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1. Introduction 

The shuffle-exchange graph has · 1ong been recognized as one of the best 

structures known for parallel computation. Among its many applications, a shuffle

exchange computer can be used to compute discrete Fourier transforms, multiply 
matrices, evaluate polynomials, perform permutations and sort lists [S71, P80, S80]. 

The algorithms needed for these operations are extremely simple and many require 

no more than logarithmic time and constant space per processor. 

Recent developments in Very Large Scale Integration (VLSI) circuit technology 
have made it possible to fabricate large numbers of very simple processors on a 

single chip. As most of the processors contained in a shuffle-exchange computer are 
very simple, the shuffle-exchange graph serves as an excellent basis upon which to 

design and build chip-sized microcomputers. One of the main difficulties with such 
an architecture, however, is the problem of routing the wires which hnk the 

processors together in a shuffle-exchange network. Current fabrication technology 

limits the d~signer to two or three layers of insulated wiring on a chip and demands 

that he make the chip as small in area as possible. 

Abstracted, the designer's problem becomes the mathematical question of how to 

embed the shuffle-exchange graph in the smallest possible two-dimensional grid. 
Thompson was the first to formalize the question mathematically. ln his thesis 
[f80], he showed that any layout (i .e ., embedding in a two-dimensional grid) of the 
N -node shuffle-exchange graph requires at least Q(N2/tog2N) area. In addition. h e 
described a layout requiring only O(N2/ log1/ 2N) area Shortly thereafter, Hoey and 

Leiscrson [HL80] described an embedding for the shuffle-exchange graph in the 
complex plane (which we refer to as the complex plane diagram) and showed how 

the diagram could be used to find an O(N2/logN)-area layout for the N -node 
shuffle-exchange graph. 

Jn this paper, we investigate the algebraic properties of the complex plane 
diagram in 01·der to find several O(N2/!ogY2N)-area layouts for the N -node shuffle

exchange graph. In addition to being asymptotically superior to previously 

discovered layouts, the layouts described in this paper are also superior for _ small 

values of N. In fact, one of these layouts serves as the basis for the more recent 

work of Leighton and Miller who have described optimal layouts for small shuffle
exchange graphs in [LM81]. 
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Subsequent to the completion of the research presented in this paper, we iearned 
that Rodch and Steinberg independently discovered an O(N2/!ogY2 N)-area layout 
for the N-node shuffle-exchange graph. Their work is also bnscd on the complex 
plane diagram and appears in [SR81]. Even more recently, Kleitman, Leighton, 
Lepley and Miller [KLLM81] have discovered an entirely new method for laying out 
shuffle-exchange graphs which can be used to find asymptorical!y optimal 
O(N2/ iog2N)- area layouts. Although their layouts are not entirely practical, they are 
the only layouts known to achieve Thompson's lower bound asymptotically. 

The remainder of the paper is divided into six sections. 1n section 2, we define 
the shuf11e-exchange graph and the grid model of a chip. We also describe 
Thompson's O(N2/!ogl/2N)-area layout for the N -node shuffle-exchange graph. In 
section 3. we define the complex plane diagram for the shuffle-exchange graph and 
mention several of its properties. In section 4, we describe several layouLs for the 
shuflle-exchange graph which are based on the complex plane diagram. These 
include a straightforward O(N2//ogN)-area layout and several new O(N2/tog3/2N)

area layouts. Section 5 contains some remarks and open questions, and sections 6 
and 7 contain the acknowledgements and references. 

2. Preliminaries 

2a) The shume-cxchange graph 

The shuj]le-exchange graph comes in various sizes. In particular, there is an 
N -node shuffle-exchange graph for every N which is a power of two. Each node of 
the (N= 2k)-node shuffle-exchange graph is associated with a unique k-bit binary 
string ak-J • .. a 0 . Two nodes wand w' are linked via a shuj]le edge if w' is a left 

or right cyclic shift of w (i.e., if w = ak-1" • • a 0 and w' = ak-r • • aoak-J or 
w' = a0 - . • ak_1a 1 , respectively). Two nodes w and w' are linked via an 
exchange edge if wand w' differ only in the last bit (i.e., if w = ak-J" • • a 10 and 
w' = ak-l • •. a 11 or vice-versa). As an example, we have drawn the 8-node 
shurne-exchange graph in Figure 1. Note that the shuffle edges are drawn with 
solid lines while the exchange edges are drawn with dashed lines. We shall follow 
this convention throughout the paper. 
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Figure 1: The 8-node shujJle-exchange graph. 

