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1. Introduction 

Let M denote a finite first-order stationary Markov chain with states { 1, ... , n} and transition 
probability matrix P such that the ij entry Pij of P is the probability of a transition from state 
i to state j . Let 

be the long-run transition matrix for the Markov chain M. (The limit exists because P is 
stochastic [5, Theorem 2.1].) The ijth entry of P, Pij, is simply the long-run average probability 

that M will be in state j, given that M started in state i . If M is ergodic, then every row of P 
is the stationary probability vector 1r for M. 

Let V = { 1, ... , n} be the vertices of a directed graph G, with edge set E = { ( i, j) I PiJ f= 
0 }. This is the usual directed graph associated with the Markov chain M. (Note that G may 
co ntain self-loops.) We define the weight of edge (i,j) to be Pii· An edge set A ~ E is an 
arborescence if A contains at most one edge out of every vertex, has no cycles, and has maximum 
possible cardinality. The weight of an arborescence is the product of the weights of the edges it 
contains. A node which has outdegree zero in A is called a root of the arborescence. 

Clearly every arborescence contains the same number of edges. In fact, if G contains exactly 
k minimal closed subsets of vertices, then every arborescence has size IVI - k and contains one 
root in each minimal closed subset. (A subset of nodes is said to be closed if no edges are directed 
out of the subset.) In particular, if G is strongly connected (i.e. the Markov chain is irreducible), 
then every arborescence is a set of IV l-1 edges that form a directed spanning tree with all edges 
flowing towards a single vertex (the root of the tree). 

Let A(V) denote the set of arborescences of G, A1 (V) denote the set of arborescences having 
j as a root, and Aij(V) denote the set of arborescences having root j and a directed path from i 
to;'. (In the special case i = j, we define Ajj(V) to be Aj(V).) In addition, let ll ,4(V)II, ll ,4j(V)II 
and IIAij(V)II denote the sums of the weights of the arborescences in A(V), A

1
(V) and Aij(V), 

respectively. " 

The standard method of computing P is to use linear algebraic techniques. In this paper, we 
derive a simple combinatorial technique for computing P. In particular, we prove the following. 

Theorem 1 (The Markov Chain Tree Theorem): Let the stochastic n X n matrix P define a 
finite Markov chain M with long-run transition matrix P. Then 

- IIAij(V)II 
Pij = IIA(V)II . 

Corollary 1: If M is ergodic, then 

- IIAj(V)II 
Pij = IIA(V)II . 

Proof of Corollary: When M is ergodic, the underlying graph is strongly connected and every 
arborescence with root j is a spanning tree with root j. I 
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Although Corollary 1 is proved in [7], the proof is complicated and the result is not well 
known. In this paper, we give two proofs of the stronger result. The first proof is derived from 
some simple graph theoretic identities involving arborescences and paths. The second proof is 
derived from the closely related Matrix-Tree Theorem. The proofs are presented in Section 3. 
The graph identities are included in Section 2. We conclude this section with some examples of 
how the Markov Chain Tree Theorem can be used to calculate long-run transition probabilities. 

Example 1. Consider the Markov chain of Figure 1. 

/) p /J 

p 
C/r 71 rr ~ 

Figure 1: A strongly connected Markov chain. 

In this strongly connected chain, q = 1 - p and the single tree with root j has j "right-going" 
arcs of weight p (0 -+ 1 -+ · · • -+ j) and n - 1 - j "left-going" arcs of weight q (j +- j + 1 +­

. · · +- n - 1). The weight of the spanning tree with root j is thus pJqn-1-1, so 

,,,,J. n-1-J }' q . 
1T · =---,-----

J °"n-l i n -1-i · 
~i=O p q 

Example 2. This is like the last example except that states O and n - 1 are "absorbing 
barriers". Consider a gambler who begins with i dollars and keeps betting 1 dollar at a time, 
with probability p of winning two dollars back and q = 1 - p of losing his dollar each time. We 
assume that the gambler doesn't quit until he is "ruined" (has no money left) or until he holds 
n - 1 dollars. Then Pio is the probability he will be ruined and Pin-l is the probability he will 
go home with n - 1 dollars. 

p p p p 
1 

. . J 

rr ?r ~ 7r 
Figure 2: A Markov chain for the gambler's problem. 
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Each arborescence consists of exactly n - 2 arcs, j of which will be "left-going" with weight q 
(0 +- 1 +- • • • +- j) and n - j - 2 of which will be "right-going" with weight p (J' + 1 -+ j + 2-+ 
•··-+ n - 1). Thus 

'°'n-2 j (n-2)-j 
- L,j=i q p 
Pio = I:;:t qip(n-2)- j 

and 
'°'i-1 j (n-2)-j 

- L,J=O q p 
Pin- 1 = '°'n- 2 j {n-2)-j . 

