>true)?: P U (<P>falsé)?) do P end

The effect of P appears to be "keep calizng P as long as it will halt, but halt without side effects otherwise.”
This procedure halts iff it does not halt!

12

whilepdoSod =
decl P = {(addr x): p?;S:P(x) U —p?) do P(x) end

where x includes all free variables in S. Other iterative constructs such as repeat S until p
may also be considered abbreviations for similar recursive programs. In addition,
declarations may be nested as deeply as desired so that any number of local variables and
procedures may be defined. A statement declaring variables xj,...x, with initial values
t}..-ly, May be considered an abbreviation for a sequence of nested declarations, i.e.

decl Xq,...x, it t,...t,doSend =

decl z) init t; do
decl z, it ty do

decl z, init t, do
Slz/x]
end

en;i
end
where z=2,,....2,, are fresh variables not occurring in ty.....t;, and S[z/x] is the result of the
simultancous replacement of z for x in S (cf. [2]}.4 In addition, mutually recursive
procedures may also be declared as nested procedures. For example, the program with
mutually recursive procedures
decl Py=B,;, P;=B, do S end

may be written as

4This definition is consistent with initialization in many Algol-like Janguages in that it uscs the values of
terms ty,...,l, at block entry time for the variables xq,....x, rather than the least fixed-points of the set of
possibly mutually recursive equations {x;=t; | 1<i<n}. Other definitions of simultancous variable
declaration and initialization may also be written as recursive programs.

13

deel Py = (decl P, = B, do By) do
decl Py = By do
S
end
end.

As a result, Theorems 1 and 2 apply to recursive programs with mutually recursive

procedures.

The state semantics we define below are equivalent to the more usual environment and
store semantics presented, e.g., in deBakker [8] and Apt [2]. However, the proof of Theorem
1 and, especially, the statement and proof of Theorem 2 are simplified by combining the
notions of environments and stores into states. The meaning m(S) of a nondeterministic
program S is formally a mapping from "initial" states to sets of "final" states as in Harel
[11]. We define the meaning of programs inductively. Assigning x to t in state o produces
a state whose value of x is the value of t in o, i.e.

) mxi=0a ii= {aft" e})
Test p? aborts unless p is true, so that

(ii) m(pNe ::= {o}if o=p and @ otherwise,
and choosing S, or S, in state & gives the union of the meanings of §; and S, in o, i.c.

(i) m(S; US,)o = m(Spa U m(S,)a. ”
Sequencing (;) behaves like relational composition:

(iv) m(S,:S5)e == Ualﬁmiﬁlla‘ m(S,)o.
The meaning of a call to procedure P depends on the input-output relation Pg, where E is
the address sharing relation of the actual address parameters. Formally, the meaning of a
procedure call is

(v) m(P(tx)e = {ofasx}|(t% x% a)¢€ PE:}

More precisely, the meaning m(S) we assign to program § Is the restriction of the environment-store
meaning to the case when there is no sharing, viz., the environment is an injection from variables to locations,

14

The meaning of a statement with variable declaration is defined to be
(vi) m(decl x init tdo Send)o 1= {o'{x"/x}| o' € m(S)(c{t°/x}}.
Intuitively, the effect of decl X init t do S end is to set x to t, do S, then reset x Lo its original

value.

Qur approach to the definition of the meaning of a procedure declaration will be to use a
formal version of an ALGOL 60 "copy rule”. In effect, the rule replaces calls to a declared
procedure by copies of the procedure body. The meaning of a program decl P=B do §,
end, where B = ((val x, addr y) : Sp), will be approximated by programs without procedure
declarations. We first recursively find approximations Sgli] and § l[iF to Sgand S;. Both Snm
and Slm may contain calls to P but neither will contain procedure declarations. We replace
all calls to P in Sl[i] by Sﬂ[i]. This produces a program in which each call to the recursive
procedure P is approximated using "in-line code” for a single procedure call. To
approximate recursive calls to depth 2, we again replace all calls to P by Sﬂﬁ]. This process
is iterated i times to approximate recursive calls to P up to depth i. Finally, all remaining
calls to P are replaced by the divergent program false?. In each replacement of a procedure
call, a simple parameter substitution operation is performed. The rules for parameter
substitution will be in keeping with the convention for Algol-like languages, so that
. recursive programs will be defined to have statically scoped variables. We remark that
dynamic scoping, as well as alternative parameter passing mechanisms such as call-by-
value/result and call-by-name, may also be treated using variations of the definition of

syntactic application and call replacement given below.

We require the routine definitions of free variables and substitution of variables in
programs (cf. [2] and [8]). An occurrence of a simple variable x or procedure variable Pin a
program S may be free or bound, according to whether or not it is within the scope of a
declaration x init t or P=B. The definition of program S with variable y substituted for free
occurrences of x, written S[y/x], is routine (see deBakker [8]), as is simultaneous substitution

of a vector of variables y for x, written S[y/x]. We also use S[Q/P] to denote the program S

15
with procedure variable Q substituted for free occurrences of P, where vp=vq and ap=a,.

To define declaration-free approximations, we first discuss declarations decl P=B do S end
that do not contain nested declarations. Let Sy and S be statements without procedure
declarations and let B denote a procedure abstract {(val x, addr y): Sp). We define the
replacement of calls to global procedure P in S using procedure abstract I3, written S[B/P], by
induction on the structure of S as follows: '

(x :=)[B/P] ::=- (%c=1),
pB/P] ::= p?,

P(tY)[B/P] := decl zinit t do Sy[z/x][v/y] end

where Zpeenly, AT distinct variables which do not appear in t, v or B

PytW[B/P] 1= Py(ty)

when Py is a procedure name different from P,
(S:SIB/P] = $4[B/P]; S5[B/P),
(S;USy [B/P] = S[B/P]uU S,[B/P],

decl x init t do S end[B/P] ::= decl z init t do S[z/x][B/P] end
where z does not occur in S or B.

We remark that renaming of bound variables in the final clause gives our programs static

scoping.

The i™ irerated replacement of calls to P in S using procedure abstract B, is defined

inductively by

IE'I"his. is the definition of the syntactic application of B to parameters t and v given in [2] and [8]. The
declaration of a vector z of new variables with initial value t reflects the standard behavior of call-by-value
parameters, Value/result, for example, may be obtained by resetting the actual parameters (which must then
be variables) to z before block exit. Other mechanisms may also be handled by :ltering this definition (see
Apt[2)).

16

SB/P = §,

S[B/P] Y = (S[B/P]Y(B/P).
Finally, we define the ~th appreximation, S[i] of an arbitrary program S by induction on
the structure of S. In general, S may contain procedure declarations but st win always be
free of procedure declarations. For S atomic, i.e., an assignment, test, or global procedure
call P(t,v), we let Sm ::= 8. The remaining cases are

(1.5 [i] o Slm : Sz[i]

(Sl I SE) Il] = Slm 1J 51[1]
(decl x init tdo S end)! 1= (decl x init t do S end)

(decl Pe—{{'. :II X, addr y): Sp) do S cm]) fil .
(st [((val x, addr y): Su }.f [’])[}Eﬂs&"!?[

The meaning of a declared program is defined to be the union of the meanings of its
approximations;
(vii) m(declP=Bdo Send)e ::= U; m(decl P=Bdo S eml[il)a.

This concludes the inductive definition of the meanings of recursive programs.

It follows from our definition that every program is equivalent to a nondecreasing union of
programs without procedure declarations.

Lemma 3: Let S be any recursm program. Then m(S) = Ujsp m(S' I) and,
whenever i<j m{Sl')C m{S)

In addition, the meaning of a program does not depend on the names of its bound
variables.

Lemma 4:

(a) m(decl x init t do S end) = m(decl y init t do S[y/x] end),

where y does not occurin Sor t.

(b) m(deci P=B do S end) = m(decl Q=B[Q/P] do S[Q/P] end),

where v = vp, ag=ap, and Q does not occur in Bor S,

17

We note also that the semantic clauses above define input-output relations which are

identical to those derived from the purely operational semantics of Gallier Elﬂ].?

4. Completeness

The termination assertion p<S>q means that if some state o satislies p, then some
computation of S from ¢ halts in a state that satislies q. More precisely, a state o satisfles
p<S>q, written ok=p<S>q, if ak=p implies I3c'€m(S)o such that ¢'k=q. The termination
assertion p<S>q is valid, written E=p<8>q, if every state ¢ satisfics p<S>q. The assertion
<{8>q abbreviates rme<ZS>q.8

Theorem 1: The following axioms are sound and complete for proving
termination assertions p<S8>q where p, q are first order assertions about global
procedure calls and S is a recursive program,

Axioms

Al. qUx]<x:i= g,

A2, (rAQ <D q,

A3, (KP(tvq)<P(tv)> q,
Rules of Inference

A4, pSSPT, XS0 - p<SyiSya,

More specifically, Gallier defines the operational semantics of recursive flowcharts using execution trees.
The input-output semantics defined by considering the set of "output” states at the leaves of an execution tree
to be a function of the "input” state at the root is the same as the semantics we define above, As a
consequence, our semantics are equivalent to the standard operational semantics.

It is a straightforward consequence of the definitions that a state o satisfies the termination assertion
<P(t.¥)>q iff o satisfies the first order assertion about global procedure calls <P(t,¥)>q. As a result, there is no

harm in failing to specify whether statenzents of this form are assertions about procedure calls or termination
assertions.

18

AS. p<Spq, KS22q = (p V 1XS;US,2q,

A6, (p A y=0<S[y/xP>q — p<deci x init L do S end>q
where y does not occur in p,t,S or q,

A7, pldecl P=B do P(t,v)[B/P] end>q + p<decl P=B do P(t,v) end>q
AS. ([Aiq Y9(r; D <P ¥ A p) <S> g
r, <decl Pe=B do Py end> ¢, (i<n)
= p<decl P=BdoSend>q

where w, u™ and v are vectors of variables;

in each subformula vYw(r; D {P(u{'}.v{'))??ti),
wincludes u”, v and all free variables in ryand t;
and P does not appear in p or g.