By replacing the nodes and edges of the shuffle-exchange graph by processors 
and wires (respectively), the shuffle-exchange graph can be transformed into a very 
powerful parallel computer (which we call the shujJle-exchange compuler). The 
computational power of the shuff1e-exchange computer is partly derived from the 
foct that every pair of nodes in an N-node shuffle-exchange graph is linked by a 
path containing at most 2/ogN edges and thus the communication time between 
any pair of processors is short: 

More importantly, however, the shuffle-exchange computer is capable of 
performing a perfect shuffle on a set of data in a single parallel operation. For 
example, consider a deck of 8 cards distributed among the 8 processors of the 8-
node shuffle-exchange graph so that processor 000 initially has card 0, processor 
001 initially has card 1, processor 010 initially has card 2, and so forth. Next. 
consider a (para11el) operation of the shuffle-exchange computer in which each 
processor a 2a 1a0 sends its car·d across a shuffle edge to the neighboring processor 
a 1aoa2 . It is easily verified that, after completion of the operation, processor 000 
contains card O (the top card in the shuffled deck). processor 001 contains card 4 
(the second card in the shuff1ed deck), and so forth. 

The power of card shuffling and its mathematical abstractions is well known to 
magicians and mathematicians [DG K81] as well as to computer scientists [S71, 
S80]. For a good survey of the computational power of the shuffle-exchange 
graph, we recommend Schwartz' paper on ultracomputers [S80]. In addition, 
Stone's paper [S71] contains a nice description of some important parallel 
algorithms based on the shuflle-exchangc graph. 
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2b) The grid model 

Among the many mathematical models that have been proposed for VLSI 

computation. the most widely accepted is due to Thompson and is known as the 
Thompson grid model [TI9, TSO]. The grid model of a VLSI chip is quite simple. 
The chip is presumed to consist of a grid of vertical and horizontal Lracks which 
are spaced apart by unit intervals. Processors are viewed as points and are located 
only at the intersection of grid tracks. Wires are routed through the tracks in order 
to connect pairs of processors. Although a wire in a horizontal track is allowed to 
cross a wire in a_ vertical track (without making an electrical connection), pairs of 
wires are not allowed to overlap for any distance or to overlap at corners (i.e., in 
they cannot overlap in the same track). Further, wires are not allowed to overlap 
processors to which they are not linked. (The routing of wires in this fashion is 
also known as layer per direction rouling and A-fanha11a11 routing.) 

As an example, we have included a grid layout for the 8-node shufnc-exchange 
graph in Figure 2. As befoi·e, the shuffle edges are drawn with solid lines while the 
exchange edges are drawn with dashed lines. Notice that we have omitted the self
loops in Figure 2 since they are electrically redundant. In gencrnl, the processors 
need not all be placed on a single horizontal line (as they arc in this example). 

I 

. . 

~ 
1 
T I I I I ' ' I ' 

000 001 100 010 0ll l0l ll0 111 

Figure 2: A grid model layout of the 8-node shu.flle-exchange graph 

Practical considerations dictate that the area of a VLSI layout be as small as 

possible. The area of a layout in the grid model is defined to be the product of the 
number of hodzontal tracks and the number of vertical tracks which contain a 
processor or wire segment of the layout. For example, the layout in Figure 2 has 
area 48. As can be easily ·observed, this is far from optimal. 
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2c) Thompson's layout 

Given any k-bit string w, define the size of w to be the number of 1-bits it 
contains. For example, the size of 10110 is 3. Thompson's idea was to lay out the 
N= 2k nodes of the shuffle-exchange graph on a straight line in order of 
nondecreasing size. It is easily seen that shuffle edges link nodes which have the 
same size and that exchange edges link nodes which have sizes differing by one. 
Thus the edges of such a layout are relutivcly short. In fact, nodes connected by 
shuffle edges can be placed in a grnup, so that only 2 horizontal tracks are used for 
all the shuffle connections. The remaining horizontal tracks are occupied by 
exchange edges. 

The exchange edges are inse1·ted from left to right so that each exchange edge 
occupies two vertical tracks and a portion of the lowest horizoi1tal track which is 
empty at the time of its insertion. (For example, Figure 2 displays a layout for the 
8-node shuffle-exchange designed in this way.) This well-known strategy for 
inserting exchange edges guarantees that the number of horizontal tracks used will 
be minimal, and equal to the maximum number of edges which must (at some 
fixed point) overlap one another. Since exchange edges link nodes which differ in 
size by one, it is easily seen that the maximum overlap is at most 0( max B;) 

O~S~k 
where Bs is the number of nodes of size s. 

It is easy to show that B 5 = C(k,s) for each s, where 

C(k,s) = k!/[s!(k-s)!] 

is the well-known function for binomial coefficients. ft is also well-known that 
C(k,s) achieves its maximum value at s= k/2 for any k. Using standard asymptotic 
analysis, it is easi1y shown that C(k,k/2) ~ (2/71)1/2(2k/k1/2) for 1arge k. (For a 
good review of such techniques, see Bender and Orszag's book [B078].) Thus 
Thompson's layout requires only O(N/log1/ 2N) horizontal tracks. Since only 1 or 
2 vertical tracks are needed to embed the vertical portions of the edges incident to 
any given node, we can conclude that Thompson's Jayout has area O(N2/!og1/ 2N) . 

3. The Complex Plane Diagram 

ln [HL80], Hoey and Leiserson observed that there is a very natural embedding 

of the shuffle-exchange graph in the complex plane. In what follows, we describe 

5 



this embedding (which we call the complex plane diagram) and point out some of 

its more important properties. 

3a) Definition 

Let l> k = e2wVk denote the k1h primitive root of unity. Given any k-bit binary 

string w = ak-l • • • a0 • let p(w) be the map which sends w to the point 

p(w) ak·lokk-1 + ... + a18k + ao 

in the complex plane. As each node of the (N= 21<)-node shuffle-exchange graph 
corresponds to a k-bit binary string, it is possible to use the map to embed the 
shuffle-exchange graph jn the complex plane. For example, we have done this for 
the 32-nodc shuffle-exchange graph (whence k=S) in Figure 3. For simplicity, 
each node is labeled with its value instead of its 5-bit binary string. (By the value 
of a node, we mean the numerical value of the associated k-bit binary string.) 

+2i 

+li 

Oi 12 19 

-1i 

-2i 

-2 -l 0 +l +2 

Figure 3: The complex plane diagram for 1he 32-node 
shuffle-exchange graph. ( Taken from [H L80].) 
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3b) Properties 

Examination of Figure 3 indicates that the complex plane diagram has some 
very interesting properties. First, it is apparent that the shuffle edges occur in 
cycles (which we call necklaces) which me symmetrically placed about the origin. 

This phenomenon is easily explained by the following identity: 

ak·lokk + ak·2okk-I + ... + a/jk2 + aook 

ak-2okk·l + · · · + aook + ak·l 

p(_ak-2 ... 0 a°k-l) · 

Thus traversal of a shuffle edge corresponds to a 27T/k rotation in the complex 

plane. 

Except for degenerate cases, the preceding identity also indicates that each 
necklace is composed of k nodes, each a cyclic shift of the other. Such necklaces 
arc called full necklaces. /)egenera1e necklaces contain fewer than k nodes and, 
because they must have some symmetry, are mapped entirely to the origin of the 
complex plane diagram. For example. {00000} and {OIOI. 1010} are degenerate 
necklaces while both {JOI, Oil, 110} and {l JJOO, 11001. 10011, 00111, Oil 10} are 
full. As we note in the following proposition, the number of degenerate necklaces 

is quite small compared to the number of full necklaces. 

Proposition l: There are O(N1/2) degenerate necklaces and NllogN -
O(N1/ 2/logN) full necklaces in the N-node shujjle-cxchange graph 

Proof: A node w is in a degenerate necklace if its binary representation has a 
nontrivial symmetry with respect to cyclic shifts. Without loss of generality, such a 
string of bits must consist of a block of k/p bits which is repeated p times where p 

is some prime divisor of k. As there are 2k/p binary strings of length k/p, this 

means that the number of nodes in degenerate necklaces is at most 

pf1< 

L 2k/p < O(Nl/2) . 

The remaining N - O(N//2) nodes are in full necklaces. As each full necklace 
cont::..;ns logN nodes, there are NllogN - O(Nl/2/logN) full necklaces D 

It will often be convenient to refer Lo a necklace by one of its nodes. In 
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particular. we will use the notation <w> to indicate the necklace generated by w. 

This is simply the collection of cyclic shifts of w. For example, the necklace 
generated by IOI is <JOI> = {JOI. OJ I, 110} . 

Exchange edges are also embedded in a very regular fashion by the complex 
plane diagram. In fact, each exchange edge is embedded as a horizontal line 
segment of unit length. This phenomenon is explained by the identity 

p(ak-1 · .. a10) + 1 = ak-/8kk-l + ... + a,8k + I 

p(ak-J ... a1I). 

In some cases. several exchange edges are contained in the same horizontal Hne 
of the diagram. Such lines are called levels. For example, there are 9 levels in the 
diagram of the 32-node shuffle-exchange graph shown in Figure 3. We will use 
the properties of levels to find O(N2/tog3/2N)-area layouts for the N -node shuffle
exchange graph. 

4. Layouts Based on the Complex Plane Diagram 

In this section, we present several layouts of the shuffle-exchange graph which 
are based on the complex plane diagram. We commence with a straightforward 
O(N2/!ogN)-area layout of ·the iV-node shufne-exchangc graph. This layout has 
been discovered by many researchers (including Hoey and Leiserson). Later, ·we 
show how the layout can be modified so as to require only O(N2/tog3/2N) area. 

4a) A straightforward O(N2 /logN)·area layout 

In what follows, we describe a straightforward layout of the shuffle-exchange 
graph which requiTes only O(N2./logN) area. The layout is fanned from a grid of 
levels and necklaces which we refer to as the level-necklace grid. Each row of the 
grid corresponds to a level of the complex plane diagram. The columns of the grid 
are divided into consecutive column pairs, each pair corresponding to a necklace. 
The leftmost column of each column pair corresponds to that part of the necklace 
which is contained in the left half of the complex plane. Similarly, the rightmost 
column of each pair corresponds to the part of the necklace contained in the right 
half of the complex plane. 
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The rows of the level -necklace grid must have the same top-to-bottom order ns 

do the corresponding levels in the complex plane diagram. The columns, however, 
m ay be arranged arbitrarily (provided that columns corresponding to the same 
nec klace are adjacent in the grid). 

Each node of the shufne-exch:rnge graph is placed at the intersection of the row 
and column of the grid which correspond to the level and part of the necklace (left 
half or right hall) to which it belongs in the complex plane diagram. For example, 
we have done this for a random ordering of the necklaces of the 32-node shuffle
exchange graph in Figure 4 . (Notice that we have used just one column each for 
the degenerate necklaces <O> and <31> since they each contain just one node. In 
general two columns will be required for necklaces which are mapped to the origin 
of the complex plane diagram, but the nodes of each such necklace should still be 
lumped togther at a single point of the level-necklace grid.) 

J.eve ls. 

i 
2 

.3 
4 
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9 

6 

12 

24 

7 

3 14 

19 

17 28 

25 

neckJ.aces 

2 15 

22 4 5 23 

11 10 

13 1 18 0 30 31 

21 20 

26 8 9 27 

16 29 

Figure 4: A level-necklace gridfor the 32-node shuffie-exchange graph. 

Given a level-necklace grid for a shuffle-exchange graph, it is not difficult to 
produce a layout for the graph. The main step is to partition the exchange e d ges in 
each row of the g rid into nonoverlapping subsets. Each subset can then be 

assigned to a horizontal track of the layout. Except for the row corresponding to 
the real line in the complex pl~me diagram, the assignment of subsets to horizontal 
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tracks within a row is arbitrary. (The assignment of horizontal tracks containing 

nodes on the real line must preserve the cyclic orientation of the nodes which are 
in necklaces that are mapped to the origin.) 

Once this is done, the exchange edges can be inserted in the horizontal tracks 
and the shuffle edges can be inserted in the vertical trucks. (To be precise, some of 
the shume edges also occupy part of a horizontal track at the top or bottom of the 
layout.) By Proposition l. the number of vertical tracks occupied by the necklaces 
is at inost 2NllogN + O(N1/2). Since there arc precisely N/2 exchange edges, at 
most N/2- + 2 horizontal tracks are contained in the layout. Thus the total area 
of the layout of the N-node shuffle-exchange graph is at most N 2/logN + O(N3/2). 
As an example, we have displayed in Figu,-e 5 a layout of the 32-node shuffle
exchange graph produced from the level-necklace grid in Figure 4. 

1eve1s 

necklaces 

]. - - - -, . 6 7 

2{ 3 2 
14 - - -- -- - - 15 

3{ 2 

4 5 

23 

4 11 10 

s { 12 13 

19 

1-----0 30--31 

18 · 

6 1 20 

26 27 

9 

28 -- -- -- - 29 

17 16 
9 24 25 

Figure 5: LayoUl of the 32-noc/e shuffle-exchange graph 

produced Ji-om 1he level-necklace grid shoivn in Figure 4. 
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4b) An improvcc.1 O(N2 /log3/2 N)-arca Jay out 

It is possible to improve the layout described in section 4a by reducing the 

number of horizontal tracks needed to embed the exchange edges. This can be 
done by reordering the necklaces from left to right so as to increase the average 
number of exchange edges which can be inserted on each horizontal track. For 
example, the ordering of the necklaces shown in Figure 6 results in far fewer 
horizontal tracks being used than did the ordering of necklaces shown in Figure 5. 

necklaces 

<O> <l> <3> <S> <7> <ll> <15X31> 

l 6 

2 4- -- -- - 5 
3 4 2 2 3 

4 l 

levels 5 { 12- 3 

-'o - - l 8 -
9 30 --31 

6 l 

7 8 
- -- --

26 27 

8 16- - -
7 8- 29 

9 24- 25 

Figure 6: An improved layout for the 32-node shujjle-exchange graph 

Although we do not know how to best order the necklaces in general, we have 
found several orderings which yield O(N2/logY2N)-area layouts for the N-node 
shuffle-exchange graph. For instance, we will show in what follows that such a 
byout can be constructed by arranging the necklaces from left to right in order of 
nondecreasing size. (The size of a necklace is simply defined to be the size of any 
of its nodes.) As an example, the layout displayed in Figure 6 is of this form. 
(This observation has also been made by Steinberg and Rodeh in [SR81].) 

In order to bound the number of horizontal tracks needed to insert the exchange 
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edges, we will show that the maximum overlap of exchange edges on each level is 

at most the number of nodes of size h = l{k- /)1 lJ on that level. Since the 
maximum overlap of exchange edge·s on each level is an upper bound on the 

number of horizontal tracks needed to insert the exchange edges on that level, we 
can thus conclude that the total number of horizontal tracks needed to insert all of 
the exchange edges is at most 

Bh ~ Bv2 = (2hr) 1/ 2 N / log1/ 2N + O(N/!og3/2N). 