L,j=O q p 

Example 3. Consider the Markov chain of Figure 3. 

a... f 

e L 

C 

Figure 3: A Markov chain with six arborescences. 

In this example, there are six arborescences: adj, adg, bef, beg, edf, and edg. Thus IIA(V)II = 
( ad + be + ed) · (J + g) and 

_ 1 0 0 be(J+g) · (ad+ed)g (ad+ ed)f 

(

0 0 (be+ ed)(f + g) adg adf ) 

P= · 0 0 (ad+be+ed)(f+ g) 0 0 . 
ll -4(V)II o O O (ad+ be+ ed)g (ad+ be+ ed)f 

0 0 0 (ad+be+ed)g (ad+be+ed)f 

For example, p24 = (a.d);;:cc;J,~ +g) because the only two arborescences which have 4 as a root 
and a path from 2 to 4 are those with weights adg and edg. 

2. G ra ph Iden tities 

It is well-known that the states of any Markov chain can be decomposed into a set T of 
transient states and sets B1, B2 , .. . , Em of minimal closed subsets of states. For example, T = 
{1, 2}, B1 = {3} and B2 = { 4, 5} in Figure 3. For any subset of states W ~ V, define e(W) t o be 
the number of minimal closed subsets of states contained in W. For example, e( {1, 2, 4}) = 0 and 
e( {3, 4}) = 1 in Figure 3. As we remarked in the introduction, every a rborescence has IVI - e(V ) 
edges. The following lemma states a simple but important fact about e(W). 

L emma 1: If U and W are disjoint subsets of V and if there are no edges from W to U in E , 
then e(U U W) = e(U) + c(W). 

P roof: Every minimal closed subset in U or W is a minimal closed subset in U LJ W. Thus 
e(U U W) ~ c(U) + e(W). If a closed subset of U LJ W contains nodes in both U and W, then the 
portion of the subset in Wis also closed (since there are no edges from W to U) . Thus the original 
subset is not minimal, implying that e(U U W) ::; c(U) + e(W). Thus e(U U W) = c(U) + e(W), 
as claimed. I 
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Given any subset of nodes W ~ V, define an arborescence from W to be an acyclic subgraph 
of G = (V, E) for which the outdegree of nodes in W is at most one and for which the outdegree 
of nodes in V - W is zero. Let A'(W) denote the set of arborescences from W with r edges, 
. .li;-(w) denote the set of arborescences from W with root 1· and r edges, and A;

1
(W) denote the 

set of arborescences from W with root j, a path from i to j and r edges. (If i = j, then Aij(W) 
is defined to be A;(w).) As we are particularly interested in arborescences with JWJ - c(W) 
edges, we use A(W), A

1
(W) and A,

1
(W) to denote the sets .,q lWl-c(Wl(W), A~Wl- c(W)(W) and 

A!f l-c(W)(W), respectively. For example, Aij(W) denotes the set of arborescences from W with 
root j, a path from i to j, and IWI - c(W) edges. 

Notice that the definit ions for .4(V), A1(V) and A,1 (V) provided here are equivalent to those 
given in the introduction. This is because every maximum arborescence has IV I - c(V) edges. 
Also notice that A1(W) and A,j(W) may be empty for some W. This happens when node j is 
not contained in a minimal closed subset of W and/or when there is no path from i to j in 
G. When Wis nonempty, A(W) is nonempty. In general, A'(W) will be empty precisely when 
r > IWI - c(W). 

The weight of an arborescence from Wand the IIAII notation are defined as in the introduction. 
Using Lemma 1, the following identities are easily established. 

