
MIT /LCS/TM-245

UNDERSTANDING ALGOL:
A VIEW OF A RECENT CONVERT
TO DENOTATIONAL SEMANTICS

Albert R. Meyer

October 1983

Understanding ALGOL: The View of a Recent Convert
to Denotational Semantics* t

Albert R. Meyer

Laboratory for Computer Science,

Massachusetts Institute of Technology

Abstract. The advantages of denotational over copy-rule semantics are argued. A denotational

semantics is indicated for an ALGOL-like language with finite-mode procedures, blocks with local

storage, and sharing (aliasing) . Procedure declarations are completely explained in the usual

framework of complete partial orders, but cpo's are inadequat e for the semantics of blocks, and a

new class of store models is described. The semantics just ifies a proof system for partial correctness

of commands containing global procedures.

CR Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and

Theory-syntax, semantics; F .3.1 [Logics and Meanings of Programs]: Specifying and Verifying

and Reasoning about Programs-assertions, logics of programs, pre- and post-conditions; F .3.2

[Logics and Meanings of Programs] : Semantics of Programming Languages-operational semantics,

denotational semantics; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs.

General Terms: Languages, Verification, Theory.

Additional Key Words and Phrases: lambda-calculus, partial correctness, relatively complete, copy

rule semantics, fixed-point semantics.

*This paper is based on the author's invited lecture at the IFIPS Symposium, Paris, September, 1983, and will appear
in the IFIPS Proceedings, R. E . Mason, ed., North Holland. It is a shortened version of a paper by Trakhtenbrot, B.
A., Halpern, J. Y., and Meyer, A. R., "From denotational to operational and axiomatic semantics for ALGOL-like
languages: an overview," to appear in Logic of Programs, Proceedings, Clarke and Kozen, eds., Lecture Notes in
Computer Science, Springer, 1983.

tThe research reported here was supported in part by NSF Grant MCSS0-10707 and a grant to the MIT Lab. for
Computer Science from the IBM Corporation.

1

The announced topic of my invited address was on a subject other than the present paper,

but the research on the logic of ALGOL-like programs which I have been pursuing for nearly two

years jointly with Boris Trakhtenbrot and Joe Halpern has proved so absorbing, and has led to the

unexpected discovery of such rich and elegant mathematical structure, that I could not focus my

attention on my planned topic. So I have chosen to write and speak about the subject which has

been preoccupying me these past several months.

This short paper gives an overview of our development of a denotational basis for proof systems

concerning ALGOL-like programs. Originally we found it curious that despite wide-spread (though

by no means unanimous) acceptance of denotational semantics, the numerous papers (cf. [Apt,

1981]) developing Hoare-style logics consistently deviated from a purely denotational approach. In

every case, this ideal approach had been deemed inconvenient and had been compromised in favor

of operational formulations, notably in explaining inference rules for calls of recursive procedures

and for declarations of local variables. We now realize that at least one reason for past deviations

from a denotational approach is that the denotational semantics of local storage for blocks has

never adequately been worked out. We believe our work demonstrates that the denotational ideal

is achievable without excessive complication and with important benefits.

1. ALGOL-like Languages. Our focus in this paper is on the family of ALGOL-like languages,

since these languages are rich in expressive power, yet are also sufficiently structured to yield a

rich algebra and proof theory. Following [Reynolds, 1981], we formulate several of the principles

which characterize this class of languages:

(1) There is a consistent distinction between commands (or programs) which alter the store but

do not return values, and expressions which return values but have no side-effects on the

store.

(2) The only explicit calling mechanism is by-name. (Other mechanisms such as by-value or

by-reference are available by simulation (syntactic sugaring).)

(3) The language is fully typed. Higher-order procedures of all finite types (in ALGOL jargon,

modes) are allowed. There is a clear distinction between locations and storable values.

(4) The stack discipline is an explicit aspect of the semantics. Note that this discipline should be

understood as a language design principle encouraging modularity in program construction

rather than as an implementation technique for efficient storage management. It is better

called the local storage discipline to avoid misunderstanding, and we do so henceforth.

As it happens, ALGOL-60 is not ALGOL-like in our terminology, nor are numerous features of
ALGOL-68; Pascal and ALGOL-W come closest to being ALGOL-like.

We have developed a denotational semantics and Hoare-like axiom system for partial correctness

assertions about an ALGOL-like language we call PROG. PROG is a structured language exhibiting

a number of nontrivial features including blocks with local variables, nested declarations of recursive

2

procedures, procedure parameters, call-by-name, -value, and -reference parameters, and sharing

(aliasing) among identifiers.

We have t ried to arrange a syntax for PROG reflecting familiar programming languages, but one

place where our denotational perspective persuades us to violate common practice is in maintaining

an explicit type distinction between locations and storable values (also called "left" and "right"

values of expressions). So we consistently distinguish locations from their contents, using the token

cont for explicit dereferencing. The two basic types - storable values and locat ions - will be called

int and loc, respectively. Thus, cont(x10c) denotes the element of type int which is the contents

of x, and assignment commands take the form LocE := IntE where LocE is a location-valued

expression and IntE is an int-valued expression. Equality tests in PROG can only be between

elements of basic type.

The other primitive types are prog, intexp, and locexp. The domain prog is the domain of

program meanings, namely, partial (actually, nondeterministic) mappings from stores to stores.

The last two "expression" types provide the semantical domains for expressions whose evaluation

yields basic values, viz., the elements of intexp (locexp) are functions from stores to int (loc).

Procedure identifiers are bound in PROG via procedure declarations occurring at the head of a

procedure block, e.g.,

proc p(x) {:::: DeclB ody do B lockBody end .

Identifiers of basic type are bound by either let-declarations or new-declarations at the head of

basic blocks of the form
let x be BasE in Cmd tel,

new y10
c in Cmd wen

where x is a variable of basic type and BasE is an expression of the same type.

Call-by-value is available implicitly through let-declarations. A call-by-value of the form

p(BasE) can be simulated by the basic block

let n be BasE in p(n) tel.

The let-declaration causes the evaluation of the expression BasE in the declaration-time store and

causes identifier n to denote the resul t of the evaluation. Call-by-reference is likewise available by

simulation since it is merely call-by-value using location-valued expressions.

There is a fundamental difference between basic and procedure blocks. Namely, which basic

values are bound to identifiers by basic declarations depends on the store "at declaration time",

whereas which procedures are bound to identifiers by procedure declarations is store-independent.

Sharing of locations between identifiers arises naturally from procedure calls. Explicit sharing

can also be imposed by a basic block like

let x10c be y10c in Cmd tel.

3

The following program, whi;:h includes a procedure that swaps the contents of two locations un

less they are equal, is contrived to illustrate the sharing features of PROG. It also illustrates the new

declaration for allocating storage local to a block. The simple idea which underlies local variables

in ALGOL-like languages is the local storage discipline: execution of a block new z in body wen

causes allocation of a "new" storage location denoted by the identifier z which is used in the body

of the block and then de-allocated upon exit from the block. The procedure swap:

proc swap(xi0 \ xk0 c) {= if x1 = x2 then x1 := error

else new z in

z := cont(x1};

X1 := cont(x2);

x2 := cont(z} wen fl

do iff(a) = f(cont(y)) then y else z fi := null;

swap(y, z) end.

Note that we are allowing explicit equality testing between locations ("x1 = x2") in addition

to the usual test of equality between storable values ("f(a) = f(cont(y))") . Expressions which

evaluate to locations are allowed, as in the "conditional variable" expression to the left of the final

assignment command in the example.

2. Semantics via Translation to >..-Calculus. The main issue in reasoning about imperative

programming languages is that the computer memory or store altered by program execution is

never mentioned explicitly in programs. A denotational explanation of programs requires that the

role of the store be made explicit. Our approach is to formalize the assignment of semantics to

programs in two steps:

(1) a purely syntactic translation from PROG to a fully-typed >..-calculus enriched with a letrec

construct corresponding to procedure declarations, and

(2) assignment of semantics to the >..-calculus in the standard way. Programs simply inherit

their semantics directly from the >..-terms into which they translate.

This two step process has also been utilized by [Damm and Fehr, 1980; Damm, 1982]. Our

approach refines theirs in that the >..-calculus into which programs are translated is chosen so

that its types are the same as those of the programming language and its constants correspond

to program constructors. In this way, the abstract syntax, viz., parse tree, of t he translation of
a program is actually identical to that of the program; the translation serves mainly to make the

variable binding conventions of PROG explicit.

Procedure blocks are translated using letrec, so for example,

Tr(proc p(x) {= DeclBody do BlockBody end) =d~f letrec p = >..x.Tr(DeclBody) in Tr(BlockBody).

4

For a basic block with a let-declarat ion of type int,

Tr(let x int be I ntE in Cmd tel) =def

Dint (>-x.Tr(Cmd)) (Tr(IntE))

where Dint is a constant of type (int -+ prog) -+ intexp -+ prog. For any element d1 of type

(int -+ prog), d2 of type intexp, and st ore s, the interpretation [Dintll is such that

providing d2(s) =/. J_int, and diverges (= 0) otherwise. Note that the binding effect of the block on

xint is reflected in the binding effect of \x on Tr(Cmd), namely, the declarat ion binds x in Cmd,

but does not bind x in IntE.

The principal consequence of this syntax-preserving translation is that the basic properties of

procedure declarat ions in ALGOL-like languages - such as renaming rules associat ed with "static

scope" for declared identifiers, declaration denesting rules, and expansions of recursive declarations

- can be recognized as direct consequences of corresponding properties of the purely functional \

calculus. For example, let E be a syst em of procedure declarations, and let Cmd1 , Cmd2 be any

commands. The following equivalence holds in all models for \-calculus, viz ., all Cartesian-closed

models [Barendregt, 1980; Meyer, 1982].

Declaration Distributivity:

proc E do Cmd 1; Cmd2 end proc E do Cmd1 end; proc E do Cmd2 end.

In particular, this equivalence follows solely from the binding properties of procedure declara

tions independently of whether declarations are recursive, and also independently of the meaning

of constants like the sequencing operation ; . (On the other hand, its validity depends crucially l)n

the fact that procedure declarations, in contrast to let-declarations, have the same binding effect

no matter what the declaration- time store.)

The translation for blocks with new declarations, is

Tr(new x in Cmd wen) =def New (>-x.Tr(Cmd))

where New is a special constant of type (Joe -+ prog) -+ prog. The effect of the translation will

be that Cmd runs using a "new" location in place of x. The contents of this new location are

initialized to some standard value denoted by the constant a 0 at the beginning of the computation

of Cmd and restored to its original value at the end.

In defining the semantics of new declarations, we imagine an ability to generate "new" locations

via a Select operation mapping any a procedure of type loc -+ prog into a new location. We can

then define the meaning of [Newlldloc-+prog as follows:

[Tr(let xint be cont(y) in y := ao; p(y); y := x tel)Il e,

where e is an environment such that e(y) = Select(d) and e(p) = d.

5

3. Levels of Understanding. A denotational approach has led us to identify a half dozen levels

of abstraction at which aspects of ALGOL-like languages can be understood. The highest level

abstracts away all properties except for variable binding; these properties hold in all models of

A-calculus. For example, the fundamental rule:

Procedure-Context Replacement:

proc E do Cmd1 end = proc E do Cmd2 end

is obvious from a denotational viewpoint, and like the distributing rule, actually holds in all A

calculus models.

The next level reveals that procedure aeclarations are recursive; the corresponding proof theory

is simply the equational theory of the fixed-point combinator and similar expansion rules for letrec.

Properties connecting different fixed-points require the further hypothesis that fixed-points in

distinct domains be chosen harmoniously. This is usually captured by imposing an order structure

on domains, keeping to order-respecting (monotone) functions on the domains, and choosing least

fixed points as solutions to recursive equations. At this "monotone" ievel, we can justify:

Declaration Denesting:

proc (p(x) {= proc E do body end), E' do Cmd end proc(p(x) {= body),E,E' doCmd end

providing none of the identifiers declared in E occurs in E' or Cmd, p is not declared in E or E',

and x is not free in E.

The next level of abstraction entirely accounts for the procedure mechanism of ALGOL-like

languages. Here, the familiar continuous models of A-calculus based on complete partial orders

(cpo's) [Scott, 1982; Milne and Strachey, 1976; Stoy, 1977] provide an adequate semantical basis.

We refer to properties which are valid for all continuous models as continuity properties.

The original ALGOL 60 report [Naur, et. al., 1963] gave a copy-rule semantics for the language.

We give a simplified proof that our choice of denotational "fixed-point" semantics is consistent with

the prior operational understanding based on the copy-rule:

· Theorem. In every continuous model, fixed-point and copy-rule semantics assign the same

semantics to commands (with global procedures) in PROG.

The equivalence of fixed-point and copy-rule semantics is the most fundamental continuity

property.

Still further refined levels are needed to explain the store-dependent aspects of programs,

i.e., their side-effects. In particular, continuous models are not adequate to explain local storage

allocation, and we must introduce a new class of store models discussed in §5.

6

4. Fixed-point versus Copy-ru!e Semantics. Copy-rule semantics for ALGOL-like languages have

historical precedence over denotational semantics, and are widely regarded as more intuitive for

computationally oriented students (cf. [B1ikle, 1983]). It seems obvious to us, however, that

the tricky and otherwise arbitrary-seeming renaming rules which are crucial in determining the

properties of declarations spring from a mathematical intuition with an even earlier historical

claim. But arguments from intuition are always questionable; putting such arguments aside, we can

identify the place where the denotat ional approach is clearer and more general than an operational

approach to be the handling of "global" procedures, i.e., free procedure identifiers.

Reasoning about commands with calls to global procedures is essential in theory and in practice.

The need for reasoning about commands containing globals arises, for example, when global pro

cedures denote library procedures. Given assertions about the behavior of the library procedures,

one should be able to reason about · the behavior of commands incorporating these procedures,

without necessarily being given the declarations of the procedures. After all, the code of these

library procedures is typically unavailable or written in machine language, and in any case is not

what one wants to see. Unfortunately, nearly all the operationally, based proof systems apply only

to programs without globals, viz., programs in which all procedures are declared.

There is an operational-style explanation of the range of globals, namely, that global procedures

range over textual objects such as "closures". This explanation is clearly unsatisfactory when

library procedures are written in another language. Another difficulty with this explanation is

that any enrichment of the language enlarges the range of the global procedures, so that all the

axioms and rules involving globals must be reexamined for soundness. In contrast, a denotational

appr0ach in which environments map free identifiers to meanings over a domain of functional

objects, smoothly handles commands containing global procedures.

The desire to reason by induction on the structure of programs - which motivates the design of

structured programming languages in the first place - also naturally requires reasoning about global

procedures, since the procedure identifiers declared in a block inevitably have free occurrences in

the body of the block. Fixed-point induction is an important instance of a structural inference

rule in which free procedure identifiers are essential. The following special case illustrates the

essence of the rule. (The proof theory we develop focuses on the class of "before - after" assertions

about commands known as partial correctness assertions. A partial correctness assertion is a triple

consisting of two formulas and a command, written P{ Cmd }Q. It asserts that, if the precondition

P holds before execution of the nondeterministic command Cmd, then the postcondition Q is

satisfied by every terminating state (if any) of Cmd.)

Let P and Q be first-order assertions, and let p be an identifier and ProcE an expression, both

of the same procedure type, such that none of the free first-order variables in ProcE are free in P

or Q. Then

Fixed-Point Induction:

7

P{ [diverge/p]Cmd }Q,

P{ Cmd }Qf-P{ [ProcE/p]Cmd }Q

P{ proc p {= ProcE do Cmd end }Q

where [Expr /p] denotes syntactic substitution (with renaming to avoid capture of free variables)

of Expr for free occurrences of the procedure identifier p.

The soundness of fixed-point induction induction is an easily proved continuity property.

[Clarke, 1979], extending [Gorelick, 1975], introduced a proof rule for partial correctness of

higher-order procedure calls closely resembling the fixed-point induction rule but justified using

the copy-rule, and subsequent work [Langmaack and Olderog, 1980; Olderog, 1981, 1983a, 1983b;

Apt, 1981] has followed this approach. In our full paper we formulate a version of Clarke's rule

called copy-rule induction.

[Langmaack and Olderog, 1980] have defended the use of copy-rule induction:

"In soundness and completeness proofs a semantics definition should be employed which yields

shortest proofs. The question of equivalence of partly operational and purely denotational seman

tics should be considered separately."

We remain uncomfortable with this view. It is a useful technical insight that inductive proofs

about calls in ALGOL-like languages can be based on copy-rule semantics. Yet this fact seems

too coincidental to serve as a justification for postponing denotational arguments. For example, it

seems fortuitous that the usual axioms for partial correctness happen not to require the procedure

context replacement rule above. The rule is obvious denotationally, but we know of no justification

for it using copy-rule semantics which is any simpler than the proof that copy-rule and denotational

semantics are equivalent. We expect that outside the special case of partial correctness proofs, and

perhaps even there, it will be disadvantageous to develop proof systems using copy-rule semantics

alone.

Of course, whenever there is a nontrivial equivalence between two definitions, there are bound

to be facts which are obvious starting from one definition and not from the other, and it should

be expected that some important facts about program behavior, possibly such as Clarke's rule,

would be seen more easily in terms of t he copy-rule. If it were merely the case that the semantical

soundness proof was more easily carried out using one of two equivalent definitions instead of the

other, we would not be concerned. However, in contrast to the fixed-point induction rule, copy-rule

induction is not sound in the usual logical sense, although only valid assertions are provable using

it.

Namely, copy-rule induction, like fixed-point induction, is formulated in natural deduction

style where the provability of one assertion from another serves as the antecedent for application

of the rule. Because of the reference to the proof system in the antecedent, the meaning of such

rules technically changes if we alter the proof system in any way, for example by adding further

sound inference rules. This reference to the proof system will be harmless as long as soundness

8

of the rule follows from soundness of the rest of the proof system - as opposed to facts about the

detailed structure of proofs. This is what is meant by semantical soundness of a natural deduction

style rule. Fixed-point induction is semantically sound in this sense, but copy-rule induction is

not because it depends crucially on structural properties of proofs. In fact, we can show that a

price to be paid for using copy-rule induction is that adding very simple, obviously sound rules

makes the proof systems inconsistent! ([Olderog, 1981] claims to avoid this problem, but he does

so by adopting a definition of validity which is not referentially transparent, so that substituting

one equivalent command for another cannot be added as a rule in his system without yielding an

inconsistency.)

We have not yet worked out as strong a completeness theorem using the fixed-point induction

rule or other sound rule in place of Clark~'s rule, although we have an idea how to do so. Meanwhile,

as a temporary expediency, we have included copy-rule induction in our own proof system. Insofar

as the remarks of Olderog and Langmaack and others supporting operational semantics for proof

systems are intended as a defense of copy-rule induction despite its unsoundness, we disagree with

their view. We see no theoretical obstacle to discovering a denotationally sound alternative to

copy-rule induction, and we regard developing such a rule as an interesting, research problem.

5. Store Models. Although the local storage discipline seems intuitively simple, it raises a number

of both practical and theoretical problems. Free procedure identifiers raise special problems which

have not been dealt with using operational semantics.

From a theoretical viewpoint, the problem is to explain what is meant by a "new" location.

Operationally, the "old" locations for a command correspond to the values of the free location

variables in it. This is sometimes modeled denotationally by enriching the notion of stores to

include with each location an indication of whether the location is "active". Execution of a new

block on a store involves selecting the first inactive location as the one to be allocated. The

problem with this approach is that the locations designated as inactive by the store may already

be accessible to the body of the block, and so the first inactive location may not in fact be "new".

For example, the block

new x in if x = y then diverge else skip fl wen

ought intuitively to be equivalent to skip since the "new" x should never equal the "old" y. But

if this block is executed on a store in which (the location denoted by) y happens to be designated

as the first inactive location, then the block will d1verge. Validity of the expected properties of

blocks thus hinges on hypotheses about how the locations designated as active by the store relate

to the "old" locations which really are active, and we are in any case still left with the problem of

explaining what a new location is.

The denotational meaning of a program is a mapping from stores to stores, and it is not hard to

give a purely denotational characterization of what it means to say that such a mapping "reads"

9

or "writes" a set of locations (cf. [Trakhtenbrot, 1979; de Bakker, 1980, Def. 5.9; Meyer and

Mitchell, 1982]). The meaning of the body_ of a new block is in turn a mapping from locations to

store mappings, and a denotational definition of what locations such a block body "knows about"

can also be given with some care. In general, we define a notion of the set of locations which form

the support of any procedure of fini te type. The locations outside the support of a procedure are

the"new" ones for it. The support of a command is thus the denotational concept corresponding

to the syntactic notion of free location variables appearing in the command. This would appear to

provide the desired denotational semantics of block storage allocation.

However, an amusing technical problem ·arises. The operat ion of allocating and later de

allocating "new" storage turns out not to be monotonic, essentially because of the possibility of

running out of new storage locations! In particular, the function Select hypothesized in defining

the New constant in §2 is not monotonic.

In general, objects with "large" support force us to deal with storage overflow. It would be

reasonable to rule out such objects, especially in view of the fact that definable objects, viz.,

objects which are the denotations of phrases in PROG, can be p~oved to depend on only finitely

many locations. Unfortunately, the domain of programs with finite support is not complete {closed

under least upper bounds) because a program with infinite support can be the lub of an infinite

sequence of programs each with finite support. As with monotonicity, completeness is normally

required of the domains defining the semantics of A-terms, in this case to ensure that fixed-point

and symbolic-operational semantics agree.

A simple way around this incompleteness would be to use, for each finite set, L, of locations, a

separate domain consisting of those programs with support contained in L. This works as long as

no procedure parameters appear, but the mixture of higher order recursive procedures and block

structure turns out to be explosive. A procedure which takes a program parameter might be called

upon recursively within a new block, and might be applied to programs constructed within the

block, as in:
p(qprog,nint) ¢:= ifn =/ Othen

new x in p(r(q, x), n - 1) wen

elses{q)fl.

The domain of such a procedure includes programs with unbounded finite support, and we are no

longer able to confine ourselves to the cpo of programs with any particular finite support L.

Difficulties of this sort have led [Reynolds, 1981] and [Oles, 1983] to consider more sophisticated

functor categories as domains of interpretation. The discontinuity of new storage allocation is also

noted in [Milne and Strachey, 1976].

Store models overcome these difficulties: they are domains of mappings with finite and countably

infinite support. Such domains are not complete, but they are w-complete - closed under countable

lubs - and it is known that w-completeness is sufficient to develop the semantics of recursive

programs [Meseguer, i978; Plotkin, 1982].

10

Allowing elements with countably infinite support is thus merely a mathematical contrivance

to preserve closure under countable directed iimits. The countable covering restriction works,

despite some intuitively jarring consequences, the oddest of which is that we must hypothesize an

uncountable number of locations! (But after all, we do not complain about an uncountable set of

real numbers even when we compute only with rationals.)

Some typical equivalences about new-declarations are given below. Support properties of store

models are essential to guarantee their validity.

new x in x := b wen - skip,

new x in x := a0 ; Cmd wen_ new x in Cmd wen,

new x new y in Cmd wen wen - new y new x in Cmd wen wen ,

new x in ifx = y then Cmd1 else Cmd2 fi wen_ y := cont(y); Cmd2.

More generally, we can define an operational semantics for interpreting basic blocks and prove

Theorem. In every store model, fixed-point and operational semantics assign the same semantics

to commands (with global procedures) in PROC.

5. Partial Correctness Theory. Instead of the usual first-order language of storable values, we use

a two-sorted first-order language with sorts int and loc. We also add special atomic formulas for

reasoning about the support of global procedures, namely, for each identifier p of Joe or procedure

type and each variable x of type loc, there is an atomic formula Support(x, p) which means that x

is in the support of p. This language has the same constructive properties as ordinary (one-sorted)

first-order language, e.g., the formulas valid in all interpretations are nicely axiomatizable.

We require assertions about support because we are reasoning about commands with global

procedure identifiers. Without global procedure identifiers, one can determine the support of a

command by inspection - namely, the support is contained in the denotations of the free location

variables. This is obviously not possible for a command with global procedure identifiers unless we

are told which locations are in the support of the globals.

Distinguishing locations and their contents becomes particularly beneficial when making asser

tions about programs. With this language, our axiom system is able to deal with sharing among

program variables explicitly and without excessive complication.

An awkward feature of common programming logic systems which do not allow preconditions

to distinguish locations from values is that renaming free variables does not preserve validity. For

example, although

is valid in such systems, it fails to be valid if we substitute x 1 for x3 • We therefore judge the

soundness of arbitrary renamings, which follows routinely for our system, to be a valuable feature.

Another standard source of confusion as a result of sharing occurs in axiomatizing simple

assignments. Clearly, no matter what the initial conditions are, after setting x10c to some constant

11

a, the contents of x will equal a, namely,

true{ x := a }cont(x) = a

is a valid partial correcti:iess assertion. But the naive generalization of this example to the case

in which x is replaced by some expression LocE whose evaluation yields a location is not valid.

The problem here is that the meaning of LocE depends on the store; in general LocE has different

meanings before and after the assignment.

To deal with assignment, we construct for any form~la P, a first-order formula [LocE +- IntE]P

such that for each D, e, s, if l, dare the interpretations of LocE, IntE in D, e, s, then

D, e, s p= [Lo·cE +- IntE]P iff D, e, s' F P

wheres' =Loe-{!} sand s'(l) = d. Now the assertion that after executing the assignment some

first-order formula Q holds, is equivalent to asserting that the formula

[LocE := IntE]Q =de f (LocE = l_ V IntE = l_ V [LocE +- IntE]Q)

holds in the initial store. (The l_ clauses handle the case that the evaluation of either of the

expressions diverges.) Difficulties with assignments are thus completely handled by the:

Assignment axiom:

([LocE := IntE]Q){ LocE := IntE }Q.

Our axiom system A:X.D is defined as usual relative to an underlying model D. However, it is

worth noting that we do not need support predicates in the axioms about D. That is, we only

include in AXD the set of first-order formulas without support predicates which are valid in D.

Axioms for the programming construct s diverge, sequencing, conditionals, let declarations, as

well as "logical" rules for consequence, conjunction and quantification, and substitution, along with

assignment above, are as usual. We enumerate below the rules which rely on properties of support.

The usual rules of predicate calculus are applicable to first-order formulas with support predi

cates, treating Support(x, p) as a monadic first-order predicate in x for each variable p. We also

use the axiom Support(x, y) - (x = y I\ y -:/,-1-) when y is of type loe.

Rule of new declaration: Let y10c, zint be variables not free in P, Q, or Cmd.

(([y := z]P) I\ (;\pEV(Cmd)-{ x} ,Support(y,p)) /\ (cont(y) = ao)){ [y/x]Cmd }([y := z]Q)

P{ new x in Cmd wen }Q

where 'V (Cmd) is the set of free variables of procedure and location type in Cmd. (Recall that a0

is the constant used for initialization.)

12

The two-sorted assertion language also yields descriptions of invariance (noninterference) among

programs and properties. For example, if P implies that the truth of Q is invariant under changes

to the contents of any of the locations in the support of Cmd, then Q holds before execution of

Cmd iff it holds afterward. This gives the:

Rule of invariance:

P::::} Vy10"[V pE V(Cmd) Support(y, p):::::} Invariant(Q, y)])

(PI\ Q){ Cmd }Q.

Here the assertion Invariant(Q, y) is an abbreviation for the first-order formula

where z is not free in Q. This means that Q is invariant under changes to the contents of y. We

remark that invariance is the only rule whose soundness actually depends on the fact that the

range of globals is restricted to objects with finite, as opposed to countable, supports.

It is impossible to find a sound and relatively complete axiomatization for partial correctness

assertions about a language as powerful as PROG [Clarke, 1979]. Hence, in our full paper we define

PROG' - a fragment of PROG for which our axiom system is complete in the sense of [Cook, 1978].

Intuitively, this fragment captures commands which generate only a finite number of distinct calls

(up to a renaming of first-order variables) when we expand them by replacing a call by its associated

body, as in [Clarke, 1979; Olderog, 1981]. We give a direct syntactic condition sufficient to ensure

that a program is in PROG1
, and demonstrating that our axiom system is complete for as large a

class of commands as any other systems in the current literature.

6. Conclusions. By explicitly translating ALGOL-like programs to expressions in typed >-.-calculus

with letrec, we have clarified the source of a rich mathematical structure of ALGOL-like programs

which guides reasoning, both informally and with formal axiom systems, about side-effects.

The denotational approach identifies a half dozen different levels at which successive features

of ALGOL-like languages can be explained. It will be interesting to see whether this mathematical

classification serves as a useful guide for teaching such languages.

Although the main texts on denotational semantics gave the impression that the local storage

discipline had been assigned a denotational semantics, we discovered none of them gave a "correct"

semantics capturing the properties desired for the local storage discipiine. Indeed, we argued that

correct semantics for the local storage discipline could not be constructed using standard continuous

models, but we indicated how to construct satisfactory w-continuous store models for this discipline.

This paper is a sketch of ongoing research. A more extended survey of our results will appear

in Trakhtenbrot, B. A., Halpern, J. Y., and Meyer, A. R., "From denotational to operational and

axiomatic semantics for ALGOL-like languages: an overview," in Logic of Programs, Proceedings,

Clarke and Kozen, eds., Lecture Notes in Computer Science, Springer, 1983.

13

References

K. R. Apt, Ten years of Hoare's logic: a survey - part I, ACM Trans. Programming Languages and

Systems 3, 1981, 431- 483.
. . .

H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, Studies in Logic 103, North

Holland, 1981.

A. Blikle, Naive denotational semantics, Proc. IFIP Congress, 1983.

E. M. Clarke, Programming language constructs for which it is impossible to obtain good Hoare-like

axioms, J.ACM 26, 1979, 129-147.

S. A. Cook, Soundness and completeness of an axiom system for program verification, SIAi\1 J.

Computing 7, 1978, 70-90.

W. Damm, The IO- and OI-hierarchies, Theoretical Computer Science 20, 1982, 95-207.

W. Damm and E . Fehr, A schematological approach to the procedure concept of ALGOL-like

ianguages, Proc. 5ieme collogue sur les arbres en algebre et en programmation, Lille, 1980, 130-134.

J . De Bakker, Mathematical Theory of Program Correctness, Prentice-Hall International, 1980,
SOS pp.

G. A. Gorelick, A complete axiom system for proving assertions about recursive and non-recursive

programs, University of Toronto, Computer Science Dept. TR-75, 1975.

H. Langmaack and E. R. Olderog, Present-day Hoare-like systems, 7th Int'l. Coll. Automata,

Languages, and Programming, Lecture Notes in Computer Science 85, Springer, 1980, 363-373.

J. Meseguer, Completions, factorizations and colimits of w-posets, Coll. Math. Soc. Janos Bolyai

26. Math. Logic in Computer Science, Salgotarjan, Hungary, 1978, 509-545.

A. R. Meyer, What is a model of the >-.-calculus? Information and Control 52, 1982, 87-122.

A. R. Meyer and J.C. Mitchell, Axiomatic definability and completeness for recursive programs, 9th

ACM Symposium on Principles of Programming Languages, 1982, 337-346. Revised as: Termina

tion assertions for recursive programs: completeness and axiomatic definability, MIT / LCS/TM-
214, MIT, Cambridge, Massachusetts, March, 1982; to appear Information and Control, 1982.

R. E. Milne and C. Strachey, A Theory of Programming Language Semantics, 2 Vols., Chapman

and Hall, 1976.

P . Naur et al., Revised report on the algorithmic language ALGOL 60, Computer J. 5, 1963,

349-367.

E. R. Olderog, Sound and complete Hoare-like calculi based on copy rules, Acta Informatica 16,
1981, 161- 197.

E. R. Olderog, A characterization of Hoare's logic for programs with Pascal-like procedures, Proc.

15th ACM Symp. Theory of Computing, 1983a, 320-329.

14

E. R . Olderog, Hoare's logic for program with procedures - what has been accomplished?, Proc.

Logics of Programs, Carnegie-Mellon Univ., Pittsburgh, 1983b, to appear, Lecture Notes in Com

puter Science, Springer, 1983b.

F. J. Oles, Type algebras, functor categories, and block structure, Computer Science Dept., Aarhus

Univ. DAIMI PB-156, Denmark, Jan. 1983.

G. D. Plotkin, A Powerdomain for countable non-determinism, 9th Int'l. Coll. Automata, Lan

guages, and Programming, Lecture Notes in Computer Science 140, Springer, 1982, 412-428.

J . C. Reynolds, The essence of ALGOL, International Symposium on Algorithmic Languages, de

Bakker and van Vliet, eds., North Holland, 1981a, 345- 372.

D. S. Scott, Domains for Denotational Semantics, 9th Int 'l. Conj. Automata, Languages, and

Programming, Lecture Notes in Computer Science 140, Springer, 1982, 577-613; to appear, Infor

mation and Control.

J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory, WT Press, Cambridge, Massachusetts, 1977.

B. A. Trakhtenbrot, On relaxation rules in algorithmic logic, Mathematical Foundations of Com

puter Science 1979, (J. Becvar, ed.), Lecture Notes in Computer Science 74, Springer, 1979, 453-

462.

15

Cambridge, Massachusetts

September 26, 1983