A9. p <decl Q=B[Q/P] do S[f}f Plend>q + p<decl P=Bdo Send>q,
where v =vp, ag=ap and Q docs not appear in B or S.

Al10. p<S>q - 1<S>q whenever rDp by the rules of Lemma 2.

Most of the inference rules above are straightforward and are similar to many found in the
literature [2, 8, 16]. The most complicated rule is A8. Intuitively, the rule states that if
p<S>q holds under some finite set of hypotheses about calls to procedure P, and if each
hypothesis can be proved for the declaration P=B, then conclude p<decl P=B do S en‘d}q.‘?
An important special case of A8 is when the conjunction of first-order assertions about calls
to P is empty, i.e. n=0. Namely, if we can prove p<S>q and P does not appear in p, then
AR yields p<decl P=B do S endq. This instance of A8 provides the base of an induction

(using A7) showing the provability of assertions about declarations. The proof of

gA consequence of the completencss proof will be an upper bound on the number of hypotheses, i.e.
conjuncts 1; I <Pluy)>t;, needed to prove all valid assertions aboui programs calling a procedure P, The

bound is an exponential function of the number of address parameters, ap.

19
soundness of each rule is left to the reader.

Note that Theorem 1 is not a relative completeness theorem of the sort typical for partial
correctness assertions (cf. [6], [5], [11]). Il a termination assertion is valid, then it is provable
from the axioms P1-8 of Lemma 2 and Al-10 above without appeal to further axioms. In
particular, the valid termination assertions are recursively enumerable, '’ Harel, Meyer,
and Pratt [12] previously observed that the valid termination assertions for a very general
class of program schemes without global procedure calls are recursively enumerable. A
complete axiomatization of termination assertions about while-programs without procedure
calls was presented in Theorem 6.4 of [16]. The proofs in [12], [16] rested heavily on
compactness properties of first order predicate caleulus, but Lemma 2 provides
corresponding properties for the logic of global procedure calls lcading to the

generalization we provide in Theorem 1.

The proof of Theorem 1 uses the fact that termination assertions about programs without
procedure declarations can be "translated" into first-order assertions about global
procedures.

Lemma 5: (a) If S is a recursive program without procedure declarations and q is
a first-order assertion about global procedure calls, then there is a first-order
assertion r about global procedure calls such that r = <S>q.

(b) For every recursive program S and first-order assertion about global

procedure calls g, there is a set {q;} of first order assertions about procedure calls
such that {8>q=Vq;.

10, .) - .)
In contrast, the valid partial correctness assertions are not recursively enumcrable. This follows from the

observation that the set of nowhere terminating while-program schemes is not recursively enumerable [15],
because the partial correctness assertion true{S} false expresses the fact that S fails to terminate, So the set of
valid partial correctness assertions of this trivial form about only deterministic while-programs without
procedure calls is not even mﬁursively enumerable. The validity problem for all first order partial correctness
assertions is shown to be Il complete in [12]. This continues to be true whether the programs in the
assertions are restricted to a single while-program without procedure calls or are allowed to vary over all
recursive programs with global procedure calls,

Part (a) is easily proved by induction on programs [18]. Part (b) follows from (a) and the
fact that any program with procedure declarations is equivalent to the union of its finite
approximations without procedure declarations (Lemma 3). We omit the details. It is

convenient to write vi{.Sm}q for the disjunction Vv;q; with qi-zfisi't]}q.

A second important property for the the proof of Theorem 1 is a compactness theorem for

first order logic with global procedure calls. More specifically, if p implies some infinite

disjunction v;q; of first-order assertions about global procedures, then there is some integer

j such that p D Vi<id; is valid. This follows directly from Lemma 2 and the proof is

omitted. As a consequence of compactness, whenever a termination assertion about a

recursive program S is valid, the same assertion is also valid for some approximation to S.
Lemma 6: IT p<S>q is valid, then for some j, p*{Sm}q is also valid.

Proof: If =p<8>q, then by Lemma 5, =p 2 V {S[i‘]}*q By the compactness of

first-order logic with global procedure calls, thcr:;: is some mtcgu j such that
= p 2 Vic (3{]>c| But by Lemma 3, m{S) C m(S) for i<j. Therefore
I=p<5-m>q 1

This lemma is critical to the completeness of axioms A1-10 for recursive programs.

Proof of Theerew. 1: Suppose =p<S>q. We show that p<{S>q is provable from
Al-11 by induction on the structure of S.

(a) If p<x := ©q is valid, then ak=p implies o {t”/x}=q by definition of m(x :=
t). By the Substitution Lemma 1, =p2q[t/x], and therefore —p2g|t/x] by the
rules of Lemma 2. By Al, we have q[x/tKKx := t>q and so p<x := ©q by
Al0.

