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1. Introduction 

Let {Xi} ~ 1 be a sequence of independent Bernoulli random variables with probability p 
that Xi = 1 and probability q = 1 - p that Xi = 0 for all i ~ l. Estimating the value of pis 
a classical problem in statistics. In general, an estimation procedure for p consist·s of a sequence 
of estimates { et } ~ 1 where each et is a function of { Xi } != 1. When the form of the estimation 
procedure is unrestricted, it is well-known that p is best estimated by 

1 t 
et = - I: x;.. 

t i =l 

As an example, consider the problem of estimating the probability p that a coin of unknown 
bias will come up "heads". The optimal estimation procedure will, on the tth trial, flip the coin 
to determine Xt (Xt = 1 for "heads" and Xt = 0 for "tails") and then estimate the proportion 
of heads observed in the first t trials. 

The quality of an estimation procedure may be measured by its mean-square error o-2 (p). The 
mean-square error of an estimation procedure is defined as 

where 

1 t 
a2 (p) = Jim - L a;(p), 

t-+oo t . 
1 i= 

o-; (p) = E((e;t - p)2
) 

denotes the expected square error of the tth estimate. For example, it is well-known that o-;(p) = 
P/ and o-2(p) = 0 y,,hen et = t I:~=l X;,. 

In this paper, we consider time-invariant estimation procedures which are restricted to use 
a finite amount of memory. A time-invariant finite-memory estimation procedure consists of a 
finite number of states S = {1, ... , n }, a start state S0 E {1, .. . , n }, and a transition function 
-r which computes the state St at step t from the state St-l at step t - 1 and the input Xt 
according to 

St = r(St- 1,Xt). 

In addition, each st ate i is associated with an estimate 'lJi of p. The estimate after the tth 
transition is then given by et = rJs1 • For simplicity, we will call a finite-state estimation procedure 
an "FSE". 

As an example, consider the FSE shown in Figure l. This FSE has n = (s+ l )(s + 2) states and 
simulates two counters: one for the number of inputs seen, and one for the number of inputs seen 
that are ones. Because of the finite-state rest riction, the counters can count up to s = 0( vn) 
but not beyond. Hence, all inputs after the sth input are ignored. On the tth step, the FSE 
estimates the proportion of ones seen in the first min(s, t) inputs. This is 

l min(s,t) 

et= - - L X;,. 
min(s, t) i=l 

Hence the mean-square error of the FSE is a 2(p) = psq = O(Jn). 
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Figure 1: An <•+1l<•+2 >-state deterministicFSE with mean-square error a2 (p) = -q.. States are 
represented by circles. Arrows labeled with q denote transitions on input zero. Arrows labeled with 
p denote transitions on input one. Estimates are given as fractions and represent the proportion of 
inputs seen that are ones. 

In [23], Samaniego considered probabilistic FSEs and constructed the probabilistic FSE shown 
in Figure 2. Probabilistic FSEs are similar to nonprobabilistic (or deterministic) FSEs except that 
a probabilistic FSE allows probabilistic transitions between states. In particular, the transition 
function 7 of a probabilistic FSE consists of probabilities Tijk that the FSE will make a transition 
from state i to state j on input k. For example, r320 = n..:.. 1 in Figure 2. So that 7 is well-defined, 
we require that I:j=l Tijk = 1 for all i and k. 

Figure 2: A probabilistic n-state FSE with mean-square error a 2(p) = n~l. States are repre­
sented by circles in increasing order from left to right {e.g., state 1 is denoted by the leftmost circle 

and state n is denoted by the rightmost circ!e). State i estimates ~=1 for 1 ~ i ~ n. The 
estimates are shown as fractions within the circles. Arrows labeled with fractions of q denote prob­
abilistic transitions on input zero. Arrows labeled with fractions of p denote probabilistic transitions 
on input one. For example, the probability of changing from state 2 to state 9 on input 1 is ~=f. 
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In this paper, we show that the mean-square error of the FSE shown in Figure 2 is a2(p) = 
/3... 1 = O(¼), and that this is the best possible (up to a constant factor) for an n-state F SE . In 
particular, we will show that for any n -state FSE (probabilist ic or deterministic), there is some 
value of p for which a2 (p) = fl{:J Previously, the best lower bound known for a2(p) was O(~)­
The weaker bound is due to the "quantizat ion problem", which provides a fundemental limitation 
on the achievable performance of any FSE. Since the set of estimat es of an n-state FSE has size 
n, there is always a value of p (in fact, there a re many such values) for which the difference 
between p and the closest estimate is at least ,k: This means that t he mean-square error for 
some p must be at least 0( ~ ). Our result (which is based on the Markov Chain Tree Theorem 
[14]) proves that this bound is not achievable, thus showing that the quantizat ion problem is not 
the most serious consequence of t he fini t e-memory restriction. 

It is encouraging that t he nearly opt imal FSE in Figure 2 has such a simple structure. This is 
not a coincidence. In fact, we will show that for every probabilist ic FSE wit h mean-square error 
a 2(p), there is a linear probabilistic FSE with the same number of states and with a mean-square 
error that is bounded above by a 2(p) for all p. (An FSE is said to be linear if the states of the 
FSE can be linearly ordered so that transitions a re made only between consecutive st ates in the 
ordering. Linear F SEs are the easiest FSEs to implement in practice since the st ate information 
can be stored in a counter and the transitions can be effected by a single increment or decremer.t 
of t he counter.) · 

We also study deterministic FSEs in the paper. Although we do not know how to achieve 
the 0( ¼) lower bound for determinist ic FSEs, we can come close. In fact, we will construct an 

n-state determinist ic FSE that has mean-square error 0 ( 10! n). The construction uses the input 
to determinist ically simulate the probabilistic t ransitions of the FSE shown in F igure 2. 

The remainder of the paper is divided into five sections. In Section 2, we present some 
background mat erial on Markov chains (including the Markov Chain Tree T heorem) and prove 
that the FSE shown in Figure 2 has mean-square error 0( ¼ ). In Section 3, we construct an 

n -st ate determinist ic FSE with mean-square error 0( 10! n ) . The 0( ¼) lower bound for n-state 
FSEs is proved in Sect ion 4. In Sect ion 5, we demonstrate the universality of linear F SEs. We 
conclude in Section 6 with references and open questions. 

2. Theory of Markov Chains 

An n -state FSE act like a n n-state first-order st ationary Markov chain. In particular, the 
t ransition matrix P defining the chain has entries 

where r,jk is the probability of changing from sta te i t o state j on input k in the FSE. For 
example, p33 = n.:. 1 p + ~=r q for the FSE in Figure 2. 

F rom the definition, we know that the mean-square error of an F SE depends on the limit ing 
probability that the FSE is in state j given that it started in state i . (This probability is based 
on p and the transition probabilities Tijk-) T he long-run t ransition matrix for the corresponding 
Markov chain is given by 

P = lim ! (I+P+ P2 + -· ·+ Pt-1
) . 

t-+oo t 
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This limit exists because P is stochastic (see Theorem 2 of [4]). The ijth entry of Pis simply the 
long-run average probability P,j that the chain will be in state j given that it started in state i . 

In the case that the Markov chain defined by P is ergodic, every row of P is equal to the same 
probability vector 7i = (7i1 • • • ?rn) which is the stationary probability vector for the chain. In the 
general case, the rows of P may vary and we will use 7i to denote the So-th row of P. Since So 
is the start state of the FSE, 1ii is the long-run average probability that the FSE will be in state 
i . Using the new notation, the mean-square error o.f an FSE can be expressed as 

n 

a2(p) = I: 1ii(1Ji - p)2. 
i=l 

Several methods are known for calculating long-run transition probabilities. For our purposes, 
the method developed by Leighton and Rivest in [14] is the most useful. This method is based 
on sums of weighted arborescences in the underlying graph of the chain. We review the method 
in what follows. 

Let V = { 1, ... , n} be the nodes of a directed graph G, with edge set E = { (i,j) I Pii =f O }. 
This is the usual directed graph associated with a Markov chain . (Note that G may contain 
self-loops.) Define the weight of edge (i,j) to be Pii· An edge set A ~ Eis an arborescence 
if A contains at most one edge out of every node, has no cycles, and has maximum possible 
cardinality. The weight of an arborescence is the product of the weights of the edges it contains. 
A node which has outdegree zero in A is called a root of the arborescence. 

