
MIT / LCS/ TM-244

HOW TO CONSTRUCT RANDOM FUNCTIONS

ODED GOLDREICH

SHAFI GOLDWASSER

SILVIO MICALI

November 1983

Abstract

How to Construct Random Functions

Oded Goldreich Shafi Goldwasser Silvio Micali

Laboratory for Computer Science
MIT

Cambridge, MA 02139

We assume that functions that are one-way in a very weak sense exist We
prove that in probabilistic polynomial time it is possible to constrnct deterministic
polynomial time computable functions g: {l, ... ,2k} -> {l, ... ,2k} that cannot be dis
tinguished by any probabilistic polynomial time algorithm from a random function.

Loosely speaking, g provides random access to a k2k-bit long pad whose

entries record the outcome of independent coin flips.

This complexity theoretic result has many important applications in Cryptog~

raphy, Protocols and Hashing.

Keywords : Randomness, random function, pseudo-random number generation.

The first author was supported in pan by a Wcizm,m Postdoctoral Fellowship. The second
amhor was supported in part hy the International Business Machines Corporation under
the IBM/MIT Joint Research Program, Faculty Development Award agreement dated Au
gust 9, 1983.

- 2 -

1. Introduction
Measuring the randomness of a string has attracted much attention in the

second half of this century. Kolmogorov [6] and Levin [8] measure the random
ness of a string based on the length of its shortest description. Shamir [10], Blum
and Micali [3], and Yao [12] introduce algorithmic predictability measures. Adle
man [l] and Sipser [11] take an intermediate approach.

However, very little is known about measuring the randomness of a f unctioil.
In this paper,

1) We introduce an algorithmic measure of the randomness of a function.

(Loosely speaking, a function is random if any polynomial time algorithm,
which asks for the values of the function at various points, cannot distinguish
a computation during which it receives the true values of the function, from a
computation during which it receives the outcome of independent coin flips.)

2) Based on a complexity theoretic assumption, we present functions that achieve
maximum algorithmic randomness.

Let lk denote the set of all k-bit stlings, and Hk the set of all functions from lk

into lk. Note that the cardinality of Hk is 2k2". Thus to specify a function in Hk

we would need k 2k bits: an impractical task even for a moderately large k. Even
more, assume tha~ one randomly selects subsets HfC Hk of cardinality 2k so that
each function in Hf has a unique k-bit iadex; then there is no polynomial time
Turing Machine that, given k, the index of a function JEHf and x Elk, will
evaluate J(x). As there are many applications where we would like to use "ran
dom" functions, we must restrict ourselves to choose functions from a subset
Fk CH k where the collection F = {Fk} has the following properties:

1) There is a probabi1istic polynomial algorithm AF that on input k, will select
with uniform probability a function in Fk .

2) There is a polynomial time Turing Machine that evaluates, on any input, any
function in Fk> given its index.

3) No probabilistic algorithm that runs in time polynomial in k can distinguish
the functions in Fk from random functions. (see section 3.1 for a precise

definition).

Such a collection of functions F will be called a poly-random collection. Loosely
speaking, despite the fact that the functions in F are easy to select and easy to

- 3 -

evaluate, they will exhibit, to an examiner with polynomially bounded resources,

all the properties of randomly selected functions. E.g. for JEF, it is computation

ally infeasible to find x and y such that f (x) is easily computable from J(y).

Assuming one-to-one one-way functions (formally defined in section 2.3) exist,

we will prove that a poly-random collection of functions exists. The proof is con

structive: given any one-to-one one-way function we will construct an algorithm
AF for a poly-random collection of functions F. The construction is in two steps:
first, we use Yao's construction (Theorem 2 and appendix C) to transform a one
to-one one-way function into a high quality pseudo-random bit generator, called a
Blum-Micali-generator (defined in section 2.1); next, we use any Blum-Micali

generator to constmct a poly-random collection.

Our result provides:

1) Perfectly-secure (deterministic!) priyate key encryption functions.

Such encryption functions exhibit to an examiner with polynomially bounded
resources, all the properties of a random function. Moreover, for all message
spaces with any probability distribution, the encrypted messages are provably

secure against both chosen plaintext and chosen ciphertext attacks.

2) A powerful tool for cryptographic protocols design.

