Simulating Virtual Circuits in Mobile Packet Radio Networks

Alain Jerome Cohen

Submitted to the Department of
Electrical Engineering and Computer Science in Partial Ful-
fillment of the Requirements for the Degree of Bachelor of
Science in Electrical Engireering Massachusetts Institute of
Technology, May 1586.

Copyright Alain Jerome Cohen 1986

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author: L e - ev g s

Department of Ek?(cal Engineering and Computer Science; May 9, 1986

Certified by: - Y - e e

., L
Dimitri P. Ber? ekas, Thesis ‘Supervisor

ACCCptedby: Bt s s . T T LS ar

David Adler, Department Committee Chairman

MASS- INST, TECH.
JUN 18 1986

{l8rariES

Archives

Table of Contents

Introduction

Broadcast Networks

OPNET Fundamentals

3.1. Background

3.2. Overview

3.3. Structure

3.4. Network Specification
3.5. Device Specification
OPNET Enhancements

Case Study

5.1. Background

5.2. Problem

5.3. Virtal Circuits in MPRNs
5.4. Models

5.5. Simulation Results
5.6. Conclusion
References

Appendix

1. Introduction ' page 1

1, Intr ion

Packet radio networks are used in distributed communication systems where nodes are mobile or
resources are located in inaccessible areas. In the case where the nodes are mobile, no guarantees
can be made about the connectivity between any pair of nodes which wish to initiate a conversation.

Moreover the network connectivity may well change during the conversation itself.

The problem of routing in static networks, in which a valid network map is available to all nodes at
all times, is to select the best available communication path so as to optimize use of communication
resources. In mobile networks, the problem starts at a much more basic level, since the node ori-
ginating the conversation generally has no way of knowing where the destination node is located.
Since node positions are arbitrary, in order to acquire the knowledge of a path to reach the destina-
tion node, the origin must rely on a flooding process, in which all the nodes of the network are con-

tacted.

The flooding process may or may not be invoked by the origin node. If the flood is not to start at the
origin node, then one must envisage some sort of centralized resource shared by the entire network.
This resource would be responsible for maintaining an up-to-date network map, and either informing
the ordinary nodes of the proper routes to use, or performing the routing itself in a centralized
fashion. On the other hand, if the flood is begun at the origin node, no centralized resources are

needed, as each node of the network is responsible for acquiring its own routing information.

The protocols executed by the nodes were developed using OPNET, a simulation package available at
the Laboratory for Information and Decision Systems. The goal of this thesis is to extend the class of
networks which can be studied with OPNET and to confirm that the new capabilities are adequate
through the construction of a detailed, practical model. The model involves three protocol layers

supporting communication in packet radio networks with virtual circuit sessions.

2. Broadcast Networks page 2

2. Br N rk

In this section, some of the differences between broadcast radio networks and point-to-point networks

are presented.

D

2)

3)

In point-to-point networks a communication channel is associated with its origin and destina-
tion nodes. Thus receiving nodes may implicitly know the identity of the transmitting nodes.
Therefore Packets do not have to be addressed to their immediate destinations. In radio net-
works however, channels are shared among many nodes. When a node transmits a packet, it
will potentially be received by all nodes within range. In order to transmit to only one destina-
tion node, a transmitter must label the packet with the appropriate destination; all nodes will

discard packets whose address labels are not equal to the node address.

When a node is in receipt of several packets simultaneously, these packets are considered void
since the receiver in reality sees the superposition of the various signals which generally is
meaningless. In some cases, one signal dominates the others and a single packet survives the
collision. This phenomencn, known as the capture effect [1], may be due to the difference in
distance or power of the multiple transmitters. Throughout this paper the capture effect will be

ignored and collided packets considered lost.

Some schemes for transmission failure control may take advantage of the fact that when a node
transmits a packet it will hear it rebroadcast by the receiving nodes shortly thereafter. Thus no
explicit acknowledgements are necessary; if a node receives the packet which it has recently
transmitted, then it may assume that it was correctly received by the destination node. Tkis
technique is particularly applicable to satellite systems in which all nodes are guaranteed to
receive the packets rebroadcast by the satellite. Unfortunately, this scheme encounters certain

difficulties in multi-hop packet radio networks, as will be seen later.

3. OPNET Fundamentals page 3

{ 3. OPNET Fundamentals |

Note: This section is largely from the OPNET User Manual co-authored with Steven Baraniuk. Thus
passages may be in common with Steven Baraniuk’s S.B thesis [2].

3.1 Background

OPNET, which stands for Ordinal Process Network Evaluation Tool, is a group of programs
designed to help researchers simulate and study distributed protocols, in the context of packet-
switched networks. The goals of OPNET are to lessen the burden of developing distributed protocol
simulations, thus increasing the use of simulation as a supplement or alternative to mathematical

analysis of such protocols.

The development of OPNET began in November, 1984, as part of a joint final project by the author
and Steven Baraniuk for the MIT Data Communication Networks course (6.263). This initial ver-
sion allowed the user io set up a packet-switched network with arbitrary point-to-point topology and

traffic distributions.

During the summer of 1985, OPNET was extensively rewritten to widen the range of rnodels which
the system could support. OPNET is now structured into a three layer modeling system which al-
lows the user to concentrate his efforts on the portion of the models which are relevant to the experi-
ment. The highest layer models issues related to network configuration such as topology, mobility,
node and link failure and connectivity. The second layer models issues related to device configura-
tion. Devices are specified to OPNET as networks of standard building blocks called modules. The

third and lowest level, allows the insertion of procedures into certain modules.

3. OPNET Fundamentals ' page 4

3.2 Overview

Frequently the designer of computer-based systems will find a simulation of either hardware or
software helpful, if not necessary, especially as system complexity increases. Some exampies of
these simulations are instruction-set emulators on development systems and logic-gate simulations on
CAE workstations. Such tools allow the designer to test out his code before the hardware is ready, or
to test his hardware ideas before actually implementing them, and their use in commercial, research,

and educational applications has grown significantly during the past decade.

Increasingly, research and development of distributed systems, such as packet-switched data net-

works, has relied on simulation. This trend has been driven by:

1) Increasing complexity of telecommunications hardware and protocols, bringing with it
increased difficulty of mathematical analysis. Specifically, recent trends include getting the
most throughput for a given channel bandwidth, raising the number of network customers
while keeping delay reasonable, and employing sophisticated data securing and anti-jamming
techniques. Frequently, realistic scenarios are beyond the scope of analytic statistical expres-

sions.

2) Growing numbers Of data network vendors and private data carriers, and the international drive
for protocol stendardization [3]. Simulation provides a supplement to proof-based verification

of designs implementing these standards.

3) Success enjoyed by hardware and software emulations in computer development, where almost
all sophisticated systems (e.g., devices with greater than 1000 subcomponents) are designed

with the aid of CAD tools.

Many simulations of specific protocols have been created, and used to study their behavior
under various operating conditions. In addition, large simulations have been created which
model the operation of a complete existing or proposed network, on the OSI layers that are of

concern to the developers. The amount of parameterization and level-of-detail of each of these

3. OPNET Fundamentals page 5

simulations has varied, as have their longevity as useful tools. Needless to say, most of these
simulations have a lot of code in common, and a smaller amount of code which is protoco! or
network-specific. A method of reducing the time and effort required to develop these simula-
tions is to separate the common code into a standard package available to simulation develop-
ers. This package would provide a "substrate” upon which the network-specific code could be
written. I will refer to such a package as a simulation compiler; its purpose is to accept a con-
densed specification of the data network structure and operation conditions and generate a

ready-to-run simulation.

OPNET is a simulation compiler. Its inputs are abstract specification of protocols and the
packet-switched network on which they are executing. Its output is a simulation which can be
used to analyze the protocol and network. Several protocol simulation compilers have been
proposed or written, but most of these were developed to analyze a certain class of protocols or
networks, and thus are much easier to use for that class than for any other. The goal of
OPNET is to be easy to use for as wide a range of protocols as can be accomodated by a uni-

fied and simple modeling technique.
According to common classifications, the simulations generated by OPNET fall in the follow-
ing categories:

Dynamic: they model a network’s state as it evolves over some time interval.

Stochastic: they include random variables (e.g. for network load generation)
and thus a given run of the simulation represents an estimate of "typical” net-

work performance (specific atypical load conditions can also be applied).

Discrete: all finest-grain events in the simulation are associated with a single
time interval (the state of the network model changes only at a countable

number of points in time).

Fixed-Increment Time Advance: time is represented by a variable which

3. OPNET Fundamentals ' page 6

increments by the same amount throughout the simulation. Some simulations
use a method called next-event time advance, in which the time variable skips
ahead to the time of the next scheduled event, to save procedure calls which
would produce no effect. This method was not used because with models as
complex as those in OPNET, predicting which event will occur next is as
costly (or even more costly) than actually clocking through the unproductive

cycles.

Hierarchical: OPNET is a hierarchical simulator in the sense that it models a
network on several different levels, and gives the user the ability to concen-
trate on the level most applicable to his needs. For instance, a user interested
in network congestion as a function of topology can define a network model
using standard, predefined protocols supplied with OPNET. A user interested
in testing his own protocols can define them as low-level building-blocks and

then create a network model in which to test them.

Extensible: After a self-contained part of a network model has been defined, it
can be added to the library of "built-in” models, and made available to all
users. Thus an installation of OPNET grows more and more customized to

the needs of the local users.

3. OPNET Fundamentals page 7

3.3 Structure

As mentioned previously, an OPNET-generated simulation is quite different from a special-
purpose simulation written in a general purpose language such as FORTRAN. In the latter
case, the model of the object being simulated is intertwined with routines which support the
simulation, such as event sequencing and result analysis code. Like popular simulation
languages such as GPSS and Simula, OPNET separates the simulation model from the
mechanics of actually running the simulation, determining if the stopping condition has been
reached, and collecting and analysing statistics. The low-level simulation management is per-

formed by OPNET system code, and is transparent to the user.

But unlike generic simulation languages, OPNET is designed specifically for simulating data
networks. Model primitives familiar to network designers, such as queues and links, are pro-
vided so that users can assume them, rather than having to re-implement them. Commonly
used operations, such as allocating buffers, searching through queues, etc., are implemented
efficiently within the system, and accessible to user models. OPNET will try to provide the
efficiency and network-specific features of a special-purpose simulator written in FORTRAN,
while retaining the features associated with simulation languages: easy modification, fast

development, and the ability to code algorithms clearly and concisely.

Before the beginning of this case study, OPNET was capable of simulating the middle levels of
the Internation Standards Organizaticn (ISO) seven-layer architecture for Open Systems Inter-
connection. The initial version of OPNET addressed issues of the Network and Data Link
layers. Subsequent revisions applied to OPNET during this simulation study (described in sec-
tion 4.) increased support for simulations of the Physical Layer. Higher layers such as Appli-
cation, Presentation, and Transport are not simulated by OPNET, due to the fact that they do
not have as much to do with network technology as with the application, the computer operat-

ing systems involved, etc.

UNIX and C have been chosen as the environment for OPNET, mainly because of their execu-

3. OPNET Fundamentals ' page 8
tion efficiency, good software development tools, and widespread availability at MIT. OPNET
simulations are generated by converting the abstract specification of the network into C
language programs, which are then compiled into executable object files. Thus OPNET simu-

lations are not much less efficient than similar simulations coded directly in C.

OPNET network models are defined on three separate modeling levels. The top level is called
the network level. The specifications at this level consist essentially of the interconnection of
device models, which represent nodes, via transmission links. The user may create any net-
work topology and use any combination of broadband or baseband links. OPNET can be a
powerful tool for network performance evaluation even when used only at this level. In this
mode, the user links together predefined device models from the OPNET libraries, and

changes various parameters of these models.

The middle level of modeling is called the device level. Specifications at this level define node
device models, which represent the hardware and software of telecommunications or computing
devices (e.g. mainframes with network interfaces, packet switches, multiplexers). Device
models are specified in terms of modules, the lowest OPNET building block. Modules of vari-
ous types can be interconnected using streams to model the functions of the real-world device.
A user who models at this level can create devices out of predefined modules, varying the

behavior of these modules by changing their parameters.

The lowest level of modeling is called the module level. The specifications at this level define
the actions of modules, which represent functional abstractions of real-world hardware and
software components. Unlike the network and device models, the number of module types is
fixed at seven (these types are Processor, Controller, Generator, Queue, Transmitter,
Receiver, and Memory). However, the user can fundamentally alter the behavior of the Pro-
cessor, Controller, Generator, and Queue modules, by writing custom code which conforms to
a unified interface. A user who models at this level can access the full flexibility of OPNET, at

the expense of learning quite a bit about how modules are designed.

3. OPNET Fundamentals ' page ©
Ceding of protocols, custom probability distributions, and custom queue disciplines must now
be performed using the C language. The table below summarizes the levels of OPNET model-

ing, including the compilers used to reduce specification to simulation.

3. OPNET Fundamentials page 10

Level Obijects Interconnects | Language | Compiler
network devices links NSL netspec
device modules streams DSL devspec
module | Data Blocks N/A C cc

The basic unit of information flow in OPNET is called the Data Block. Data Blocks can be
created with a certain amount of simulated bulk-data, destroyed, enlarged to accommodate con-
trol fields, or reduced by discarding control fields. Data Blocks can represent fixed size pack-
ets, variable size packets, ascii characters, etc. Any combination of data and control fields is
valid. Data Blocks flow from one module to another according to the interconnection set up in

DSL, and from one device to another, according to the links set up in NSL.

After each component of an OPNET simulation is written (NSL, DSL, and C files), it must be
compiled with the corresponding compiler (as listed in the table above). Devices, modules,
and module codes are kept in separate object code files after compilation, so they can be used
in multiple simulations. It is the netspec compiler which actually links together all the sub-

models and forms the simulation program.

3. OPNET Fundamentals page 11

)

2)

3)

3.4 Network Specification

3.4.1 NSL Introduction

Networks are modeled in OPNET by groups of device models (nodes) linked together in an
arbitrary-topology graph. Device models are either pulled from a library of predefined, gen-
erally usefvl devices, or created new by the user (see section 3.0 to learn how to create device
models). The user obviously requires a way of specifying the configuration of the network
model in terms of nodes types and interconnections. The tool provided for this is the Network
Specification Language (NSL), and its associated compiler, netspec. Development of a network

model entails:

The user prepares a file which describes the network model in NSL. This file can be gen-
erated using a regular text editor, but its name must end in a ".nf" suffix (nf stands for net-

work file).

The user must then add a runtime specification to the NSL file. The specification format is
detailed in section 5.0 of this manual. For now, assume that it is just more text added to the

bottom of the NSL file.

The user runs the file through netspec, the NSL compiler. Assuming no specification errors
(NSL syntax or semantic errors) are caught by netspec, it will generate the network model as
an executable object-code file with the same name as before, except now with a ”.sim” suffix.
This file is actually a ready-to-run simulation, and can be executed by simply typing its name.
The resulting output will be stored in a file with the same name, except with a ”.out” suffix

(see section 5.0 for explanation of runtime output).

The actual command format for invoking the netspec compiler is:

netspec file.nf

3. OPNET Fundamentals page 12

3.4.2 NSL Description

A brief description of each NSL construct is given below. All possible options (i.e. parame-
ters, built-in functions) are not detailed, because these frequently change, and are not part of

NSL "proper”.

NSL Programs

An NSL program looks like:

ANet =

{
/* ... (NSL statements) ... */

}

In this example, ANet is the name given to the NSL-defined network model that is created
when netspec is used. Comments can appear anywhere within the braces (comments are
denoted by /* ... */, as in C and PL/1). Compiling this program will result in creating the file

ANet.sim. Running ANet.sim generates ANet.out, the simulation results file.

The Create Statement

The create statement creates instances of a previously defined device, for use within the net-
work model being defined. Create takes a device type argument, as well as a list of names for
the creaied instances (nodes). The device type given must refer to a device that is either part of
the system library of devices, or has been previously defined by the user (in DSL) and com-
piled by devspec. The names supplied in the list must be unique in the whole NSL file.
Create will introduce one node of the indicated device type into the network model for each
name in the namelist. Subsequent statements can link these nodes together by referring to

them by name. An example:

create S5ESS {Boston, Chicago, SanFrancisco}

The Set Statement

3. OPNET Fundamentals page 13

The set statement allows the NSL programmer to set parameter values for specific device
instances. Set takes a list of device names, as well as list of parameter names and values. The
parameters being set are of the device variety, so they tend to deal with node-wide issues such
as mobility, etc. Valid device parameters are described in the appendices. An example of the
set statement:

set {Boston} {fixed}
The Link Statement

The link statement links together nudes that have been previously created using the create state-
ment. Create and link statements can be interleaved in the NSL file, but all nodes referenced
in the link statement must have appeared in earlier create statements. The link statement intro-
duces a unidirectional transmission line emanating from a transmitter within the source device
and terminating at the receiver of the destination device. Thus nodes to be linked must have
transmitter or receiver modules within their device specification. Bidirectional transmissions
can be modeled by pairs of reversed link statements. Nodes with multiple transmitters can
have multiple outgoing links; likewise, nodes with multiple receivers can have multiple incom-

ing links. Links can also be made between transmitters and receivers in the same node.

A link contains one or more error-free Data Elock transmission channels. There are two types
of links: baseband and broadband. Baseband links have only one channel, while broadband
links may have more than one channel. Both kinds of link have two characteristics: delay and
bandwidth. The delay of a link represents the number of iterations it takes for a Data Block to
traverse it. The bandwidth of a link is the number of bits per iteration that the link will sup-
port. Bandwidth can be separately set for each channel of a broad band link, while delay is the

same for each channel.

In order to reference transmitters and receivers within nodes in the link statement, the "tran-
sceiver” specification is used. A transceiver is basically just the name of the desired node, fol-

lowed by the name of the desired transmitter or receiver within that node (t-is second name

3. OPNET Fundamentals ' page 14

must be in brackets, since it is really a subscript). Thus a transceiver specification for a

transmitter (transA) of a node (N1) would look like:

Nl [transA]

Link takes a pair of transceivers as arguments, separated by an arrow indicating che direction
of the link. The next argument is a parameter list, which can set parameters of the link, such
as delay, bandwidth, etc. An example of some Jink statements which create a bidirectional
link, using the nodes created before:
link Boston [outl] >Chicago {inl]
{delay = 20, bandwidth =500}

link Boston [inl] < Chicago [outl]
{delay =20, bandwidth =500}

3. OPNET Fundamentals page 15

3.4.3 NSL Example

Here is an example of a compleie NSL program which defines a model of a small network.
There are three terminals (device tty) which are multiplexed (mux) and then connected to a
mainframe (vax). Note that the computer-to-terminal bandwidth is larger than the terminal-to-

computer bandwidth.

net =

{

create tty {T0, T1, T2}
create mux {M}

create vax {V}

/* terminal tomultiplexer links */

link TO [out] >M [in0] {bandwidth =2}
link Tl [out] >M [inl] {bandwidth =2}
link T2 [out] >M [in2] {bandwidth =2}

/*multiplexer to terminal links */

link TO [in] <M [out0] {bandwidth =5}
link Tl [in] <M [outl] {bandwidth =5}
link T2 [in) <M [out2] {bandwidth =5}

/*multiplexer / computer links */

link M [muxout) >V [in] {bandwidth =6}
link M [muxin]} <V [out] {bandwidth =15}
}

A diagram of this NSL-defined network would look like:

TO
TTY mux VRAX
T! m Vv

T2

3. OPNET Fundamentals ' page 16

3.4.4 NSL Syntax

In the following syntactic definitions (loosely based on Backus-Naur Forms), strings within
angle-brackets represent instances of syntactic classes, while phrases without these brackets
represent literal text. Three periods represent zero or more instances of the last syntactic class.
The following syntactic classes are assumed, rather than defined: < integer> (a non-negative
integer between zero and 32768), <text> (an ascii text string), and <name> (a name com-
posed of alphanumeric characters (0-9, a-z, A-Z) which must begin with a letter (a-z, A-Z).

<nsl-program >:
<network-name> =

{

< nsl-statement >

}

<nsl-statement>:
< comment >
< create-siaternent >
< link-statement >

<comment>:
/* <text> */

<create-statement> :
create <device name> <name-list>

< link-statement > :
link <link-pair> <parameter-list>

<link-pair>:
< transceiver> > <transceiver>
< transceiver> < <transceiver>

<transceiver>:
< device-name > [<module-name>]

< parameter-list>:
{ <parameter-assign>, ...}

< parameter-assign > :
< link-parameter> = < parameter-value >

< link-parameter>:
(see link descriptions for valid parameters)

< parameter-value > :
(see link descriptions for valid values)
<integer>

3. OPNET Fundamentals ' page 17

< name-list>:
{ <name>, ...}

< net-name >:
<device-name >:
<name >

3. OPNET Fundamentals page 18

D

2)

3.5 Device Specification

3.5.1 Introduction

Devices in the context of OPNET are software objects which model the dynamic operation of
an actual telecommunications or computing device implemented in hardware or software (or
with components of each). Both internal and external characteristics of the device are
modeled, but the level-of-detail of the model is determined by the person who designs it, so
there are many possible ways to model the same real-world device. In most OPNET simula-
tions, devices are used as nodes in a network, communicating via links. Within such a net-
work, there can be different device types, separate instances of the same device types, or any
combination thereof. In some simulations, it is desirable to just look at the internal operations

of a single device (e.g., when a device represents a stand-alone parallel computer).

Since devices must be built up from smaller units (modules), the user requires a way of speci-
fying the configuration of his device model in terms of modules and module interconnections.
The tool provided for this is the Device Specification Language (DSL), and its associated com-

piler, devspec. Development of a device model entails:

The user prepares a file which describes the device model in DSL. This file can be generated

using a regular text editor, but its name must end in a ”.df" suffix (df stands for device file).

The user runs the file through devspec, the DSL compiler. Assuming no specification errors
(DSL syntax or semantic errors) are caught by devspec, it will generate the model as an
object-code file with the same name as before, except now with a ".ob” suffix. This device

model can then be used freely in network models.

The actual command format for invoking the devspec compiler is:

devspec file.df

3. OPNET Fundamentals "~ page19

3.5.2 DSL Description

The Device Specification Language allows the user to create device models which may then be
used in the Network Specification Language to assemble a network model. The devices are
constructed using the fundamental building blocks provided by OPNET called modules (see
section 4.0 to learn how to specify modules). A program written in DSL must respect the syn-

tax specified in section 3.4.

This section contains descriptions of each DSL construct. All arguments are not discussed
here, as they are not part of DSL "proper”. DSL syntax has a lot of similarity to NSL, mainly
for mnemonic convenience. Statements such as create and set do the same operations in DSL
as in NSL, except they create and set the parameters of modules instead of devices. The NSL
link statement is not part of DSL, but the equivalent statement is connect (a distinction is made
here because the iinks which join devices together are different in character to the connections
which join modules). DSL has other statements, such as domain and external, with no paral-

lels in NSL.

DSL Programs

A DSL program looks like:

ADev =

{
/* ... (DSL statements) ... */

}

In this example, ADev is the name given to the DSL-defined device model that is created when

devspec is used. Comments appear anywhere within the braces.

The Create Statement

Create statements allow the DSL programmer to create instances of the modules supported by
OPNET and include them in his device model. The module type and the names of the created

instances are arguments to each create statement. For example,

3. OPNET Fundamentals page 20

create queue {ql, g2}

will create two queue modules within the encompassing device and assign them the names ql
and q2, respectively. These names may be used in all other references to the created queues,
including those in NSL. All the OPNET module types are valid arguemnts for the create state-

ment.
The Set Statement

The set statement allows the DSL programmer to set parameter values for specific module
instances. The set statement requires module type, module name, parameter names and values
as arguments. Valid parameters are described in the manual section on modules. This com-
mand is best described by an example:
set processor {myprocessor, processor0}
{incount =5, outcount =1}

set receiver {r0, rl}
{broadband, bandwidth = 10000, channelcount =4}

set queue {buffer} {accessmethod = fifo}

The first statement sets the processors named "myprocessor” and "processor0” to each have
five inputs and one output. The second statement sets the receivers named "r1” and "r0” to
both be broadband, with total bandwidths of 10000, and four channels each (hence channel
bandwidths of 2500). Finally, the third statement sets the queue named "buffer” to be

accessed using the FIFO method.

NOTE: The DSL compiler will cause an error if an attempt is made to set a parameter of

modules which were not created within the current DSL file.
The Connect Statement

The connect statement is used to setup the data-paths within the device. A single output (or

input) from (or to) a module is referred o as a stream. Some modules have only a single input

3. OPNET Fundamentals page 21

or a single output stream, while others have many of each. A generator, for instance, has only
an output stream, whereas a processor may have an arbitrary number of input and output
streams. The connect statement expects pairs of input and output streams as arguments. It has
the effect of joining the two streams so that they form a continuous conduit for Data Blocks
from one module to another. All data exiting the output stream enters the input stream which

is bound to it. For example,
connect {queueA >procA, genA >queuelA}

creates a data path which starts at the output of "genA”, flows through “queueA”, and ends at

the input to "procA.”

A module other than a receiver or a generator may not be left unconnected or the device specif-

ication compiler (devspec) will generate an error.

The Domain Statement

The domain statement is used to assign control of a portion of the device to a controller
module. A domain is a subset of all the modules within the same device. A controller’s
domain may not extend beyond the limits of the device defined in the DSL program. OPNET
will allow the controller code to manipulate any of the modules within the specified domain. A
controller may be set up to change the parameters of any other module, or remove and insert

data into the streams of other modules.

The arguments of the domain statement are a controller name list and a module name list.
Domain statements have the effect of adding all the modules referenced in the module name list
to the domain of each controller referenced in the controller namelist. For example,

domain {cont _a, cont b} {ql, sl, s2}

domain {cont _a} {qg2, s3}
places modules named "ql”, ”s1”, and "s2” within the domain of the controller named

"cont b”, and the five modules "ql”, "q2”, "q3", "s2”, and "s3" in the domain of contoller

3. OPNET Fundamentals page 22

"cont a”.

The External Statement

The external statement provides a method for controllers within a device to access network wide
variables. Its arguments are two name lists: a controller name list and a variable name list.
Each controller within the controller name name list will be allowed access to variables within
the variable name list. Variable names may be arbitrary. However, they must agree with
those "bound” in the snapshot statement of of the NSL file. See section 5.0 for a description

of how these bindings are achieved.

For example,
external {cont a, cont b} {flowl, flow2}
external {cont b} {gsizel}

allows controller “cont b” access to variables "flowl”, "flow2”, and "gsizel”. Controller

"cont 1" has access only to variables "flow1” and "flow2".

3.5.3 DSL Example

An example of a complete DSL program which defines a model of a small device is presented
on the next page. The device, called ComplexLoad, includes two generators with radically dif-
ferent load characteristics (bernoulli and poisson distributions) which feed their own queues.
The queues are sampled on alternate iterations by the processor, using the QFirst access
method. The processor is of type TdmTwo. The output of the processor is fed into a
transmitter, resulting in a transmitted output stream which is the sum of the two generated

streams.

3. OPNET Fundamentals page 23

ComplexLoad =

{

/* Generators; notedestinationwill be ignored */
create generator {Gp, Gb}

set generator {Gp} {load =poisson (0.3)}

set generator {Gp} {load =bernoulli (0.05)}

/* Queues */
create queue {Qa, Qb}
set {Qa, Ob} {accessmethod =QFirst}

/* Processor */
create processor {P}
set processor {P} {type = TdmTwo}

/* Transmitter */
create transmitter {T}
set transmitter {T} {baseband, bandwidth =1000}

/* establish connections */

connect

{

Gp >Qa, Qa >P[0],/* poisson queue input */
Gp>Qb, Qb >P[1],/* bernoulli queue input */
P>T

}

}

A diagram of this DSL-defined device would look like:

QR

\VaRV4

3. OPNET Fundamentals ' page 24

3.5.4 DSL Syntax

In the following syntactic definitions (loosely based on Backus-Naur Forms), strings within
angle-brackets represent instances of syntactic classes, while phrases without these brackets
represent literal text. Three periods represent zero or more instances of the last syntactic class.
The following syntactic classes are assumed, rather than defined: < integer> (a non-negative
integer between zero and 32768), < text> (an ascii text string), and <name> (a name com-
posed of alphanumeric characters (0-9, a-z, A-Z) which must begin with a letter (a-z, A-Z),
and < argument> (devspec parses these as <text>; see section 4.0 for valid functions and
arguments).

<dsl-program >:
<device-name> =

{

< dsl-statemerit>

{

< dsl-statement>:
< comment >
< create-statement >
< set-statement >
< connect-statement >
< domain-statement >
< external-statement >

e

< comment>:
/* <text>*/

<create-statement > :
create <module-type> <name-list>

< set-statement > :
set <module-type> <name-list> <parameter-list>

< connect-siatement> :
connect <connection-list>

< domain-statement > :
domain <name-list> <name-list>

< external-statement>:
external <name-list> <name-list>

< parameter-list>:
{ <parameter-assign>, ...}

3. OPNET Fundamentals ' page 25

< parameter-assign >:
< module-parameter> = < parameter-value >

< module-parameter>:
(see module descriptions for valid parameters)

< parameter-value > :
(see module descriptions for valid values)
<integer>
< name >
< function >

< function>:
(see module descriptions for valid argaments)
<name> (<argument>, ...)

< connection-list>:
{ <connection>, ...}

< connection>:
<module-stream> > <module-stream >
<module-stream> < <module-stream>

<module-stream>:
< module-name >
<module-name> [<integer>)

< module-type >:
processor
controller
generator
gueue
receiver
transmitter
memory

< name-list>:
{ <name>, ...}

< device-name > :
< module-name > :
<name>

4. OPNET Enhancements page 26

[4. OPNET Enhancements |

Some of the differences between broadcast and point to point networks were highlighted earlier. The
restrictions imposed by OPNET at the network layer previously made it impossible to model broad-
cast networks. In particular, the network layer expected a rigid topology to be defined in terms node
pairs and link parameters. In a radio network or other broadcast network (such as ethernet) the
channel is shared among a group of nodes; thus the connectivity criteria between any two nodes has
changed. Namely, node A will necessarily transmit to node B if it is in range, and if B is tuned to
the same frequency channel as A is transmiting on. Note that is not necessarily a2 symmetric rela-

tionship between the nodes, as one node’s transmitter may have more power than the other.
P y

In order to extend OPNET to model broadcast transmission, the transmitter module was given a new
parameter indicating the nature of the transmission link (e.g broadcast or point-to-point). If a
transmitter is specified to be of broadcast type, upon transmission of a packet, OPNET will compute
the connectivity of the transmitter to all receivers in the network and place a replica of the packet at
all the receiver sites which are in range. The notion of connectivity assumes that positions and
ranges were assigned to the nodes and transmitters. This is done in the network layer model using

the position and range statements.

For full generality, the node positions should be allowed to be time-varying as is often the case for
packet radio networks. The mobility of the nodes is currently constrained to be in one of eight direc-
tions. (SW, NE, etc..). If a node is specified to be mobile as in the example below, it will randomly
reorient itself to travel along one of these eight directions at user-specified time intervals. The nodes
are specified to be mobile using the mobile parameter, and the network-wide reorientation interval is

given by the mob-interval parameter.

In addition to correctly placing transmitted packets at all nodes within range, CPNET has been ex-
tended to model the packet collision process. At each node, transmissions are assumed to begin at
the start of the current iteration. Within that iteration transmitted packets are assigned a starting bit

position which is the sum of sizes of all the packets already transmitted during the iteration. The

4. OPNET Enhancements page 27

packets carry their bit-pasitions and packet lengths when they arrive at the destination node. At the
destination node packets, the bit-positions of received packets from all nodes are compared to deter-
mine which packets collided. The collided packets are destroyed by the receiver. Special care must
be taken to also ensure that nodes cannot transmit and receive on the same channel simultaneously.
This is done by having transmitters send a special antenna status packet to themselves when they
transmit. All received packets which intersect intervals during which antenna status packets were

transmitted are discarded.

5. Case Study ' page 28

[5. Case Study |

5.1. Background

In mobile packet radio networks (MPRN), routing may be implemented by organizing the nodes in a
tree-like hierarchy [4]. Each node in the hierarchy is aware of the nodes below it, and paths to
reach them. The hierarchy must be continuously updated to reflect changes in network connectivity

which occur when nodes move.

When node A enters into communication with node B, A’s packets proceed up in the hierarchy until
they attain a node whose database includes B; they then descend the hierarchy until they reach B it-

self.

The hierarchy is constructed by flooding special “"probe” packets from the highest level. When
probe packets reach the lowest level, they are returned to the top (through flooding again) recording

their path in the process. Each node updates its database from the passing probe packets.

This type of routing strategy was initially proposed for netwerks of packet radio repeaters whose loca-
tions were fixed [S]. In such a case it is clear that the probe mechanism for establishing the hierar-
chy is not necessary since the topology is available to all nodes. The probes may be performed every

so often to reassess the topology if node failures or insertions are anticipated.

However, hierarchical routing methods are applicable to mobile radio networks, so long as the topol-
ogy assessment probes are conducted at a rate sufficient to keep up with the dynamic network. If the
probes are too sparse, packets will be routed incorrectly, in some cases never reaching their destina-

tion.

5. Case Study page 29

5.2. Problem
Hierarchical routing presents a number of difficulties in mobile packet radio networks:

Probing to maintain the network hierarchy consumes valuable bandwidth, and must be performed
very frequently in a highly mobile network. Because of its’ flooding nature, a probe will induce
many packet collisions, therefore taking a considerable amount of time. The collisions will simul-

taneously increase effective transmission delay of communication already in progress.

Hierarchical routing relies on paths remaining valid between hierarchy updates. Clearly, in a mobile
network, this cannot be depended upon, since any particular pair of sequential nodes in a path may

move out of each other’s range between probes, thereby splitting the path in two.

Many nodes must carry a significant database baggage. The higher level nodes must have a database

entry for each node of the network. This is unreasonable for large networks.

It is inherent to hierarchical routing techniques that certain nodes are more crucial than others to
network operation. The survivability of the entire network will depend very heavily on the survivabil-
ity of a handfull of nodes at the top levels of the hierarchy. Arrangements must be made for the
transfer of database information from a node to its’ successor in case of failure. Also, other nodes in
the network must be informed that a succession has taken place. The node and its’ successor must
keep in contact at all times so that a failure can be detected. Thus, hierarchical routing techniques

become very complicated when fault tolerance criteria are imposed.

5.3. Virtua! Circuits in MPRNs

As an alternative to hierarchical routing, a virtual circuit technique adapted to the particular prob-

lems of mobile packet radio networks is proposed.

Standard virtual circuits are gemerally not considered for mobile networks because they depend
strongly on topology remaining constant during sessions, since a session uses the same route until it

is terminated. However, virtual circuit routing may be employed, if provisions are made to bridge

5. Case Study ' page 30

any gaps in a virtual circuit as soon as they are detected. If 2 node moves out of range of its’ neigh-
bour in a virtual circuit, it may invoke a new sub-virtual circuit between itself and its’ neighbour, to

permit end-to-end communication to continue. This technique is called "recursive virtual circuit rout-

”

ing.

This section describes an implementation of virtual circuit routing in detail. The validity of the pro-

tocols developed here have been confirmed by simulation.

5.3.1. Justification

A number of problems with hierarchical routing in MPRNs have been presented above. Some of

these difficulties may be avoided by using recursive virtual circuit routing.

It was pointed out that hierarchical routing necessitated bandwidth-consuming probes of the network
topology. Admittedly, virtual circuits also require a flooding process. However, full network floods
only occur at session initiation and limited floods are employed to adjust to changes in the virtual cir-
cuit connectivity. If the sessions are long and the network is very mobile, then the virtual circuit
technique is at an advantage because it requires only one major flood per session, as opposed to the

hierarchical routing technique, which requires nearly constant flooding.

We saw that, with hierarchical routing techniques, hierarchy updates must occur at a frequency suf-
ficient to cope with the most dynamic behaviour of the network. If reliable communication is to be
ensured at all times, the hierarchy’s databases must be constantly valid. In highly mobile, or highly
volatile networks (many node outages and link outages possibly due to jamming), reliable communi-
cation will require constant network probes; this is unacceptable sin.e probing is a flooding opera-
tion. Virtual circuits, on the other hand, adapt to the dynamic topology on an event driven basis. In
the steady state (no recent changes in connectivity), the virtual circuits behave as they would in static
networks. When a change in connectivity occurs which disrupts a virtual circuit, the network adapts
by invoking a sub-virtual circuit which necessitates a new flooding operation. Thus, the routing

overhead increases with the topology dynamics rather than being fixed at its’ worst case level.

5. Case Study page 31

Nodes executing hierarchical routing must carry databases. Virtual circuit routing does not require
nodes to keep track of the network topology; each node need only keep track of the virtual circuits

which pass through it.

Finally, hierarchical routing strategies create inhomogeneous networks and it follows that network
survivability is reduced. When using Virtual circuit (VC) strategies, this problem may be avoided
by attributing the same status to all nodes in the network. The failui = of any one node will generally

not cause major reliability problems in the network.

§.3.2 Virtual Circuit Initiation Process

In a mobile network nodes generally have no a priori knowledge of the location of other nodes with
whom they have been out of communication. One possible solution to this problem is to have a cen-
tralized resource maintain network maps, and to have all routing go through this node. This is a spe-
cial case of hierarchical routing with only two levels in the hierarchy. If it is decided not to use any
degree of centralization in the routing process, then the responsibility for locating a target node falls

upon the node who wishes to communicate with it.

5.3.2.1 Flooding

Because the position of the target node is arbitrary, only a flooding process will guarantee that it will
be reached by a packet requesting communication. Flooding strategies must be slightly modified in
packet radio networks because of the broadcast medium. Two problems arise: 1) When a node
floods a packet and it is received by one or more neighbours, the packet will be rebroadcast, and the
original node will again receive it. 2) There is no way for a node to ascertain how many nodes are
within range, and therefore how many should receive the flooded packet, subsequently returning ack-

nowledgements. Thus, the flooding node may not be able to tell whether the flood was successful.

The first problem problem may lead to exponentially growing flocds [4] which will bring the net-

work to a halt if adequate flow-control methods are not used. The difficulty may be resolved in

5. Case Study ' page 32

several ways. One proposed method [4] is to give flooded packets a lifetime measured by the number
of node-to-node hops which they have effectuated. This is enough to guarantee that floods will sven-
tually die and that the whole process will affect only the part of the nework within a certain radius of
the flooding node. Unfortunately, this scheme will still produce wasted retransmissions by the same
nodes; each node will retransmit the packet up to L/2 times where L is the lifetime of the packet
when it is first received by the node. In the protocols implemented here, a flooding process which
avoided wasted retransmissions was used. This was accomplished by tagging flooded packets with
flood-id numbers. When a node receives a packet with the same flood-id as previously, the packet is
discarded. Two complications arise when implementing this scheme. At first, only a single flood-id
was maintained in the state of the nodes. This allowed two sequential receptions of the same flood to
be handled properly. However, when several floods occurred simultaneously in the same region of
the network, certain nodes received interleaved flood packets and accepted and retransmitted them,
since they appeared to be part of a new flood. This was corrected by maintaining increased state in
each node for flood-id’s. Since, one node will not, in general, be the source of several simultaneous
floods, it is sufficient to maintain one entry for flood-id’s per node in the network. It is not sufficient
to maintain one entry per neighbouring node, since it is likely that different floods will use the same
intermediate node. A second complication arose when a node received two sequential floods from
different nodes, but with the same flood-id’s. The second flooded packet was rejected. The solution
is to associate the flooded packet in the database with the node which spawned the flood. This may
be done choosing the flood-id’s from a circular space offset by the node identification number times

the size of the space, which was the solution adopted for this case study.

The second problem mentioned above has no complete solution. A flooding node will receive ack-
nowledgements for the flooded packets, since the packet-type is transparent to the data-link layer.
The data-link layer will assume a successful transmission of the flooded packet if just one ack is re-
ceived. Subsequent acks will be considered meaningless. The goal of the flood is to reach all neigh-
bouring nodes, which is not guaranteed because of collisions and possible link failure. Thus, some
of the neighbouring nodes may acknowledge receipt of the flooded packet while others will not.

Although the flood was unsuccessful vis-a-vis certain nodes the data-link layer will not retransmit the

5. Case Study page 33

flooded packet. The solution developed here was to force the data-link layer to transmit the flooded
packet several times by having the higher layer produce replicas of the packet and sending them
down. The number of replicas was referred to in the code as the flood intensity. The drawback here
is that in some cases the flooding process will use excessive bandwidth and cause a backlog in the
node originating the flood. Simulation results seem to indicate however, that all flooded packets did

reach their ultimate destination.

5.3.2.2 Virtual Circuit Reguests

Virtual circuit requests use the flooding mechanism described above to reach the target node. The
VC requests initiate at the layers external to the network itself and are first processed by the session

layer; at this point they contain only the identification number of the target node.

The goal here is for the target node to receive a VC request packet with a complete description of a
valid pata linking it to the source node. Thus the VC request packet must accumulate a log of the
nodes thru which it passed during its traversal of the network. This log is sufficiently accessed dur-
ing its return traversal that an appropriate structure for it is a stack, with base and top-of-stack regis-
ters. Operations for manipulating the node-id stack are defined in the code for the network and ses-
sion layer processors (see appendix). They are POP, PUSH, and RESET as used in the traditional
meaning. Nodes add their id to the top of the stack with the PUSH(id) operator; they remove the top
node-id from the stack with the POP operator; and finally they initialize the stack with the RESET

operator. The stack travels with the VC request packet from node to node.

When a node receives a VC request not destined for itself, it PUSHes its own id on to the stack and
refloods the packet. When finally a VC request packet arrives at the target node, its stack contains a
complete description of the path which it followed. Loops in the path are not possible because the

same node wouid not accept a VC request with the same flood-id twice.

5.3.2.3 Virtual Circuit Acknowledgements

5. Case Study page 34

When the session layer of a target node receives a VC request packet, it must decide whether or not
to accept the VC. In addition, it may receive several VC requests from the same node, only with dif-
ferent routes. This is a result of the flooding process. It must select the best route: in the simula-
tions developed here, the first received packet is assumed to be the best route, as it took the least time

to arrive.

If the VC is accepted, a VC acknowledgement packet is generated. The VC recuest packet is in fact
reused since the principle purpose of the stack was to allow the VC ack to return along the selected
route while informing all the selected nodes of their participation in the VC. One minor complication
arises when considering that, for recursive virtual circuit repair, nodes must know the id of their
next-nearest neighbours downstream in the VC. This information, which is available in the stack, is
necessary to invoke the sub-virtual circuit as described above. The problem occurs only for the next
to last node in the virtual circuit, where there is no next-nearest neighbour; only the target node is
left to transmit to in the VC path. The solution adopted here was to view the network and session
layers of the target node as two separate hops in the VC path. Thus the target node appears twice at
the end of the node-id stack - once for its network layer, and once for its session layer. The next to

last node in the VC considers the two nodes downstream to be the target node.

Thus the VC request is converted to a VC ack at the session layer by pushing the target node-id onto
the stack (the network layer has already PUSHed it on once), and labeling the packet as a VC ack.
The source node’s id {which is always affixed to every packet by the network layer) is now the ulti-

mate destination field of the of the VC acknowliedgement.

Any node receiving the VC ack can obtain the id’s of the two node’s downstream by executing the

following sequence:

second node id = POP();
next node id = POP ();

PUSH (next node id);

5. Case Study ' page 35
the last PUSH operation is necessary to restore the state of the stack for the next node which will re-

ceive the VC ack (the next up-stream node).

In addition to the node id’s of the next two downstream nodes, each node requires the virtual circuit
id of the next node. It is not possible for all nodes to share the same VC id because several VCs may
pass thru the same node, and packets arriving during the session may be misrouted if several ses-
sions have common id’s [S]. Thus each node selects a unique id for its leg of the virtual circuit and
informs the previous node of its choice during the acknowledgement process. The vc-id is simply at-

tached to the VC ack packet before sending it to the next up-stream node.

5.3.2.4. Session Operation

Once the setup process is complete, the virtual circuits function exactly as in point-to-point networks.
The only difference is the resolution of the blocking problem. When a node is unable to reach its
downstream neighbour (acknowledgements are repeatedly missed), the data-link layer passes a warn-
ing to the network layer. The network layer has in its VC tables, the id of the second nearest down-
stream node. If communication can be established with this node, the one which does not respond
may be bypassed. Thus, the network layer invokes a virtual circuit with the next down-stream node
by generating a VC request packet with the proper target-id and sending it to the data-link layer.
When a VC ack is returned, the nodes in the bypass path are informed of their participation in the
new virtual circuit; the hanging branch of the old virtual circuit is eliminated from the routing tables
of the last two reachable nodes in the old VC, and replaced with the beginning of the new VC. The
last node of the new VC is informed that it is actually not the last node in the VC but rather that the
VC is actually continued on with the hanging part of the old VC. Through this process the breach in
the old VC is mended. Because the New VC will most likely be very short, the flood of the request

packet may be made to be very localized by attributing it a lifetime as described above.

In the steady state operation, packets are labeled with the VC id of the next node in the VC and
broadcast. Each node obtains the id and VC id of the next node after itself from its VC tables. The

process continues until the packet reaches the target node [5].

Lif

"AA0MISN OFPBY I9)IBJ STTQOW B JO 2pou oT3uls ® 103 Topow IANJO JO 2iANn3oniig $1°6 2an8tg

ad0 "N

Y3IAETT d3AHT : HIAETT
NI dHLiY AYOML3IN NOISS3S

m3d "IN

5. Case Study page 36

5.4 Models

Figure [5.1] shows the structure of each node in the network in terms of OPNET graphical symbols.
Packets transmitted by other nodes in the network within range arrive at the receiver. The lowest
layer of the models is the data-link layer, responsible for making the transmission medium appear
error-free to the higher layers. The second layer is a network layer protocol unit which keeps track
of virtual circuit tables and participates in the VC setup process. New packets are first processed by
the session layer processor which maintains statistics and prepares the initial virtual circuit requests
and acknowledgements. The session layer processor only processes data which is part of virtual cir-
cuits either originating or terminating at the encompassing node. A queue is sandwiched between the
data-link layer and the network layer processors, because when retransmissions occur, the data-link
layer may not be able to absorb the full contents of the input queue. The generator modules -
VC REQ and VC LOAD- model the application layer which generates virtual circuit session requests

and load data for these virtual circuit sessions once they are declared active.

5.4.1 Data-Link layer

The process executed by the data-link layer ensures that packets which were lost in transmission are
retransmitted. Standard acknowledgement schemes are not quite applicable to packet radio networks
because the acks themselves are extremely vulnerable to collisions. Instead, the receiving-end data-
link layer processor responds to a received packet with an acknowledgement, but also stores a packet
identification number before fedding the packet to the network layer. If the acknowledgement is not
received, the data-link layer on the transmitting end will time out and rebroadcast the same exact
packet. The receiving end will realize that it has received the same packet twice in a row from the
same origin and thus assume that its acknowledgement was lost; thus, it will know to discard the re-

broadcast packet to avoid creating duplicates, and also to retransmit the acknowledgement.

Upon time out the data-link layer will not retransmit instantaneously as this would create continuous
collisions; all colliding packets would be retransmitted simultaneously, colliding again and again.

Rather, a second phase time out is entered whose duration is random. Thus their is a strong likeli-

‘9WTl JO UOTIOUN3 B SB SUOTSSIS JTNOATD Ten3ata SUTIBTITUT 9pou B JO 3In0 MOTJ :Z°C 2an3rg

GNOILHY3LT
005 00h 00E goe oo 0

} } } } } 0

014179

—

0T1B207 :eg°*G 2andrJg
9 TINJ SeY 3pou I33U3d 3yl ATUQ °NIOMISU SPOU-I3IY] B UT SI8pOU JO UOTI
*£3TATIOBUUO

k.

. 1++++.7..++
) N + 44+ +4
. bttty ++++++4| +.m_+—..++ +. + 4+t ++++ .
++* Fy a+ AR TUPPY +y
et o, 4t Sapt +++
Y ++#+++ L ", |
+ " . I of s e, . .
&+ S X +, ,
K +
s * + ¥, o
4 + R Y, 3
" .o.+ ¥ + . " .
g 4 #19- . + X
F . T4 . .
+ AR s X
¢ % A :
* + + . + -
¢ % . GE- : : 3
ﬂc . . “'11# .ﬂv H
N +]+ + 1
: AR b 3
H Prol- m- 0! - 09 - Ok2-
| ¥ 0B Oh 70 " b
[

e . 3 1 S 111" 1
. =l T ¥ :
= g ! | +

+ | + + 3

3 : IR EE ¥ 3

T + | + P 3

b + | + 7 3

3 + | + ; E

3 + |+ 3 i
+ + + + - + .

E W - Oh . i ;
+ . ; ;
. A ; ;
+ 3 ;
% +[+] ;
) 4k ; A
K + | "+ R) . ;
; o F 1 ; .
’ Y + ~ 5 y
. +++ * & &
* +
K + +, & o .
. # *s o+ . o
. A + T 06 Ty 4t o
*e, 4t o o
4 ..hn—..... USRS 2 + e
+ + ++. 4+ Yiy ot
++++ ++++ +++++ *_..... 7 SO
T bttt -t

"May 13 13:25 1986 io Page 1

node 2 sending a VC request to node Oe
node O received a VC request from node g:]
node 2 received a VC acknowledgement <from node 0O
node 2 sending a VC termination packet to node 0 f
node 2 sending a VC request to node 1
node 1 sending a VC request to node 0O
node 0 received a VC request from node 1:]
node 1 received a VC acknowledgement from node O
node 1 received a VC request from node 2
node 1 sending a VC termination packet to node 0O
node O received a vc termination packet from . node 2¢(—u
node 2 received a VC acknowledgement from node 1
node 1 sending a VC request to node 2{5}—-
node 2 sending a VC termination packet to node 1
node O sending a VC request to node 1l¢——mwm

Figure 5.3b: Listing of VC request,-acknowledgement, and termination packets
in the three-node network of figure 5.3a.

"1°G °aIn3TJ WOIJ SIITADP JO NIOMIDU SPOU-IUIN :BH°GC 2INBTJ -

m

4 . +++++
+ :m_ ++ﬂ
FUTUTURTE S L M SNV ...+¢_1m+++++

...‘
+...++++

Y

+ . +++++...+
Ha s S TS CUTUTIRRT L

"BY°G 2INSTJ JO IOMILU BYJ UT SI9KBT UOTSSIS oyl Suraes s3eyoed Jo Jaqunu 3yl jo a3easAe TeqOTH :qhy° ¢ 2andTg

00G

1

008

goL

GNOT1HYILI

00E

go2

o

W

009 mmm mmr
T Vi

534N1YHd30

%

)

0~

*TeSIaABI] JTNOATH TENIITA
v Suriardwod 193ye 19deT UOTSSes ® je SBuraTaie sisyoded Jo Iequnu oy3 Jo oSeivAE 18qOTH :9%°¢ 2an8tyg

ONOILHY3IT
00B ooa 0oL 005 005 00h 00E oo ool 0

B A L A

GIHAT Y4

=y

5. Case Study ' page 37

hood that transmitters will be able to retransmit successfully after a failed transmission. The code

executed by the data-link layer processor is given in the appendix.
5.4.2 Network Layer Processor

The network layer processor implements the recursive virtual circuit protocol. Upon receiving VC
requests from the higher layer the net layer processor "pushes” its id onto a stack which will be
placed in the VC request packet. It is the first field in the stack. The processor then broadcasts the

packet by transmitting it thru the data-link layer.

When receiving a VC request from the data-link layer, the network layer again pushes its id onto the
top of the stack. If the VC request is destined for the encompassing node, the network layer feeds it

to the session layer processor; otherwise the request is reflooded.

when receiving a VC acknowledgement, the network layer processor pops the top field off the stack
and records it as the id of the node which follows it in th VC path. It stores this number in a table
along with a unique VC id which it selects. The VC id which it selects is stamped onto the VC ack-
nowledgement and broadcast to the node whose id was just POPped off the stack. The network layer
also extracts the unique VC id from the VC ack and stores it in the table: this is the VC id with which
to call the next node in the VC path once the session is begun. Network layer code is shown in the

appendix.

The session layer in this model is mainly used for formatting initial requests from the load generators
and discarding packets which reach their final destination. It also performs some statistic keeping,
such as the number of arrivals/departures, and the end-to-end transmission delay of received pack-

ets. See appendix for the Session layer processor code.

5.5. Simulation results

The output of a single node initiating virtual circuit sessions is shown in Figure [5.2] The initial

surges in the packet flow are due to the fact that the initiation procedure for a VC session requires

5. Case Study ' page 38
broadcast flooding. Flooding is a difficult process in a PRN because their is no way of knowing how
many acknowledgements to expect. Thus, to increase the likelihood that all nodes within range will
receive the flooded packet, it is transmitted several times. This is a parameter refered to as
FLOOD INTENSITY in the network layer code. This output confirms that the flooding process is

being performed, and that broadcasting is functioning since the VCs are acknowledged.

Figure [5.3a] shows a three node network executing the VC protocols. The circles indicate the
ranges of the nodes at their respective centers. node PRUO and PRU2 are not in range of each oth-
er. If the VC setup mechanisms work, they should still be able to communicate through node
PRU1. This is evidenced by the accompanying listing of Figure [5.3b], in which nodes print out
statements of receipt and transmission of VC initiation, acknowledgement, and termination packets.
Transmission of the session load takes place between the receipt of the VC ack by the transmitter and
the receipt of VC termination packet by the receiver. The VC termination packet is merely routed

along the same path as the load data; thus it affects every node in the VC path.

Figure [5.4a] displays a slightly more complicated network executing the same algorithm. The con-
nectivity is more varied, but still all packets departing from the session layer on one end of a VC ar-
rive safely at the session layer on the other as seen figures [5.4a and 5.4b]. This confirms that the
underlying mechanisms for packet broadcast, collision detection, and connectivity assessment are

functioning properly.
5.6 Conclusion

The proper functioning of the low-level mechanisms of OPNET’s enhanced capabilities were con-
firmed by observing that macroscopic characteristics of several models were in accord with the model

specifications. Further tests were performed in [2].

Further examination of the virtual circuit algorithms would be necessary to determine their perfor-
mance under failure modes of the network, and rapidly varying topologies. The cverhead associated
with the routing should also be examined as a function of the flood-intensity parameter and the max-

imum number of retransmissions before blockage is declared and a sub virtual circuit is invoked.

6. References ' page 39

feren

[1] J. Metzner: "On Improving Utilization in ALOHA Networks”,
in IEEE Trans. Commun., vol. COM-24, pp.447-448, April 1976.

2] S. Baraniuk: MIT Undergraduate Thesis, MIT Dept. of Electrical
Engineering, May, 1986.

[3] J. D. Day and H. Zimmermann: "The OS] Reference Model,” in Proc. of the
IEEE, Vol. 71, No. 12, pp. 1334-1340, Dec. 1983.

[4] I. Gitman, R.M Van Slyke, and H. Frank: "Routing in Packet Switched
Broadcast radio Networks,” IEEE Trans Commun., vol. COM-24,
Pp-926-930, Aug 1976.

[5] A. Tanenbaum: “Computer Networks", Prentice-Hall, Inc.,
New Jersey, 1981.

7. Appendix page 40

{ 7. Appendix |

7.1 Code Listings (on following pages)

[** layer2.c **/

data link(layer2.c)

/** code for a data—link processor in packet radio network **/

#include <opnet.h>
#include "vc.h"

/** processor input and output channel descriptors **/

#tdefine RECEIVE PHYS 0
#defineRECEIVE NET 1
##defineSEND_PHYS 0
#defineSEND_NET 1

/* data—link layer constants */
#tdefine INACTIVE -1.0
##define TIME_INIT 5
#definelD WINDOW 100
##defineNOT PENDING 0
#tdefinePRE_PENDING 1
#define POST PENDING 2
#defineMAX POST 10
#defineTO_LIMIT 6
typedef struct

/* packets from physical layer arrive here */
/* packets from network layer arrive here */
/* packets to physical layer leave here */
/* packets to network layer leave here */

/*database entry is meaningless*/
/*timeout interval®/

/* packet id circular space size */

/* no acks pending */

/* first time—out not yet elapsed */

/* first timeout elapsed, awaiting second */
/* largest second phase of timeout */

/* maz # of timeoiuts before discarding */

{
Data_Block held _db;
int time_held;
int pending;
double current_pid;
double cap_pid [NUM_DEVICES];
int to_couny;
} State;
int extern Time;
data _link ()
State* sptr;
Data_Block *dbptr0, *dbptri;
int i, tpid, node_id;
double origin, pid, did, in_vc_id;

/** (0.1) if beginning of operation allocate for and snitialize **/
[** state variables of processor **/

if (!Time)
{

proc_alloc state (sizeof (State));
sptr = (State *) (proc_state_ptr ());
sptr—>time_held = 0;

21:82 Mey 11 1986

10

20

30

data link

40

50

Page 1 of layer2.c

data link(layer2.c)

sptr—>pending = NOT _PENDING;

sptr—>current_pid = 0.0;

for (i=0; i<NUM_DEVICES; i++) sptr—>cap_pid[i] = INACTIVE;
}

/** (0.2) set pointer to the processor’s state, and get the node_sd **/

sptr = (State *) proc_state_ptr ();
node_id = proc_dev_id ();

/** (0) process packets arriving from physical layer **/
while (!proc_is stream_empty (RECEIVE_PHYS))

{
dbptr0 = proc_get_first (RECEIVE_PHYS);

/** if the packet is flooded, diregard the node_id test */
if (proc_get_field (dbptr0, TYPE FIELD) == VC_REQUEST)
goto accept;

/** if the packet tsnt sent to this node, discerd it **/
if (proc_get_field (dbptr0, DEST_FIELD)!=(double) node_id)

proc_destroy_db (dbptr0);
continue;

}

accept:
/** the packet is tn the right node: case off its type. **/
switch ((int) proc_get_field (dbptr0, TYPE_FIELD))

{
case (int) ACK:
/** packet is an acknowledgement **/
[** check if it matches held packet */
if (sptr—>pending == NOT_PENDING)
{/* meaningless ack */
proc_destroy_db (dbptr0);
continue;

}
proc_get_field (&{sptr—>held_db),

PID FIELD);
did = proc_get_field (&(sptr—>held_db),

DEST _FIELD);
if ((proc_get_field(dbptrd, PID_FIELD) == pid)
&& (did==proc_get_field(dbptr0,

ORIGIN_FIELD}))
sptr—>pending = NOT_PENDING;

]

pid

proc_destroy db (dbptr0);

break;

21:32 May 11 1986

G0

70

80

90

100

Page 2 of layer2.c

data_iink(layer2.c)

default: /** packet is not an ACK **/
origin=proc_get_field (dbptr0,ORIGIN _FIELD);
pid = proc_get_field (dbptr0,PID FIELD);
110
dbptrl = proc_create_db (ACK _SIZE);
proc_set_field {dbptrl, TYPE FIELD, ACK, 0);
proc_set_field {dbptrl, ORIGIN_FIELD,
(double) node_id , 0);
proc _set_field (dbptrl, DEST FIELD,origin,0);
proc_set_field (dbptrl, PID_FIELD, pid, 0);

proc_output_db (dbptrl, SEND PHYS);

/** check if db matches parameters of **/ 120
/** origin node’s entry in data base **/

/** if entry s inactive, replace st **/

if (sptr—>cap_pid [(int) origin] == INACTIVE)

/* place in capture database */
sptr—>cap_pid [(int) origin] = pid;
proc_output_db(dbptr0,SEND_NET);

continue;
}
130
/** database entry is active: check match */
/* same as last received */
if (pid == sptr—>cap_pid [(int) origin])
proc_destroy_db (dbptr0);
else {
/* place in capture database */
sptr—>cap_pid |(int) origin] = pid;
proc_output_db(dbptr0,SEND_NET);
} 140
break;
}
}
/** (1) decrement the timer if pending**/
if (sptr—>pending != NOT_PENDING) sptr—>time_held—— ;
150

/** (2) process packets arriving from network layer **/

switch (sptr—>pending)

case 0: /** no acknowledgements pending **/
/** get a packet from the network layer **/

21:32 May 11 1986 Page 8 of layer®.c

data link(layer2.c)
proc_access_head (RECEIVE_NET); 160

/** of the network layer gives nothing,leave **/

if (proc_is stream_empty (RECEIVE_NET))
{

break;
}

/** packet available from the network layer **/
dbptr0 = proc_get_first (RECEIVE NET);
170

/** set "pending" flag **/
sptr—>pending = PRE_PENDING;
sptr—>to_count = O0;

/¥ transmit the packet to the physical layer */
/* after adding datalink layer info **/

180

/** test if the local dest field isnt **/
/** the node itself.. avoiding catastrophes **/
if (proc_get_field (dbptr0, DEST FIELD) ==

node_id)

{

proc_destroy_db (dbptr0);

break;

}

proc_set_field (dbptr0, ORIGIN_FIELD, 190
(double) node_id, 0);

/*¥* set the pid field to current value **/
proc_set_field (dbptr0, PID _FIELD,
sptr—>current_pid, 0);

/** increment the pid modulo ID WINDOW **/
sptr—>current_pid += 1.0;

tpid = ((int) sptr—>current_pid) % ID_WINDOW;
sptr—>current_pid = (double) tpid; 200

/** install packet as held packet **/
Transfer Db (dbptr0, &(sptr—>held_db));

/* send the packet to physical layer */
proc_output_db (dbptr0, SEND_PHYS);

/%% set timer */
sptr—>time_held = TIME_INIT; 210
break;

21:82 May 11 1986 Page 4 of layer2.c

data link (layer2.c)

case PRE PENDING: /* an ack s pending */
if (‘sptr—>time_held)

/** timed out **/
sptr—>to_count+-+;
if (sptr—>to_count == TO_LIMIT)

/** ezceeded maz # of time—outs **/

/** send a warning to net layer **

dbptrO=proc_create db (TRAN_FAIL SIZE);

proc_set_field (dbptr0, TYPE_FIELD,
TRAN_FAIL, 0);

/** send with it the number of the vc*/
/** in which the failure occured **/

proc_output_db (dbptr0, SEND_NET);
sptr—>pending = NOT_PENDING;

}

else {
sptr—>pending = POST PENDING;
sptr—>time_held = 1 +
OS_Random_Limit (MAX_POST);
}

break;

case POST_PENDING:
/** an ack is pending were in the post—t—out **/
/** check time_out **/
if (Isptr—>time_held)

dbptrO=proc_copy_db(&(sptr—>held_db});
proc_output_db (dbptr0, SEND_PHYS);
sptr—>time_held = TIME_INIT;
sptr—>pending = PRE_PENDING;
}

break;

220

230

240

250

21:92 May 11 1986 Page 5 of layer®.c

proc set _field(layer3.c)

/** layerS.c **/
/** code for a network layer processor sn packet radio network **/

#tinclude <opnet.h>
#tinclude "vc.h"

/** processor input and output channel descriptors **/

#define RECEIVEDL 0 /* packets from data—link layer arrive here */

#defineRECEIVE 4 1 /* packets from fourth layer arrive here */

#defineSEND DL 0 /* packets to data—link layer leave here */ 10
#defineSEND 4 1 /* packets to fourth layer leave here */

/* network layer constants */
#defineFLOOD INTENSITY 3 /* number of transmissions of a flood packet */
#define MAX FLOOD_ID 10 /* flood id circular space size */

#define MAX VC 25 /¥ maz # of ve's */
typedef struct
{
double next_id; /* nezt node in the vec path */ 20
double sec_id; /* node following nest one */
double next_vc; /* vc_id # the nezt node ezpects to see */
double prec_id; /* preceding node id */
double status; /* VCSHUT DOWN or VC ACTIVE */
} ve
typedef struct
{
ve vc_table [MAX VCJ; /* table holdsing vc snformation */
int num_vc; /* number if ve's in action */ 30

double flood_id [NUM_DEVICES];/* number of last performed flood */
/*

int org_flood _id; number of last flood originating */
/* at this processor */
} State;
int extern Time;

#define Push_Vc_List(value)
ve list_ptr = proc_get_field (dbptr0, VC_LIST_PTR); 40
proc_set_field (dbptr0, (int) vc list_ptr, value, 0); \ proc_set_ﬁeld
proc_set_field (dbptr0, VC_LIST PTR, vclist ptr + 1.0,0);

—

#tdefine Pop_Vc_List(var) \
ve list_ptr = proc_get_field (dbptr0, VC_LIST PTR); \
var = proc_get_field (dbptr0, (int) (vc list_ptr —1.0));\
proc_set_field (dbptr0, VC_LIST_PTR, vc list ptr —1.0, 0);
50
#tdefine Reset_Vc_List_Ptr \

proc_set_field (dbptr0, VC_LIST PTR, VC LIST BASE, 0);

07:07 May 18 1986 Page 1 of layerS.c

proc set_field—network(layer3.c)

network () network
State* sptr;
double node_id;
Data_Block *dbptr0, *dbptrl; 60
int i, type;
double prec_id, vc_id, dest_id, loc_dest;
double o_id, vc list ptr, flood_id, temp;
double sec_id, next_id, next_vc;
double stat_field, ult_dest;
int free;

node_ id = (double) proc_dev_id ();
70

/** (0) if beginning of operation allocate and initialize **/
if ('Time)

{

proc_alloc state (sizeof (State));

sptr = (State *) (proc_state_ptr ());

sptr—>org_flood_id = 0.0;

sptr—>num_vc = 0;

for (i=0; i<MAX_VC; i++) sptr—>vc_tableli].status=VC_SHUT_ DOWN;

for (i=0; i<NUM_DEVICES; i++) sptr—>flood_id[i] = 0.0;

} 80

sptr = (State *) proc_state ptr ();

/** (1) process packets arriving from date link layer **/
while (!proc_is_stream_empty (RECEIVE_DL))

{

dbptr0 = proc_get_first (RECEIVE_DL);

type = (int) proc_get field (dbptr0, TYPE_FIELD);

switch (type) 90

case (int) TRAN_FAIL: /* datalink layer suffered failure*/
proc_destroy_db (dbptr0);
break;
case (int) DATA: /** packet was ordinary data **
vc_id = proc_get_field (dbptr0, VC_ID_FIELD);
oid = proc_get field (dbptr0, ORIGIN_FIELD);

/* check if vc_id—origin pair is active */ 100
if (sptr—>vc_table|(int) vc_id).status == VC_ SHUT DOWN
|| sptr—>vc_table|[(int) vc_id].prec_id != o_id)

/* not a valid pair */

proc_destroy_db (dbptr0);
continue;

07:07 May 18 1986 Page 2 of layerS.c

network(layer3.c)

Nt

/** the vc and origin matched an active ve */
next_id = sptr—>vc_table [(int) vc_id].next id; 110
next_vc = sptr—>vc_table [(int) vc_id].next_vc;

stat_field = proc_get_field (dbptr0, VC_STATUS FIELD);

if (stat_field == VC_SHUT DOWN)
{
/* packet 1s @ VC shut down packet */
sptr—>vc_table[(int) vc_id].status=VC_SHUT _DOWN;
sptr—>num_vc ——;

}

if (next_id == node_id)

120

/* packet has arrived at end */
/* of ve. send higher to layer */
proc_output_db (dbptr0, SEND _4);

}

else {
/* packet is sent to the next */
/¥ hop in the virtual circuit */ 130
proc_set_field (dbptr0, DEST FIELD, next_id, 0);
proc_set_field (dbptr0, VC_ID_FIELD,next_vc, 0);
proc_output_db(dbptr0,SEND_DL);
}
break;

case (int) VC_REQUEST: /** packet is a vc setup request **/

/* if the packet has been flooded and this node has */ 140
/* already seen it, then throw st away *
flood_id = proc_get field (dbptr0, FLOOD_ID FIELD);
o.id = proc_get_field (dbptr0, ULT_O_FIELD);
if (flood_id <= sptr—>flood_id [(int) o.id] &&
flood_id != ((int) o_id)*MAX FLOOD_ID)

proc_destroy_db (dbptr0);
break;
}

150

/* this is the first occ of the flooded packet */
sptr—>flood_id|(int) o_id] = flood_id;

ult_dest = proc_get field (dbptr0, ULT DEST FIELD);

/** add the node’'s id to the node stack **/
Push_Vc_List {node_id);

07:07 May 18 1986 Page 3 of layerS.c

net.wvork{layer3.c)

160
/** if the vc target is this node, dont reflood **/
if (ult_dest==node_id)
proc_output_db (dbptr0, SEND 4);
else {
/¥ flood the packet again */
for (i = 0; i < FLOOD INTENSITY; i++) 170
{
dbptrl = proc_copy db (dbptr0);
proc_output_db (dbptrl, SEND _DL);
proc_destroy_db (dbptr0);
}
break;
case (int) VC_ACK: /* packet is a vc setup ack */ 180

/* take id off top of vc list */
/* store the id along with the nezt */
/* node's selected vc_id */

vc_id = proc_get_field (dbptr0, VC_INIT FIELD);

Pop_Vc_List {sec_id);

Pop_Vc_List (next_id);

Pop_Vc_List (temp); Pop_Vc_List (prec_id);

Push_Vc_List (prec_id);

Push_Vc_List (temp); 190
Push_Vc_List (next_id);

i=0; while (i< MAX_VC)

{

if (sptr—>vc table|i].status == VC_SHUT_DOWN)
{free = i; i= MAX _VC;}

i++;

}

sptr—>vc_table|free|.next_id = next_id; 200
sptr—>vc_table|free].sec_id = sec_id;

sptr—>vc_table|free].next_vc = vc_id;

sptr—>vc_table|free].prec_id = prec_id;

sptr—>vc_table|free].status = VC_ACTIVE;

sptr—>num_vc+-+;

/* assign the vc an id number for this node and let */
/* the previous node node know what it is */
proc_set_field (dbptr0, VC_INIT FIELD,
(double) free, 0); 210

proc_set_field (dbptr0, DEST FIELD, prec_id, 0);

07:07 May 18 1986 Page 4 of layerS.c

network(layer3.c)

if (prec_id == node_id)

proc_output_db (dbptr0, SEND _4);

else

{

/* send the packet to the previous node */
proc_output_db (dbptr0, SEND_DL);

break;
}

/** (2) process packets arriving from layer four **/
while (!proc_is stream_empty (RECEIVE 4))
{
dbptr0 = proc_get_first (RECEIVE 4);
type = (int) proc_get_field (dbptr0, TYPE FIELD);
switch (type)

case (int) DATA: /** layer 4 is sending data **/
/** as part pf a virtual circust **/

vcid = proc_get_field (dbptr0, VC_ID_FIELD);
loc_dest = sptr—>vc_table|(int) vc_id].next_id;
next_vc = sptr—>vc_table[(int) vc_id].next_vc;

stat_field = proc_get_field {dbptr0, VC_STATUS FIELD);
if {stat_field == VC_SHUT_DOWN)

{
sptr—>vc_table[(int) vc_id].status = VC_ SHUT_DOWN;
sptr—>num_vc ——;

}

/* label the packet so that the nezt node */

/* will recognize the vc id number */
proc_set_field (d“ptr0, DEST _FIELD, loc_dest, 0);
proc_set_field (dbptr0, VC_ID_FIELD, next_vc, 0);

/* send the packet to the nezt node */
proc_output_db (dbptr0, SEND_DL);

break;

case (int) VC_REQUEST: /** layer 4 requests a ve **/

07:07 May 18 1986

220

230

240

250

260

Page 5 of layerS.c

network(layer3.c)

sptr—>org_flood_id++;

if ('sptr—>org_flood id % MAX_FLOOD ID) sptr—>org flood id = 0;
flood id = sptr—>org flood id + node_id * MAX FLOOD _ID;
proc_set_field (dbptr0, FLOOD ID FIELD, flood_id, 0);

270

/* add on to the vc node list */
Push_Vc_List {node_id);
for (i = 0; i < FLOOD_INTENSITY; i++)

{

dbptrl = proc_copy_db (dbptr0);

proc_output_db (dbptrl, SEND_DL);
proc_destroy_db (dbptr0); 280

break;

case (int) VC_ACK: /* layer has accepted a vc */
Pop_Vc_List (prec_id);
Pop_Vc_List (prec_id);
Pop_Vc_List (prec_id);
Push_Vc_List {prec_id);
Push_Vc_List (node_id); 290
Push_Vc_List (node_id);

i=0; while (i< MAX_VC)

{

if (sptr—>vc_table[i].status == VC_SHUT_DOWN)
{free = i; i= MAX VC;}

it++;

}

sptr—>vc_table|free].next_id = node_id; 300
sptr—>vc_table|free|.sec_id = node_id;

sptr—>vc_table|free].next_ve = VC SINK;

sptr—>vc_table|free].prec_id = prec_id;

sptr—>vc_table|free].status = VC_ACTIVE;

sptr—>num_vc++;

/* assign the vc an id number for this node and let */

/* the previous node node know what it is */

proc_set_field (dbptr0, VC_INIT FIELD, (double) free, 0);

proc_set_field (dbptr0, DEST _FIELD, prec_id, 0); 310
proc_output_db (dbptr0, SEND _DL);

break;

}

07:07 May 18 1986 Page 6 of layerS.c

session(layer4.c)

/** layerg.c **/
/** code for a session layer processor in packet radio netwerk **/

#include <opnet.h>
#include "vc.h"

/** processor input and output channel descriptors **/

##define RECEIVE NET 0 /* packets from network layer arrive here */

#define RECEIVE REQ 1 /* VC request dsrectives arrive herc */

#define RECEIVE_ LOAD 2 /* load for vc's arrives here */ 10
#define SEND NET 0 /* packets to network layer leave here */

#defineSEND _SINK 1 /* packets accumulate here */

typedef struct
{

double life_time;

double status;

double next_vc_id;

} ve_cell; 20

typedef struct

{

ve_cell vc_set [NUM_DEVICES];

int num_vg;

} State;
int extern Time;

30

gession () session

{

State* sptr;

int i, type;

Data_Block* dbptro;

double node_id;

double life_time, ult_dest, loc_dest, vc_id;

double next_vc_id, vc_ list_ptr, ult_s;

double vc_status, o_id;

int ee_pc, ee delay sum; 40

double departures, arrivals;
/** macros for manipulating the virtual csrcust list **/
#define Push_Vc_List(value) \

ve list_ptr = proc_get_field (dbptr0, VC_LIST PTR); \

proc_set_field (dbptrO, (inmt) vc list_ptr, value, 0); \

proc_set_field (dbptr0, VC_LIST PTR, vc list_ptr + 1.0,0);

50

#tdefine Pop_Vc_List(var) \

ve list_ptr = proc_get_field (dbptr0, VC_LIST PTR); \

var = proc_get_field (dbptr0, (int) (vclist_ptr —1.0)); \

12:54 May 18 1986 Page 1 of layerf.c

proc_set_field (dbptr0, VC_LIST PTR, vc list ptr —1.0, 0);

#define Reset_Vc_List_Ptr
proc_set_field (dbptr0, VC_LIST_PTR, VC_LIST BASE, 0);

/** (0) if beginning of operation allocate for and initialize **/
/** state variables of processor **/

if (!Time)

proc_alloc state (sizeof (State));

sptr = (State *) (proc_state_ptr (});

for (i= 0; i< NUM_DEVICES; i++)
sptr—>vc_set|i].status = VC_ SHUT_DOWN;

sptr—>num_vc = 0;

}

sptr = (State *) proc_state_ptr ();
node_id = (double) proc_ dev_id ();

/** (1) process VC requests arriving from higher layer **/
while (!proc_is stream_empty (RECEIVE_REQ))

{

dbptr0 = proc_get_first (RECEIVE_REQ);

ult_dest = proc_get_field (dbptr0, DEST FIELD);
life time = proc_get_bitcount (dbptr0);

/** disallow vc's to the node stself **/

if (ult_dest == node_id) continue;
/* disallow zero—lifetime virtual circuits */
if (life_time == 0) continue;

/* disallow multiple vcs to same node *

if (sptr—>vc_set[(int) ult_dest].status != VC_ SHUT_DOWN)
continue;

/** the request for a virtual circust is acceptable *¥/

/** to the network source **/

/** convert the packet into a VC_REQUEST type packet **/
/** as understood by the network layer **/

proc_set_field (dbptr0, TYPE _FIELD, VC_REQUEST, 0);
proc_set_bitcoun¢ (dbptr0, VC_REQUEST SiZE);
proc_set_field (dbptr0, ULT O_FIELD, node_id, 0);
proc_set_field (dbptr0, ULT DEST FIELD, ult dest, 0);

12:54 May 18 1986

session(layer4.c)

60

70

80

90

100

Page 2 of layerd.c

session(layer4.c)

/** initialize the vc list which will build up in the **/

/¥* packet as it travels to its ult_dest **/

Reset_Vc_List_Ptr; 110
Push_Vc_List (node_id) ;

/** send the VC REQUEST to the network layer **/
proc_set_field (dbptr0, EE_ DELAY, (double) Time, 0);
proc_output_db (dbptr0, SEND_NET);

/** initialize the database entry **/
sptr—>vc_set [(int) ult_dest].status = VC_PENDING;
sptr—>vc_set [(int) ult_dest].life time = life_time; 120
printf ("node %d sending a VC request to node %d\n", (int) node_id,
(int) ult_dest);
}

/** (2) process load data coming in from the appplication layer **/
/** some of the data tsnt apropriate since it is assigned **/
/** to a random destination which may or may not be currently **/ 130
/** linked through a virtual circust. **/
departures = 0.0;
while (!proc_is_stream_empty (RECEIVE_LOAD))
{
dbptr0 = proc_get_first (RECEIVE LOAD);
ult_dest = proc_get_field (dbptr0, DEST _FIELD);

/** ezamine vc database to see if legit dest **/

if (sptr—>vc_set|(int) ult_dest].status == VC_ACTIVE)
{ 140

next_vc_id = sptr—>vc_set|(int) ult_dest].next_vc_id;

proc_set_field (dbptr0, TYPE_FIELD, DATA, 0);

proc_set_field (dbptr0, ULT_O_FIELD, node_id, 0);

proc_set_field (dbptr0, VC_ID_FIELD, next_vc_id, 0);

proc_set_field (dbptr0, VC_STATUS FIELD, (double) VC_ACTIVE, 0);

proc_set_field (dbptr0, EE_DELAY, (double) Time, 0);

proc_set_field (dbptr0, ULT DEST FIELD, ult dest, 0);

proc_output_db (dbptr0, SEND_NET);

departures-++;

} 150

else {
proc_destroy_db (dbptr0);

}
}

proc_save variable ("departures", departures);

/** (8) process the packets arriving from the network layer **/

12:54 May 18 1986 Page 8 of layerd.c

session(layer4.c)

ee_delay sum = 0; 160
ee_pc = 0;
arrivals = 0.0;
while (!proc_is_stream_empty (RECEIVE_NET))
{
dbptr0 = proc_get_first (RECEIVE NET);
type = (int) proc_get field (dbptr0, TYPE_FIELD);
ee_delay sum += (Time — (int) proc_get_field (dbptr0, EE_DELAY));
ee_pc+-+;

switch (type) 170

case (int) DATA: /** data has reached sts final **/
/** destination and may be discarded **/

/* the packet may be a vc termination packet */

/* disguised as data.*/

o_id = proc_get_field (dbptr0, ULT_O_FIELD);

vc_status = proc_get_field (dbptr0, VC_STATUS FIELD);

if (vcstatus == VC_SHUT DOWN)
{ 180
sptr—>num _vc——;

printf ("node %d received a vc termination packet from node %d\n",
(int) node_id, (int) o_id);

}

else

{
proc_output_db (dbptr0, SEND_SINK);
arrivals++; 190

}
break;

case (int) VC_REQUEST: /** layer 4 must generate a ve_ack */
Push_Vc_List (node_id});
proc_set_field (dbptr0, TYPE _FIELD, VC_ACK, 0);
ult_ s = proc_get _field (dbptr0, ULT_O_FIELD);
proc_set_field (dbptr0, ULT_DEST _FIELD,ult s,0); 200
proc_set_field (dbptr0,ULT_O_FIELD,node_id,0);
proc_set_field (dbptr0, EE_DELAY, (double) Time, 0);
proc_output_db (dbptr0, SEND_NET);
sptr—>num_vc+-+;

printf ("node %d received a VC request from node %d\n",
(int) node_id, (int) ult_s);

break; 210

12:54 May 18 1986 Page 4 of layer4.c

case (int) VC_ACK: /* layer4 may install a new ve **/
Pop_Vc_List (next_vc_id);
ult_dest = proc_get_field (dbptr0, ULT O_FIELD);
next_vc_id = proc_get_field (dbptr0, VC_INIT FIELD);
sptr—>vc_set|(int) ult_dest].next_ vcid = next_vc_id;
sptr—>vc_set|(int) ult_dest].status = VC_ACTIVE;
proc_destroy_db (dbptr0);
sptr—>num_vc++;

printf ("node %d received a VC acknowledgement from node node %d\n",

(int) node_id, (int) ult_dest);

break;

}

if (ee_pc) proc_save variable ("ee delay", (double)
(ee_delay sum/ee_pc));

else proc_save_variable ("ee_delay", 0.0);

proc_save variable ("arrivals", arrivals);

/** reduce all virtual circuit lifetimes for active vc's**/
/** terminate them if their lifetime 1s zero **/

for (i=0; i < NUM_DEVICES; i++)
if (sptr—>vc set[i].status == VC_ACTIVE)

if (! (——(sptr—>vc_set[i].life_time)))

/** the vc has reached the end of sts lifespan **/
/** it will be progressively dismantled from the **/
/** source to the sink **/

/** Note that VC termination packets are disguised **/
/** as ordinary data packets so that they can use **/
/** the same routing logic **/

next_vc_id = sptr—>vc_setli].next_vc_id;
ult_dest = (double) i;

dbptr0 = proc_create_db (ACK SIZE);
proc_set_field (dbptr0, VC_STATUS FIELD,

(double) VC_SHUT DOWN,0);
proc_set_field (dbptr0, TYPE _FIELD, DATA, 0);
proc_set_field (dbptr0, ULT DEST FIELD, ult_dest, 0);
proc_set_field (dbptr0, VC_ID_FIELD, next_vc_id, 0);
proc_set_field (dbptr0, ULT_O_FIELD, node_id, 0);

/** reset the data base entry **/
sptr—>vc_set|i].status = VC_SHUT DOWN;

12:54 May 18 1986

session(layer4.c)

220

230

240

250

260

Page 5 of layerd.c

session(layer4.c)

sptr—>num_vc——;
/*¥* send st to the network layer **/
proc_set_field (dbptr0O, EE_ DELAY, (double) Time, 0);
proc_output_db (dbptr0, SEND_NET);
printf ("node %d sending a VC termination packet to node %d\n", 270
(int) node_id, (int) ult_dest);

}

/** output the number of virtual circuits active **/
proc_save variable ("vc_od", (double) sptr—>num_vc);

}

12:54 May 18 1986 Page 6 of layerd.c