Thus the 1·esulting layout will have area at most 

2(2/7r)l/2N2//og3/2N + O(N2//og5/2N)_ 

Although it is clear that the maximum total overlap (over all levels) of exchange 
edges is at most Bv2 • this is not sufficient to prove the result since any layout 
must also preserve the top-to-bottom partial order induced by the necklace 
structure on the exchnnge edges. It is only within individual levels thnt the top-to
bottom ordering of exchange edges is a rbitrary. (As we noted earlier, some minor 
precautions are necessary for the level corresponding to the real line.) It is not 
immediately clear, however, why the maximum overlap on each level is at most the 
number of nodes of size h:5,k/2 on that level. In what follows, we establish this 
result by breaking up each level into sublevels (fo1· which the analysis is easier) and 
showing that the maximum overla p on each sublevel is at most the number of 
nodes of size h on that sublevel: The analysis requires some additional notation. 

Consider a node of the form ak-l • • • a 10 for which either ak-i= 0 or at= 0 or 
both for each i<k. We will refer to such a node as basis node. A node 
bk-I. • • b0 is said to be genera!ed by the basis node ak_, . .. a0 if 

l) bk-i=ak-i and bi= ai whenever ak-i'¢c.ai for 1::;, i::;, k-1, and 

2) bk-i= bi whenever ak-i = ai = 0 for I < i < k-1. 

For example, 10000 generates 10001, JI JOO and /J JOI but not JJ JJ 1. 

Tt is not difficult to show that if u generates v, then both u and v are on the same 
level of the complex plane diagram. For example, let u = ak_, . •• a 0 and 

v = bk·!· • • b0 and observe that 

p(y) - p(u) - (bk-I - 0 k-l) 0 kk-l + . .. + (b1 - a1) 8k + (bo - 0 o) 

Ck- /5 k k-1 + . . . + CI 8 k + Co 
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where ck-i=ci for each 1~ Is i < k-1 . Since okk-i is the complex conjugate of 

S/ for l s i s k - 1, we can conclude that p(v) - p(u) is a real number and thus 

that u and v are in the same level of Lhe complex plane diagram. 

It is also easy to show that each node of the shuffle-exchange graph is generated 

by a un ique basis node. In parLicular, the node which generates bk-J. • •. b0 can 
be found by 

1) setting b0 = 0 and (if k is even) setting bv2 = 0, and 

2) setting bi= bk-i= 0 for each i such that (originally) bi= bk-i= I. 

Since exchange edges link nodes which have the same basis node, we can 
conc lude from the preceding arguments that it is possible to partition each level of 

the complex plane diagram into sublevels so that the nodes in each sublevel are 
precisely the nodes generated by some basis node. We will n9w show that the 
maximum overlap on each sublevel is at most the number of nodes of size hon 

that sublevel. 

Since the necklaces have been arranged from left to right in order of 
nondecreasing size. the overlnp of exchange edges between two nodes of size s in 
any sub level is at most 0( max Bs') where Bs' is the number of nodes in that 

o~ s ~ k 
sublevel with size s. In the following proposition, we compute Bs' and show that 
its maximum for any subleve\ . occurs at s= h. 

P ro1>0sit ion 2: Each basis node of size r generates B5 ' nodes of size s. where 

1) Bs' = C(h - r. i) for s= r+ 2i and i < h - r. and 

2) Bs' = C(h - r, i) for s= r+ 2i+ I and i s h - r 

when k is odd. and 

1) Bs' = C(h - r+ I, i) for s= r+ 2i and i s h - r+ l. and 

2) Bs • = 2C(h - r. 1) for s= r+ 2i+ 1 and i < h - r 

when k is even. 

Proof: When k is odd, there are precisely h - r pairs aj = a k -j = 0 in a bas is 
node of size r. In order to generate a string of size s= r+ 2i when k is odd, w e 

must set b0 = 0 and set i of the h- r pairs so that bj = bk-j = J. There are C(h - r, t) 

such strings. To generate a string of size s = r+ 2i+ J when k is odd, we must set 

b0 = I and choose i of the h-r pairs so that b1 = bk-j = I. As before, there are 
C(h - r, i) such strings. 
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When k is even, there is also the degenerate pair av2 = 0. To generate a string 
of size s= r+ 2i when k is even, we must choose i of the h - r+ I pairs so that bj 

= bk-j = I (this count includes the "pair" b0 = bk/2 = 1). There are C(h - r+ I. 1) 

such strings. To generate a string of size s= r+ 2i + I when k is even, we must set 

either b0 = I and bv2 =0 or b0 = 0 and bv2 = I, and choose i of the lz-r pairs so 
that bj = bk-j = I (j * k/2). There are 2C(h - r, i) such strings □ 

Given Proposition 2, it is easily checked that the maximum value of Bs' for any 
sublevel (independent of the value of r) occurs when s= h. Thus the sum (over all 
sublevels) of the maximum overlap at each sub level is at most the number of nodes 
of size h = K_k-1)/l) in the ·entire graph. This is at most C(k, k/2} 
(2/n )1/ 2(2k/ k 1/2")_ Thus the total area of the layout is no more than 

2(2/nJl/2N 2/tog3/2N + O(N2/!og5/2N), 

as claimed. 