Given a protocol that has already been proved secure when it uses random
(encryption) functions, it is hard to find a provably secure implementation of
it This is due to the fact that "concrete" (encryption) functions may have
unaccounted identities known to adversary who may successfully exploit
them. (E.g. for two functions f and g, an adversary may find an x such that
f (g(x)) =g(f (x))). Our result suggest the following methodology.

Design your protocol using random (encryption) functions so that you can
prove that it is secure. The protocol will be executed by using (encryption}

functions randomly selected from a poly-random collection. Such an imple
mentation will be provably secure. Otherwise, an adversary, who efficiently
breaks such an implementation, would provide an efficient way to distinguish

random functions from functions in a poly-random collection.

3) ''Ultimate" hashing: Choose and fix your hashing function. Now let an adver

sary choose the keys to be hashed and allow him to see the hashing values of
the keys he picked. Yet, he cannot force collisions! This hashing scheme can
be viewed as (and provides the first solution to) the two-parties

authentication-tag scheme defined by Brassard [4).

- 4 -

4) A secure secret password distribution scheme, in which passwords are not

stored, but can be quickly recomputed at any time.

2. Pseudo-Random Bit Generators
Throughout this paper, k will represent a security parameter. To all the algo

rithms in the paper k will be presented in unary. With P 1, P2, •.. we will denote

particular polynomials depending upon the desired design parameters. All polyno
mials in this paper are positive. The number of bits in the binary representation of

an integer x will be denoted by lxl.
A pseudo-random number generator is a deterministic polynomial time algo

rithm that when given a k-bit seed outputs a P1(k)-long pseudo-random number

sequence x
1
,x

2
, .. ,xp

1
(k)· The pseudo-random sequence should pass "some" statisti

cal tests. E.g. the sequence should have approximately as many O's as l's.

Many statistical properties of the familiar linear congruential pseudo-random
number-sequence xi+1 =a·xi +b (mod n) have been extensively studied by Knuth

[7].
In a very nice paper [10], Shamir introduces unpredictability as a measure for

the randomness of a sequence. He presents a pseudo-random number generator for
which computing the i + 1st number, xi +l• from x1,x2, .. ,xi is as hard as inverting

the RSA function [9].
Blum and Micali [3] point out that, even though xi +l may be hard to com

pute from the preceding xi's, every bit of xi +l may be easy to predict with high
probability. Even worse, consider a sequence of numbers such that the low-order
bits of each x; consist only of O's. The next number in the sequence can still be
hard to predict, but it would be against our intuition to call such a sequence
pseudo-random. They thus introduce the notion of a pseudo-random bit generator
that stretches a k-bit long seed into a P 1(k)-bit long sequence passing the Blum-

Micali test when the seed is unknown.

- 5 -

2.1 Blum· Micali·Generators

The Blum·Micali Test

Let P · be a polynomial and S = US k be a set of binary sequences such that
k

all sequences s ES k consist of P '(k) bits. Let M be a probabilistic polynomial-

time Turing Machine that on input the first i, i< Pffe), bits of sESk> outputs a bit

b. Let p/(i denote the probability that b = the i + 1st bit of s. The probability is

taken over the possible choices of s in Sk and all M's internal coin tosses. We say

that S passes the Blum-Micali test if for any polynomial P, for all probabilistic
polynomial-time Turing Machines M, for all sufficiently large k and for all
i< P'(k),

M 1 1
Pk,i < 2 + P(k).

Definition Let G be a detenninistic polynomial time algo1ithm that, on
input x Eh, outputs a P'(k)-bit long sequence. Let S = U S k> where S k is the

k

set of sequences output by G on seeds of size k. G is a Blum-Micali-generator if
S passes the Blum-Micali-test If so, S will be the set of the Blum-Micali

sequences.

Blum and Micali [3] presented a general algorithmic scheme that constructs
Blum-Micali-generators from any "unapproximable predicate" with a "friendship
function". They also gave the first implementation of their scheme and showed
that the sequences it produced pass the Blum-Micali test if and only if the Discrete
Logarithm Problem is "intractable". For more details, see appendix A.

Subsequently, Yao [12] showed that the Blum-Micali-test is a complete poly
nomial time statistical test (see next section for a precise definition). Therefore,
Blum-Micali-sequences pass all polynomial time statistical tests.