Clearly every arborescence contains the same number of edges. In fact, if G contains exactly 
k minimal closed subsets of nodes, then every arborescence has !VI - k edges and contains one 
root in each minimal closed subset. (A subset of nodes is said to be closed if no edges arc directed 
out of the subset.) In particular, if G is strongly connected (i.e., the Markov chain is irreducible), 
then every arborescence is a set of IV l-1 edges that form a directed spanning tree with all edges 
flowing towards a single node (the root of the tree). 

Let A(V) denote the set of arborescences of G, A1 (V) denote the set of arborescences having 
root j, and A,1 (V) denote the set of arborescences having root j and a directed path from i t o 
j . (In the special case i = j, we define J<jj(V) to be J<j{V).) In addition, let IIA(V)II, IIAj(V)II 
and IIAij(V)II denote the sums of the weights of the arborescences in A(V), Aj(V) and J<ij(V), 
respectively. 

Leighton and Rivest proved the following in [14]. 

The Markov Chain Tree Theorem [14]: Let the stochastic n X n matrix P define a finite Markov 
chain with long-run transition matrix P. Then 

- IIAi;(V)II 
Pi;= IIA(V)II . 

Corollary: If the underlying graph is strongly connected, then 

- IIA;(V)II 
Pij = IIA(V)II . 
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As an example, consider once again the probabilistic FSE displayed in Figure 2. Since the 
underlying graph is strongly connected, the corollary means that 

IIAi(V)II 
1Ti = IIA(V)II . 

In addition, each ,4i(V) consists of a single tree with weight 

n - 1 n - 2 n-(i - 1) i i+l n- 1 
--p·--p· ·· ----p•--q•-- q•· •--q 
n - 1 n-1 n - 1 n-1 n - 1 n - 1 

and thus 

II A(V)II = (n - 1) (n - 1)! i-1 n-i . 
' i - 1 (n - l)11- 1 P q 

Summing over i, we find that 

and thus that 

IIA(V)II = ~ (~ - 1) (n - 1)! p'- lqn-i 
~ t - 1 (n - l )n- l 
•=1 

_ (n -1)! ( + )n-1 
(n - 1)rr-1 p q 

(n - 1)! 
(n - l)n- 1 

1Ti = (~ - l)l-lqn-i. 
t - 1 

Interestingly, this is the same as the probability that i - 1 of the first n - 1 inputs are ones and 
thus the FSE in Figures 1 and 2 are equivalent (for s = n - 1) in the long run! The FSE in 
Figure 2 has fewer states, however, and mean-square error a2 (p) = nr>_!_I = O(¾). 

The Markov Chain Tree Theorem will also be useful in Section 4 where we prove a lower bound 
on the worst-case mean-square error of an n-state FSE and in Section 5 where we establish the 
universality of linear FSEs. 

3. An Improved Deterministic FSE 

fo what follows, we show how to simulate the n-state probabilistic FSE shown in Figure 2 
with an 0( n log n)-state deterministic FSE. The resulting m-state deterministic FSE will then 

have mean-square error O(
10!,m). This is substantially better than the mean-square error of the 

FSE shown in Figure 1, and we conjecture that the bound is optimal for deterministic FSEs. 

The key idea in the simulation is to use the randomness of the inputs to simulate a fixed 
probabilistic choice at each state. For example, consider a state i which on input one changes to 
state j with probability 1/2, and remains in state i with probability 1/2. (See Figure 3a.) Such 
a situation arises for states i = ~ and j = ~ + 1 for odd n in the FSE of Figure 2. These 
transitions can be modelled by the deterministic transitions shown in Figure 3b. 

The machine in Figure 3b starts in state i and first checks to see if the input is a one. If so, 
state 2 is entered. At this point, the machine examines the inputs in successive pairs. If "00" or 
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Figure 3: Simulation of (a} probabilistic transitions by (b} deterministic transitions. 

"11" pairs are encountered, the machine remains in state 2. If a "01" pair is encountered, the 
machine returns to state i and if a "10" pair is encountered, the machine enters state j . Provided 
that p =/; 0, l (an assumption that will be made throughout the remainder of the paper), a "01" 
or "10" pair will (with probability 1) eventually be seen and the machine will eventually decide 
to stay in state i or move to state j . Note that regardless of the value of p (0 < p < l), 
the probability of encountering a "01" pair before a "10" pair is identical to the probability of 
encountering a "10" pair before a "01" pair. Hence the deterministic process in Figure 3b is 
equivalent to the probabilistic process in Figure 3a. {The trick of using a biased coin to simulate 
an unbiased coin has also been used by von Neumann in [18] and Hoeffding and Simons in [10].) 

