
MIT / LCS/TM-242

EFFICIENT DEMAND-DRIVEN
EVALUATION (I)

Keshav Pingali

Arvind

September 1983

Efficient Den1and·driven Evaluation (I)

Keshav Pingali

Arvind

19 September 1983

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract

We describe a program transformation technique for programs in a general stream

language L whereby a data-driven evaluation of the transformed program performs exactly

the same computation as a demand-driven evaluation of the original program. The

transformational technique suggests a simple denotational characterization of demand­

driven evaluation.

Keywords: Data-driven evaluation, dataflow, demand-driven evaluation, demand
propagation, functional languages, lazy evaluation, least fix-points, program
transformation, streams.

111is research was supported by the Defense Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research under Contract No. N00014-75-C-0661.

1

Efficient Demand-driven Evaluation (I)

1 Introduction
Applicative languages give the programmer the power to construct and apply functions.

In some applicative languages, the programmer is also given certain base functions like +,

*, if then-else etc. An interpreter for such a language is capable of performing function

application, and, if the language has base functions, can produce the result of the

application of a base function. Applicative languages have the Church-Rosser property

- le., an interpreter for an applicative l~nguage can do the function applications in any

order it chooses, because, other than termination, the outcome of the interpretation does

not depend on the sequence in · which the interpreter chooses to perform function

applications. This pleasant property of applicative languages has generated considerable

interest in both their theory and implementation.

Parallelism in a program written in an applicative language can be exploited by

simultaneously evaluating all the arguments of a function application. This idea can be

applied recursively if the arguments themselves are function applications, with the result

that any computation can be done as soon as its inputs are available. This scheme can be

loosely labeled data-driven evaluation. An interpreter that implements this rule of

evaluation is called a data-driven interpreter. There are many varieties of data-driven

interpreters in the literature - notably, the interpreters of Dennis [6] and Arvind et al [2].

It is well-known that in the presence of non-strict functions, a data-driven interpreter may

perform some computations which are not required to produce the output of the program.

A function f{x,y) is said to be strict wilh respect to argument x if the value of the function

application is undefined whenever the value of x is undefined. If a function is strict with

respect to all of its arguments, it is simply called strict. The function f{x,y) is a non-strict

function of x if it is not strict with respect to x. Consider, for example, the function f{x,y)

which simply returns the value of x1. Let us assume that the semantics of function

1
This is like the K combinator of A ·calculus

2

applications permit a function application to be carried out before all the arguments of the

function have been evaluated. In such a case, the function Jis non-strict with respect toy,

since it can return the value of x as soon as it is computed, even if the value of y is

undefined. A data-driven interpreter would evaluate both x and y even though the value of

y is not required to produce the result of the function application. If the computation of y

terminates, then the data-driven interpreter will have done some bounded amount of extra

computation. In most implementations, this is quite acceptable. However, if the

computation of y does not terminate, then the interpreter will do an unbounded amount of

additional computation. The reader may feel that one solution is to "kill" the computation

of y as soon as the application of/ returns the result, since it is clear at that point that the

value of y is not required. However, in most multi-processors, it is very difficult to kill

computations while they are executing. The ability to kill computations implies the ability

to kill sub-computations spawned by this computation faster than the computation itself

can generate them. Moreover, the implementation would need some efficient way of

identifying all sub-computations generated by this computation. Since these sub­

computations may be spread across many processors, the problem is similar to the real­

time, multi-processor garbage collection problem.

We would like to emphasize that even if the data-driven interpretation does not

terminate, it will still produce the results of the program (at least in theory !). Why then are

we worried about non-terminating computations ? The main problem is that even in multi­

processor implementations such as the Id machine [3], too many such non-terminating

computations can result in the wastage of machine resources, and make the system

unacceptably slow. On the other hand, it can be argued that in most situations, a good

programmer never deliberately writes programs that do not terminate - if he inadvertently

wrote one that did not terminate, he could not reasonably expect the machine to execute

efficiently and produce the results of the program. Perhaps a plausible argument along

these lines can be made when the programmer is confined to simple data-types like integers

and arrays. However, the argument falls apart the moment we introduce non-strict data

constructors into the language.

3

An example of a non-strict data constructor is the non-strict version of the LISP operator

cons, which was introduced by Friedman and Wise [7]. The data structure s1ream which is

constructed by using the non-strict cons has been incorporated into dataflow languages

primarily to express parallelism which would have been impossible to express without it

[2, 16]. When such data structures are defined in a recursive (or mutually recursive)

manner, one ends up with data structures which are potentially infinite. The incorporation

of infinite data structures into programming languages provides the program-mer with a

powerful tool for writing structured and elegant programs as anyone who has written a

"sieve of Erastosthenes" program to compute the first 1000 prime numbers (as opposed to

a program for computing all prime numbers between 1 and 1000 !) can confinn. Further

examples of such programs can be found in [5, 8, 14]. Once we pennit (and encourage) the

programmer to use non-strict constructors to define infinite data-structures, it would

appear that data-driven computation would be extremely inefficient. Although a data­

stmcture may be infinite by definition, it is usually the case that only a few elements of the

data-structure are required to produce the OL!tput of the program. A data-driven interpreter

will attempt to compute all the elements of the data stmcture, and is, therefore, not a

practical method for implementing such data structures.

For these reasons, some implementors of applicative languages have preferred an

alternative paradigm of interpretation called demand-driven interpretation. A demand­

driven interpreter is nonnally thought of as perfonning precisely those computations that

are required to produce the output of the program. Typically, a request for printing the

value of some variable in a program is considered to be a demand for the value of that

variable. The computation of this value will require, in general, the values of other

variables in the program. The process of identifying those variables whose values are

required to produce the demanded output is commonly called demand propagation. Since

a demand-d~iven interpreter performs only those computations which are required to

produce whatever output has been demanded, it will, in general, perfonn less computation

than a data-driven interpreter. However. a demand-driven interpreter has to propagate one

demand for each data value that is computed: the overhead of demand propagation is not

4

present in data-flow interpreters. If a language has only strict functions (like FP [4]), then a

demand-driven interpreter for the language is unattractive.

It is also the case that many programs show greater parallelism under data-driven

evaluation than they do under demand-driven evaluation. Typical of such programs is the

producer-consumer scenario. If a producer is allowed to compute values only when they

are demanded by the consumer, pipe-lined operation of the producer and consumer is

often ruled out Some researchers have attempted to fix this problem by pennitting the

producer to go ahead of the consumer by some fixed amount [11, 12]. Besides seeming

somewhat ad hoc, such schemes still have the problem that they must propagate as many

demands as an ordinary demand-driven interpreter would. In fact, data-driven evaluation

of some stream programs is modeled by Keller et al [12] by essentially issuing an infinite

number of demands !

In this paper, we approach the problem of combining data-driven and demand-driven

evaluation in a very different way. Starting with a data-driven interpreter, we show how the

effect of demand-driven evaluation can be achieved through program transformation. First,

we define a general stream processing language L. We then give a program transfonnation

technique for programs in L such that a data-driven evaluation of the transfonned program

computes precisely the same data values as a demand-driven evaluation of the original

program. TI1is transfonnation is not a source-to-source transformation; rather, it transfonns

L programs into programs in a language which is a super-set of L and which we call the

language LD. We will refer to the LD programs resulting from this transformation as lazy

programs. We show that a data-driven evaluation of lazy programs satisfies four properties

named Pl to P4, which are also satisfied by a demand-driven evaluation of the original L

program. Although we do not present it as such, these properties suggest a simple

denotational characterization in the style of Kahn [10] of demand-driven interpretation.

In a companion paper, we show that the set of programs that can be expressed in LD

include not only L programs and lazy programs, but also programs that can best be

5

described as partially demand-driven. In particular, we can define programs that are input­

output equivalent to lazy programs but which do not necessarily compute minimal histories

on internal lines. We will use this idea to present a transformation which trades the

complexity of demand propagation for a bounded amount of extra computation on some

data lines. We refer the reader to the companion.paper for more details.

2 Demand Propagation in a General Stream Language
In this section, we introduce a general stream language L. We will use L programs to

illustrate our technique for introducing demand streams int<? programs in an applicative

language. This section lays down the framework for some program optimizations which we

will discuss in later sections.

2.1 L · a General Stream Language

Language L has two classes of data- scalar values and streams. Scalar values encompass

the usual data types like integers, reals, booleans, character strings etc. Streams are

sequences of scalar values and are constructed by using a non-strict data constructor. For

the purpose of our discussion, we will represent streams as [a1, ½·] where a1 is a scalar

value that is the first element of the stream,½ is a scalar value that is the second element of

the stream etc. The empty stream (Le. , the undefined stream) is represented as []. It is

possible to introduce a special scalar value est (Le., end-of-stream) and let an empty stream

be the stream containing exactly one scalar value est [16]. There are no difficulties in

extending L to include such a feature, but we will not do so in this paper.

The usual stream operators first , rest and cons are included in L. Their functionality is

summarized below -

first([]) = 1-
5

(the undefined scalar value)
first([a1, ½• a3']) = a1

rest([]) = []
rest([a1, a2, a3']) = [a2, a

3
, .•..]

cons(1-s, [n1, ½•]) = []
con~fb1, (a1, a2, a3,]) = [b1, a1, a2, a3,]

6

Since [) is the undefined stream, there are no operators that can test a stream for

emptiness. Notice that since .ls is the scalar undefined value, its "type" is different from

that of [], and hence, we use a different symbol for it.

In addition to these operators, L has any strict and total function like +, *, etc. which

takes some scalar inputs and produce a scalar output. Such functions are called scalar

functions and are represented by t, or t with a subscript. L also admits stream. versions of

these functions which are defined in the following way. Let t be a scalar function of n

scalar arguments. The stream version of l, represented by T, is a function of n streams (say

A, B, C,) and produces an output stream O such that O(i), the ith element of 0, is t(A(i),

B(i), C(i),). We will refer to such stream operators as T-boxes. Since T-boxes operate

"point-wise" on their inputs, they have the "one-in-one-out" property - le., to produce k

elements of the output stream of a T-box, we need k elements of all input streams of the

T-box. The reader may wonder why we have both t-boxes and T-boxes in the language.

There is no deep reason behind this - pem1itting t-boxes in the language simplifies the

discussion in a companion paper, and hence, is a notational convenience.

Although a large class of stream programs can be written using the operators described

above (for example, programs to compute Fibonacci numbers and factorials !), a useful

stream language must have some ability to manipulate streams in a manner other than a

one-in-one-out way. Three very useful operators that are not T-boxes are true-gate,

false-gate and merge whose operational behavior is described below -

- true-gate(_B, X) - B is a stream of booleans. X(i) is output if B(i) is true;
otherwise, it is absorbed. In other words, the jth element of the output stream is
X(i) if B(i) is true and the number of !rue values between B(l) and B(i) is j.

- false-gate(B, X) - Its behavior is exactly like that of a true-gate, except that X(i)
is output if B(i) is false.

- mcrgc(B,X,Y) - B is a stream of booleans. The ith token on the output stream is
X(j) if B(i) is rrue and the number of rrue tokens between 8(1) and B(i) is j, and
Y(k) if B(i) is false and the number of false tokens between 8(1) and B(i) is k.

7

Examples of the use of these operators can be found in papers by Weng (16] and

Turner (14].

Language L includes true-gate,false-gate and merge operators.·

An L program is a set of recursive definitions where the left hand side (LHS) of each

definition consists either of a scalar variable or a stream variable. The right hand side (RHS)

of a definition consists of a function application where the function is one of the operators

described above and the arguments are variables. Definitions must be type consistent - e.g.,

the definition of a scalar variable must be the application of a t operator or a first operator,

while the definition of a stream variable must be the application of a res!, cons, true-gate,

false-gate, merge or a T operator.

If t-boxes and T-boxes are left uninterpreted, then the set of equations of an L program

can be considered to be a partially interpreted equational scheme. Jaffe [9] has shown that

the expressive power of such an equational scheme is equivalent to that of recursively

enumerable schemes. Interestingly enough, the expressive power of such a scheme remains

unchanged even if t-boxes and T-boxes are removed from the system. Of course, such a

system would not be particularly convenient for programming.

We will find it convenient to consider an L program as a data-flow graph. The data-flow

graph corresponding to an L program can be generated by drawing a box for each equation

in the program, labeling the box with the function on the RHS of the equation, labeling the

output of the box by the variable on the LHS of the definition and connecting the output of

the box to the appropriate inputs of all boxes where it is needed. Since the output of a box

may be connected to the inputs of several boxes, there is an implicit fork operator at the

output of any box that is connected to several boxes. It is convenient to think of a scalar

variable as a single token and a stream variable as a sequence of tokens flowing down the

arc with the label of that variablc2. Each out-going arc of a fork receives a copy of a token

2we assume unbounded buffering along euch arc.

8

at the in-coming arc. Thus, there is a direct correspondence between the h;s1ory of a line X

in the data-flow graph and stream X in the L program. In the discussion below, we will

drop the distinction between the L program and its data-flow graph, ... as well as the

distinction between stream X in the L program and the history of the line labeled X in the

data-flow graph, and use these tenns interchangeably. Figure 1 shows the operators of

L. We make fork an operator in order to simplify the discussion below. A program for

generating Fibonacci numbers is shown in Figure 2.

As in Kahn [10], the meaning of L programs can be given ~ follows. If D is some set, let

Dw be the set of finite and denumerably infinite sequences of elements of D, where the

empty sequence [] is considered to be an element of Dw. Let~ be the set containing the

denotations of all scalar values such as integers, booleans etc. Consider the set ~w.

Elements in ~w are ordered by the prefix ordering on sequences in which the smallest

element is []. It is easy to show that under this ordering, all the operators in L are

monotonic and continuous functions from sequences to sequences. For each equation in an

L program, we can write down a semantic equation that describes the relation between its

inputs and outputs. The meaning of an L program is the least fix-point of this set of

semantic equations.

2.2 Data-Driven Evaluation of L programs

Consider the following L program where Fl, F2, ... represent L operators, and Il, 12, ...

represent input streams.

Xl = Fl(Il,I2, ... ,Xl,X2, ...)
X2 = F2(11,I2, ... ,Xl,X2, ...)

XN = FN(Il,12, ... ,Xl,X2, ...)

By Kleene's theorem [13], the least fix-point can be computed using the following iterative

process in which xr(k) represents the value of stream Xl at step k.

1. Substitute the value of input streams on the RHS, and set xi(O) = [] for all
streams.

9

t T

Afork (scalar value) *ork (stream)

Figure 1: The Operators of Language L

Tadd

0

Figure 2: A Program for Computing Fibonacci Numbers

10

2. Repeatedly compute, x1<k+l) = Fl(Il,12, ... ,Xl(k),xi(k), ...) for all streams.

For a terminating program the iterative process will stop at some step k wt ere x1(k + l) =
x1(k) for all streams. Several points should be noted about this process. First of all, x(k) ~

x<k + l) because F's are monotonic. Therefore at each "step" old elements of X are left

unchanged and a few additional elements of X may be defined (Le. computed). If streams

are viewed as· a sequence of tokens then this process can be understood as follows: arrival

of a token at the input of a function may cause a new token to be generated at the output

stream. This is an essential property of d~ta-driven or dataflow systems. However, there is

a subtle difference between the technique outlined above and data-driven evaluation.

In Kleene's recursion there is a well defined concept of step. The k +1st step can begin

only after the x<k) value of all streams have been computed. This is a form of fair

scheduling which guarantees that every stream function gets a chance to be evaluated.

Without this notion of fair scheduling, it can not be ensured that the least fix-point of the

equations would be computed. In dataflow systems there is no precise concept of step.

Data-driven evaluation may be defined as follows:

1. Substitute the value of input streams 11,12, ... on the RHS and set x1<0) = [] for
all streams.

2. Evaluate any one F that has received additional input, that is, compute x(k+ l)
= F(Il,12, ... ,Xl (k>,xi(k>, ...) such that for some Xi, xlk· l) c xlk)_ Repeat step
2.

The above rule is nondeterministic in the sense that there are many permissible execution

sequences. It is appealing for parallel machines because any subset of enabled operators can

be chosen to execwe. However it has the defect that some enabled operator may never be

chosen and thus the least fix point may never be reached. This problem arises only when

some stream other than the output stream can have infinite tokens. An example of such a

program is shown in Figure 3.

A = Tl(B, I)

B = cons(_a, A)

0 = T2(A, I)

11

I

Tl

T2

0

Figure 3: A Simple L Program

2.3 Introducing Demand Streams In L Programs

We now describe our technique for transforming L programs such that a data-driven

evaluation of the transformed program computes precisely the same values as a demand­

driven evaluation of the original program. The technique essentially involves the

introduction of demand streams into L programs. A demand s1ream is a stream of d tokens

(for demand tokens) where the data type of d is distinguished from all other data types in L

such as integers, booleans, reals etc. Let stream X be the output of some operator A. We

will represent the demand for elements of stream X by a demand stream DX, in which the

ith d token represents the demand for the ith element of X. In order to convert demands for

the output of some operator into demands for the inputs of the operator, we can associate

some additional code with every operator, which will take as input the demand stream DX

(and, perhaps, the inputs of the operator) and generate demand streams for each of the

inputs. For scalar operators, we will assume that only one demand for the output can be

made, and this demand will be represented by the scalar variable d:Thc code for demand

12

propagation for each operator of L is shown in Figure 4. Notice that except in the case of

the fork operator which requires the D-union operator, no new operators are required for

demand propagation.

The code for a fork needs some explanation: A fork has two outputs, and hence, the

demand streams for the outputs must be merged together to generate one demand stream

for the input of the fork. The operators d-union and D-union perform this operation for

scalars and streams respectively. Their behavior is easy to understand in operational terms.

The d-union operator can receive zero or one d token on either of its input arcs. When the

d-union operator receives the first d token, it forwards it to the demand stream for the input

stream of the fork. If, after this, it receives ad token on its other input arc, it simply absorbs

this token. Since a d-union operator does not know a priori on which input arc it will first

receive a d token, the implementation of the d-union operator requires some concept of

nondeterminism. However, the d-union operator is still a monotonic and continuous

function from histories to histories - given the histories of its input lines, the history of the

output of the d-union is uniquely defined. An alternative way of looking at the d-union

operator is that it is the least upper bound operator on a domain in which there are only two

elements - ..L
5

and d.

D-union is the stream version of d-union which forwards only one of the two ith tokens to

arrive on inputs. For example, if tokens on the input lines A and B of a D-union arrive in

the time order - A(l), A(2), B(l), B(2), B(3), ... then its output will be A(l), A(2), B(3),

The D--union operator is also a function from histories to histories.

Since we do not want to perform any computation that is not done by a demand-driven

evaluator, a token should not be permitted to flow down the right branch of the fork if it

was generated in response to a demand from the left branch of the fork (and vice versa),

until there is a demand for the token from that branch. Operators gme and GATE permit

us to do this for scalar and stream forks as shown in Figure 4(f) and Figure 4(g).If dis a

demand, gatc(x,d) is a strict scalar function which outputs x only when both x and d have

13

rest

(a)_ first (c) cons

(b) rest

·~ ·~
, , ,r

t T

'r

(d) t-box (e) T-box

(f)fork (scalar value) (g) fork (stream)

DI DB B

11 12 DB Dil D12 B

False-gate

0 DO

DO
(h) True gate (i) merge

Figure 4: Propagating Demands

14

been received. GATE is simply the stream version of gate and hence, is a T-box. Gate

operators are shown as [><] in Figure 4.

Once we can associate code for demand propagation with each operator of L, it is easy to

introduce demand streams into L programs -_ simply convert each operator in the L

program into the operator with its demand propagation code as specified by Figure 4. We

will describe the algorithm more fonnally in terms of the dataflow graph associated with

the L program.
Algorithm·MDP: A Microscopic Demand Propagation Algorithm for

introducing demand streams into L programs.

Let F be any operator in an L program, and let its inputs be Il, 12, ... and let
its outputs be 01, 02, Let FD denote operator F with its demand propagation
code. In FD, let D01, D02, ... denote the demands for outputs 0 1, 02, .. .
respectively and let Dll, D12, ... denote the demands for inputs 11, 12,
respectively. Note that D01, D02, ... are inputs of FD and Oil, DI2, ... are
outputs of FD. Given the dataflow graph of an L program, the LD program (Le.,
the L program with Demands) that corresponds to this L program is generated as
follows -

1. transform each operator in the L program into the operator with its
corresponding demand propagation code as in Figure 4

2. let us call each line in the L program a data-line. For each data-line A, do
the following :

- if A is output On of operator F and input Im of operator G, then
create

a a line labeled A in the LD program, and let it be output On of
FD and input Im of GD.

b. a line labeled DA in the LO program, and let it be output
Dim of GD and input DOn of FD.

- if A is an input line of the program and is input Im of operator F,
then create

a. an input line labeled A in the LD program, and let it be input
Im of operator FD.

b. an output line labeled DA, and let it be output Dim of
operator FD.

15

- if A is an output line of the program and is output Om of operator F,
then create

a an output line labeled A in the LD program, and let it be
output Om of operator FD.

b. an input line labeled DA, and let it be input DOm of operator
FD.

□

Notice that for every line in the L program, there is a line in the LD program with the

same label. The LD program corresponding to the L program shown in Figure 2 is shown

in Figure 5.

Tadd

0

Figure 5: The LD program corresponding to the program of Figure 2

We now give the semantics of LD programs. Let d be the denotation of d, the demand

data type. dis incomparable to all other data types such as integers, reals, booleans etc. Let

{d}w be the set of all finite and denumerably infinite sequences of ds. Construct a domain

~om which is. the union of~w and {d}w. As before, these sequences can be ordered by the

prefix o_rdering on sequences. It is easy to show that in this domain, all the operators of LD

are monotonic and continuous functions from sequences to sequences - the only new

operators are d-union and O-union whose semantic equations arc

16

d-union(a, b) => ifa = 1-
5

!hen b else a

D-union(A, B) => cons(d-union(flrs!(A),firs1(B)), .
D-union(res1(A), rest(B)))

• where a,b E { d, 1-
5

} and A,B E { d }

Given an LD program, we can write down a set of semantic equations that express the

relations between input and output streams of each operator in LD. The meaning of LD

programs is the least fix-point of this set of semantic equations.

2.4 Data-driven Evaluation of LD Programs

Since all the operators in LD programs are monotonic and continuous stream functions,

LD programs can be executed on a dataflow machine which executes L programs. Notice

that the execution of LD programs is done in a data-driven manner - le., any stream

operator that receives input can be executed. In the next subsection, we will show that

data-driven evaluation of an LD program will compute precisely the same histories on

every line as a demand-driven evaluation of the corresponding L program. Consequently,

no fair-scheduling will be required for the execution of LD programs as long as the

computation of the output of the program does not require infinite histories on any line. Of

course, once an infinite history on some line is required to produce the output of the

program, there must be fair-scheduling to produce the required output on all output lines.

This is not a draw-back of our scheme - any implementation of a demand-driven evaluator

will require fair-scheduling in such a case.

2.5 Properties of LO programs

In subsections 2.1 and 2.4, we have shown that the meaning of Land LD programs can

be expressed in the context of Kahn's theory. An important benefit of doing this is that we

can use techniques like stepwise computational induction [13] and induction on the

structure of programs to prove properties of L programs. ln this subsection, we will use

these techniques to prove that our method of introducing demand streams into L programs

is "correct" in the sense that a data-driven evaluation of the LD program will produce the

same results as a dcmand-dri\'cn evaluation of the L program.

17

Since demands are represented explicitly in LD programs, it is reasonable to expect that

the criteria for "demand-drivenness" should be expressible in the context of the semantics

of LD programs. Of course, the fact that we call some line in an LD program a "demand

line" does not automatically mean that the history of that line has anything to do with

demands in a demand-driven evaluator - for example, if the code for demand propagation

through some operator is incorrect, or if our operator-by-operator transformation of the L

program is incorrect, then the histories of demand lines in LD programs may have no

relationship with the histories of the corresponding data lines in the L program under a

demand-driven interpretation. In fact, the proof given below will, in some sense, provide an

a posteriori justification for calling these lines demand lines !

The proof we give below relies on a comparison of the computations performed by an L

program and the corresponding LD program when they are both given the same inputs3.

We now introduce some notation. If A is the name of some line in an L program, let HA

and LA denote the histories of the lines labeled A in the Land LD programs respectively at

any point in the computation, and let LDA denote the history of line LDA (le., the

demand line corresponding to A in the LO program) at any point in the computation. We

let %A, LA, and LOA denote the "final" histories of these lines - le., the histories defined

by the least fix-point of the system of equations for the Land LD programs. Let Data-lines

stand for the set of lines in the L program, In stand for the subset of Data-lines which is the

set of all input lines of the L program and Our stand for the subset of Data-lines which is

the set of all output lines of the L program. If Xis some history, we will let IX] denote the

length of the history where length is the (obvious) function defined on histories. We would

like to emphasize that length is not an operator in the language, and h~nce, is not a function

from a stream to an integer; rather, it is a function from the denotation of a stream to the

denotation of an integer.

Before we prove the main result of this section, we attempt to give some intuition behind

\ e .. the same dara inpuLc;. ll1e IJ) program will need some de111a11d inputs as well. lt is useful to imagine
an L program and the corresponding I.I) program placed side-by-side and given the same data inputs.

18

it. We would like to prove that a data-driven evaluation of an LO program will perform the

same computations as a demand-driven evaluation of the corresponding L program. How

would one characterize "demand-driven evaluation of the L program"? The first property

we would expect of a demand-driven evaluation of an L program is that the history of any

line X in the program will be a prefix of the history of the corresponding line X in the L

program under data-driven evaluation. In other words, under demand-driven evaluation,

fewer tokens may flow along a data-line in the program - however, the values of these

tokens will be the same under both modes of evaluation. In our model, this property can be

stated more formally as follows -

"x E Data·lines {LX ~ %X}

A second property we would expect our system to have is that for any data-line X, l.tXI ~

l.tDXI. In our model, we would like to identify the number of elements demanded of a

stream with the number of d tokens on the corresponding demand-line - this identification

would be meaningless if there could be more tokens produced on a data-line than the

number of d tokens produced on the corresponding demand-line. A data-line for which

this property is true will be said to be constrained by its demand-line. Although this

property will be true for all lines at all points of the computation, we will need only the

weaker result that the property is true for the "final" histories on all lines. This property

can be stated more formally as follows -

"x {Data-lines { l.tXI ~ l.tDXI }.

If X is a data-line and ILXI < l.tDXI, then we will call line X unsatisfied.

We can now formalize the intuitive notion of demand-driven evaluation as being that

form of evaluation which computes the smallest histories on all lines which suffice to

produce the output of the progrnm. In our model, we can express this notion by saying that

if any data-line is unsatisfied, then there must be some omput data-line that is unsatisfied.

More formally, this can be expressed as follows -

19

"o E Out { !LOI = ILDOI } ⇒ . "x E Data-lines { ILXI = ILDXI}

Notice that an "interpreter" that performs no computation whatever would also satisfy all

three properties ! In order to rule this out, we need a property that avers that the interpreter

does, in fact, do some work. The appropriat~ property is that under demand-driven

evaluation, if some data-line is unsatisfied, then the history of the data-line is the same as

the history of the line under data-driven evaluation. More formally, we can express this

property as follows -

Ax E Data-lines { ILXI < ILDXI ⇒ ILXI = !%XI }

The reader should convince himself that the four properties given above formally capture

the notion of demand-driven evaluation. In the rest of the subsection, we will prove that

data-driven evaluation of LD programs has the four properties given above by showing

that any program built out of operators that satisfy the four properties also satisfies the four

properties.

Since the set of input lines is a subset of the set of data-lines of the LD program, the four

properties given above imply certain constraints on how inputs are to be fed into the LD

program. For example, suppose that A is an input line, and suppose that the user has

provided 5 data values to be fed into line A. Suppose, however, that only 3 data values are

required on this line to produce whatever output has been demanded by the user. In that

case, the second property requires that only 3 data values be allowed to flow down line

A. How is this to be achieved ? An LD program has two kinds of inputs - data inputs and

demand inputs. Providing demand inputs is easy - if n values are required to be produced

on output line Om of the LD program, then n d tokens are fed into the input line DOm.

The demand propagation code of the LD program propagates these demands through the

LD program and generates demands for the inputs of the LD program. Let / be an input

line, and suppose that n tokens are required on that line to produce whatever output has

been demanded from the LD program. If demands have been propagated correctly, then

1.tDII will be equal to 11. However, the usl.!r may hav1: supplied fewer than n tokens, or n

20

tokens, or more than n tokens on line I. In order for the properties to hold, it is necessary

that if the user has supplied n or more tokens to be fed into line I, then exactly n tokens

must be fed into line I; on the other hand, if the user has supplied fewer ~han n tokens on

line I, then all these tokens must be fed into the program. This requirement on input lines

can be expressed formally as follows -

A 1 E In { (LI ~ %I) A (ILII ~ ILDII) A (ILII < ILDII ~ ltll = IXII)}.

For obvious reasons, we will say that inputs are fed into an LD program on demand if the

requirement given above is satisfied. In the rest of this sub-section, we will show that if the

condition given above for input lines is satisfied, then a data-driven evaluation of LD

programs will satisfy the four properties given earlier. Exactly how the requirement on

input lines is ensured operationally is an implementation dependent issue. For example, if

the generation of a d token on the demand line corresponding to some input line causes the

system to prompt the user for one data token or causes it to read the required token from a

file, then it is ensured that tokens are fed into input lines only when there is demand for

them. On the other hand, if the implementation requires that all tokens that are to be fed

into input lines must be placed on the lines before the execution of the program .(i.e., if the

input lines must be initialized with the input histories), then we must put a gate on each

input line and control the gate with the demand line for that input, thereby ensuring that

input tokens are allowed to enter the LD program only on demand.

We will now prove that LD programs satisfy the four properties mentioned earlier. It will

be convenient to prove slightly stronger versions of the four properties in which the

conditions on input lines are brought in explicitly. Thus, the properties may be restated as

follows.

Pl(Correctness) :A demand-driven evaluation of a program never performs

more computation than a data-driven evaluation of the program.

AI E In { LI~ %I } ~ Ax E Data-lines { LX ~XX }

21

P2(Demand-driven Lines):If all input lines are constrained by their demand­

lines, then all data-lines are constrained by their demand-lines.

· A1 E In { (LI ~ '.Jtl) A (ILII s ILDII)} ⇒ "x E Data-lines { ILXI s IL0XI }

P3(Liveness):I f inputs are fed in on demand into the LD program, then the

history of any unsatisfied data-line in the LD program will be the same as the

history of the corresponding data-line in the L program.

A1 E In { (LI ~ '.Jtl) A (ILII S ILDll) A (ILll < ILDII ⇒ ILll = l:Jtll)}

"x E Data-lines { ILXI < ILDXI ⇒ ILXI = l:JtXI }

P4(Parsimony): If inputs are fed in on demand, and all output data-lines of

· the LD program are satisfied, then all data-lines in the LD program are satisfied.

A1 E In { (LI~ '.Jtl) A (ILII s IL0ll) A (ILll < llDII ⇒ llll = IJGII)}

["o E Out { IL0I = ll00I } ~ "x E Data-lines { llXI = ILDXI } 1

Lemma 1: All operators of LD satisfy properties Pl to P4.

Proof: Follows trivially from the semantic equations for each of the operators
ofLD.

□

The operators in L are powerful enough that Lis a very general programming language

- as we stated before, the expressive power of L schemes is the same as that of recursively

enumerable schemes. However, the reader may wonder if the operators of L have been

chosen carefully so that properties Pl to P4 hold, or whether the properties hold for a

language which is augmented by other operators. One might feel that as long as every

operator in the language is a monotonic and continuous function (from histories to

histories), prope11ies Pl to P4 should hold for programs in the language. Unfortunately,

this is not true - if the language has non-sequential functions [15], then property P4 may not

necessarily hold. Consider, for example, the parallel-or operator shown below.

A d~mand for the output of a parallel-or function must be propagated to both of its

22

..L F T

..L ..L ..L T .

F ..L F T

T T T T

Figure 6: Truth-table for the parallel-or

inputs since the interpreter has no way of knowing a priori which of the inputs may be

undefined. However, since the parallel-or can produce its output even if one of its inputs is

undefined, the parallel-or (together wit~ its demand propagation code) does not satisfy

property P4. We are not sure how to characterize demand-driven evaluation in the presence

of non-sequential functions. However, since most programming languages do not include

non-sequential operators such as the parallel-or, this omission is not very serious. Note that

although the d-union operator is a non-sequential function, it is not an operator of L, but

only of LD.

We will now show that any program built up from any operators satisfying properties Pl

to P4 (not necessarily only those in LD) also satisfies these properties. It is easy to show

that any L (or LD) program can be built from primitive operators by repeated use of two

operations - juxtaposition and iteration, as in Figure 7.

• • • •••

Juxtaposition

X

.....,_--,r-r-- connect
• • YtoX

y

Iteration

Figure 7: J ux ta position and Iteration of Programs

Theorem 2: Properties Pl to P4 a.re invariant under juxtaposition and iteration.

Proof: To pro\'e this theorem, we will use stepwise computational induction

23

and induction on the structure of the program. The reader who is unfamiliar with
these techniques can refer to [13].

Proof of Property !:(proof by stepwise computational induction)

Let us define a predicate GJ as follows :

GJ = "x E data-lincs[LX ~ HX]

Since there are a finite number of lines in an L program, this is an admissible
predicate [13].

If LX = [] for all data-lines X in the transformed program, the predicate is
trivially true.

Suppose that the histories of data-lines A, B, C, ... are LA, LB, LC... in the
transformed L program, and HA, H B, HC, ... in the L program, and suppose that
the predicate is true for these histories. Each data-line in the L program is either
an input line or the output of some operator. If X is an input line, then, by
assumption about input lines, LX ~ HX is always true. If X is not an input line,
then it is an output of some operator (say F). Let P, Q, R, ... be the inputs to F,
and let the outputs of F be labeled X, Y, Z, ... as in Figure 8.

p Q R p Q R

• • • • • • ••• •

F FD

• • • • • • ••••

X X Y Z

Figure 8: Operators F and FD

For the lines labeled X,

FD-x(LP, LQ, LR, , LDX, LD Y, LDZ,)
~ F-x(LP, LQ. LR,) {FD satisfies property Pl}
~ F-x(HP, J!Q, HR, ...) {LP~ HP, ... }

A similar argument holds for a.II other lines in the programs. By Scou·s
induction rule, we can now conclude that

24

"x E data·lincJLX ~ %X].

Proof of Property 2:(by stepwise computational induction)

In this case, the (admissible) predicate is

Ax E data-lines[ILX] ~ ILDX]].

The proof follows the same lines as the proof of (1) and is, therefore, omitted.

We now state two simple facts about Land LD programs which are needed to
prove that properties P3 and P4 are invariant under juxtaposition and iteration.

Lemma 3: Consider the two L programs Ll and L2 shown in Figure
9. If %Xl = %X, then %X2 = %X.

X

Xl

Program Ll Program L2

Figure 9: Cutting a line in an L program

Proof: - Follows trivially from the functionality of program P.

. A similar lemma exists for LD programs as well - the lemma is slightly
different because care must be taken with regard to data inputs to LD programs.

Lemma 4: Consider the two programs LDl and LD2 shown in
Figure 10. If LDX2 = LOX, and LX is fed into Xl 011 demand then
LXl = LX2 = LX and LDXl = LDX2 = LDX.

Proof: - A simple way to prove this lemma is to put a gate on line Xl
and appeal to Lemma 3. Consider program LD3 Figure 11. If .tXO =
LX [i.e., if the history of line XO is initialized to .tX], then the history of

D

D

D

25

X

Program LDl Program LD2

Figure 10: Cutting a data line and a demand line in an LD program

any line Y in program LD2 is the same as the history of the line
labeled Y in program LD3.

DX2 X2

Program LD3 Program LD4

Figure 11: Cutting a data line and a demand line in an LD program

Consider the program LD4 shown in Figure 11. The reader should
verify that operator O satisfies property P2. Hence, it follows that
program LD4 satisfies property P2. TI1erefore,

(1) l.tDXll = ltDX2l {by definition}
(2) 11.x11 = min(ILDXll, ILX21)

{ from the semantic equation for gate}
= min(ltDX21, ILX2I)
= ILX21 {program LD4 satisfies property P2}

It is then easy to show that tXl = 1.X2 = lX and tDXl = tDX2
= LDX. The required result now fo llows simply from applying lemma
3 to programs LD3 and LD4.

26

To prove P3 and P4, we will use induction on the structure of an LD program.

Proof of Property 3: (by induction on the structure of the program)

Assuming that the predicate on inputs is satisfied, we want to prove that

"x E data·lines[l.tXI < l.tDXI ~ l.tXI = l%XI]

The proof that P3 is invariant under juxtaposition is trivial and is omitted. To
show the invariance of P3 under iteration, consider two programs F and FD
which satisfy P3. Let G and GD be the programs that result from the iteration of
programs F and FD respectively and let X be the line that was looped back (see
Figure 12). Consider programs G and GD. If l.tXI = l.tDXI, then the required
result follows from the inductive assumption about F and FD. Suppose l.tXI <
l.tDXI (we know from P2 that l.tXI ~ l.tDXI). If we show that in this case, l.tXI
= !%XI. then the required result follows from the inductive assumption about F
and FD.

••
0 2

X DX

01 02 Y DY

connect
YtoX

=?

connect
YtoX

~
DX to DY

Figure 12: Iteration of two Programs

X

Suppose l.tXI * l'.JGXI. From Pl, this implies that .tX c '.JGX. Let us denote the
history .tX by A and the history of line DX by~- Consider the programs F and
FD in which

A is fed into line X in program F,

□

27

.A. is fed in on demand into line X in program FD,
a demand stream of length I.A.I is fed into line DY in program FD.

Applying Lemma 4 to FD, we can conclude that the history of line Y must be .A.

and the history of line LOX must be~. From the inductive assumption about F
and FD, it follows that that %Y must be .A.. By assumption, %X is .A.. We
therefore have found a new fix-point for program G in which the history of all
input lines is the same as before,except that the history of line Y (or X) is .A.. This
fix-point is distinct from the least fix-point of program G because .A. c %X. This
contradicts the definition of least fix-points. Therefore, it is impossible for LX c
%X.

Proof of Property 4: (by induction on the structure of the program) Assuming
the conditions on input lines are satisfied, we must show that

Ao E Out { !LOI = ILDOI } => Ax E Data-lines { ILXI = l.tDXI }

The proof of this property follows the same lines as the proof of P3. As before,
we only show that P4 is invariant under iteration.

Consider Figure 12 and let FD be an LD program that satisfies P4. Let GD be
the resulting program when Y is connected to X and DX is connected to DY.
Suppose that all output lines Oi are satisfied - ie., IL011 = ILD011. Since
program GD satisfies P2, it must be the case that ILXI ~ ILDXI. If we can show
that ILXI = ILDXI, then the required result follows from the inductive
assumption about program FD. We prove this by contradiction.

Suppose ILXI < ILDXI. Let us denote LX by .A. and LOX by~- Since program
GD satisfies P3, %X must be .A.. Consider the programs F and FD in which

.A. is fed into line X in program F,

.A. is fed in on demand into line X in program FD,
a demand stream of length I.A.I is fed into line DY in program FD.

By Lemma 3, it must be true that %Y = .A.. 1l1erefore, since program FD
satisfies P3, it must be true that LY (in program FD) must be .A.. Therefore, in
program FD, line Y is satisfied. By inductive assumption, program FD satisfies
P4. Therefore, line X is satisfied and ILXI ~ I.Al.

If ILXI = I.A. I, then we have found a new fix-point for program GD which is
distinct from its least fix-point, since l ✓tl < !'ill. Hence, it is impossible for l ✓t l < l~I.
from which the required result follows.

□

28

Otherwise, ILXI < l..4.I. Let us .denote 1.X by ..4.1. Consider the program FD in
which ILDYI = l..4.11, and all other inputs are the same as before. Since FD
satisfies P3, all output lines Oi of FD must still be satisfied. From P3, we can also
conclude that line Y must be satisfied. Hence, line X must also be satisfied. Once
again, ltXI ~ l..4.ll. If ILXI = l..4.ll, the required result follows as before.
Otherwise, we can apply the same construction again. Since l..4.I is finite (since l..4.I
< l~I). the repeated construction must tenninate, at which point we will have
found a fix-point for GD distinct from the least fix-point.

3 Conclusions and further work

□

In this paper, we have shown that for a powerful stream processing language L, the effect

of demand-driven evaluation can _be achieved by program transfonnation techniques.

There are many dimensions along which this work can be extended.

Although the expressive power of L schemes is the same as that of recursively

enumerable schemes, it is possible to add various features to L for programmer

convenience. for instance, the language L did not permit any user-defined functions. If the

language is extended to pennit them, then the fix-point equations will contain variables of

two types - sequence domains and continuous mappings between sequence domains. The

data-flow graph for the language will have nodes that represent function application. An

interpreter for such a language must be capable of "unfolding the function call" as soon as

there is a demand for any of the outputs of the function. The techniques described earlier

in this _paper apply without modification to this embellished language.

More interesting extensions result when the semantics of streams are changed in various

ways. In L, the cons operator is strict in its simple input. By making it non-strict in that

input, it is possible to pennit the elements of a stream to flow down a line out of order.

More denotationally, the semantics of streams is changed to the sub-sel ordering rather

than the prefix ordering on sequences [l]. Once again. our techniques apply without any

major modifications - some changes must be made for the demand propagation code for

lrue-gate, Ja/se-gate and merge, but the basic ideas carry through.

29

An even more drastic change is to pennit the elements of streams to be streams

themselves. We believe that the view of a stream as a sequence of tokens flowing down a

line must be abandoned in that case. However, we believe that our techniques will apply

with minor modifications even in this case, but we have not investigated the problem

further.

A different direction of research is to investigate other algorithms for introducing

demand streams into L programs. The Microscopic Demand Propagation Algorithm given

in this paper propagated demands through each operator in tpe dataflow graph separately,

without attempting optimizations of any kind. Taking a more global approach to demand

propagation would lower the overhead of introducing demands into L programs. In

implementing dataflow languages with streams, it is possible to extend this idea even

further and consider transformations which trade the complexity of demand propagation

for a bounded amount of additional computation on data lines. These ideas are explored in

more detail in a companion paper.

Acknowledgments: We would like to thank Gordon Plotkin, Dean Brock and Vinod

Kathail for many useful discussions on streams and lazy evaluation.

30

.References

l. Arvind, and Gostelow, K. P. Some Relationships Between Asynchronous Interpreters
of a Datatlow Language. In E. J. Ncuhold, Ed., Formal Description of Programming
Languages, North-Holland, New York, 1977.

2. Arvind, K. P. Gostelow, and W. Plouffe. An Asynchronous Programming Language
and Computing Machine. Tech. Rep. 114a, Department of Information and Computer
Science, Uniyersity of California, Irvine, California, December, 1978.

3. Arvind, V. Kathail, and K. Pingali. A Dataflow. Architecture with Tagged Tokens.
Proceedings of the 1980 International Conference on Circuits and Computers, 1980.

4. Backus, J. Can Programming Be Liberated from the van Neumann Style? A Functional
Style and Its Algebra of Programs. Communications of the ACM 21, 8 (August 1978),
613-641.

5. Burge, W. H. Recursive Programming Techniques. Addison-Wesley Publishing Co.,
Reading, Mass., 1975.

6. Dennis, J.B. First Version of a Data Flow Procedure Language. In Lecture Notes in
Computer Science, Volume 19: Programming Symposium: Proceedings, Col!oque sur la
Programmation, B. Robinet, Ed., Springer-Verlag, 1974, pp. 362-376.

7. Friedman, D. P., and D.S. \Vise. CONS Should Not Evaluate its Arguments. In
Automata, Languages, and Programming, unknown, 1976, pp. 257-284.

8. Henderson, P. Functional Programming: Application and Implementation.
Prentice/Hall International, Englewood Cliffs, New Jersey, 1980.

9. Jaffe, J. The Equivalence of R.E. programs and Datatlow Schemas. Tech. Rep.
TM-121, Laboratory for Computer Science, MIT, Cambridge, Mass., 1979.

10. Kahn, G. The Semantics of a Simple Language for Parallel Programming.
Information Processing 74: Proceeding of the IFIP Congress 74, 1974, pp. 471-475.

11. Kahn, G., and D. MacQueen. Coroutines and Networks of Parallel Processes.
Information Processing 77: Proceedings of IFlP Congress 77, August, 1977, pp. 993-998.

12. Keller, R.M. and Gary Lindstrom. Applications of Feedback in Functional
Programm ing. Proceedings of the ACM Conference on Functional Programming
Languages and Computer Architecture, Portsmouth, New Hampshire, 1981, pp. 123-130.

13. Manna, Z. A-fathematical Theory of Computation. McGraw-Hill Publishing Company,
New York, 1981.

31

14. D. A. Turner. The Semantic Elegance of Applicative Languages. Proceedings of the
ACM Conference on Functional Programming Languages and Computer Architecture,
Portsmouth, New Hampshire, 1981, pp. 85-92.

15. Vuillemin, J. Correct and Optimal Implementations of Recursion in a Simple
Programming Language. JCSS 9 (1974), 332-352.

16. Weng, K.-S. Stream-Oriented Computation in Recursive Data Flow Schemas. Tech.
Rep. TM-68, Laboratory for Computer Science, MIT, Cambridge, Mass., October, 1975.