2.2 Yao's Statistical Test

Let P' be a polynomial and S =U Sk be a set of sequences, where Sk con-
k

sists of P '(k)-bit sequences. A polynomial time statislical test for strings is a proba-
bilistic polynomial time Turing Machine M that outputs only O or 1. We say that
S passes the test A,f if for any polynomial Q, for all sufficiently large k:

I s RI 1
Pk - Pk < Q(k)

- 6- -

where pf denotes the probability that M outputs 1 on a randomly selected ele

ment of Sk and pf the probability that M outputs 1 on a P'(k)-long random bit

sequence.

Theorem 1 (Yao):

A set S = U Sk of bit sequences passes the Blum-Micali-test if and only if it
k

passes all polynomial time statistical tests for strings.

Equivalently,

The sequences generated by a Blum-Micali-generator pass all polynomial time
statistical tests for strings.

The reader can derive a proof of Theorem 1 from the proof of Theorem 4.

2.3 Relevant Implementations of a Blum-Micali-Generator

Weak one-to-one one-way functions

The following definition is due to Yao. Let f k: lk -> lk be a sequence of per
mutations such that there is a polynomial-time algorithm that on input x Elk com·
putes fk(x). Let the function f be defined as follows: J(x) = fk(x) if xElk. We
say that f is a one-to-one one-way function if for all polynomial-time Turing
Machines M there is a polynomial P such that, for all sufficiently large k

M(x) -:1:- fk-1(x) for at least a fraction Ptk) of the xEh.

Theorem 2 (Yao [12]): Given a weak one-to-one one-way function, it is possi
ble to implement Blum-Micali-generators. (1)

For details on Yao's construction, see appendix C.

Blum, Blum and Shub [2] present an interesting implementation of the Blum
Micali scheme and prove that the generated sequences pass the Blum-Micali test if
and only if deciding Quadratic Residuosity modulo a Blum -integer<2> whose fac
torization is not known, is "intractable". Equivalently, if and only if squaring

modulo a Blum-integer is a weak one-to-one one-way function.

(1) As a matter of fact one can prove that there exist a weak one·to-one one-way function
if and only if there exist~ an unapproximabk predicate with a relative friendship function.
(2) A Blum integer is an integer of the fonn PrP2 where p 1 and p2 arc distinct primes
both congruent lo 3 mod 4.

- 7 -

An interesting feature of their generator is that knowledge of the seed and of

the factorization of the modulus allows easy access to each bit in an exponentially
long bit stiing (i.e. if k denotes the length of the seed and Iii < k, then the i-th

bit in the string can be computed in poly(k) time). This is due to the special weak
one-to-one one-way function on which the security of their generator is based.
However, this exponentially long bit string may not appear "random". Blum, Blum
and Shub only prove that any single polynomially long interval of consecutive bits

in the string passes the Blum-Micali-test Indeed, it may be the case that, given the
first k bits in the string and k bits starting from the 2✓I -th one, it is possible to

easily compute any other bit in the string. For details on the Blum, Blum Shub

generator, see appendix B.

The first implementation of a Blum-Micali-generator which passes the Blum
Micali test if and only if deciding Quadratic Residuosity madulo Blum-integers is

''intractable", is due to Yao [12]. However, his generator does not possess the
"easy-access" feature as in the Blum,Blum and Shub generator. Goldwasser, Micali
and Tong [5] propose an implementation of a Blum-Micali-generator that passes
the Blum-Micali test if and only if factoring a special class<3) of Blum-integers is

"intractable". Their generator has the same "easy-access" feature as in the Blum,
Blum and Shub generator. (Again, their generator is based on a special weak one
to-one one-way function and the "randomness" of bits exponentially apart is not

proved).

In the next section, we show that if any weak one-to-one one-way function
exists, we can construct sets Sfx containing 2k -bit strings and provide "easy-access"

to each bit in any string s ES[x. We prove that these "easily-accessed" bits are

indistinguishable from bit sequences chosen at random. More precisely, let M be

a probabilistic polynomial time Turing Machine capable of calls to an oracle Os
for a 2k -bit string sESf. On input k and access to the oracle Os, the j-th query

of M is a k-bit string i1; the oracle's answer is bij• the irth bit in s. Without loss

of generality, we can assume that M will ask Pi(k) queries on input k. The set of

strings Sk is defined as follows. A Pi(k)-bit string s· belongs to Sk if it is a

sequence of oracle-answers during a computation of M on input k and access to

an oracle 0 5 for some sESf. Then S = LJ Sk passes the Blum-Micali test
k

(3) in this class n = prp2 such that Pi=P2=3 mod 8 or Pi=P2=7 mod 8. Half of the
mum-integers arc of this form.

- 8 -

3. Constructing random functions
In this section we show how to construct functions that pass all "polynomially

bounded" statistical tests.
A collection of Junctions, F, is a collection {Fd, such that for all k and all

fEFk, f:Ik-> lk.

3.1 Polynomial Time Statistical Tests For Functions

A polynomial time statistical test for functions is a probabilistic polynomial

time algorithm T that, given an input k and access to an oracle O I for a function
J: h -> I k, outputs either O or 1. Algorithm T can query the oracle O I only by
writing on a special query-tape some y Elk and will read the oracle answer, f(y),

on a separate answer-tape. As usual, 01 prints its answer in one step.

Let F = {Fk} be a collection of functions. We say that F passes the test T if

for any polynomial Q, for all sufficiently large k:
1

IP[- Pm< Q(k)

where p[denotes the probability that T outputs 1 on input k and access to an
oracle for a function f randomly chosen in Fk . pf is the probability that T out

puts 1 when given the input parameter k and access to an oracle 0 1 for a func

tion f randomly picked in Hk (i.e. a random function).

We now exhibit a collection F that passes all polynomial time statistical tests,

under the assumption that there exists a weak one-to-one one-way function.

3.2 The Construction of F
Assume that there exists a wea~ one-to-one one-way function g. Then, by

Theorem 2, one can construct a Blum-Micali-generator G. Recall that G is a
function defined on all bit strings such that if x E /k> G(x) = bf, ... , bft1(k) · Let

S = U Sk be defined as follows. Sk is the set of all the first 2k bits output by G
k

on seeds of length k. Then S passes all polynomial size statistical tests for strings.

Let x Eh be a seed for G. G 0(x) denotes the first k bits output by G on

input x; G
1
(x) denotes the next k bits output by G. Let a=a1ai-··a1 be a binary

suing. We define Gaiar·a,(x)= Gar··(Ga/Ga1(x))}··).

- 9 -

Let x Elk. The function fx: h -> h is defined as follows:

For Y =Y1Y2° .. Yko fx(y) = GYIYrY/x).

Define Fk = { J x lxEik and F = {Fk }.

Note that a function in Fk needs not be one-to-one.

The reader may find it useful to picture a function J x: h -> h. as a full

binary tree of depth k with k-bit strings stored in the nodes and edges labelled 0
or 1. The k-bit string x will be stored _in the root If a k-bit strings is stored in
an internal node, v, then G 0(s) is stored in v 's left-son, v1, and G 1 (s) is stored in

v 's right-son, v,. The edge (v, v1) is labelled O and the edge (v, v,) is labelled 1.

The string J x (y) is then stored in the leaf reachable from the root following the

edge path labelled y.

3.3 The Poly-Randomness of F

Note that the collection F just defined satisfies conditions (1) and (2) of a

poly-random collection. The following theorem shows that also condition (3) is

satisfied.

Main Theorem (Theorem 3): The collection of functions F passes all polyno

mial time statistical tests for functions.

Proof: Let T be a polynomial time test for functions. Let p{ (pf) be the pro

bability that T outputs 1 when given the input parameter k and access to an ora

cle 01 for a function f randomly picked in Fk (Hk).

Assume, for contradiction, that for some polynomial Q and for infinitely
1

many k, IP{ - pfl > Q(k)"

The "random" oracle Oi is defined as follows for each i, 0 < i < k.

Let y = YiYt .. Yk be a query to Oi. Then Oi responds as follows:

If y is the first query with prefix YC'Yi, Oi selects a string rEh at random, stores

the pafr (yr"Yi , r), and answers GYi+l' .. Yk(r).

Else' oi retrieves the pair (yc·Yi 'v) and answers GY;+1' .. Y/v).

(In terms of the tree representation of fx, Oi stores random k -bit strings in

the nodes of level i. The nodes of higher level will contain k -bit strings determin
istically computed as in the previous section based on the actual values in level i).

For O < i < k, p} is defined to be the probability that A outputs 1 when

given k as input and access to the oracle 01•

- 10 -

Note that Pl = p{ and that pf = pf.