4c) Additional O(N2//og3/2N)-area layouts 

By varying the order of the necklaces in the level-necklace grid, it is possible to 
produce a variety of layouts for the shuffle-exchange graph which require at most 
O(N2/tog3/2N) area. The complex plane diagram itself suggests one such ordering. 
For example, consider an arrangement of the necklaces from left to right in order 
of nondecreasing radius. (The radius of a necklace is defined to be the distance of 
its nodes from the origin in the complex plane diagram.) Such a layout 
corresponds to a folding of the complex plane diagram along its imaginary axis 
followed by a straightening of the necklaces. In what follows, we will show that, 
like a layout by necklace size, a layout by necklace radius has area O(N2/tog3/2N). 

Because the layout by radius is so closely related to the complex plane diagram, 
our analysis will center on the complex plane diagram, itself. As before, we will 
partition the levels into sublevels and find an upper bound on the maximum 
overlap of exchange edges on each sublevel separately. The number of horizontal 
tracks needed to insert the exchange edges will then be at most the sum of these 
upper bounds. We will show that this sum is at most O(N/log1/ 2N). 

Notice that the maximum overlap of exchange edges on a sublevel of the Level
necklace grid is at most twice the maximum overlap on that sublevel in the 
complex plane diagram. (The factor of two is introduced by the "folding" of the 
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diagram along its imaginary axis. Although straightening the necklaces might 

affect the maximum 1010! overlap of exchange edges, it docs not affect the overlap 

within a sublevel.) 

Within a sublevel, an exchange edge can be identified by the real part of its 
midpoint. For example, the real part of the midpoint of exchange edge . 

(bk-/· .. b,o, bk·/· .. bl/) is 

bk_1 cos[2n{k-J}/k] + ... + b 1 cos[2?T/k] + 1/2. 

lf a is a basis element of a sublcvel, then a generates the other nodes in that 
sublcvel by substitution of the appropriate pairs of ones. For instance, we may set 

bi= bk_,-=I, if ai=ak-i=O. Let 

T = { I < 1· < h I a • = ak • = 0 } a . -- J -1 

denote those indices / -5:_ i <h where a pair of / -bits may be substituted for a pair 

of 0-bits. (As before, h = li_k - IY.£1 but for convenience, we shall henceforth 

assume that k is odd.) Notice that if bis generated by a, then the real part of the 

midpoint of the exchange edge incident to b is 
i67Q. i.41~ 
L 2bi cos (27T i./k) + L cos (hr i/k) + 1/2 

,~,&,5.h 

We now introduce a random variable Z
0

, which has as its image, a11 of the real 

parts of the midpoints of edges in the sublevel generated by a. Since bi = bk-i can 
be either O or 1 when i E Ta, let Bi be a random variable representing this choice. 
In particular, 

Then 

Bi= 0 with probability 1/2, and 

Bi= 1 with probability J/2. 

.C:e~ 
= ~ 2 cos(bri./k) (Bi- 1/2). 

Since the exchange edges have unit length in the complex plane diagram, two 

edges overlap if and only if their midpoints are within unit distance of each other. 
Thus i.be number of edges which overlap at position x on the · sublevel generated 

by a node a is given by the formula 
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21Tal Prob [x - l/2 s Za s x+ //2] • 

where I Tai denotes the cardinality of Ta. (We caution the reader that the notation 
lxl is also used to denote the absolule value of x.) 

Although the distribution function of Za is difficult to analyze directly, it does 
behave like a normal distribution. This is because Za is the sum of independent 
random variables which have mean O and variance u / = cos2(27T i/k). The Berry
Essecn Theorem states precisely how far Za can vary from a normal distribution. 
(For a proof of this theorem see [F71].) 

Ilerry-Esseen Theorem: 
variables such that E(X) = 

Let X 1 , X 2 , • • • • X m be independen l random 

o. E(X/) = a/, and E(IX/1) = Pi for lsi<m. 

Se/ s2 = CT/+ · · · +am 2 and r = p 1+ · · · +Pm· In addition, let F denote 

the cumulative distribution function of !he sum (X 1 + · · · + X 111)/ s. Then for all x. 