It is not difficult to generalize this technique to simulate t ransitions with other probabilities. 
For example, Figure 4b shows how to simulate a transition which has probability ¾P- As before, 
the simulating machine first verifies that the input is a one. If so, state a2 is en~ered and 
remaining input s are divided into successive pairs. As before, "00" and "11" pairs are ignored. 
The final state of the machine depends on the first three "01" or "10" pairs that are seen. If 
the first three pairs are "10" "10" "10", "10" "10" "01", or "10" "01" "10" (in those orders), then 
the machine moves to state j. Otherwise, the machine returns to state i. Simply speaking, the 
machine interprets strings of "0l"s and "l0"s as binary numbers formed by replacing "01" "pairs 
by Os and "10" pairs by ls and decides if the resulting number is bigger than or equal to 101 . 5. 
Since "01" and "10" pairs are encountered with equal probability in the input string for any p, 
the probability that the resulting number is 5 or bigger is precisely §. 

In general, probabilistic transitions of the form shown in Figure 5 {where x is an integer) can 
be simulated with 3i extra deterministic states. Hence, when n - l is a power of two, the n-state 
probabilistic FSE in Figure 2 can be simulated by a deterministic FSE with 6{ n - l) log( n - 1) = 
O(n log n) additional states. When n is not a power of two, the deterministic automata should 
simulate the next largest probabilistic automata that has 2a. states for some a. This causes at 
most a constant increase in the number of states needed for the simulation. Hence, for any m, 

there is an m-state deterministic automata with mean-square error 0( 10
~ m). 

4. Lower Bound 

In this section, we show that for every n -state probabilistic ( or determinist ic) FSE, there is a 
p such that the mean-square error of the FSE is 0( ¼ ). The proof is based on t he Markov Chain 
Tree Theorem and the analysis of Section 2. 
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Figure 4: Simulation of (a) probabilistic transitions by {b} deterministic transitions. 

Figure S: General probabilistic transition. 

From the analysis of Section 2, we know that the mean-square error of an n-state FSE is 

n 

a2(p) = L 1r,-(TJ,- _ p)2 
j=l 

I:7= 1ll.4s01 (V)ll(TJ,- - P)2 

-
IIA(V)II 

where l1As0,-(V)II and IIA(V)II are weighted sums of arborescences in the underlying graph of the 
FSE. In particular, each 11 ,4 80,-(V)II is a polynomial of the form 

n 

J,-(p, q) = L aijPi-1qn-i 
i=l 
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and ll,4(V)II is a polynomial of the form 

n 

g(p, q) = L aipi-lqn-i 

i=l 

where ai = L7=t a,; and aii ;:::: 0 for all 1 5 i,j 5 n. The nonnegativity of the ai/s follows 
from the fact that every edge of the graph underlying the FSE has weight Pi1 = 7iJ1P + 7iJoq 
where 71; 1 and 7,1 o are nonnegative. Since every arborescence in the graph has m 5 n -1 edges, 
every term in the polynomial for ll :\507 (V)II has the form apr q5 where r + s = m. Multiplying 
by (p+ qt-1- m = 1 then puts J;(P, q) in the desired form. The identity for g(p, q) follows from 

the fact that IIA(V)II = L7=1 IIAs01 (V)II. 
From the preceding analysis, we know that 

'\'n '\'n i -1 n-i( )2 
2( ) _ 61=1 61=1 aiiP q T/J - P 

a P - Ln . 1 . . a ·p•- qn-• 
•= 1 1 

where a,= L7=1 a,; and ai1 ;:::: 0 for 1 5 i,j 5 n. In what follows, we will show that 

for all aii ;:::: 0 and 1JJ· Since the integrands are always nonnegative, we will have thus proved 
the existence of a p (0 < p < 1) for which 

n n 

L L ai)Pn+i-1q2n-i(1J; _ p)2 ~ 
)=1 i=l 

By dividing both sides by pnqn, this will prove the exist ence of a p for which 

n n 

L L ai)Pi-1qn-i(1J; - p)2 
) = 1 i=l 

and thus for which a 2(p) ~ O(¼). 
_ The proof relies heavily on the following well-known identites: 

(*) i 1 - id - t.J. 1
1 ., ., 

op( p) P - (i+j+l)! and 

(**) f1 i(l )i( )2d > (i + l)!(j + 1)! 
lo P -p p-7] p_ (i+i+3)!(i+i+2) 

for all 77. 
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The proof is now a straightforward computation. 