We will reach a contradiction by exhibiting a polynomial statistical test for
strings, B, so that S will not pass B. On input k, whenever k is such that IPP -pfl

> Q~k) , B finds an i (O < i< k) such that IPi -Pi+1
1 > k·J(k) . Algorithm

B does so by running a Monte-Carlo expeiiment using T as a subroutine.

Let now Rk be the set of all 2k -bit long strings and Sk be as in section 3.2.

Algorithm B gives k as input to algorithm T and answers T's oracle queries con
sistently using the set Uk as follows. (Uk is either Rk or Sk).

Assume T writes y = Yr .. Yk on the oracle tape.

If y is the first query with prefix Yl' .. Yi, B picks at random, in the set Uk>

u = u 'u" (u 'u" is the concatenation of u' and u ", and lu 'I ,= lu "I = k). B stores
the pairs (yl' .. YiO , u') and (yl'"Yi 1 , u"). B answers

Gy; +r·Y• (u ') if Yi+l = 0 and

GY1+r-Yk (u ") if Yi +1 = 1.

Else B retrieves the pair (yl' .. Yi+l , v) and answers GYi+t ··yk(v).

Note that, when Uk = Sk> B simulates the computation of T with oracle 0 1•

\Vhcn instead Uk =Rk> B simulates the computation of T with oracle Oi+l· Since
T's output differs, in a measurable way, on these two computations for infinitely
many k, letting B output the same bit that subroutine T does, we have reached a
contradiction.

Qcd

Remark: The Main Theorem as well as the poly-randomness of F hold when
applying the construction of sec. 3.2 to any Blum-Micali-generator G.

3.4 Generalizations

In some applications, we would like to have random functions from

lp
3
(kr> /Pik)· E.g. in hashing we might want functions from Ik into 110• We

meet this need by introducing the co11ection F = {Fk} defined as follows: For

xElk> fxEFk is a function from lp)(k) into /Pik) defined as follows. Let

Y=Yr"YPi k)· Define fx(Y) = rPik)[Gy:•"YP3<k>(x)], where rPiklz) are the first

- 11 -

P ik) bits output by G when fed input z Elko where G is a Blum-Micali genera

tor.

Such an F is also a poly-random collection: properties (1) and (2) trivially

hold, and property (3) can be proved in a way similar to the Main Theorem.

3.5 A Complete Polynomial Time Statistical Test For Functions

We present a paiticular polynomial-time statistical test for functions and show

that a collection of functions passes this test if and only if it passes all polynomial

time statistical tests for functions. This is a natural generalization of Theorem l.

The Query-and-Learn Test

Let F = {Fk} be a collection of functions. Let A be a probabilistic Turing

Machine capable of oracle calls as in section 3.1. On input k and access to an

oracle o1 for a function JEFk, algorithm A carries out a computation during

which it queries o1 about x 1, ... ,x1. Then algorithm A outputs xEik such that

x :;t: x1, ... , x1. This x will be called the chosen exam. At this point A is discon

nected from O I and is presented a y Eh. The string y is, with equal probability,

either f(x) or a random k-bit string. After some computation, A outputs either 0

or 1 and halts. We say that A has queried-and-learned if either A outputs 1 and

y = f(x), or A outputs O and y :;t: f(x).

Let P be a polynomial. We say that A P-queries-and-learns F if, for all

sufficiently large k, the probability that A guesses correctly on input k and access

to an oracle o1 for JEFk> is at least ; + P~k). The probability is taken over

all the possible choices off E Fk, y, and A ·s internal coin tosses.

Let Tf denote the maximum number of steps of A on input k and access to

an oracle o1 for JEFk. We say that F passes the Query-and-Learn test if, for any

polynomial P and all probabilistic Turing Machine A that P-predicts F, Tf grows

faster than any polynomial in k.

Theorem 4 : F passes the Query-and-Learn test if and only if F passes all

polynomial time statistical tests.

Proof : The ''if part" can be easily proved noticing that for any polynomial P,

no Turing Machine A that is given as input k and access to an oracle for a func

tion JEHk can query-and-learn.

- 12 -

We now prove the "only if' part. Assume that there exists a polynomial time

statistical test A such that Ip[- pfl> p s~k), where pf and pf are defined, as in

section 3.1, relative to A. Without loss of generality, given k as input, A always
asks P

6
(k) oracle queries and all queries are different We will construct a proba

bilistic polynomial time Turing Machine, B, that P 5(k} P 6(k)-queries-and-learns

F.
For f EFk, O} is formally defined as follows:

Let xj be the j -th query presented to OJ.
If j < i, 0} answers with f (xj),

Else O} answers with a random k-bit string.

Define Pk to be the probability that A outputs 1 when given access to the oracle
O}. Here the probability is taken over all JEFk and all possible computations of

A. Note that pf = pf and p{6(k) = pf.

On input k, B finds an i (O < i < P 6(k)), such that IPk - Pk +11> p s(k; p ik) , by

mnning a Monte-Carlo experiment .

B uses A as a subroutine as follows: B starts A on the same input k it receives. B
answers the first i queries of A using the oracle O 1 . When A asks for its i + 1st
query, xi+l• B outputs xi+l as its chosen exam. Upon receiving y (equal to f(x)

or a randomly selected k-bit string), B writes y on A's answer-tape. B answers all
subsequent queries of A by randomly selecting k-bit strings. B outputs the same

bit that A does, and halts.
The reader can convince himself that B P 5(k} P 6(k)-queries-and-learns F.

Qed

Appendix A: The Blum-Micali Scheme for Constructing Blum-Micali
Generators

A.l The general scheme
The scheme starts from an "unapproximable" predicate, B, and a "friendship

function", f, for B.

- 13 -

Let B={Bk} be a collection of predicates, where Bk: Xk C /k-> {0,1} and

there is a probabilistic polynomial-time Turing Machine M that, on input k,
selects an x EXk with uniform probability. We say that B 1s an
unapproximable predicate if for any polynomial P and for all polynomial-time
Turing Machines M, for all sufficiently large k,

M(x)=Bk(x) for at most a fraction ; + Ptk) of the xEik.

Let f = {fk} be a set of functions. For all k, fk is a pemrntation on Xk. f

is a friendship function for the unapproximable predicate B if there exist a polyno
mial time algorithm that computes B(f(x)) for all k and all inputs xEXk.

Let x ,y EXk. One can interpret Bk (y) as the secret of y which is hard to
guess given y. One can interpret f (x) as the best friend of x. x "knows" the
secret of his best friend.

The Blum-Micali scheme takes B and f as above and a polynomial Q and
constructs a Blum-Micali-generator as follows:

given x EXk, output the Q (k)-bit long sequence
Bk(ff(k)(x)), Bk(ff(k)-l(x)) , ... , Bk(fk(x)).

The proof that these sequences pass the Blum-Micali-test can be found in [3].

A.2 The Discrete Logarithm Implementation

Let p be a prime. TI1e set of integers [l, p-1] forms a cyclic group under
multiplication mod p. Such group is denoted by z;. Let g be a generator for z;.
The function fp,g : x -> gx mod p, for xEz;, defines a permutation on z; com
putable in Poly(lp I) Time. The Discrete Logarithm Problem (DLP) with inputs
p ,g and y consists in finding the x E z; such that gx mod p = y. Such an x
will be denoted by index/_y) whenever no ambiguity may arise about p. Let Q

be a polynomial. A probabilistic Turing Machine M Q-solves the DLP mod a k
bit prime p if it halts in expected Q (k) time and M (p ,g ,y) =indexg(y) for any
generator g for z; and any y Ez;.
The Intractability Assumption for the DLP:

For any polynomials P and Q and for all probabilistic Turing Machines M,
for all sufficiently large k, M Q-solves the DLP mod p for at most a fraction

Pf k) of the k-bit primes p.

- 14 -

Blum and Micali show that, from the intractability assumption for the DLP, one
can extract an unapproximable predicate and its relative frienship function.

(Loosely, B(gx mod p) = l if x < P
2

1 and O otherwise, will be the unapprox-

irnable predicate and gx mod p its relative friendship function).

Appendix B: The Blum, Blum and Shub Implementation
In terms of the Blum-Micali scheme, Blum Blum and Shub use the Quadratic

Residuosity Problem, modulo a Blum-integer whose factorization is not known, as
the unapproxirnable predicate. They look at the quadratic residues, q, mod n.
Each such a q, has exactly one square root, r, that is itself a quadratic residue.
The secret of q is defined to be the the last bit in the binary representation of r.
The friendship function is squaring mod n (a permutation over the quadratic resi
dues mod n when n is a Blum integer). The i-th bit in the sequence generated on

input x is the secret of x 21 mod n.

The generator, knowing the factorization of n, can compute the i-th bit in the
sequence, i(n, in time polynomial in lnl. First it computes y = 2i mod <p(n) by
repeated squaring, then computes xY = x21 mod n again by repeated squaring,

where <p(n) is Euler's totient function.

Appendix C: Yao's construction
The following shows how to implement the Blum-Micali scheme using any

weak one-to-one one-way function (i.e. how to construct an unapproxirnable predi

cate and its relative friendship function).

Let f be a weak one-to-one one-way function. For each i, 1 < i < k, the

predicates B £: I k -> {0,1} ,1 < i < k, are defined as follows:

Bk{x) is the i-th bit off ,:1(x) . .

Loosely speaking, since f k is hard to invert for at least a fraction p
7
~k) of

the xE/k, then for some i (1 < i < k) B1 is hard to compute for at least a frac-

1 tion k·Pik) of the xEik. Let P8(k) = k· Pik) and P9(k)=k·(P8(k))
3
.

- 15 -

Let EB denote the "exclusive or" function. Let Xk be the cartesian product of

P9(k) copies of h, i.e. Xk =Ukt9<k>.

Let x =(x1, •.. , Xp
9
(k))EXk. The unapproximable predicate { Bk: Xk -> {0,1}} is

k (P (k))3
defined as follows: Bk(x) = ffi (ffi Bfc (x(i-lXPs>3+J)), for all k.

i=l J=l

The friendship function { gk :Xk -> Xk } is so defined
gk(x) = (fk(x1) , ... , fk(xp9(k))).

Acknowledgements (so far)
Our greatest thanks go to Benny Chor for sharing with us much of the labor

involved in this research.

We are particularly grateful to Ron Rivest who assisted us all along with

many insights and precious criticism.

Leonid Levin relentesly encouraged us to get this result. Thank you Lenia!

Many thanks to Michael Ben-Or, Tom Leighton, Albert Meyer and -Mike
Sipser for several helpful discussions.

Oded Goldreich would like to thank Dassi Levi for existing.

- 16 -

References

[l] L. Adleman, Time, space and randomness, MIT /LCS/TM -131, 1979

[2] L. Blum, M. Blum and M. Shub, A simple secure psuedo random number gen
erator, Advances in Cryptology: Proc. of CRYPTO-82, ed. D. Shaum, R.L.
Rivest and A.T. Sherman. Plenum press 1983, pp 61-78.

[3] M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudo-random bils, Proc. 23rd IEEE Symp. on Foundations of Computer Sci
ence, 1982, pp 112-117

A better is version available from authors.

[4] G. Brassard, On computationally secure authenlication tags requiring short
secret shared keys, Advances in Cryptology: Proc. of CRYPTO-82, ed. D.
Shaum, R.L. Rivest and A.T. Shennan. Plenum press 1983, pp 79-86.

[5] S. Goldwasser, S. Micali and P. Tong, Why and how to establish a private code
on a public network, Proc. 23rd IEEE Symp. on Foundations of Computer
Science, 1982, pp 134-144

[6] A. Kolmogorov, Three approaches to the concept of "the amount of informa
tion", Probl. of Inf. Transm. 1/1, 1965

[7] D. Knuth, The Art of Computer Programming: Seminumerical Algorithms,
Vol. 2, Addison-Wesley, 1981.

[8] L. Levin, Various measures of compl~xily for finite objects (axiomatic descrip
tions) Soviet Math. Dok!. 1712 (1976) pp 522-526

[9] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signa
tures and public key cryplosystems, Commun. ACM, vol. 21, Feb. 1978, pp
120-126

[10] A. Shamir, On the Generation of Cryptographically Strong Pseudo-random

Sequences, 8th International Colloquium on Automata, Languages, and Pro
gramming, Leet. Notes in Comp. Sci. 62, Springer Verlag, 1981

[11] M. Sipser, A complexity theoretic approach to randomness, Proc. 15th ACM
Symp. on Theo1y of Computing, 1983, pp 330-335.

[12] A.C. Yao, Theory and applications of trapdoor functions, Proc. 23rd IEEE
Symp. on Foundations of Computer Science, 1982, pp 80-91.