IR:x) - <l>(x)I < 6rls3 

where <I> is the standar_d_ normal cumulative disLribuLion function □ 

In the case of a sublevel generated by a node a, we have 

s 2 a 

L. E 7Q_ 

L cos2 (2w i/k) 

i e To.. 

and 

ra = LI cos3 (27Ti/k) 1-

Applying the Berry-Esseen TI1eorem, we can thus concJude that 

Prob [ x - 1/2 < Za < x+ 1/2] = Prob [ (x - 1/2)/sa s Zdsa < (x+ 1/2)/sa] 

< <I>[(x+ J/2Ysa1 - <I>[(x - l/2Ysa] + l 2ralsa3 

Because the standard normal density function is symmetric and unimodal, we can 
conclude that the maximum of Prob [ x - 1/2 s Za < x+ 1/2] occurs at x = 0 

and is at most 0(1/sa + rd s/). 

In the following proposition, we find bounds for the values of ra and sa. 
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Proposition 3: For any bas;s node a 
~ .. To. 

LI co~ (2?TVk) I :s:; !Tai and 

~ E. Tc.. 
s/ L cos2(27Ti/k) ~ Q(1Tal3/k2). 

Proof: The bound on ra is easy to compute since lcos3(27TVk)I :s:; 1. The 
calculation of sa is a bit more tedious. In order to obtain a lower bound, 
cos2(27Ti/k) must be made as small as possible. The smallest values occur when 
Ta contains indices i which ;;i.re as dose to (k-1)/4 as possible. In this case, we can 
approximate cos2(27Ti/k) with the value c(11/2 - 2?TVk)2 , for some constant c. 
Direct computation reveals that the sum of these squares is at least Q(l7'al3/k2) □ 

Since ITal < k for all a, we can conclude from the p1·eceding that the maximum 
overlap of exchange edges on a sublevel generated by a is· at most 

0(21Tal k3 1 ITall/2). 

Noting that there are precisely C(h ,j) 2h-j sublevels generated by a node for 

which !Tai = j and summing, we can conclude that the total number of horizontal 
tracks needed to insert all of the exchange edges is at most 

h. 
~ C(h ,j) 2h-j 0(~ k 3 / f/2) 
j=' 

It 
= 0 [ k 3 2h L C(h ,J) / f/2 ]. 

j=, 

It is not difficult to check that the dominant terms in the preceding sum occur 
when j = h/2 ± 0(h 1/ 2 logh). In this region, j = 0(k) and thus the sum is 
bounded above by 

O(N/logl/2 N), 

thus completing the proof that a layout by necklace radius takes at most 
O(N2/tog3/2N) area. 
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5. Remarks 

Tt is worth remarking that the O(N2/!og3/2N)-area layouts for the shuffle

exchange graph described in section 4 actual1y require fl(N2/fogY2 N) area and 

thus our analysis of these layouts cannot be improved by more than a constant 
factor. [n each case, the lower bound on area can be derived from the fact that the 

maximum Iota! overlap of exchange edges in the layouts is at least Q(N/log1/ 2 N). 

(Remember that although the maximum total overlap of exchnnge edges is not an 

upper bound on the number of horizontal tracks needed to insert the exchange 

edges, it is a tower bound.) 

The Q(N/log1/ 2N) lower bound on maximum overlap is easily established for 

the layout according to necklace size since fl(N/log//2 N) exchange edges link 
nodes of size k/2 to nodes of size k/2+1. The lower bound on maximum overlap 
is somewhat more difficult to prove for the layout according to necklace radius. 

The first step in the proof is to show that at least N/2 exchange edges are 
contuincd -within a square of side length ck//2 centered at the origin of the 
complex plane diagram (where c is a constant). (This can be done by using the 
techniques developed in section 4c.) Next consider the sum (over i) of the total 

overlaps at points corresponding to radii of i/2 for l~i<ck1/ 2. Because the 
complex plane diagram is radially symmetric, it is possible to show that at least 

Q(N) exchange edges are counted. in this sum. Thus the overlap at one of these 

points must be at least Q(N/k1/2). 

Since Thompson [r80] has shown that any layout for the N-node shuffle

exchange graph must have area at least Q(N2/log2N), we know that at least 
H(N/logN) horizontal tracks are needed to insert the exchange edges for any 
ordering of necklaces in the kvel-necklace grid. However, there is no ordering of 

the necklaces known for which the exchange edges can be inserted using less than 
o(N//ogl/2N) horizontal tracks. This suggests an interesting open question since it 
would be nice to find an O(N2/log2 N)-area layout based on the complex plane 

diagram. (Although an asymptotically optimal O(N2/log2N)-area layout for the 

shuffle-exchange graph has recently been found by Kleitman, Leighton, Lepley 

and Miller [KLLM81], it is rather complicated and of limited practical use.) 

Aithough we do not know of necklace orderings for which the exchange edges 
can be inserted using less than o(N//og//2N) ho1izontal tracks, we do know of 

orderings for which the maximum total overlap of exchange edges is a t most 
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O(NloglogN//ogN). For example, an ordering of the necklaces by minimum value 

has a maximum total overlap of 0(NloglogN/logN). (The minimum value of a 

necklace is simply the minimum of the values of the nodes contained in the 
necklace.) 