Lemma 2: Let U and W be disJ·oint subsets of V such that there are no edges from W to U. 
Also let i, i' E U and;', j' E W be arbitrary vertices. Then 

IIA(U u W) II = IIA(U)ll · IIA(W)II 
IIA,(U u W) II = IIAi(U)ll · IIA(W)II 

IIAj(U LJ W) II = ll,4(U)ll · IIAj(W)II 

IIAii1(U u W) II = IIAii1 (U)ll · IIA(W)I I 

IIAjj1 (U u W) II = IIA(U)ll · IIAjj1(W)II 
j'EW 

IIAij(U u W)II = L IIAij'(U)ll · IIAj1 j(W)II 
,, 

Proof: The union of an arborescence from U with IUI - c(U) edges and an arborescence 
from W with !W I- c(W) edges is an arborescence from U LJ W with IUI- c(U) + IWI - c(W) = 
IU U WI - c(U U W) edges. (No cycles can be formed in the union since there are no edges from 
W to U.) Conversely, an arborescence from U LJW with IULJWI - c(ULJW) edges can have 
at most IUI - c(U) edges from nodes in U and at most IWI - c(W) edges from W. Hence, the 
arborescence can be uniquely expressed as the union of an arborescence from U with IUI - c(U) 
edges and an arborescence from W with IWl-c(W) edges. Thus IIA(U U W)II = ll-4(U)ll · IIA(W)II. 
The remaining identities can be similarly proved. I 

At first glance, it is not at all clear why sums of weighted arborescences should be related to 
long-run transition probabilities. We will demonstrate this connection by showing that each is 
related to sums of weighted paths in the chain. For example, let P; (W) denote the set of paths 
from i to j through W that have r edges. (A path from i to j thr/iugh W is a path starting at 
i and ending at j which traverses only nodes in W. Note that i and j need not be in W.) By 
definition, 

l O~ r < t 

p· · = lim - """" IIP' -(V)II 
•J t--+oo t ~ tJ 
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where IIPr,(V)II denotes the sum of the weights of the paths in piJ(V). (The weight of a path 
is simply the product of the weights of its edges.) Thus the long-run probabilities are closely 
related to the sums of weighted paths. 

For the most part, we will be interested in the set of paths from i to j through W which have 
at least one edge. We denote this set by Pi1(W) and the sum of the weights of these paths by 
ll?,1 (W)II - If j E Wand c(W) = 0, then 11 Pi1 (W)II is the probability that a sequence of transitions 
will (once having left state i) move to state j upon leaving W. (If i E Wand the path has just one 
edge, then the path never enters W.) This value is closely related to the taboo G'reene function 
described in [9] . The following lemmas contain identities for 11 Pr

1
(W)II and IIPi;(W)II that are 

useful in establishing the connection between paths and arborescences. 

Lemma 3: For all i, j, rand W, ·IIPI1(W)II ~ l. If c(W + {j}) = 0, then there is a constant 
a< 1 such that IIP;1(W)II ~ alr/nJ. If c(W + {j}) = 0 and j E W, then IIPJJ(W)II < l. 

Proof: By definition, IIPI1 (W)II is the probability that, starting in state i, r successive transi­
tions will pass through states in Wand terminate in state j. This probability is clearly at most 
one. 

If c(W + {j}) = 0, then W + {j} contains no closed subsets. Hence, every node in W is 
linked by a path (with nonzero weight) of length n to a node outside W + {j}. Let E be the 
minimum of the weights of these paths and set a= 1 - E. The probability of staying in W + {j} 
through s + n transitions is thus at most a times the probability of staying in W + {j} through 
s t ransitions. Hence IIP;1(W)II is at most a lr/nJ. 

If c(W + {j}) = 0 and j {/:_ W, then there is a path from j to a node not in W + {j}. If this 
path has weight E, then IIPJ1(W)II ~ 1 - E. 11 , 

Lemma 4: If c(W) = 0, then 

lip ·(W)II = IIP- (0) 11 + ~ IIPik(0)11 · IIPkJ(W - {k})II _ 
tJ . tJ ~ 1 - IIPkk(W - {k})II 

Proof: Excluding the one-edge path from i to j (if it exists), every path from i to j through 
W can be decomposed into a one-edge path from i to k, some nonnegative number of paths from 
k to k through W - {k}, and a path from k to j through W - {k}. Hence, 

kEWt>O 

IIPi1(W)II = IIPi1(0)11 + L l)Pik(©) ll · IIPkk(W - {k})llt · IIA1(W - {k})II, 

By Lemma 3, IIPkk(W - {k})II < 1 and thus 

t~O l 

L IIPkk(W - {k})W = l - llPkk(W - {k})II' 

Substitution then gives the desired result. I 

The connection between paths and arborescences is established in the following theorem. 
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Theorem 2 (The Path Tree Theorem): If c(W + { i}) = 0, then 

{

IIA;,{W+{i}-{j})II if i-:/- j; 

IIPi1(W)II = IIA(W_!!_·{~~1~
1
~11A(w'+{i})II 

II A(W)H J ifi=j. 

Proof: The proof is by induction on jWj. If W = 0, then IIPiJ(0)11 = Pii· