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Ab tract 

To c. plait the parallelism inherent in algorithms. an)' multiprocessor sys[em musl address two 
ery a.sic i ue · long memory lotencies and waits for ;tnch mn i zatio n events. It is argued on the 

basi nf the eYolution of high performance oompulers I.hat the processor id]e time induced by 
memory I l ncy and synchroniz:ition waits cannot be reduced simu 11.aneously in von eumann 
style multiprocessors. Datanow architectures are offered as. an ohernative because. gh•en enough 
para lleUsm in a p rogra.m. I.hey can reduce both ]atency and synchronization costs. 
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Two Fundamental Issues in Multiprocessing·: 
The Oatanow Solution 

l. lmp,orrnncc or Proce sor Architecture 

rt is genera lly believed that processor architecture is of linle imporl:ailce in designing parallel 
machines. To show th.e fallacy of this assumption. we will discuss two basic issues. namely, memory 
and communicalion lat.ency and sJnchron imtion. Ihm fill architect of a scalable. genera] purpose 
parallel machine must confront We belie e Lhese issues to be as limiting and as fundamental as 
those impo d by circuit technology (power consumption. heat dirssipation. length and thickness of 
wires. pac aging. tc •• We further believe that parallel machines of the ne t generation are more 
Jike!y to hit thee architecturnJ limits than Ute technology·imposed limits. A such, they are more 
immediately relevant. 

We a:re primarily inter ted in general purpose parallel compmers. le.. computers that can exp!oh 
parallelism, hen present in any algorithm. Further. e wanl multiprocessors m be scalable in 
such a manner mat adding hardware resources results in higher performance without requiring 
substanlial rewriting of application programs. The benefiu; of such sea fable systems are obvious; 
lhe pi Lfalls in designing them are subtle. · 

To· understand the e !Teet of Jatency and s nchroni.z.ation on performance. one a ]so needs w 
understand the e ecution of proorams on parallel machines. First of an. one needs to identify 
parallel subcomputations in a source progr-.ml. Th.is can be done with the help of a oompiter. via 
programmer~provided annotations. or both. To exploit thjs parallelism. a parallel machine mu t 
provide nm Li me support for lhe creallon and syn.ch ronizaJ ion of tasks corresponding to these 
u boomputations. 

In the next few sections we p esent our framework for addressing the issues of Jaitency and 
synchronizalion, and our · onnal :stat.ement of the problem. The framework is based on 'two absuacit 
and fairly orthogonal views of multiprocessors. One view which deals with the gross hardware 
organization is embodied in the .structur:ai modet, the other view hich deals with the €$CDlial 
elemen~ of parallel programming is em bodied in the op.erat ianal model. Ou s.wement of two 
fundamental issues in multiprocessor de.sign is based on these models. 

I.I. The Sm.lcrural Model 
The model shown in Figure 1-1 will be used as file baseline for describing multiproce§Or 

o['.ga]lizalions in mis paper. It abstracts ,away the physical packaging and network topoJogy b«ause, 
as shall become clear later. the des:ign of these aspects. of multiprocessors wiU not affect the maid: 
hypothesis of this paper. The structural model is made up of three pans: 

• Processing elements: Modules which perfonn arithmetic and [ogkal operations on data 
Each processing element (PE) has a single communication porl through which all data 
values are recei ed. Processing el.ements interact wilh other processin,g elements by 
issuing and responding to synchronizing signals, ,e..i, WAJT and SE D semaphores. 
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figure l•t: Structura] Model ofa Multiprocessor 

imerruprs. etc .• and wilh memory elements b issuing toAD and STORE instructions 
embeln hed as necessary with atomkity modifiers. P ocessing elements are 
characterized by the rate at which they can issue and :respond to such signals,, 
instructions. and data. 

• Memory el, ments~ Madu, es whic1h store data Each memory element has a sing!e 
communication port. Memory elements r:espond. to instructions issued by the 
processing ,elements by returning data through Lhe communication port. and are 
characceri ed by their total capacity and the rate at which they respond to these 
instructions. 

• Co,mmunication elements: Modules, which lTansport data F.ach nontrivial 
commumcation element has ar least three communication pons. Communication 
el,ements ne·ther originate nor receive synchronizing signals, instructions, or data; 
rather. they recransmi t such in fonnadon when rece · ved on one of the communications 
poru to one or more ,of the other communication ports. Commu.oi.ca:tion elements are 
characterized by the rate of relransm·ssion,. the time taken per retransm·ssion, and the 
ronstrainc:s imposed by one retransmission on oth-ers e.g.. blocking. The maximum 
amoun of data which may be oonveyed on a. communication pon per unit time is fixed. 

A multiprocessor :s-ystem may be composed by imerconnecting each communication port of one 
module with exactly one other communication port of another module. Processors and memories 
may only be connected to communication efements. Communication elements may be connected 
o e·ther processors. memories or other communication efements. Bus orien ed. multip,rocessors 
can also be represented in our strucrural model given that communication elements are capable of 
broadcast behavior. This aspect of the bus tructure can play an important. ~beit indirect. role in 
lowering memo,ry latency as we shaU see in section 2.3.1. 



1.2. The Opc.raUonal Model 
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Figure 1-2:: Operational Model of a Multiprocessor 

To deri.ve the benefits of parallel hardware, a program must be decomposed into basic units of 
oomputalttion which we shaJl cal compultzlion·al tasks 01 simply rasks.. One may v~ew these tasks as 
being units of work as smaJl as machine mstructions or as large as procedures comprised: of 
thousands of mstruotions. Tasks hav•e sev,eral interes.ting properties: 

• They are the smallest unit ofindependently schedulable work on the machine. 

•· The set of l,egal primicive operations a task may perform must indade one which is 
capable of spawning another task. 

• Tasks communicate with •one another by sending and ~ceiving sign.a[s and/or data. e.g., 
one task produces data which is consumed by another task. 



• , ·11.:h t.1 • i logically assoc iaLed wilh a CL or unique names. calted h:s context, to 
ref, rcn task-held re ou rces u h memory locot ton . reg iste fS; etc. 

V e hav ch en to model Lhe opcratio11al beha\'ior or a multiprocessor a hown in Figure 12. 
Ta~k · r ~;1J~· rnr e:i.e ution may be queued locally {on a per-PE basi ) or globaU . \Vhen select.ed. a 
cask Ii\ m LX.'Cupy a PE untii it. can proceed no furth r becau~ it must wait for a synchronization 
tgnal. Some h rdware or software scheduling mechanism ma!· al a suspend a task and re]ease the 

PE if. for example. I.he wk makes a nonlocal reference whi h may mke a long time lO process. 
otice t.h:u regardless of whether me PE is released or nm. when a L1Sk makes a nantocal request,. 1t. 

is logical(~· suspended. and will wai1 until the result of the nonlocal reference has been returned. At 
that potm. the. ti k. becomes di p tchable once .igain. One ma ,·iew the components of the model 
as operating asrm:hronously with respect to one another. The queues shown need not adhere m 
an. particular ordering di ciplin . e:g .• F! FO or UFO. An e\'ent to enable ,or di.spat.ch a ras'k needs 
a name. such as Lhat of a register or a memory location. and thus. the machiner,1 implied by our 
operational model must capture the essence of managing task-generated names for both task 
creation and task syn hronizmion. Hardware design u.s.uaU. dictates the number of names avai1able 
for syn chron izmion as weU as the cost of meir use, 

1.3. The TY.'O Fundamental Issues 
We no~ discu issues related to latenc1 and synchronization. two universal characteristics of 

mu I tip rooessor organ izatians. 

Lateney is the time which elapses bet, een makmg a requesl and receiving the associated 
response. Of immediate interest is memory kltency which. in a multiprocessor system. detemiines 
the time taken to cxecmc an insuucLion im<"olving a remote operand reference. A PE in a 
mu ltip rooessor system faces larger latency than in a uniprocessor syst.em because of the trans.it time 
in the ,communication ne :v ork between PE's and the memories. When latency cannot be hidden 
via overlapped operations., a tangible performance penalty is incurred. We win count. the cost 
associated with la~ency as the total induced processor idle lime auribut:able to the Jatency. It includes 
arbitration time, time of flight through the network and the time required to proce~ the request 

The Operational Model implies that ta.tts need io communicate with each other. For examp]e, a 
task may produce a datum which is needed by anome; task. or ma)' request a. resourc-e cu.rrendy in 
use. In either case, the sequencing. or syn.chronlzatlo.n .. of an event in one task with an event · n 
another is required. The cost associated with such synch roni.zation is also the induced processor idle 
time attrib table to synchronization even waning. l LS made up of a fixed time to perform the 
synchronization operation itself plus the variable time of waiting for the sati.sfaction of me 
oonstrai nt If a PE immediately suspends the task causin.g a synchronization ev,ent wait. the ,oost per 
synchronization event is tixed 

The performance of a parallel machine is likely to hit an absolute ceil in,g if adding pmces&)TS to 
the machine increases processor idle time due m increased ]atency and a greater need for 
synch ronizadon. Thus we assen that 



It is nece:S my to simuftillleow.ly minimize rhe costs of latency and synchronit.ation 
in order to build .a seal.able m.ultiprocessor. 

One is Lemp led to assume that the laLency issue pertains solely LO the hnrdware organiza11.ion of the 
machine. and that the synchronization issue pertains e du h•ely to lhe software stems that run on 
I.he machtne. However. this is not the case. It is likely thal auempts 10 reduce the latency cost will 
increase the synchronization cosL and vice versa, ]n the rest or this paper we will show that 

• for multiprocessor organizations based on von Neumann processors,. it is impossible to 
independendy minimize both 1atency cost and synchronization cost, and 

• for a cl ass of mu I tip:rocessor organizations including .da1ajlow architectures. it is possib[e 
to independently minimize bolh latency cost and synchronization cost assuming the 
program has sufficient parallel ism. 

In Section 2 we ttace the evolution of high perfonnance von Neumann •computers to show how 
reductions in latency costs have been achieved. lt is shown that the techniques used for redudng 
latency costs are either not app I icable in the mu I tip rooessor setting or come at me expense of 
increasing the synchronization cost Section 3 presents the essential features of dataHow machines,, 
with specia[ emphasis on the MIT Tagged- oken Dara.How ma.chine to ·show how such architectures 
can trade parallen m in programs for simultaneous reductions in latency and synchronization costs. 
ln Section 4•. we p,resent. our v1ew of how muhiprocessor architectures should evoh1e in the furure. 

Throughout me paper we make references to many planned and existing uniprocessor and 
multiprocessor arch.lectures. Most, if not all. of these machines were designed ta achieve goals, 
oilier \ban those set forth here. that is. scaJing and p:rogramming generality. We ha e taken the 
liberty lO analyze lhese architectures using our criteria In spite of our sometimes less than 
fl!at.tering evaluation. these nmch ines may be enormously suwessfu l in meeting their own goals. 
Note that our intention is to better understand the limits of muJLiprocessor architectures. and no,t to 
make an absoJute valuejudgmen on any machine. 

2. ul fipro cessi ng iased on ,Ton eumann Pr,o cesson. 

In this section we begin our study of the evo]ution of vo:n eumarnn architectures. We ask for the 
reader·s indulgence as we begin rather slowly and at a. basic level. The poims we wish to make are 
most clearly seen · ilhin such a simple. nc1uttered framework. and it is for this reason that we 
reiterate what most readers: win view as ele:mentary1 

figure 2- 1 depicts lhe mode.rn day view of the van Neumann computer mode.l (sans 1/0) as a 
mutation of von eumann·s original vision. His description [7] was of a processor-memory pair 
wim most or all of the computations state residing [n the memory. The dep·cted view emph~izes 
the migration of state toward the processor side of the processor-memory ·i nte:roo:nnection. The 
reasons for this have relevance to both uniprocessor and multiprocessor architectures and are 
discussed below. 

1we further .a:sl m lh,e :~der set aside any techMlcgy Specific prejudices, e.g.. me relati\'e speeds of p~ and 
memories. 
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Figure 2-1: The van eumann Processor (from Gajski and Peir (l6D 

The processor's sole purpose is to repeatedly carry out the following instruction interpretation 
cyde ( se,e Figure 2 ~ 2): 

L Fetch an instruction from the memory. 

2. Decode the instruction. 

3. (Fetch operands from memory.) 

4. Execute the decoded instruction using the fetched data. 

5. (S,ore resu1ts in the mem01y.) 

6. Determine the neitt h,suuction to be ,executed. 

The steps shown in parenth~ are optional for some instructions. In ear1y machines me tim.e 
taken to go through one tteration. of this interpretation cycle was the cycle time of the machine. 
rnfferent steps in the cyde took different amounts of time. Because memories were relatiively slow 
compared to the processors. time to fetcll an instruction and time 10 fetch and swr,e operands 
completely dominated the cycle time. peemng up the Arithmetic Logic U[dt was of little uff: 
unless t:he memory access time could be reduced. 

The earliest so,1 ution to speeding up the machine was to increase the processor state~ Le.. 'to 
provide fast storage on the processor side in the form of regis:ters. Appearance of mulliple 
'"accumuJarors.0 reduced the number of operand fetches and stores. and index re,gisters dramatically 
reduced lhe number of me moiy references by almost eliminating the need for seiJf modi f'ying code. 
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fi,gure 2·2: Trnditionn Jnterprecation of lnstructions. 

A 1ater technique invol.ved redudng n:he number ofinstructions, e ecuted and. hence. the number 
of instructions fetched. This w~ accompli hed by maki.ng the instructions themselves more 
complex (le. , d fining a richer language). This technique was I~ successful than adding regiSters 
due to difficult in designing complex control circuitry. Even though lhe cumulali e effect of these 
t o techniques as that programs executed much faster than before the basic cycle time improved 
only as a function ofimpro emencs in circuit ~eeds. i.e.. echnology. The enlarged processor state 
reduced the number of memory references. ut it did nm reduce the time lost during memory 
references and .. con equently, did not contribute man o erall reduction in cycle time. 

2.1. Pi.pelined von eu01ann Processors 
The most ucc.e ful solution to hidjng memory latency is the pipelined execution of instructions. 

The time ta en by instruction fetch {and perhaps pan of instruction decoding time) can be totally 
hidden if pr fetching is done during the execution phase of the previou instruction (see Figure 
2-3). The JBM STRETCH [6] and the Uni ac LARC [12] rep esent two of the ,earliest attempts at 
implementing this id-ea. reFetching ran r duce the c;rde time of ·the machine by 20% to 30% 
depending upon the amoum of time taken b the fl t two steps of the instruction cyole with respect 
to the complete cyole. However. the effective throughpu of the mach.ioe cannot increase 
propon:ionatel.y because overlapped execution is not possib e with all instructions. 

Feleh Instruction 

Decode 

Fetch Operands 

Execute l Store 

W ~ l 11+2l 
W ~ 1n+2I: 

W In jJ 110+21 
GJ [n+l} [!±I} .._ _______ ____________ ,... TIME 

Figure 2•3: Overlapping of Instruction Fetch / Decode 



Instruction pre fetching works weU v hen rnc execution of in lruction n does not have any effect 
on either thic choice of instructton:s to fetch (eg .. , as is the case in a BRA CH) or the content of the 
fetched instruction e.g ... selF-rnodifying code), rm instrucliOnli n + 1 n + 2 ...• n , k. The kitter case 
i usually hand I d by simply outlawing iL Howe er. ,effectiv,e over]appcd execution in the presence 
of BRk icH insuuctions ilas remained a pr-ob'lem .. Techniques such as prcfetching both BRA . CH 
targets have not shown much perrom1arice/oo t. bencfilS. lateJy llie oonc,ep1 of delayed BRA .CH 
instructions from mrcroprogramming has been incorporated with success in LOAD/STORE 
aochitcctu res (see secLion 2.2). Tiu~: idea is to delay the effect of a BRA CH by one instruction. 
Thus. che instruction ait: n l roHowing a BRA CH instruction at n is always e:i:ecuted regardless ,of 
which way the BM, CH at n goes. One can always fol1o a BRA CH instruction wit:h a NO-OP 
instruction to get the oid cffecL However. experience has ~own that 70% of me Lime a useful 
instruction c.an he put in lhal position. 

If instructions arid data are kept in separate memories (the so-ca:Ued Harvard architecture, 
another idea borrowed from microp rogramm i 11 g), it is possible to overlap instruction prefetchi ng 
with fetching of operands too. ]Lis also possible to reduce the instruction fetch time by providing a 
fast instruction buffer. The buffer may be automatically loaded with n instructions in the 
neighborhood ofilie referenced instrucuon ,(assuming some spatial locality in code references)1 if the 
referenced instruction is found to be mtsSing (e.g., the CDC 6600 [31]). To take advantage of either 
separate instruction memory or instruction buffers it is nacoessary to also speed up me operand 
fetch .and execute phases. The t o most common techniques, for doing this are: 

• providing operand cac:hes or buffers. and 

• o,rerlapping the operand fetch and execution phases {Figure 2--4). 

Tf suocess.ful2• these techni,ques can reduce the machine cycJe lime w one fourth ,or one fifth the 
cyde time. of an unpipelined machine. However. overlapped exe-cution of 4 to S instructions in the 
vo:n · eurnann frarnel ork presents some serious conceptual d" fficulties. 
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[L] I n~+l I j n+2I I n+i) II n+~J 
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____________________ ____.. TIME 

Figure 2-4: Totally PipeJined Execution 

2areo:urse. it ]S likely I.hat balancing tu: pipeline under these conditions may n::quirc fulither pipcHnklg art.he ALU. 



2.2. Load/. tore Atdi"tectures 
· ,t. \\C di_ u ~ le hniques u ed in ma Mnes uih by e}·maur Cray. e.g .• the CDC 6600 (3]] and 

Lhc Cr:~ rl [_: ]. :md more rccnt1r. by Redu ed In lruclion Set Computer (R]SC) emlrnsiasts. e.g .. 
the 'IB.\I ~[ l I:61. Berkeley· RISC [25]. and Stanford MIP (_0]. because of their succe s in 
pipe.: H ]in_: \<.ln i :c mann machines . 

• .2.1. Difficulties, in In tructio,n Pipelining 
Designing (• w ll·bat::mced pipeline requires that the time taken b various piperine stages. be. 

more or le t.he same. and tllat the "things''. ~e. . instru tions. entering lhe pipe be independent of 
each other. Obviously, instructions or a program cannoL be totally independent ,except for some 
pedal trivial c.1ses. lns1mclion in a pipe are usuail_ related in one of two ways.: Instruction n 

:P reduce data needed by instruction n + k. or only complete exec u.tion of i nslrtlction n detem1:ines 
the n,e t instruction lO be executed (the aforernemioned de]a ,ed BRANCH prob em) 

Lirnir.aiions ran hardware resources can also cause insln.lcti.ons lO interfe~ . with one another. 
Consider Lhe Cl.Se when both in truaions n and n + . .require an adder. but there is only one of 
these in the ma,hine. Obviously. one of Lhe in lruction must be deferred until the other is 
complete. A pipelined machine mu t be able to temporaril)· pre\'ent a new instruction from 
entering tlle ipeUne h,en cher is a possibility of interference with me machine esource 
requirements of instructions already in the pipe. D [.ecring and quick]}' resol. ing these possibUities 
of interferences. or hazards as the~• are commonly known. i · very difficult with ordinary instruction 
~vs. eg., IBM 3 O. AX ll or Motorola 68000 due w their complexity. 

Fetch Instruction 

Fccch Operands 

Execu.t. I SlOre 

GJ ~ [ill] ln+l] ln+41 
GJ~[ill]~~ 

[ ll J 
r:n=+1l 

ln+2 

--------------------- TlME 

Figure 2~Si: Variable Operand Fetch Time 

A further compJication in pipelining {:omplex instructions is the variable amo11nt of time taken in 
each. stage of instruction processing (refer to Figure 2-5). Operand fetch in the VAX is one such 
example: determining the addressing mod for each op. rand r-equir-es a. fair ammint of derodin& 
and actual fetching can invol\1e 0 to 2 memory references per op.erand. Considering al] possible 
addressing mode combinations. an instruction may involve O to 6 memory :references in addition to 
the instrucdon fetch itself. A pipeline desi,gn that am effectively toJerate such variations is dose to 
impossible. 
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F1gure 2-6: Hazard Avoidance at the Instruction Decode Stage 

An idea of Seymour Cray (Hrst seen in the CDC 6000) is to, design an instruction set in which 
instructkJns that refer to memory ar-e separ-able from those which do not at the instruction docode 
stage. Such is, the case with LOAD/STORE architectures · the on iy memory reference instructions: are 
those which move data unchanged betVireen llle memory and the registers. AU other instmctions are 
constrained w use the high speed registers (20. 26, 25). Further given that instructi.ons in a pipe1ine 
can not be independent of each other, the design of the pipeHne is simprer · f processing ,of an 
instruction can be stop,ped at only one stage of the pipeline. Jn other words, if an instruction gets 
past some fhed pipe stage. · t shou Id be abJe to run to completion without incurring or creating any 
previously unanticipated hazar,ds., LOAD/STORE architectu~ aJfow for such impi ernentations by 
L1Sin,g the time between instrucLio.n decoding and instruction dispatching for hazard detection and 
resolution (see Figure 2-6). 
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2.1.2. I. hut rd R olution a.nd Memory Latency 
LOAD/ TORE architectures are much better al tolerating latencies in memory accesses than other 

van eumann architectures. In order lo e plain lhis point we~ ill first discuss a simplified mod.el 
which d,etects and a oids hazards in a LOAD/:STOR.E 3rchitec1ure imllar to the Croy 1. A ume 
there i;s a bit asrociaLed whh ev,ery regisLer 10 indicate Ihm the contents of the register are 
undergoing a change. The bit corresponding to register R is sel the momem we dispatch an 
inslruction that wants to update R. Following this. instruotions are allowed to enter the pipeHne 
only if they don·1 need to reference or modify register R or other registers reserved in a similar way. 
Whenevc r a value is stmed in R, lhe res.e rvation on R is remo .... ed. and if an inslfllction is waiting on 
R. it is allowed ~o proceed. This simple scheme works only ifwe as.(mme that registers whose values 
are needed by an instruction are read before the next instructi.on is dispatched. and that the ALU or 
me multiple fi.mctional units within the ALU are pipeHned to accept inputs as fem as the decode: 
srage can supp] i npu rs.3. The dispatching of an instruction can also be held up because it may 
require a bus for toring resu I ts in a d ock cycle when the bus in needed by another insiruction in 
che pipeline. \yhene er BRA CH instructions: are encountered, lhe pipeline is ,effectively held. up 
until the branch target has been decided 

otioe what wiU happen when an instructio to load the oont,enm of some memory [ocation M 
into some register R is executed. Suppose that it takes k cycles to fetch something from the memory. 
It wiU be possible to execute several instructions during these k cycles as tong as none of them refe, 
to register R .. ln fact, this situation is hardly d[ffei nt from the one in which Risto be loaded from 
some functional unit (e.g~. the A.oating Point multipUe:r lhat lakes: several cyd,es to produce me 
result These gaps in the pipeUne can be funiher reduced if the compiler reorders instructions such 
that instructions consuming a datum are put as far as possible from instrucLio:rui. producing that 
datum. Thu , we notice that machines designed for high pipelining of instructions can hide large 
memory latencies prm1ided mere is local parallelism among instructioas4• 

Some LOAD/STORE architectures have eliminated the need fo:r reservation bits on registers by 
making the compiler responsible for not scheduling inslnlot:ions until !:he time when the resu[t is 
supposed to be avaUab]e. The compiler performs this. static hazard reso1u (rm by assuming 
deterministic time for each operation e.g;. ADD LOAD) and insen:ing O-OP instructions wherever 
necessary. Because the instruction execmion tim~ are intimately bu Ht into the code. any change to 
the machine s structure (scaling, redesign) wm at the very least require changes to the compiler and 
regeneration of the code. This 1:s obv · ously contrary to our notion of generality? and binders 
portability of software from one ,generation of machine to the ae,;L 

Curren LiOAD/STOR.E architectures assume that memory references either take a fixed amount of 
time (1 c;'cle in most RISC machines.) or that they take a variable but predictabte amount ,of time 
(as in the Crar-1). in RISC machines, mis time is deri ed on the basis of a cache hit U lhe operand 
is found ro be missing fro111 the cache. me pipeline stops. Equ i va1ent1y-one can think of this as a 
situation where a dook cycle is sl retched 'lo the time required. Th is solution orks because. ill most 
of these macllines there can be either one or a venr sma I number of memory references in progress 

3J.ndood. i.n the Cray-I. fimeuoaaf uoi:ts an aecept an ~put every dod: ,cyde and registers are always read in ooe clott 
~le afler an rsism:iction is dispa:l.clled from th Decoder. 

4ne ability to reor"der Lwo insuuctmm ~nlially means 13:iat lllese instructions ca!II be ~ooutcd m parnlld. 
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at anl g:h ~n time. For example. in the Cray· 1. no more Li1 ,m 4 independent :iddre es can be 
genl!r,Hf I n:,· m "mOT}' c;·de. tr an addre causing a bank connicL is generat d. then the pipeli11ie 
mu. t b!,': ~tupp~ . However .. any conm l 1om be cleared in ai mo t 3 cycles. 

2J . .3. um ma ry 
Good 1mplemem.arions of LOAD/STORE architecluies can effectively pipeline man instructmns at 

a time. E,cn though instructions are decoded in order. they may finish om of order. If there is 
su ffiden 1 para lie I ism 1n the source code and the oom piler is good at reordering instructions. 
lalencies of memor,• access.e can be hidden behind u eful ALU work. 

Latency cost can be reduced b-3 introducing a. cheap synchronization mechanism: reservation b[ts 
011 processor rt-gisters. However. the number of name1 available foi . nchronization. Le. the size of 
the l..1.Sk·s procesror·bound comexi. i precisely me number of regisrers. and this restricts the 
amount of parall Usm that can be ex.ploited5. Ln order LO understand lhis issue better. consider the 
case when Lhe comi:,iler decid lo use register R to hold two different va1ues m two different. 
imnrucrions say. n and n: This will require n and n· to bee .ecuted s quentiaUy while no such order 
may ha e been necessary in I.he source code. Lr would seem that more programmable registen in 
the archi.lecture -m provide more names for sync:h:mnizmion and. hence. a greater opportunity for 
mletating latency. The obvious disad ant.age of relying on this scheme is dear: the machines 
abiUty to manipulate :such rmmes is bound Lightly into the instruction set and thereby Hmits 
scalab~ 1 ity. 

[t would be desirable if alt the techniques. de eloped for uniprocessors carried over directly to 
mulliprocessor architecture. In face. the do not ]twas mentioned e.arher tliat memol)' fatency in a 
multiproc-essor is going to be larger and less predktab1e than in a uniprocessor system, and 
additionally lhat multiprocessor sy Lems must. s,uppon some mechanism for the synchronization of 
compumHona] wks. The method of s nchronization used for reducing: latency is usua:lly not used 
for synchronization ac I.he programming level. la fact. we wiU sho, that low cost synchronization at 
the pmgmmming level calls for small. ·nscea:d of large, processor srate. [n the fo11owing sections we 
discuss the methods. of reducing the induced processo.r idle lime due m latency and synchronization 
that ha,re been either implemented or suggested for multtprocessor systems. 

2.3. Latency Reduction Methods and their Cost 

2.J. I. Cac es 
Let us assume that au memory modules in a multiprocessor form one global address sp·aoe and 

that any processor can read any word in me global address space. This immediately brings up a 
number of pmb!ems: 

• The time to fetch an operand ·may not be coostant because some memories may be 
ii closer" than others in the physical organization .of the machine. 

5h is interesting to observe m ·pas;mg lhM. an bjgh performance machines seem w be based on p,ene.r.d regis1er 
m:hiwctures ralhe.r lhan on stack areb.ilecst.ures. One possible: explamnion is lilal given the same amoont of fast storage, a 
s1aek machine h3S far fewe:t names avail:ibie IO un_k[uely identify sy.11chmnix.ation evealS 2J11d is therefore poorer .al uadmg 
synchronization cosL for latency oost. 



• o useful bound on the worst case tin1e 10 fetch an operand ma be po ib!e at machine 
design time becaus of the sc.a1ability assumption. 

• If a processor w re to i, ue sev,er ! {pipelined) memory rcque IS to ~ ·rrcrent remote 
memory moduJ s. the r-esponscs may arrive out of order. 

Some multiprocessors eg.. cm• [15]: have avoided ralJher lhan solved these problems by making 
the simplifying assumption that a memory re-quest would not be issued until lhe pre ious r,esponse 
had been received. ot urpri ingl . even running a program , •ith tremendou parall lism, Cm*' 
researchers disco ered that the problem took longer co comple1 if mor,e than 8 to 1:0 processors, 
were used [15]. We think a lik,ely reason is tha processor idle time induced by the increase in 
memory latency could not be coo ered by additional procesS"ng power. 

LOA DISTORE arch· tectu res can sol ,..e lhe prob ems, mentioned above ~ a I imi Led degr-ee. 
However a genera] so I u tion for accepting out of order memory res(J'onses requires. a 
ynchronizaLion mechanism to ma.Leh r ponse: with the destination registers (names in tlle task's 

context.) and he instructions waiting on that regisler. The Denelcor HEP [21] is one of'the very few 
architectures hich has ufod to provide such mechanisms in the von ,eumann framework. 
Howe er, th.e architecture of the HEP is sufficiently differ,ent from von eumann architectures as 
to warrant a separate discussion (see se,etiom 4)~ 

The mos popular way of circumventing the latency prob em is to employ a loca! cache in a 
processor to keep the contents of the most reoendy used memory Jocations. This highly successful 
idea from uniprocessors suffers a great deal in the multiprocessor setting due to a problem ca11ed 
cache coherence. Censier and Fea.utrier [8) define the problem as ronows: "A memory scheme is 
coherent if the Mlue returned on a LOAD instruction is always the wilue given by the lacest STORE 

ins1ruction ith the same address." Ln a mu]tiprocessor oonce:i:t, it is easy to see that this may lead to 
di ffi.cu lties. 

Suppose we have a rwo-processor , tern tightly ooup!ed through a single main memory. F.ach 
processor has its own cache, to which ii has exdusive access, uppose further that. two tasks are 
running. one on each processor. and w.e know that the tasks are designed to communicate through 
one or more shared memonr cells. In the absence of caches, this sch·-me can be made to, work~ 
However if it so happens that the shared address is present in both caches, the individual 
processors can read and write the addre and n.ever see any changes caused by the ,other processor. 
Using a store-through design instead of a. ~ore~in design does oot solve the problem either. What. is 
logically required is a mechanism which, upon the occurrence of a STORE to [ocation x. invalidates 
all other cached copies of' [ocat,ion x wherever they may occur and guarantees tha:t subsequent 
LOADS will get the most recent (cached) 1,•aJue. This can incur significant overhead in terms of 
decreased memory bandwidth. All ro,lu , · ons to the cache coherence problem center around. 
reducing tbe cost of detecting (or rather avoiding), the: ~ibiHty of cache incoherence. and such 
solutions seem to work only for bus oriented macbi.nes.. Some of these are discussed next. 

There have been many proposals ror so ving the coherence problem by using a .lo;gically 
centralized direc ory for all cached data. Each ,entry reflects the state (e.g .• p,rivare. hared, etc.) of 
the associated ,cache quantum. and is rcspansible for guaranteeing. that coherence is not violated. 
Implementations of this idea are genera ly intractable except possib]y in the domain of bus orien1ed 
mul iprocessors. Relying on the broadcasting capabi ity of a bus, it is easy to see how al] caches can 



purge entry x if a processor attempts a STORE lo .x (the so·cl.ll!cd snoopy bus). 

In such a sys!em at most one TORE operation can go on at a ti me in the \! ho.le system and. 
Lhcr,efore. system performance is going to be .t u-ong function of the bus·s ability m handle lhe 
conerence·mointaining traffic. It i possible to improve upon thi solution if some more 
1ntbrmation is kept with each cache entry. Suppose ennies arc marked "shared" or "non-shared". 
A processor can freely read shared entries but an attempt to STORE into a shared entry immediate. y 

causes that address to appear on t.he snoopy bus. Thal enuy is then deleted from all th.e other caches 
and is marked "non-shared" in the processor that had attempted the STORE. Similar actio:n takes 
place when the word robe written is missing from Lhe cache. Of course the main memory must be 
updated before purging the private copy from filly cache. When the word to be read is missing 
from the cache. the snoopy bus may ha e m lirst reclaim me copy pri ately held by some other 
cache before giving it to Lhe requesting cache. The status or such an entry will be marked as shared 
in both caches. The advantage of keeping :hared/non-shared information with every cache entry is 
that the snoopy bus comes i noo acLion onJy ,on cache misses and Sta RES to shared locadons. as 
opposed :to an LOADS. and STORES. Ev,en if Lhese solutions work satisfactorily. bus oriented 
multiprocessors are no,t of much interest to us because of their ob ious limi.tations in scaling. 

As far as we can teH there are no known solutions to cache coherence for non bussed machines.. It 
would seem reasonable Lhat one needs to make caches partially visible to the pmgrammer by 
al1owing hjm to mark data (actually addresses) as shared or not shared. ln addition. instructions ro 
nush a:J1 entry ,or a block of entries from a cache ha11e to be provided. Cache management on such 
machines is possibJe only ir the concept of shared data is well integrated in the high teve] language 
or me programming, model. Though it may not be obvious, often a. direct trade off exists bet.ween 
decreasing the parallelism and increasing the cachable or non shared data. Scllemes have also been 
proposed to exp1icit1y interlock a. location for writing or to bypass the cache (and Hush it if 
necessary) on a STORE: in either case, the perfonmmce goes do n rapidly as the. machine is scal.ed. 
lronicaJl_ in sol ing the latency problem via multiple caches, we have m.rroduced the 
synchronization probfem of keeping caches coherent 

2.3.2. Pipelined Memory Systems 
One can observe from me Cray-1 an.d other machines that there is an ~yrnmetry between a 

hea Hy pipelined processor and a non-pipelined :memoJY system. Memory systems continue to be 
sl.ow relative to processors built w~th oomparabJe tee nologies. and thus.. are u.suaUy the 
performance limiting factor. Interleaving as a technique for reducing apparent access time is 
unsuitable as a general solution. because ofsensitivities to addressing patterns. 

We h,ave done some initial investigations mrer the p~t year into the ar-chitecture of pipelined 
memory systems aimed a.it solving this problem. ,f memory systems were designed to accept 
memory references in a. pipelined manner with a large capacity to hold memory requests. stretching 
of the clock cycle as described in section 22.2 can be avoided To exploit a p,lpel.ined memory in its 
fuU generality requires a mechanism such as reservation bi.ts to provide fine-grained 
synchroni2ation rather man .relying on a. ramer complex comp•, er to predict machine cm:ifiguration 
dependent daita arrival times. The benefits however, should be clear. 
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2.4. :ynrhrnnization Method and their Co t 
We tum from our \·ery hardware-imen Ive \'ie, of multiproc ssors m th-e i u s of programming 

::1 muhipro,.;• · r. From this. we ,\ill reason ai::muL archiL lural tmpH minnsofsoftware sy terns on 
th'.C undc-rl. ing h.irdware. ,!.. general model of parallel prog ramming mu t assume that casks are 
rcati!J J:, n. mi a Uy during a compm:.ation. and die af1cr ha\'ing produced and consumed data. 

Situation · in parallel programming which require task syn hro11.i2atian indude the follo ing non­
onhogonal bask operations: 

1. Forks and Joins:. The join operation for-ces a synchronization event indicating that two 
tasks w Mch had bee 11 staned earlier by some forking operation. have in fact completed. 

2. Producer-Consumer. task pr-educes a data stmcmre that is read b;• another task. If 
producer and consumer taSks are executed in paraHet s:ynchroniZ3Jtion is needed to 
avoid the read-before-write race. 

3. Munial Exclusion: on-detem,inistic events which must be processed one at a time. 
e.g .• serializ:nion in the use of a re"SOurce. 

[n order LO understand the effect of hardware synchronization on software methodology. conside,r 
the case wherein lhe fhed oost of synchronization is high. say equi alem to the time taken by 10 
ordinary instructions. Under such conditions it wdl not pay m exp'loit producer-consumer 
parallelism on an ele:ment~by·elemem basis. Ramer. one would first produce n (» 10), elements 
and then signal Ole consumer to sum consuming, The same procedure would be re.peated after 
pmduci n g the neu n elemen LS. Th is wa . the cost of sym::hron ization wou Id be kept low by perhaps 
inducing some extra idle time on the processor on which the consumer task executes. The choice o:f 
n certainly depends on the machine and deeply affocrs how one would write code. lf the e!ements 
are produced and consumed in some\: ha1 irregular order. or ff the data structure comprising the 
,elem ni:s is nonuniform, it may be prac icaUy impossible to write code to exploit parallelism given 
cenai.n types of synchroniratian mechanisms. 

2.4.1. Gfoba I Scheduling o,n Synchronous machines 
Jf a multiprocessor is totaJt. . nchronous. men it is at least conceptually possible to prepare a 

master pbm in whi.ch instructions for every moment on every processor are specdied. An analogy 
can be made bet ween programming such a mu.l tip rocessor and coding a horizontally 
microprogrammed ma.chine. Recently there have been advances in oompilmg for such machines 
which have caused seNeral machine proposals to appear [14t 27}. 

While these machines are abte to resoh,e run-time sharing conmcr.s. by moving them to compile 
time and are usually able to plan memory references and oonuoJ transfers in advance of the need 
(e.g., the delayed BRA CH). these machines suffer from their special-purpose nature. Except in the 
simp]est of~, compilers require ''hints" from the programmer or. in some cases. rely on luck 
'(and hard a.re interlocks) in doing. th.e code generation. Clem , these machines are not well suited 
lO real-ume computations which involve nondetennfnistk siwauons or oomputati.ons req uirin,g 
dynamic resource (e.g.., memory) management 

We be ieve that this technique is effective in its currently-realized context - .special purpose 
computation with a small number(4 to 8) ofprocesrors.. but the technique is nmsuffiden1ly general 
as to aUow significant scanng up. Software problems associatm with thi:s approach will be 
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m•erwheiming far before me hard, are cost of latency and synchronization plays any significant rore 
in sea 1i ng such machines. 

2.4.2.. Interrupts. and Lm,· l.e el Context Swi1tching 
Almost all \~on .eurnann machines have Lhe capabi lit. of accepting and handling in rmpts. Ot 

surprisingly. mu I tip mccssors based on such machines perm it the use of inter~prooessor interrupts as 
a mean for signalling events. However.. interrupts are rather expensive because in general, the 
processor stale needs m be saved. The st:ne-sa ing may be forced by me hardware as a direa 
consequence of aUowing. the interrupt to occur. or it may occur implicitly. i.e.. under the control of 
the programmer. via a single very complex instruction or a suite of less compJex ones. l.ndep~ndeni 
of how the sune-sa\ring happens. tbe on~y important thing to note is that each interrupt will generate 
a significant am.oun t of tmffic across the processor - memory interface. 

!n the previou discussion we concluded that larger processor states were good in that they 
pmv i ded a means for reducing memory atency cost J n u-yi ng lO solve the problem of low oost 
synch ron ~zation we h av•e now come across an imeraction which we believe, is more than just 
coinddenmL Specifically. in very f'3St van Neumann processors. the '1obvious'1 synchronization 
mechanism (imerru.pts) will only ork wen when the amount of processor state which must be 
saved is very small. Said another way. re{iucing me cost of synchr-onizafion by making interrup{S 
,cheap wou Id generally enrail increas mg che CO-SL of memory latency. 

Uniprocessors such as the Xerox Alto (32], the Xerox Dorado [22]. and the Symbolics 3600 ramily 
[24] hav,e used a t-echnique which may be called microcade-lewtl context switching to allow sharing 
of the CPU resource by the 1/0 de·vice adapters. This is accomplished by duprcating programmer­
visible registers. i.e., the processor state. Thu.s. in one· mfcroinstructfon the processor can be 
switched to a new wk ~ i Lhout causing any memory references to save the prooessor state. This 
dramalically reduces the oost of processing certain types of ,even~ that cause frequent interrupts. 
As far as we know, nobody has adapted the idea of keep,ing mu]tiple contexts in a multiprocessor 
setting ( with the possible exception of the HEP. to tie discussed in section 4) although it should 
reduce synchronization oost o\ler processors whkh can store on]y a single ,com.ext It may be wonh 
thin king about adopting this scheme m reduce tile Jatency OOSt of a noa1oc-al memory refer,e.nce as 
weU. 

The Hmitations of this approach are obvious. High performance cirocesrors may have a small 
programmer visible state Le. the number of registem. but a much kvger implicit state, i.e. caches. 
Low level task. switching does not necessarily take care of the overhead of flushing cacbes6'. 
Further. one can only have a small number of independent contexts without completely 
overshadowiag the cost of ALU har-dwar.e7• This tedm·gue if employed m the large would reduce 
the synchronization cost only at. the expense of latency cost 

6Mullioonte:'tl caches and address uans!a'lion bu Ff.us have been used to advanttgr: H1I reducing iasi switcwng ovcr-l:iead:. 
e.g.. !he sm stack med!anism in the IBM 3701168. 

7The Berkeley RJSC idea of providing ''register windo~• to spee-d up pnxedure calls i's very similar [O mll!ltipie 
amtexi:s. 



2.4J. n1:.:ip,hores and the Uttracomputer 
1 ' !!:-.t to interrupts. Lhe most rommoniy upported feature for synchronization is some a1omic 

oper cian o tc t and t the ,·aim: of a memory location. A processor c:an si.gnal another processor 
by \\,li1int' imo a location ht h the olhcr processor ke · s reading ro sense a change. E en though. 
th or~t i al lr. it i possible to do such ynchronization with ordinal"}' read and , rite memory 
opcrntim,:. the programming is much simpler with an atomic 1- •l1i~D-SET instruction. 
TEST~ . ·o- • ET is powerful enough to implement all lypes of synchronization paradigms mentioned 
earlier. However. Lhe S)'nchroniz.ation cost of using such an tn trucdon can be very high. 
EsserHiall1·. the proce m that e ·ecutes it goes in Lo a bt1s)'·wai1 de. or only does me pnxessor 
get blocked.. it atso generates e.\ t ra memory references at every instruction cyc1e until tlle 
rrsT,-A 'D- IT instruction is executed successful!, . lmplemenlll.tions of TEST-A O· ET that pennit 
non busy waiting impl concext switching in the processor and Lhus are not necessaril, che..ap either. 

lt is po ible to improve upon th TEST·A1 'D·SET instruction in a mulliprocesso:r setting, as has 
been suggested by the YU hracompuler group [13]. Their technique can b illustrated by the 
atomic FITCH· .XO-ADD instrucdon sometimes called REPLACE-ADD . The instruction requires an 
address and a value. and works as follows: suppose two processors. i and j, simu]l.aneously ex,ecute 
FETCHAA: ·o-ADD instructions with arguments (A.vi and (A.\'} res.pecli~·-ely. Af1er one instruction 
cycle .. the comencs of A ill beoome (A) ,,i \ ,.Pro.c e~rs i ~dj _will rece·ve. resp.•.ective!y. , e.i.ther 
(A) and (A)+ i' or (A , v. and (A) as results. jndetemunacy LS a direct consequence ,of the race to 
update memory cell A. The implementation of FETCH-A ~ DD calls for a combining packet. 
communication network which connects n. processors to an n-p.on memory. ]f t\\'O packets collide, 
sa FITCH-A D-ADD(A.x) and FETCH·A. "l>ADD(A.y). the switch extracts the values and y, forms a 
new packet (mCH·A. 1D-ADO(A.x+ y)). forwards it to the memory. and stores the \'&ue of x 
temporaril;•. When the memory returns the old value of location A. the switch returns two values 
((A) and (A)+ ·). The main impro ement is that some synchronization situa.tions which would 
have taken O(n) time can be done in O(iog n) time. It should be noted. howe er. that one memory 
r-eference may inmJve as man as log,n additions. and implies su bstantiru hardware complexity. 
Further. the issue of prooessor latenc-y has not been addressed at a.II. In. the worst case1 the 
complexity of hard ware may acwaUy increase Lhe latency of going th rough the switch and thus 
compl,elely wipe out the arl:vanta.ge offETCH-AND--ADDover its '1non combining!, ver:sion. 

The simulation results reported by YU [13] show quasi-linear speedup on me U1tracomputer (a 
.shared memory machLne with ordinary vo111 eumann processors.. employing FETCH~A D-ADD 

synchronization) for a la~ge variety of scientific app]ications. We are not su.re how to interpret these 
results, withont knowing many more details oftheir simularlon model.. Two possible interpretations 
are the foUowing: 

t Parallel branches. (L.e. tasks) of a computation hardly share any data. thus the costly 
mutual exclusion synchronization is needed rarely in real applications. 

2. 111.e synchronization cost -of using sba~ed data can be aoceprabl.y brought down by 
judidous use iafcacbable/non cachable annotations in the source program 

ff true these interpretatfo-ns would not in alidate the analysis presented in this paper: the losses 
due to latency and synchronization still impose fundamental ]imhs. Rather, it would show that it 
possible to build larger high performance von eumann multiprocessors lhan what is tmplied here:. 



2..5. Lessons Learned thus Far 
ln ,ord r to reduce memory lalenc. cosL i i essentia] that a processor be capabte of issuing 

multiple. oveirla:pped memory requests. To effectively dea] with. this we must vie the memory / 
communication subsystem as a logical pipeline. As latency increases. keeping me pipetine fun 
implies lha.t m.ore memory references will have m be in lhe pipeline. We note Lha.t memory systems 
a f current von eum ann architectures ha e very tittle cap ab iii y for pipelining. 

' ven ith pipelined memory sysrems. von Neumann processors must observe instruction 
sequencing constraints. Adding hardware suppon for synchmnizadon is difficult because it 
interacts directly wi h instruction decoding and disp,atching. The deooding becomes encumbered. 
whenever a BRA1 CH instruction is encountered. , hile dispatching is suspended . hen the hardware 
synchronization mechamsm detects a resource confllct between instructions being e:i:ec:uted and the 
instruction a:ho:ut to be dispatched. 

At the architectural level. the only "handle" the programmer has on memory reference 
s,rnchronization is ·the number of separate synchronization poims (registers) which be can name. 
TypkaUy, the number of programmer visible registeIS is small, thereby limiting ilie number of 
outstanding memory references regardl.ess of the amount of para11elism in the source program. 
Providing more synchronizing regis~ers. is ,a superficially appealing idea. This provides a way of 
dea]ing with long latencies and o~t of order memory responses3. The difficu ty arises when one 
w:shes to share the processor across mu]tip!e tasks (e.g .. , multiprogramming, intemrp~) b«au.se 
oontext swappmg incurs a heavy penalty. 

J. The DataDow Approacb 

In this section we present a machine structure which theoreticai:ly. given sumc·eni paraUeUsrn in. 
the program, can show high performance in the presence of extremely large memoJY tatencies and 
waits for synchronization events, Dataflow processors do not ba.ve any notion of a program counter 
and offer ultimam fle,dbHicy in issuing overlapped memory requests. The execution of instructions 
in dru:a now computers is triggered solel by the avaUa bility of the operands. Data.flow arch ·tectu ~es 
are su fficiemly <;lifferent from von emnann arcbitecru res that. Yirithout a discussion of daralflow 
program representation. the instruction execution mechanbim is difficult to understand and 
evaluate. 

3. I. Dataflow graphs 
A data.now graph is a di.rected grap,h whose nodes. a:>rrespond to dataflow maclline instructions. 

and whose arcs correspond to the data dependencies bemreen the instructions. Toe implication is. 
quite simply. thM insm.Jotions which depend on other instructions should be sequenced 
accordingly; but where n.o dependence (arc) exists. instructions can be ex.ecuted in pamUet 
Wbalever may be the technique of act-ual imp lementacion .. it is often oon venien:t to think: in terms of 
a dataflow instruction sending operand alues, or tokens. to instructions connected to i by outgoing. 
arcs. An instruction is said lO be ready to execute. or is enabled. when aH the required input 

81n essence this amou:rlls to solving a latency problem by inl.roducin.g a mechanism whlclt. in LI.Im, requm:s solution of a 
tow level synchrnnizaticm problem .. 
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operands are present 

. s=(J i= I 

x[{} +l 

I 

Figure 31; Compilation oftbe Loop Exp.ression for I FC:y 

An examp 1 e of a data.flow program graph is shown in Figure 3~ l This graph was compiled from 
the following ld9' [4] program which applies function /tn each element of array x and sums up, the 
results thus obtained: 

(initial's-0 
ror i from I t.o n do, 

new s - + f(x[ID, 
returns) 

9[d is. a high-level functional lan~age. designed specially for data.flow machines. 
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The grnph hm n is some·\ hat t1 lized: the box marked fr presents the ubgraph nec,essary for 
1m-oking fu ction f (which i • itse lf. a graph . lnsm1c:1ion D. D"1• L. and c7 all act as identity 
op _ raters on Lhe input valu but are e en ial for m nipul ting conte:u-idemffying infommtion 
(discus d bte r). For lhe time being. let u. assume that I.he bm, containing :qi] somehow produces 
a. token emu .. ining the value at the iui lector in array x. Th . remainder of the operators are 
arithmcti . r lational. and condiLional instructions whose funcLion should be self·evidenL 

A datal"!ow processor conceptually moves tokens along the arcs of me graph {duplicating them 
upon encountering a fork . looking for in truclions v hich ha e become enabled. Upon execution of 
an enabled ins.m.1clion. the input tokens are absorbed. and output tokens for the following 
1nsLru ctions in che graph are produced. A program is said w terminate when no enabfod 
·nstruclians are lefL 

J.2. Sta ttc A Hocafion or Storage fo,r Operands 
Oat.a.no machines can be broadl) cl.lssifled on the basis of the method used for allocation of 

token storage. Static d.atanow machines alloc.ale storage Ior operands along wilh me nod.es of the 
graph. An early \~ersion of Dennis· machine [11]. -..·hich is the basis for an static datanow machines. 
is hown in Figure 3·2. The program. along with lhe data. resides in the Acti ity Store. and a bit 
associated with each operand is used m indicale whether the operand is present or noL Tokens 
produced by the Ope ration Un its carry destination pointers hich are simp 1y addresses · n the 
Acti\dty Store. fost before a: token is stored. a check is made m see if its panne:r is available. If so~ 
dle instruction is ready fore ,ecution. A packet containing the opoode. the operands. and the list of 
destinations is formed and fom·arded to a non·busy Operation Unit After mis, the aorresponding 
operand slots are marked empty. The Operation Unit produces resi£Jlts and fom1s a token for each 
destination in the list~ ihe Update Uni{ deli ers these token to destination instructions, potentiaUy 
enabling them ror exeCt1tion, Interestingly. correctness and determinacy rn program behavior are 
independem of the ti me order in whkh enabled instructions are executed. 

This simple instruotion execution mecbanism can exploit paraHelism in two ways as diSctJssed in 
fll). First, the processor can be heavily pipelined because the operations of Operation Units. 
Activity Store and Update/f.etch Units can al] be o, rlapped easily. Second, and more 
importantly. many processors can be connected rogether to work an different pans of a data.flow 
graph. As ?ong as all the Activity Stores are part of one address space. the Output Unit can easily 
deduce the destination processor number for a token from the instruction address on the token. 

The simpJ icity of connecting seve ra1 dataflow pmcesoors stems directly from the fact that dle 
datanow processor does not treat internaJ and external tokens d·fferently [30]. Though for static 
machines, the compiJer must decide which part of lhe graph should be 1oadoo on which p,rocesoor. 
the decis:ion can be straightforward fom- programs with massive paraile 1 ism. Notice that in~ed 
Jatencies in the ·oommun ication system do not necessarily affect the p erfom1arice provided there are 
sufficient concurrently enabled nodes in the graph to keep the pipelines bet.ween Activity Stores 
and Operation Units fulJ. 

The differences: between the datafiow execution medianism just described and the von eu.mmm 
mac:hines discussed in section 2 are worth :noting. There are no registers. not even program 
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Figure 3•2; One Proc~ing Semen. of the Static Dilt.aflow Machine (adapted from UlD 
oounters in the data.flow machine10• Instructions. which are waiting for operands in the dataffow 
machine do not block me mstmction pjpe line in any wa.y. It is th is aspect of the datatlow machine 

hkh makes it ~ib.le to trade program paraHe 1 ism to reduce latency COSl 

Static .aJ]ocadon ,of operand storage: in datafiow machines has some weaknesses too. As explamed 
below, h: 1.mn ece.mrily reslricts the kind of para11elism that can be exploited in a program, and 
makes dynamic invocation of procedures difficulL Since an mstruction has space for exactJy one set 
of operands. concurrent enabling of tl'le same instruction ·. ith multiple s-ets .of input operands is 
ruled ouL It is easy to :show that, at the graph Jevet many ]oop programs can p:roduce several inputs 
for a. node (ea.:~ the program in Figure 3-I). Indeed, such programs, can produce erroneous r-esults 

10one ma)' view Ille Actiivity Store as notlli11g but ~ with rcservalio11 bits. a 1a Cray .. Hov,evec. unlike Cray 
m<1chines,. lhe instruction pipel.ine c.in not be. held up after insu:uctio11 decoding because only e.nabled instructions are 
decoded. 
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on the static machi.ne if special ca.re fa not exerd d11 [2]. iGenerally. this. problem is avoided by 
introducing an arc. pointing in Lhe opposirn dir-cc1ion. corresponding to each arc in the datafJow 
graph. Th.ese so called acknowledgment nr,cs pre ent the enabling of Lhe source node until the 
destinati.on node has an empty s1.ot for r.hc operand {se-e Figure 3-2). This solmion oomplicates the 
detettion of enabled instructions because aU me acknowledgmem tokens have to be counted. and ft 
also doubles me token truffle. further. it increases the lime bcl\ een two 11rings. of an instruction 
from one delay around Lhe pipeline to t~ a. Implementation of procedur,es is also ralher restricted 
because static aJiocntion views procedures as "i.n Jine functions'' or macros~ not a11 procedures can. 
be viewed in this manner. 

It is po ible to gene raUz.e the concept of static dataflow machines by providing support for 
dynamic loading of a prooedu re in the Activity Store. Th is reg u ires mechanisms for directing 
tokens from the caning procedure lO the caUed procedure. and also a mechanism for returning 
results. Rather men speculate about these mechanisms we present a more general dataflow model 

iLh the hope that it will be straightfonvard to deduce what mechanisms from it need to be 
i ncorpora:ted in the sta:ti.c alJocation model to support procedures. 

3.3. The Tagg,ed·Token Data.flow Processor 

3.JJ. Dynamic Uocation o.r Operand Stor• 
It is possibJe lO exploit more paraUel ism in dataflow graphs than Dennis• stati.c machine does.. 

Two groups.. one .:u Manchester. England [18] and the otber a.t University of CaliFomia, Irvine 
[5. 17] independently developed the idea of 1abeling to ens in Dennis' dataflow graphs (10) to 
achieve thi effecl The labels are caJJed Jags. Tagged, Token dataflo,w processors aUow more than 
one 1oken to be present on an arc. The~ fofe. the deslina.tion label.s in tokens. oontain some 
dynamic, or comei t-sensi Live in formation 1n addition to the address of tl:le nexl instruction. 

The b~ic structure of a token is the quadruple: <DATA. TAO, ARfTY, OPBlA D _BER}. The 
T G itself is a trip]e~ <CONTE-'<T, ! STR CTIO . POINTER. SEQUE CE>. Toe CONTEXT and 
SEQUE 'CE fields contain d;raamic information - the I STRUCTIO POlNTER is statica]]y 
determ.ined The co ffEXT fie Id identifies the procedure invocation to which this rok.en belongs. 
Even though the TAOS and. hence. the CONTEXTS, are reused. the CONTEXT is guaranteed to be 
unjque during the lifetime of the procedure invocation. 

The D and l ope rato,rs can now be expJained. The purpose of the D operator is to increment the 
s EQUENCE pan of the TAG of ,each token which pasres throug;h iL One can think of this as ,giving 
new Jabels to me tokens associated with different iterations of a loop12• o-l resets the SF.QUENCl 
field to zero. The L operator is responsi bte for logically saving the CONTEXT on inooming tokens 
and generating a new co EU to be substi.tuted for the o[d one on outgo,ing tokens. It does so 

11The graph m F"igJ1r-e 3·1 may still produce: the corred.ruiswer 'ooca.usc: + is associative and OOQl:mu.tative. 

12sucti a mechanism is obviomly necessary because we permit more than one IO • n on an are; unoonstrained, cycles. in 
a graph would gi.ve rise lo ambiguous m;nchi,ngs of tokens and llODdeterministic hellavior. [·f one oonsiders only acydic 
grapfls, lhen lhe Sl:Ql!Eh"CT part of the T11Ci is useless. However. it can be viewed as providing a cheap way of altocaling and 
dealloc.11.ing new oonu::xts for wil ~:rshe programs. . 



wi1h the help of a resource mr,i.nogcr, ho k.ocps track of "comexts'' in use. L"1 re\rerses me process 
by subsliluling the old co TEXT for the new one on outgoing tokens. The derails of ooruext 
creation are further discussed in section 3.3.3. 

ince instructions may have more than one input operand. two more pieces of information an: 
included on each token. These are the total number of operands required by its target instrucliont 
that is. its. ARITY. and a value to specify whkh OPERA, D UMBER th is token represents. 

Unlike the static dataflow machine. tokens ,(operands) are stored separately from I.he program in 
the Tagged-To en architecwre. ConcepLUaUy. the operand store for the Tagged Token machine is 
organized as an association ]hit from which tokens can be e::mac ed by presenting a TAG. The 
program store lhen, contains no data only pure code. Aside from mis difference. instructions in 
both the static and me ~ggedTtoken machines are very similar. 

A diagram ohhe 1.he Tagged-Token data.flow processor is shown in Rgu re 3 ~ 3. Assume that the 
datatlow graph corresponding to the program 10 be e ecuted has been stored in the Program 
Memory. Let us further assume mat all instructions req uue exacdy two input operands. The 
Waiting Matching Section performs the function of the operand store. The TAG of the token. 
entering the processor is compared against lhe TAGs oft.he tokens already in the Wait'ng Matching 
Section. If a token with the matching TAG is found, the data v~ue on the matched token, the data 
value on the incoming token. and their (identical), TAO are forwarded to the Instruction Fetch 
Section. f no matcb is found, the inooming mk:en is .stored in the Wailing atching Sectionl.3. The 
opcode is looked up in the Instruction Fetch Section based on the TAO's co TEXT and 

STRllCTJO PO[ ER fields. Given the two ,operands and the opcode, the ALU perfonns the 
indicated opemtioo. 

The Compu e Tag Section derives the new TAG using me old TAG and the OESTI A TION 
in fonnation smred with the current instruction. lf there is more than one desdnation. the process is 
repeated. A tO:ken rs then funned by appending the ne · TAG to the ALU's output. At this point.. a 
detennination is made based on lhe new token's logical destination. If the denoted instruction 
resides on the same processor as the one in which it was created, it is routed back ro the Waiting 
Matching Sectio,n. If not. it is passed to a Communication etwork which is responsible for 
delivering the to en to the correct processor. 

3.3.2 .. Executing a Procedure on Se era] Proc,essors. 
T~e~TTo~~~n mach_ines rrov_ide a degn:e of fre~don,i !°· d.istriilu~ e:<:ec~~on of a procedure not 

pos:s1 bJe m static mactunes1 . Uke the st.a.Uc mm::hme. u. is su U poss1 bte to div 1 de the datafl:ow graph 
of a procedure in.LO several parts and to load these pans into me Program Memories of different 
processors. Again. if a11 Program MemorifS are pan of the same globam address ij)ace1 tokens may 

13nius. storag,e for operands is allocated dyn.am1caJly from lhe common pool of storage avd.able m the Waiting 
Ma~ Seel.ion. 

14From now on. our fel'.Jtaih about Tagged-'Tcken Mach-inn apply spea,6cally to the MfT TBgg~Token. Dalaflow 
project and may not be I.rue for other s.imilat machines (e;g., Manchester [11!] and Sigma-I at Ille Electroleehnk:al 
Laooralory, Japan [33)). ln rul cases, we can envision intiegrati:ng lll.ese .ideas intO ollu:;; Tag:ged-TokeJ1 machines v.ithout 
much difficulty, however. 
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be distributed according to their PROCE..~SOR M BER which is trivi:dly deri ed from the 
I 5TRUC lON POI "TER (v caU mm the IN R CTIO POI ER i a:tic information). However, it is 
also possible to load a complete copy of the program· grnph into ach of eral processors and to 
divide up token amongst these processors based on lhe dynamic information in the AG. For 
ex ample imagine that a program is loaded on to :ach of two processo.rs. W c can di tribute all 
mkens wil:h odd EQ UE CE fields to the first of these proceS)()rs. Similariy. tokens carrying even 
SEQ E CE field can be sent ro, the second processor. To lhe extent that e can arrange for a 
uniform distr:ibutiion of even and odd SEQUENCE fields during lhe course of the ron1putation. the 
work will be dislributed equitably betweeR these two processors. 

The IT Tagged-Token architecture suppons a fairly general pr-ogram mapping and load 
distribution scheme along these nnes. Each proc-edure invocation is associated with a particular 
mapping scheme It is lllis CONTEXT s,pedfic MAPP[ .o information wh·ch is used by the Compute 
Tag Section (Figure 3~J) in generating outpuL TAGS. A detailed dis ussfon of this mechanism ~ 
however. beyond me scope of ti1is paper and hns been described e]sewh:ere [3) .. 

3.3.3 .. Creating Conte·xts. for Procaedure Invocations 
We focus. our at~ention now on the mechan· ms pmvided to support creation or alfocalion ,of 

conte:us for procedure invocations. The key, of course. ts the CONTEXT fie~d carried with each 
token. Referring again to fig.ure 3-J., tbe CONTEXT field of the token's TAG is used LO select a CODE 
BLOCK REGlSTER (CBR)1 one of several key resources aUocated at procedure invocation time. Its 
contents are used to access (I) the program, (2) invocation specific constants, and (3) invocation 
specific mapping information. 

Data.now graphs are ,compiled imo ooHections of instructions ca11ed code blocks. These are 
dynam ·c-aUy loaded into ·(and subsequendy deleted from) Program Memory? and are acoessed 
indirectly via the 1 STRUCTIO BASE PO!NTER fn the CBR. thus facilic.ating re]ocation .. 

Given that two procedure invocations do not share CBR's, the name of the aUocated CBR serves 
the purpose of uniquely identifying a pr-ooedure invocation. Both the CONTEXT (the name set) and 
the CDR (the phy ical resour:oe) can be reused whe.n lhe corresponding procedur-e invocation 
terminates. Obviously. the number of procedure invocations that can exist simultan:eous]y in our 
machine is limited by the totaJ number ,of concurren'l contexts the hard ware can support 

Regardless of how much other memory is provided. ifwe run out of CBR's. Le., oontexts. we will 
have to wait until one is freed up. If no comext can be freed rhen the machine win deadlock. In 
sequential ma.chin~ the closest ming ma CONTEXT is the sr,ackframe base pointer for the procedure 
caJl stack. Frequently. compiler conven'ti.on dictates mat pointers to code and data for the 
procedure are stored in fixed positions, m the stack frame. By analogy, running out of CONTEXTS in 
lhe Tagged-Token machine is like running out of procedure call stack memory in ooDventional 
machines 1

( with similar resuJ~) .. 

Can we imitate the procedure call stack on a parallel machine1 In particu[ar, can we take 
advantage of the si.ze of the main memory to reduce the Hkelihood of deadlock due ro exhaustion of 
CONrEXTS. a. fixed resource? It seems unlikely. lf, for example, we asst.Jmed that a]J processors had 
fast aocess to a large sha:red memory we might be ab]e to emulate the traditional .sofuuon. We 
beHeve that such an assumption is unrealistic however. 
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A co, lT.\ in our machine is nm cheap. Even if th machine can support a large nun ber of 
co~ TEXTs. the time Llken LO iniliali ze all of the conteKt-spi;:cific regislers is significant enough m 
diswur- ge lh' u e of small procedure . Also. in a balanced design. conrexrs have to be bncked up 
by enough other resources such as program memo!)' and wken storag space in Lhe waiting 
rn.11 hing sc tion [9]. From a resource management poim of ,·iew it would be undoub1edl easier if 
all re ur es wer,e lo come from a. single common pool of resources. e..g •.. the memory. 

3.4. Data truct:u re Operation and 1 ·Structwes 

3.4.1. Functional Operations on Data: Structures 
The datanow mod.el. as proposed by Dennis [IO] allowed on[y functional operations. on data 

structures. The two most common Ftmcttonal operations on data structures are SELECT (to• select a 
speci fie element of a data structure) and APPEND ( to generate a ne~ data structure , h ich di tTers 
fr-om the input SU7Jcture in at most one selector pos.ition). Conceptually. e\'en a data structure is 
represented by a single token in a datafiow graph. Jn any reasonable imp·lementation. however. a 
token cMtnot e1rry arbitrarily large amounts ofinforr:nation. Realistically. data structures reside in a. 
large storage. often called Struc;iur-e Storage· tokens carry only poinlers to the structure. Thus. 
replicating a structured value token involves merely copying a pointer. With strucmie storage~ a. 
SELECT oper.uion causes 1:he relevant info1111ation lO be: fetched. [mplementation of this operation 
is ery different on data.flow machines than on von eumann machines. and merilS a description. 

The 'box containing x[i] in the data.flow graph of Figure 3-1. in genera]. wil have t\lt-1() inputs: a 
descriptor for the smuctu re x. and the selector i. When such an. instructi.on is enabled in the Static 
machine ( · iiure 3- ) a packet ronLaining x. land the addresses of the destination instructions le., 
1.he address of me ox containing/) is sem to the Structure torage. Though not shown in Figure 
3-2. the Structure Storage can be imagined as just another functional unit. a1 hei t one slurred by a:U 

rocessors. lt is very 'mpanant to realize that, unlike a von eumann machine. neither rhe ALUs 
nor me lnstruotion Fetch Sections get b.locked during a fetch from the Structure Store in the 
dataflow machine .. lbe output from lhe Structure Store gets. directed to the proper instruction s]ots 
in the Acti vily Store. Very simi 1ar heha vior can be imagined on the tagged datafiow ma:chi nes also • 
.tnstead of destination instruction addresses, the destination TAGS are sent to the tructure Sto.re, 
and ics ouq,ut is sent to the Waiting Matching Section. 

n a manner similar to me SELECT operation, an enabfed APPEND operation causes a: paciket 
containing the descriptor x. the selector i, the vafue v. and the destination addre$es to be sent to th.e 
Structure Store. However, its effect there is rather •complex. The complication stems from the fact 
that some APPENDS ,can cause a: new copy of a. pan of the o)d data slructu re 10 be created. Suoh 
copying is often expensive. A detai1ed implementation of surucwre storage with a fot uf internal 
~.oncurrency is given by Ackerm.an [l]; a similar solution in the context of the Uainterpreter is 
discussed in (17]. 

The problems with functional operations. on data structures have been discussed extensively in 
the literature ,(see for •eiiample [SJ). Besides the copying overhead in even very clever 
implementations. the structure on-the-lOken mode implies data structure constructors. e.g;1 the 
APPEND operatmn to be "smct'·. Th a.t i the structure output is not produced unless al.I inputs of 
the APPEND are a ail able.. Consequenuy. no element of a structure can be used Wl1~ all elements. 
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h::i ve been stored. The Joss of pam llelism under such conditions is obvious. 1-structu res have be~n 
proposed to reduoe copying and increase parallelism in data ruucture operations. 

3.4. 2. 1-Structu res 
From a programmer's perspecd e. an [ -Structure is an arra. of !ots, All lms are in "tiaUy empty. 

A programmer is ai!owed to store into each slot no rnorn man once. A slot can be read as many 
times as desired. and when there are no outstanding read or wri~e operations for an J~Structure it 
can be deallocated. At the time the. storage is reallocated, an the slots are marked empty again. A 
interesting aspect of I-Structure semantics is that even if the reading of a locati.on precedes its 
wrii:.in g the value returned does not change. This, as we shall see, is accomp !ishcd by detayi ng the 
response until the slot is actually fiUed. 

Referring ro Figure 3-4. I-Structure storage can be isualized as a word-addressed conventional 
memory wi:1h me addition of a fe pr-esence bils on each word. Presence bits 'ndicate that the 
associated. word is in one of lh ree possible states: 

• PRESENT: The word contains valid data which may be freely read just a in a 
conventional memory. 

• ABSENT: othh1g has been written into this word since the most recent reallocation. No 
attempt ha:s been made to read the word. 

• w rn G: othing has been wriuen into this word sinoe the most recent aHocation_ but 
at least one anempt to read the word has been made. 

1l1e 'bits change state in ob ious ways: during a read operation. the I-Structure storage rontroUer 
interroga.les the presence bits associated with chat Jocation. and if the word is: marked PRESENT. the 
contents are retrieved and forwarded to the destination instruction. If the \vord is ABSENT. the 
oontroUer puts me re-ad request aside and marks the empty location WAITlNG to indicate that a read 
reg uest is oulStanding lS. lf the word is already in the WAJTI ro state. the new read request js 
appended to the :dsting list. 

A wri.te operation similarly interrogates the presence bits. If ABSE _ - the datum is written as m a 
nom1al memory. if w AITt NG. the value is both written and forwarded to aU the instructions on the 
deferred Hst. 1-Strucwre semantics are violated if a write is attempt-eel: and me word is. already 
matk,ed PRESENT; an e-rror wilt be signalled. 

-Structures provide the kind of synchronization needed for exploiting the producer-consumer 
type of para11elism. A programmer is completely freed from the burden of avoiding read-before-­
wri re races. The execution time overhead of using 1-Structture operations is also minim.al as long as 
most read requests precede the ooTJ,espon di n.g wr.ile requests. The issues involved with building such 
a memory, and the design for an 1-Suucture memory controller are discussed extensively in ,[l9]. 

Mrinly other issues are invo]ved wkh the desjgn of a. Tagged-Token daraflow machine whose 

15ne idea or associating a status bit with ,effll memof}! cell is not 11.ew - Ille Deneloor HEP mlll'tiplOO:SSOf (29. 21] uses 
I.his id'ea LO synctironiz.e oooperaling pam11cl processes whid1 share rcgistera and/or memo.ry ccl1s. Unsa.tisfiabte RqUests 
result in a busy-w.aiting comlition - , e.. lhe:re is no mch lhmg as a defe,red ra:uf lisit. 
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details, are shown in Figure 3-.5). The imerestc-d reader wiU find more details in [3 2] 

3.5. Simu.ltancous1y Reducing Latency and S)1nebronizafion Costs 
The M.I.T. Tagged-To~en Dataflow machine exploits paraUeHsm at both the procedur~ and the 

instruction level It is possiMe mat at arny given moment severa1 instructions belonging ro a 
procedure may be acth·e in a PE. It is also possible even likely. that at the same moment 
'ins1ructions belonging o another procedure invocation may be acti,ve in the same PE .. Ins1ructlons 
From two different procedure invocations automatic.an. shar the instruction pipeline and resources 
such as Waiting atching Section. Thus, a fack •Of paraUelism at the instruction leveru wimin a 
procedlue, does not necessarily induce gaps in me instruction pipeline. as it would ,in a von 

eumann. machine. The synchronization cost asoociated with one ·nsmiction enabling the next one 
can be totaHy absorbed as Jong as other enabled insuuctions are available. The hardware feature 
that makes this possible is the Waiting,~ atcbing Section. It allows instructions to wait for a 
s;rnchronb.ation event without blocking the instruction pipeline .. Further. unti e the register based 
synchronization in Load/Store archnecwres. it allocates me name (the TAG) ,required by a 
synchronization event at run tlme. 

The latency in fetchi.ng an operand from the I-structuie store can be significant However~ this 
can be also toml absorbed because the · nstrnction waiting, for the operand does, not block the 
p ·pelin,e, Ramer ·t waits in the Waiting Malching Section. As Jong as ther,e are instru:ctions 
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availabl to p the pipelines full. no performanc degradation should t.:1ke place. Thus the 
Waiting atching Secdon plays a crucial role in simultaneously reducing the the latency and 
synchronization costs. 

The ro?e of !,Structure storage in reducing the synchronization cost is harder to exp ain because it 
is losely ,coupled with th•e manner tn which parallelism is expr;essed. When cast as producer­
consumer ynchronizalion. iL seems to us that r~structures provide a tremendous opponunity for 
o erla.pped execution as w U as minimal synchronization overhead. ff a read request must wa·t 
because the data is not yeu available, a fixed penalty in the form ,of updating the "deferred readers 
l'st" is incurred. However, neither the instruction pipeline nor the memory pipeline is block,ed by 
the waidng reade. Processors can keep issuing memory refi renoes. e en ilhout ge ing responses 
to a laJ"ge number of eartier requests. as long as requesis are independent of each other. 

4. Future E o,lutio,n of Mull1p,rocessors 

We have hown that on muJtiprocessorn based on von eumarm processors reducing the tosses 
due ro large memory latency results in increase..d losses due to ::;.yncbronization waits. Our beUefis 
that this coupHng is not fundamental o all multiprocessor archite-etures, and in. particular, dataflow 
architectures can simu taneous y mimmize lat-ency and synchroniz.alion costs. This idea may be 
visualized in terms of a three dimensionat latency-synchronization.,efficiency (I.SE) space mn which. 
specmc arch·tectures appear as points (see Figure 4-·1). Our assertion. about von eumann 
machines page 4) can be thought of as de ming a surface in mis space. which we shall can the ron 
Neumann Barrie,l6 beyond which n.o von eumann des.ign can. exist'! 

PROCESSOR 
EFFICIE CY 

l 

von Neumann Barrier 

Figme 4·1· The latency~Synchronization-Effidency Space 

] · ot to be co; fused wjlh !he much pub trued vo-rt Neummtn. Botdtn«k. 
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4.1 .. The Denekor HEP: A Uybrid rchitedure 
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I 

Figure 4-2: Latency Tol,eration and nchronizat.ion in the HEP 

Data 

Memory 

We think there is a large space of possible machme structures. ocber tha:n the Tagged-Token 
datajl'ow which satisfy the cond·tion se forth in this paper for scalable. general.-purpose 
mul iprocessor:s. One ma.chine which. in some ways. intrigues us is tbe Denekor HEP [29; 21]. llt,e 
basic tructure of the HEP processor is shown in Figur,e 4& 2 The processor's, daira path is, built as an 
eight step pipeliine. In paraHel ith the data path is a oontro] loop which dr-culates process status 
words (Psw·s). The deJay around the con:tr-ol loop is. variable because of the queue but is never 
sh oner than eight p,i pe steps. Th is minimum v.a]ue is intentional to allow the PSW at the head of 
cJt.e queue to initia an instruction but not return again to ch.e head of the queue unti the 
instruction has completed. If at feast eight PSW's. representing eight pr~. can be kept. in the 
queue, the processor's pipeline; wiH remain tiull. This scheme ·s much U~e traditional p'peHning of 
instructions, but with an important difference.. The inter-instruction dependencies, are likely to be 
weaker h re because adjac,ent insuuctions in the pipe are always from different proc:esses. 

Where dependencies between instruction s·reams (i.e. inter~process. sharing) must be 
synchronized. the HEP prov·des FULLJEMPTY/ RESERVED bits on each register and FULi/EMPTY 
bits on each word m the data memory. An in truction encountering EMPn' or RESERVED 
registers17 is effectively O-0Ped: the corresponding PS:W whk-h initia_ed the instruction is not 
'incremented. The result is that prooess will b~-wait. 

17Toere are 2048 regisleis in ,each p~r: ea.ell process. h$ an index offset into ·!he register array. biter-process. data 
sJ!Jaring, is possib eat lhe register ?evd via overlapping register aHocatioos. 
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When a process ·issues a LOAD or STORE in 1rucLion. it is removed fmm che control loop and is 
queued separaLely in the cheduler unction Unit (SFU} which also issues the memory request 
Requests which arc not satisfied because of 1mpmper PlJLUEMPTY st:itus resuh in recir:cuh1tion of 
the PSW ~ ilhin the SFLfs. loop and also result in reissuance of the request The SF, matches up 
memory responses wilh queued PSV ·s. upd,:ues registers as necessary, .111d reinsens the PSW's in 
the control loop. 

Thus:, the HEP is capable of trading paraHelism. to a degree. for memory and communication 
latency while providing an efficient, lowTh?\•el synchmnizaLion mechanism. Disad,rantages of the 
HEP approach include !he. limit of one suspended memory request per process at a time and the 
cost of busr wailing when sh armg registers across processes. 

4.2. Procedure Le~el Datafiow 
A problem with me present Tagged~ Token Dataflow archrtectu re is that a datatlow program takes 

three ro live ti.mes as many instrucLions as a comparab]e sequenrial program on a conventional van 
eumann computer. This does. not seem to affect the scalabii:ity or the programming generality of 

the dataflow machine. but n does imply that for comparable performance the dataflow machine 
may require substantially more hardware than a von eun1ann mach.ine. This has motivated us to 
Look for a new and ]arger independently schedu[a,ble entity than a sing]e dataflow instruction. 

Several researchers have suggested that dataflow mechanisms should be employed at the 
procedure rather than. at the instooclion level. they a11 s«m m have igm)red the two fundamental 
issues discussed here. Suppose that we regard a p,rocedure as the smallest scbedulab!e entity and 
assume that each procedure is com piled for some register-based! von eumann machine. A 
fundamenta1 q uestfon then is: "when should such an entity be sched u]ed?11

• A on eumann 
machine has advam.age over data.flow maclline only when it executes long sequences of instructions, 
, tthout interruption This dictaLeS that compiled procedures should be scheduled only when all 
!heir inputs are a aUabl e. Th is imposes a fairly rigid methodology on rompil i ng programs, and in 
our esLimate would invo]ve an u.nacceptably large loss of parallelism in programs. evertheless, w,e 
are looking for ha dware structures. wh~ch can execute procedures ac; effidently as a sequential 
machine without requiring, that the code be executed in a non interruptible manner. It seems to, us 
th.at to keep synchronitation costs fow. any mu1tip,.rocessor must allow cheap non-blocking 
suspensions of scheduf alb le entities. 
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