(b) If =p<r?>q, then =pD(rAq) and hence —p2(rAq) by the rules of Lemma 2.
Since (rAq)<r?>q by A2, we have —p<r?>q by A10.

(c) Assume E=p<P(t,x)>q. Then the first order assertion about global procedure
calls p2<P(t,x)>q is valid and hence provable by the rules of Lemma 2.
Therefore -p<P(t,x)>q by A3 and A10.

(d) Suppose =p<S;:8,>q. Then by Lemma 6, there is some j such that
p<S 1“‘:51 >q is valid. By Lemma 35, there exist first-order assertions ry and r,

21

about global procedures such that
ry = <Szm>q and = <Slm>r2 = (SIU];SZM.‘?q.
By the inductive hypothesis, both termination assertions
n<S>q and r<Sdn

are provable. Therefore, r;<S:S,>q may be proved using A4. Since p D 1y is
valid, and hence provable by the rules of Lemma 2, the termination assertion
p<8,:S,>q is provable by A10.

(¢) Assume =p<S;US,>q. By Lemma 6, we have i=p<SlmLJS_,_m>q for some
positive integer j. By Lemma 5, there are first-order assertions r; and ry ubout
global procedure calls with

r=<S,q and r, =<5,
By the inductive hypothesis, both
I'l‘(S]}q and fz(S:)_}q

are provable. Therefore (r; V ry) <§;US,>q may be proved by AS. Since =p D
(l'l v l'z}, it follows that]J{51USE>(.] b}’ A10.

(M Suppose E=p<deel x init t do S end>q and let y be any variable that does not
occur in p, t, S or q. We show that (p A y=1t) <S[y/x]P>q is valid. By Lemma 4, if
p<decl x init t do S end>q is valid, then p<decl y init t do S[y/x] end>q must be
valid as well. Now suppose ¢ = (p A y=t). Then there is some ¢’ €
m(S[y/x])e{t®/y}) such that ¢’'{y?/y} &= q. But because ak=(y=t), we have
o{t?/y} = o and ¢’ € m(S[y/x])o. Furthermore, since y does not occur in g,
o'l=q. Thus (p A y=t) <§[y/x]>q is valid. By the induction hypothesis, this
termination assertion is provable. Therefore = p<decl x init t do S end>q by A6.

(g) Suppose S is of the form decl P=B do S; end and suppose = p<S>q. By rule
A9, we may assume that the procedure variable P does not appear in the
assertions p and q. By Lemma 6, there is some positive integer j such that
p<SPhq is valid.

We fix j and define a set of first-order assertions about global procedure calls
{ry g} where k is an integer and E is an address sharing relation. The
presentation is simplified by adopting two abbreviations. First, for each address
sharing relation E on {1....,ap}, let vg denote a vector of variables chosen from

V=V, Vyy, With address sharing relation E. Second, if B is ((val x, addr y):Sy),

2

then we define
Bk(u,vl,;) vi= (decl P = {(val x, addr :.r;gﬂljl} do P(u,v) eml)[k],

Intuitively, Hk(u.v,:) is a program which behaves like an execution of P(u,vg)
within the scope of the declaration P=B when recursive calls to P are limited to
depth k and recursive calls to other procedures are limited to depth j. In
particular, note that

Bluy) = (decl P=Bdo P(u,yg) end)
This is a straightforward consequence of the definition of program
approximation.
For cach k, let ry : denote a first-order assertion with
ng = (CBYuyp) vg = wp).
Since Bk{u.vﬁ} does not contain any calls to P, we may assume that P does not

appear in ry .. Let Cy denote the conjunction over all address sharing relations E
for P of the universal closures of the of first-order assertions

r g 2 <Py vp=wg

By construction, o=C, forces
m(B¥(uyp)e € m(P(uyp)o

for every address sharing relation E. In particular, if a|=(3j for j as above, then
m(decl P=B do Puy) end o ¢ m(Puyp)o

for each E. Thus, whenever o = Cj, we have m(Sm}ﬁ C m(Sy)o. Since p(Sm)q
is valid, it follows that (p A CXS1>q is valid. Therefore, by the inductive
assumption, (p A C;KS;>q is provable from Al-10. In order to use inference
rule A8 to prove p<S>q, it now suffices to show that the termination assertions

r g <decl P=B do P(u,vg) end> vp=wg
are provable from A1-A10 for all k and all E. We show this by induction on k.
To begin, note that To.g = Jfalse since Bu[u,vE) = false?. Hence the termination
assertion

rﬂ,E {:‘P{HJE}[BfFI:" Yg=Wg

is vacuously valid. By the main inductive hypothesis, it is also provable. Since P
does not oceur in 1y, we can prove g g <decl P=B do P(u,vi)[B/P] end> vy =wg

23

by A8 . Thus, by A7,
b= 1 <decl P=B do P(u vg) end> vip=wp..
This concludes the initial step of the induction.
For the inductive step, assume that all
(*) 1y <decl P=B do P(u,yp) end> vp=wp
are provable for all E. Let Ey be any address sharing relation for P. We wish to
conclude (*) for Egand k1, i.e. we must show that
M 1,1 Sdecl P=B do P{u,v';ﬂ} end> Vi =W,
is provable. By the construction of Cy, we know that
{Ck A §e | F{_}) <P(u, "FED {B/P]} ’f'Eﬁ-_—’ WE{)

is valid. This is because a=C;_ensures m(P(u,vg))o 2 m{B (u, Vi) for all E and
oFTy L1 implies that some state ¢ satisfying Vi = W My be reached by

running BkH(u vip). Therefore ¢’ may be reached by running the program

B(u,vt,ﬂ) with global calls to P.By the main induction hypothesis, this
termination assertion is provable. From this and the subinduction hypotheses (¥)
for all E, we may usc A8 to derive

Ty 416, <{decl P=B do P{uivpﬂ][B!P] end> Vi = Wy
Thus, by A7,
o 1Eg {decl P=B do P{u,v%} end> VEy = Wy

This concludes the subinduction.

We now have
(G AP)<S>q

and, for each conjunct r; jE2 <P(uyp) vp=wgof C
=1 s <decl P=B do P(u,vg) end> vy =wp.

Thus, by A8, = p<S>q. This concludes case (g) of the main induction and shows
that A1-10 are complete for all recursive programs. &

24

5. Axiomatic Semantics

Despite the limitations noted in the introduction, many useful properties of programs may
be proved using uninterpreted termination assertions. In particular, termination assertions
determine the semantics of programs in the sense discussed in Meyer and Halpern [16], i.e.
the termination assertions valid for a program distinguish it from all inequivalent programs.
To be more precise, we define the termination theory of a program S, written 9°(S), to.be
the set of all pairs (p,q)-of first order assertions about procedure calls such that p<S>q is
valid. Two programs have the same termination theory precisely when they are equivalent,
i.e.

Theorem 2: (Semantical Determination) For any programs S and T, #(S) = 7(T)
iff m(S) = m(T).

Theorem 2 generalizes Theorem 5.1 of [16] to programs with calls to global procedures and
the proof is a straightforward reformulation of that in [16]. The theorem holds, in fact, for
any programs S and T which are Eqitivalent to arbitrary unions of schemes, provided that
for each scheme §; in the union and every first order assertion about procedure calls q, the
termination assertion <S;>q is equivalent to some first order assertion about global
procedure calls. In particular, Theorem 2 holds for an, pair S and T of arbitrary, not
necessarily even recursively enumerable, infinite flowcharts (see [16]).

Prool of Theorem 2: We may assume without loss of generality that m(S)—
m(T)=&. Let a’€ém(S)o—m(T)o and let x=xy,...x,, include all free variables of
SUT. Since S is equivalent to a union of programs without procedure
declarations, U;S;, there is some such program S, with o’€ém(Sy)o. Let
X' =X1'...X, be a vector of distinct variables not free in SUT. By Lemma 5,
there is a first order formula p equivalent to <S;>x=x". Since m(Sy) C m(S), we
have =p<{S>x =X,

It remains to be shown that p<{T>x=x" is not valid. First note that for any
program T, the behavior of T depends only on its free variables. Formally, if x'=
X1sesXpy @re variables that are not free in T, then

o em(T)o iff ¢'{asx'} € m(T)o{a/x’})

for all states 0,6’ and a € D?.

25

Now let o and oy be identical to o and o’ on x, but let the values of x” in both
g and vy’ be the same as the values of x in ¢”. Thatis, oy = a{ x? /x} and o
= ¢'{x? /X’}. Then oy € m(Sy)og since o™ € m(Sy)o, but oy’ differs from each
state in m(T)oy on some variable in x. That is, og=<S>x=x" but gk <I>x=x"
Therefore, oy p<T>x=x". 1

It seems worthwhile to mention a reasonable objection to our taking m(S)=m(T) as
synonymous with the equivalence of S and T. The problem with this notion of equivalence
is that replacing one subprogram by an equivalent subprogram may not yield an equivalent
program. i‘or example, let S be the body of the procedure discussed in Section 2, i.e.

if u=v then v:=0;v:=u,
and let T be the program u:=u, Then m(S) = m(T), but the program

decl P = ((addr u,v): S) do P(z,z) end
has the same effect as z;=0, whereas if S is replaced by T, the resulting program has no
effects. The difficulty is that m(S) and m(T) only give the meanings of S and T when all
variables are unshared, but their behavior as subprograms may depend on their behavior
when sharing occurs. This problem does not arise with environment-store program
semantics since the meanings of S and T differ in an environment that maps both u and v

to the same location.

Unfortunately, ordinary first order logic cannot provide a suitable semantical
determination theorem for environment-store meanings of programs. In the usual
semantics of first-order formulas, the satisfiability of a formula p depends only upon first-
order states which correspond to the composition of an environment and store. Therefore,
our choice of a first-order assertion language that cannot detect sharing for expressing pre-
and post-conditions leads naturally to the corresponding choice of unshared program

semantics.

One straightforward way to extend Theorem 2 so that the environment-store meanings of

programs match their termination theories is to extend the assertion language. A two-typed

26

first order language with a location type and a contents type as in [20] is a natural choice.
The completeness results correspondding to Lemma 2 and Theorem 1 should extend without
difficulty to this two typed first order logic, although we have not checked the details.
Another variation on Theorem 2 may be obtained by adopting a different definition of
termination theory. Define a declaration body context € 1o be a program fragment of the
lform
decl P « ((val x, addr y: ...} do P(u,v) end,

where all variables in y are assumed to be distinct but the variables of v need not be. Let
[S] denote the result of inserting S for the ellipsis ... in €. Then define the contextual
termination theory of S to be the set of triples (€,p.q) such that and ¢[S] is a well-formed
program (all free variables in S occur in x or y) and p<C[S]P>q is valid. Then it is a corollary
of Theorem 2 that two programs are cquivalent over all address sharing patterns of their
[ree variables iff they have the same contextual termination theories. Furthermore, if §; isa
subprogram of S, and S, has the same contextual termination theory as Sy, then S with §;

replaced by S, remains equivalent to S,

0. Conclusion
Our completeness theorem shows that all valid termination assertions are provable. A
« stronger statement would be a deductive completeness theorem, i.e., if any set of termination
assertions I' semantically implies p<S>q, then p<S>q is provable from T'. This holds if T
contains only first order assertions by Lemma 2. However, even if we consider only sets I’
which are singletons, deductive completeness is not possible. This is because the assertion
true<S> true semantically implies false iff the program S never halts. Since the set of totally
divergent programs is not recursively enumerable [15], the set of termination assertions
true<S>true such that {rruelS>trueti=false is not recursively enumerable (cf. footnote
p. 19).

Two projects for further investigation are to enrich the programming language and to

expand the assertion language. Programs with procedures as paramcters and with more
complicated data objects are two possibilities. Our assumption that all undeclared global
procedures are explicitly parameterized might also be relaxed by adding predicates to the
assertion language which allow the global variables used by a procedure to be identified.
For example, a zero-ary predicate INDEPp , might be used 1o state that the behavior of
procedure P is independent of the variable x. This is an adaptation of the "interference”
concept discussed by Reynolds [19]. Another possibility noted in the previous section is to
use a typed language which allows sharing of addresses to be treated explicitly following
Trachtenbrot [20]. We do not foresee any fundamental difTficulties in extending our results
to handle variable dependence and sharing. Allowing procedure parameters, however,
seems to lead to higher-order assertion languages. Insofar as our results depend crucially
on the compactness property of first order logic, they will not generalize easily to programs
with unrestricted procedure parameters. However, by considering the Henkin

interpretation of type theory (cf. [17]), even this obstacle may be surmountable.

7. Appendix. Completeness for Global Procedure Calls
We show that axioms P1-8 are complete by showing that any consistent set of assertions is
satisfiable. Two important preliminaries are

Lemma 7: (Generalization) Let I’ be a sct of assertions and q an assertion. If
I'q and z is not free in I then '—vzq.

and
Lemma 8: (Deduction) If Tu{p} I q, then I'=(p D q).
Both are proved by induction on proofs (cf. Enderton [9]).

Let T' be a set of first order assertions about global procedure calls such that x#x is not
provable [rom I' using P1-8 and modus ponens. Let £ denote the signature of I' and let £p
denote the associated first order signature. We construct a state satisfying I" from constants
following the usual Henkin-style procedure for first order logic (see Enderton [9] or Chang

and Keisler [4]). The construction consists of the following five steps.

28

(1) Select an infinite set v°of fresh variables. The state ¢ satisfying I' will have equivalence
classes of variables from v as its domain. Usually constants are used, bul since constants
may not occur as address parameters in procedure calls, variables work better for assertions

about global procedures calls,

(2) Construct a set of formulas T 2 T such that for cach formula q of the expanded
linguage (with variables from 1), I'” contains formulas

(a) —v¥xq D —q[v/x]
(b) <P(tx)>q D KP(tx)P>x=v) A g[v/x]

where v and v=v,,...,v; are new variables (from Step 1) and v=x. As cach variable veTis
added to I, an infinite set of formulas {v= ¥ }jzﬂ for fresh vjE’Fis also added. This is done
in such a way that 7is not exhausted by any finite number of additions. The purpose of the
formulas {"':"'j}jg_ﬂ are to provide infinite equivalence classes of variables from ¥ ie.

each equivalence class will have infinitely many representatives in the model we construct.

The construction proceeds in stages, starting from I'y = I'. Let I'; be the result of the i-th
stage, and let q, x, P, t and x be the i-th formula, variable, procedure variable, vector of
terms and vector of variables in some enumeration in which all necessary combinations
appear. Then to construct I'; . 1, pick variables v and v=vy,...,v; (with v=x) from ¥ which
do not occur in 'y, q, P or t. For each variable w€{v,v,.....v; }, also form a set of formulas
Ew:{w:wj}jgu such that &, has infinitely many fresh variables wi€¥and no w; occurs in
[y, p. t, x, g or any previous 8. Let& = U,, 8, and let

Iy = T; U {(@).b)} U &

Assuming that I'; is consistent, we prove that T';,; is consistent as follows. Suppose

I';u{(b)} is inconsistent. Then by the Deduction Lemma and propositional reasoning,
[—<P(t,x)>q

and

[i(KP(LxPx=v A g[v/x]).

But since v is a vector of variables which do not appear in T, it follows by Generalization
(Lemma 7) that

I==3v(KP(LxPx=v A g[v/x]).
Therefore, by P8,

I—==(KP(t,x)>q),
vhich contradicts the assumption that I'; is consistent. By a similar argument (see [4]), the
consistency of I';u{(a).(b)} may be reduced to that of I;U{(b)}. Clearly adding sets of the
form {w:wj} does not destroy consistency since none of the w_-"s appear in I';U{(a),(b)}.
(If some set I"U{w-—-wk} is inconsistent, then I"l—-1{w=wk) and so by Generalization
I"+—Vwk—:(w:wk), ie. I is inconsistent) Thus if T' is consistent, so are 'y, T, and

therefore I'" = U,T'; must be consistent.

(3) Extend I" to a maximally consistent set A, i.e. for any formula g, either €A or —q€A.

This is done in the usual manner [4].

(4) Define a state ¢ whose domain D? is the set of equivalence classes of variables from ¥

Define functions f and relations R?, P;” according to the formulas in A.

For any terms t and t, define t==t"iff (t=t") € A and let [t] denote {t’ | t==t"}. Let D

« = {[v] | v€1}. Define v? =[v] and t? =[t]. Note that t”€ D since 3y(t=y) is provable from
P1-6 and (3y(t=y) Dt=v)EA for some v€Y by construction of A. For functions and
relations, define

(@) (v e vy D) = (Vv)

(0)<[vy].lv, P> € R? iff Rvy...v, € A foreach R in £

(¢c) <b,c.d> € PE“ iff there exist vectors of variables u, v and w from ¥ with
E,=E,=E, b=[u], e=[v] and d=[w] such that (P(u,y)>v=w)€A. Here [u]

denotes [u 1]....,[uvPL

It is straightforward to verify that f° and R? are well-defined by (a) and (b) as usual (see
[4]). To see that () meets the restriction posed in Section 1. note that if <b,c,d>€P? then

1Ej~—-:~vi=vj and Wi=W;

30

and so

i1Ej= ¢;=c¢;and d;=d;
(3) Show that gt=q iff q€A by induction on the length of formulas.

For first order atomic formulas, this is immediate from the definition of' . The connective

cases are also straightforward. For example, ok=—q iff ok4qiffq ¢ A iff =g € A.

Consider ¥xq. Note that there is some formula =vxq D —:q[vq/xl in A with v €¥ not
appearing in q. If ok=¥xq then certainly a{[vq]f‘x}hq, By the Substitution Lemma,
at=q[vq!x]. Since v does not appear in g, the formula q[vq!x] has the same length as g
and so by the inductive hypothesis q[vq/x](iA. If vxq is not in A, then —¥xq must be in A
and hence —-q[vq/x] € A by modus ponens. But since q[vq/x] ¢ A, it follows that ¥xq € A.

For the converse, suppose o ¥xq- Then for some veY, of{[v]/x}& q. Therefore, by the
Substitution Lemma, o/ q[v/x]. Since every equivalence class [v] is infinite by
construction of T (Step 2), it may be assumed that v does not occur in q and hence q[v/x]
has the same length as q.Thus g[v/x] ¢ A by the inductive hypothesis. Therefore

=q[v/x]€A and v¥xq cannot be in A by P2,

The final case is <P(t,x)>q. We first consider q of the form x =y with x=y. It follows from
the definition of satisfaction that

o=<{P(tx>x =y iff (l",x"iy")EPEx“.
By definition of o, (t",x“,y")EPEx" iff

(*) There exist vectors of variables u, v and w from ¥ with [u]=[t], [¥]=[x],
[W]=[y] and E,=E_ =E, such that KP(u,y)>v=w) € A

It remains to be shown that (*) is equivalent to
(**) (KP(tx)>x=y) € A

If (*) holds, then by definition of the equivalence classes [] of terms,

31

Au=tAvy=xAw=y.
Thus from P7,
A (KP(txPx=Yy),

vhich implies (*¥¥).

To see that (**) implies (*), assume that (**) holds. Since 3z(z=1) is provable from P1-6
for any term t, the construction of A ensures that for cach term t there is a proof from A
that t is equal to some variable in 7. Hence there exist vectors of variables u, v and w with
v==X such that

A-u=t Avy=xAW=y.
Therefore, from P7, we conclude (*). Thus

o=(<P(tx>x=y) iflf (KP(t,x>x=y)€ A,

In general, if ah(P(t,x}§q, then by definition of satisfaction there is some vET with ve=X
such that
(t° x% v%)e PEx" and o{v9/x}=q.

Since each equivalence class of variables in 7'is infinite, each v; may be chosen so as not to
occur in q. By the Substitution Lemma, ok=q[v/x] and so by the inductive hypothesis,
qlv/x]JeA. Since o=(P(LX)>x=v), we have ({P(t,x)>x=v)€A and therefore A<P(t,x)>q
by P8. Since A is deductively closed, (<P(t,x)>q) € A. This shows that if a&=<P(t,x)>q, then
(KP(t,x)>q) € A.

For the converse, assume <P(t,x)>q € A. Then by the construction of A,
<P(tx>x=v A g[v/x] € A
for some vE€i net occurring in t, x or g and with v=x, Therefore o=<P(t,x)>x=v and so
t°x"v9)e PE:.
By the inductive hypothesis, o=q[v/x] and so by the Substitution Lemma, o{[v]/x}=q.
Thus o=<P(t.x)>q. This concludes the proof of claim (5), i.e. for any first order assertion
about global procedures q, oi=q iff q€A. -

32

From (5) and I' C A it follows that =TI, Thus every consistent set is satisfiable and the

axiomatization is complete.d

8. References

1. Andreka, H., 1. Nemeti and 1. Sain. A Complete First-Order Dynamic Logic. Tech.
Rep. 801224, Math. Inst. Hungarian Academy of Sciences, May, 1981.

2. Apt. K.R. Ten Years of Hoare's Logic, A Survey, Part 1. Proceedings 5th Scandinavian
Logic Symposium, 1979, pp. 1-44.

3. Cartwright, R. and J. McCarthy, First Order Programming Logic. Proc. 6-th Annual
POPL Conf., January, 1979, pp 68-80

4. Chang, C.C. and H.J. Keisler. Model Theory. North-Holland, 1973,

5. Clarke, EXM Jr. Programming Language Constructs for Which it is Impossible To
Obtain Good Hoare Axiom Systems. JACM 26, 1 (January 1979). pp 129-147

6. Cook, S.A. Soundness and Completeness of an Axiom System for Program Verilication.
STAM J. Computing 7 (1978). pp 129-147.

7. Gsirmaz, L. Progra:as and Program Verification in a General Setting. Theoretical
Computer Science 16, 2 (November 1981). pp 199-210

. 8. deBakker, 1. Mathematical Theory of Program Correctness. Prentice-Hall, 1980.
9. Enderton, H.B. A Mathematical Introduction to Logic. Academic Press, 1972,
10. Gallier, J.H. Nondeterministic Flowchart Programs with Recursive Procedures:
Semantics and Correctness . Theoretical Computer Science 13, 2 (February 1981). pp 193-

223

11. Harel, D. Lecture Notes in Computer Science. Vol. 68: First-Order Dynamic Logic.
Springer-Verlag, 1979,

12. Harel, D., A.R. Meyer and V. Pratt. Computability and Completeness in Logics of
Programs: Preliminary Report. 9-th ACM Symposium on Theory of Computing, Boulder,
Colorado, May, 1977, pp. 261-26€. Revised version, M.L.T. Lab. for Computer Science

33

TM-97, (Feb. 1978) 16 pp.

13. Hitchcock, P. and D. Park. Induction Rules and Termination Proofs. In M. Nivat, Ed.,
Automata, Languages and Programiming, American Elsevier, New York, 1973, pp. 225-251.

14. Kfoury, D.J. Comparing Algebraic Structures up to Algorithmic Equivalence. In
M. Nivat, Ed., Automata, Languages and Programming, American Elsevier, New York,
1973, pp. 253-263.

15. Luckham, D.C., D.M. Park and M.S. Paterson. On Formalized Computer Programs.
J. Computer System Sciences , 4 (1970). pp 220-249.

16. Meyer, A.R. and Halpern, 1.Y. Axiomatic Definitions of Programming Languages: A
Theoretical Asscssment (Preliminary Report). Proc. 7-th Annual POPL. Conf.,

January, 1980. Massachusetts Institute of Technology Tech. Report MIT/LCS/TM-163
(April 1980); to appear JACM (1982).

17. Monk, J. D. Graduate Texts in Mathematics. Vol. 37: Mathematical Logic. Springer-
Verlag, 1976.

18. Pratt, V. Semantical Considerations on Floyd-Hoare Logic. Proc. 17-th Symp. on
Foundations of Computer Science, Houston, TX, October, 1976, pp. 109-121.

19. Reynolds, J.C. Idealized Algol and its Specification Logic. Tech. Rep. 1-81, School of
Computer and Information Science, Syracuse University, 1981,

20. Trachtenbrot, B.A. On Denotational Semantics and Axiomatization of Partial

Correctness for Languages with Procedures as Parameters and with Aliasing. Unpublished
Manuscript (1981).