Interestingly, an analysis of the minimum (over all orderings) of the maximum 

total overlap for small values of N indicates that there may always be an ordering 

for which the maximum total overlap is at most O(N/logN), the least possible. In 

fact, for 3 < N ~ 7, this minimum maximum overlap is precisely K2k - 2)16:). A 
summary of the minimum maximum overlap data for smnll values of N is included 

in Table 1. 

Table l 

Max;,num Overlap of Best Known Orderings 

maximum overlap of 
k N best known ordering optimal? 

3 8 2 yes 

4 16 3 yes 

5 32 6 yes 

6 64 10 yes 

7 128 18 yes 

8 256 33 yes 

9 512 62 ? 

10 1024 115 ? 

11 2048 214 ? 

12 4096 388 ? 

13 8192 754 ? 

In addition to varying the order of the necklaces, improvements in the layout 

may also be made by rearranging the level assignments of the exchange edges. For 

example, the layout of the 32-node shuffle-exchange graph shown in Figure 7 was 

constructed in this way. (The careful reader will notice that we have also 
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manipulated the necklaces somewhat in order to produce this layout.) For a more 
detailed discussion of the manner in which exchange edges can be reassigned, we 
refer the reader to [LM81]. (Such layouts have also been used in conjunction with 
the Blue Chip Project at Purdue [S81].) 

- - - - - - - -
2 3 6 7 11+ 15 

- --

'2-r~r 
--~rr 4 23 -- _ .. 

0 1 13 30 31 

19 
- -

8 9 20 21 26 27 
- -- - - - - - -

16 17 24 25 28 29 

Figure 7: An improved layout for 1he 32-11ode shuffle-exchange graph. 

6. Acknowledgements 

In acknowledgement, we would like to thank the following people for their 
helpful remarks and suggestions: Herman Chernoff, Peter Elias. Dan Hoey, Dan 
Kleitman, Charles Leiserson, Ron Rivest, Michael Rodch, Larry Snyder, and 
Richard Zippel. 

7. References 

[B078] 

[DGK81] 

[F71] 

[HL80] 

C. M. Bender and S . A. Orszag, Advanced Mathematical Methods for 
Scientists a11d Engineers, McGraw-Hill Book Company, New York, 
1978. 

P. Diaconis. R. L. Graham and W. M. Kantor, "The mathematics of 
perfect shuffles," preprint, 1981. 

W. Feller. An Introduction to Probability Theory and Its Applications, 
Volume JI, second ed .. John Wiley and Sons, New York, 1971. 

D. Hoey and C . E. Leiserson, A layout for the shuffle-ex.change 
network," Proceedings of the 1980 IEEE lnternalional Conference on 
Parallel Processing, August 1980. 

20 



[K LLM81] D. Kleitman, F. T. Leighton, M. Lepley and G. L. Miller, "New 
layouts for the shuffle-exchange graph," Proceedings of the 131h 
Annual ACM Symposium on Theory of Compwing, May 1981, 
pp. 278-292. 

[L81] F. T. Leighton, Layouts for the ShujJle-Exchange Graph and Lower 
Bound Techniques for V/,SI, Ph.D. Thesis, MaLhcmatics Department, 
Massachusetts Institute of Technology, Cambridge Massachusetts, 
September 1981. (Also to appear as an MlT Technical Report.) 

[LM81] F . T. Leighton and G. L. Miller, "Optimal layouts for small shuffle
exchange graphs," VLSI 81 - Very Large Scale Integration, edited by 
John P. Gray, Acad.emic Press, London. August 1981. pp. 289-299. 

[P80] D. S. Parker, "Notes on shuffle/exchange-type switching networks," 
IEEE Transactions on Cornputers, Vol. C-29, No. 3, March 1980, pp. 
213-222. 

[S71] H. S. Stone, "ParalleJ processing with the perfect shuffle," IEEE 
Transactions on Computers, Vol. C-20, No. 2, February 1971, pp. 153-
161. 

[S80] J. T. Schwartz, "Ultracomputers," ACM Transactions on Programming 
Lanr,uages and Systems, Vol. 2, No. 4, October 1980, pp. 484-521. 

[S81] L. Snyder, "Overvie'w of the CHiP computer," VLSI 81 - Very Large 
Scale lntegralion, edited by J. Gray, Academic Press, London, August 
1981, pp. 237-246. 

[SR81] D. Steinberg and M. Rodeh, "A layout for the shuffle-exchange 
network with 0(N2/log3/2N) area," submitted to IEEE Transactions 
on Computers. 

rr79] C. D. Thompson, "Area-time complexity for VLSI," Proceedings of 
the I Ith Annual ACM Symposium on Theory of Computing, May 
1979, pp. 81-88. · 

[TSO] C. D . Thompson, A Complexily Theory for VLSI, Ph.D. dissertation, 
Department of Computer Science, Carnegie-Mellon University, 1980. 

21 