11 t t aiJPn+i- lq2n-i(17J - p)2dp 
p=O J=l i=l 

- t t aiJ fol pn+i-1(1 - p)2n-i(p - 1l1-)2dp 
J=l i=l · 

2'.'. t t ai3(n + i)!(2n - i + 1)! by(**) 
J=l i=l (3n + 2)!(3n + 1) 

_ t ai(n + i)!(2n - i + 1)! 

i=l (3n + 2)!(3n + 1) 

_ t (n+i)(2n-i+ l) ai(n+i-1)!(2n - i)! 

i=l (3n + 2)(3n + 1)2 (3n)! 

> 2n(n + 1) t ai(n + i - 1)!(2n - i)! 

(3n + 2)(3n + 1)2 
i=l , (3n)! 

- O( ~)ta,: [1 pn+i-1(1 - p)2n-idp by(*) 
n i = l lo 
1 [1 n . . 

_ O(;) }p=O 2i a,pn+i-lq2n-idp. 

It is worth remarking that the key fact in the preceding proof is that the long-run average 
transition probabilities of an n-state FSE can be expressed as ratios of (n-1)-degree polynomials 
with nonnegative coefficients. This fact comes from the Markov Chain Tree Theorem. (Although 
it is easily shown that the long-run probabilities can be expressed as ratios of (n - 1)-degree 
polynomials, and as infinite polynomials with nonnegative coefficients, the stronger result seems 
to require the full use of the Markov Chain Tree Theorem.) The remainder of the proof essentially 
shows that functions of this restricted form cannot accurately predict p. Thus the limitations 
imposed by restricting the class of transition functions dominate the limitations imposed by 
quantization of the estimates. 

5. Universality of Linear FSEs 

In Section 4, we showed that the mean-square error of any n-state FSE can be expressed as 

"\"n "\"n i-1 n-i( )2 2( ) _ L..,J=l L..,i=l a,1P q 17J - P 
(l P - En . i . . a·p•- qn-, 

t = l i 

where ai = I:;'= 1 a,3 and a,:3 2:: 0 for 1 :::; i, j :::; n. In this section, we will use this fact to 
construct an n-state linear FSE with mean-square error at most a2(p) for all p. We first prove 
the following simple identity. 
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Lemma 1: If a 1, • . . , an are nonnegative, then 
n 

L a1(771 - P)2 ~ a(77 - P)2 

J=l 

for all p and 771, ... , 7Jn where a = Lj=l a1 and 7] = ¼ L j=l a37JJ• 

Proof: Since a 1, .. . , an are nonnegative, a = O_ if and only if a3 = 0 for 1 ~ j ~ n . Thus 

if and only if 

which is true since 

n 

L a3(771 - p)2 ~ a(77 - p)2 
J=l 

n 

a L a3(77, - p)2 > a2(77 - p)2 
J=l 

n n 

a L a1(771 - p)2 - a2(77 - p)2 = a L a,77; - a2772 
J=l J=l 

= (t a,)( t a377;)-( t ai7Ji)(t a17J1) 
i=l J=l i=l J=l 

is nonnegative. I 

1$i,J$n 

- L _ aia3( 77j - 7]i7JJ) 
1$i<J$n 

L aia1(771 - 7Ji)2 

Let 77~ = ,;, L j = l aiJ7li for i ~ i ~ n. From Lemma 1, we can conclude that 

.._.,.n i-1 n- i( ')2 
2( ) > L.,,= l aip q p- 7Ji 

Cl p .._.,.n . 1 . 
- L.,i=l aip•- qn-, 

for O ~ p ~ 1. This ratio of sums is similar to the mean-square error of a linear FSE which never 
moves left on input one and never moves right on input zero. For example, the mean-square error 
of the linear FSE in Figure 6 can be written in this form by setting 

for 1 ~ i ~ n. 

r 

Figure 6: Universal linear FSE. 
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Given a nonnegative set {a,:}f= 1, it is not always possible to find sets {u,:}~/ and {vi}i=2 
such that O ::; u i, Vi ::; 1 and ai = u1 · · · Ui-l vi+i • · · Vn for all i. There are two possible 
difficulties. The first problem is that ai might be larger than one for some i. This would mean 
that some u1 or v1 must be greater than one, which is not allowed. The second problem involves 
values of a,: which are zero. For example, if a 1 =/:- 0 and an =/:- 0, then each u,: and v,: must be 
nonzero. This would not be possible if a,: = 0 for some i, 1 < i < n. 

Fortunately, both difficulties can be overcome: The first problem is solved by observing that 
the mean-square error corresponding to the set {ca,:}i=1 is the same as the mean-square error 
corresponding to {ai}f=1 for all c > O. By setting 

a.:+1 
u,: = - - and v.:+1 = 1 

a,: 

u,: = 1 and 

and U1 • • • Un-1 
c=----

it can be easily verified that the mean-square error of the FSE shown in Figure 6 is 

provided that a,: > 0 for 1 ::; i ::; n. This is because 

If a1 = · · · = a;-1 = 0 and ak+1 = · · · = an = 0 but a,: -:/- 0 for j ::; i ::; k, then the 
preceding scheme can be made to work by setting u1 = • · • = u;-1 = 1, Uk = • • • = Un-1 = O, 
V2 - . • • • = VJ· = 0, Vk+l = · • · = Vn = 1, 

u, = 1 and 

UJ' . · Uk-1 

and c=--- -

for j ::; i ::; k - 1 , 

To overcome the second problem then, it is sufficient to show that if a1 =/:- O and ak =/:- O for 
some FSE, then a,: =/:- 0 for every i in the range j ::; i :S: k. From the analysis in Sections 2 and 
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4, we know that ai -:/ 0 if and only if there is an arborescence in the graph underlying the FSE 
which has i - 1 edges weighted with a fraction of p and n - i edges weighted with a fraction 
of q. In Lemma 2, we will show how, given any pair of arborescences A and A', to construct a 
sequence of arborescences A1, ... , Am such that A1 = A , Am = A', and Ai and A 1+ 1 differ by 
at most one edge for 1 ~ i < m . Since every edge of the graph underlying an FSE is weighted 
with a fraction of p or q or both, this result will imply that a graph containing an arborescence 
with j - 1 edges weighted with a fraction of p and n - j edges weighted with a fraction of q, 
and an arborescence with k - 1 edges weighted with a fraction of p and n - k edges weighted 
with a fraction of q, must also contain an arborescence with i -1 edges weighted with a fraction 
of p and n - i edges weighted with a fraction of q for every i in the range j ~ i ~ k. This will 
conclude the proof that for every n-state FSE with mean-square error o 2(p), there is an n-state 
linear FSE with mean-square error at most o 2(p) for O ~ p ~ 1. 

Lemma 2: Given a graph with arborescences A and A', there is a sequence of arborescences 
A1, .. . ,Am such that A1 = A, Am = A', and A1+ 1 can be formed from A for 1 ~ i < m by 
replacing a single edge of A, with an edge of A'. 

Proof: The sequence of edge replacements proceeds in two phases. In the first phase, a node 
v in Ai is selected such that 

1) vis neither a root of A nor a root of A', 
2) the edge from v in Ai is different than the edge from v in A', and 
3) the edges from all ancestors of v (if any) in Ai are edges in A'. 

Then the edge from v in Ai is replaced by the edge from v in A' to form Ai+l• 

The first phase continues until the supply of nodes that satisfy the three conditions is ex­
hausted. At this point, every edge in Ai that is riot on a path from a root of A' to a root of Ai 
is also in A'. 

In the second phase, a root v of Ai that is not a root of A' is selected and the edge from v in 
A' is inserted to form Ai+l · In addition, the unique edge that enters v and that is descendent in 
Ai from a root of A' is removed in Ai+i . The ancestor of v in Ai that is a descendent of a root 
in A' then becomes a root of Ai+ l · Note that the length of the path from the root of A' to the 
root of Ai+ 1 is one less than the length of the path from the root of A' to v. Thus repetition of 
this process will eventually produce an arborescence Am which has the same roots as A'. At this 
point, the procedure terminates. (For an example of this process, see Figure 7.) 

Since every arborescence has exactly one root in each minimal closed subset of nodes, the 
preceding algorithm constructs a sequence of graphs A 1 , . .• , Am such that A 1 = A, Am = A', 
and Ai and Ai+ 1 differ in at most one edge for 1 ~ i < m. In order to complete the proof, 
we must show that each Ai is an arborescence. The proof is by induction, and shows that if~ 
has no cycles or nodes with outdegrce greater than one, then Ai+ i has no cycles or nodes with 
outdegree greater than one. Since Ai and A,+1 have the same number of edges, we will have 
thus shown that Ai+i is an arborescence if Ai is an arborescence. 

The outdegree constraint is straightforward to verify since, in the first phase, the outdegree 
of the nodes is not changed, and in the second phase, outgoing edges are added only to roots. It 
is also easy to verify that cycies are not introduced in the procedure. If a cycle were introduced 
in the first phase, it would have to consist of edges that are also in A' (by the third constraint on 
v), thus violating the acyclicity of A'. If a cycle were formed in the second phase, it could only 
contain edges which are not on the path from a root of A' to a root of Ai (since the last edge in 
this path was removed). Such edges arc in A', however, again violating the acyclicity of A'. I 
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Figure 7: Deforming A into A' by a sequence of edge replacements. Checkmarks denote nodes for 
which the outgoing edge is in A'. Arborescences A 2 , A 3 and A 4 are formed during the first phase. 

6. Remarks 

There is a large literature on problems related to estimation with finite memory. Most of the 
work thus far has concentrated on the hypothesis testing problem [1, 3, 9, 25, 26, 27] . Generally 
speaking, the hypothesis testing problem is more tractable than the estimation problem. For 
example, several constructions are known for n-state automata which can test a hypothesis with 
long-run error at most O(Qn) where Q is a constant in the interval O < Q < 1 that depends only on 
the hypothesis. In addition, several researchers have studied the time-varying hypothesis testing 
problem [2, 11, 12, 16, 21, 28]. Allowing transitions to be time-dependent greatly enhances the 
power of an automata. For example, a 4-state time-varying automata can estimate a probability 
with an arbitrarily small mean-square error. 

As was mentioned previously, Samaniego [23] studied the problem of estimating the mean of 
a Bernoulli distribution using finite memory, and discovered the FSE shown in Figure 2. Hellman 

13 



studied the problem for Gaussian distributions in [8], and discovered an FSE which achieves the 
lower bound implied by the quantization prob1em. (Recall that this is not possible for Bernoulli 
distributions.) Hellman's construction uses the fact that events at the tails of the distribution 
contain a large amount of information about the mean of the distribution. 

The work on digital filters (e.g., [19, 20, 22]} and on approximate counting of large numbers 
[6, 15] is also related to the problem of finite-memory estimation. 

We conclude with some questions of interest and some topics for further research. 

1) Construct an n-state deterministic FSE with mean-square error o(
10!n) or show that no 

such construction is possible. 

2) Construct a truly optimal (in terms of worst-case mean-square error) n -state FSE for 
all n. 

3) Consider estimation problems where a prior distribution on pis known. For example, if 
the prior distribution on pis known to be uniform, then then-state FSE in Figure 2 has 
expected (over p) mean-square error 0(¼). Prove that this is optimal (up to a constant 
factor) for n-state FSEs. 

4) Consider models of computation that allow more than constant storage. (Of course, the 
storage should also be less than logarithmic in the number of t rials to make the problem 
interesting.) 

5) Can the amount of storage used for some interesting models be related to the complexity 
of representing p? For example, if p = a/b, then log a+ log b bits might be used to 
represent p. Suppose that the FSE may use an ext ra amount of storage proportional to 
the amount it uses to represent its current prediction. 

Acknowledgements 

We thank Tom Cover, Martin Hellman, Robert Gallager, and Peter Elias for helpful discus­
sions. 

References 

[1] B. Chandrasekaran and C. Lam, "A Finite-Memory Deterministic Algorithm for the Sym­
metric Hypothesis Testing Problem," IEEE Tran:;actions on Information Theory, Vol. IT-21, 
No. 1, January 1975, pp. 40-44. 

[2] T. Cover, "Hypothesis Testing with Finite Statistics," Annals of Mathematical Statistics, Vol. 
40, 1969, pp. 828-835. 

[3] T. Cover and M. Hellman, "The Two-Armed Bandit Problem With Time-Invariant Finite 
Memory," IEEE Transactions on Information Theory, Vol. IT-16, No. 2, March 1970, pp. 
185-195. 

[4] J . Doob, Stochastic Processes, Wiley, New York, 1953. 

[5] W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 1957. 

[6] P. Flajolet, "On Approximate Counting," INRIA Research Report No. 153, July 1982. 

14 



[7] R. Flower and M. Hellman, "Hypothesis Testing With Fi;iite Memory in Finite Time," IEEE 
Transactions on Information Theory, May 1972, pp. 429-431. 

[8] M. Hellman, "Finite-Memory Algorithms for Estimating the Mean of a Gaussian Distribu­
tion," IEEE Transactions on Information Theory, Vol. IT-20, May 1974, pp. 382-384. 

[9] M. Hellman and T. Cover, "Learning with Finite Memory," Annals of Mathematical Statis­
tics, Vol. 41, 1970, pp. 765-782. 

[10] W. Hoeffding and G. Simons, "Unbiased Coin Tossing with a Biased Coin," Annals of 
Mathematical Statistics, Vol. 41, 1970, pp. 341-352. 

[11] J. Koplowitz, "Necessary and Sufficient Memory Size for m-Hypothesis Testing," IEEE 
Transactions on Information Theory, Vol. IT-21, No. 1, January 1975, pp. 44-46. 

[12] J. Koplowitz and R. Roberts, "Sequential Estimation With a Finite Statistic," IEEE Trans­
actions on Information Theory, Vol. IT-19, No. 5, September 1973, pp. 631-635. 

[13] S. Lakshmivarahan, Learning Algorithms - Theory and Applications, Springer-Verlag, New 
York, 1981. 

[14] F. Leighton and R. Rivest, "The Markov Chain Tree Theoregi," submitted. 

[15] F . Morris, "Counting Large Numbers of Events in Small Registers," Communications of the 
ACM, Vol. 21, No. 10, October 1978, pp. 840-842. 

[16] C. Mullis and R. Roberts, "Finite-Memory Problems and Algorithms," IEEE Transactions 
on Information Theory, Vol. IT-20, No. 4, July 1974, pp. 440-455. 

[17] K. Narendra and M. Thathachar, "Learning Automata - A Survey," IEEE Tra~actions on 
Systems, Vol. SMC-4, No. 4, July 1974, pp. 323-334. 

[18] J. von Neumann, ''Various Techniques Used in Connection With Random Digits," Monte 
Carlo Methods, Applied Mathematics Series, No. 12, U. S. National Bureau of Standards, 
Washington D. C., 1951, pp. 36-38. ., 

[19] A. Oppenheim and R. Schafe, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, 
New Jersey, 1975. 

[20] L. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1975. 

[21] R. Roberts and J. Tooley, "Estimation With Finite Memory," IEEE Transactions on Infor­
mation Theory, Vol. IT-16, 1970, pp. 685-691. 

[22] A. Sage and J. Melsa, Estimation Theory With Applications to Communications and Control, 
McGraw-Hill, New York, 1971. 

[23] F. Samaniego, "Estimating a Binomial Parameter With Finite Memory," IEEE Transactions 
on Information Theory, Vol. IT-19, No. 5, September 1973, pp. 636-643. 

[24] F. Samaniego, "On Tests With Finite Menory in Finite Time," IEEE Transactions on 
Information Theory, Vol. IT-20, May 1974, pp. 387-388. 

15 



[25] F. Samaniego, "On Testing Simple Hypothesis in Finite Time With Hellman-Cover 
Automata," IEEE Transactions on Information Theory, Vol. IT-21, No. 2, March 1975, 
pp. 157-162. 

[26] B. Shubert, "Finite-Memory Classification of Bernoulli Sequences Using Reference Samples," 
IEEE Transactions on Information Theory, Vol. IT-20, May 1974, pp. 384-387. 

[27] B. Shubert and C. Anderson, "Testing a Simple Symmetric Hypothesis by a Finite-Memory 
Deterministic Algorithm," IEEE Transactions on Information Theory, Vol. IT-19, No. 5, 
September 1973, pp. 644-647. 

[28] T. Wagner, "Estimation of the Mean With Time-Varying Finite Memory," IEEE Transac­
tions on Information Theory, Vol. IT-18, July 1972, pp. 523-525. 

16 


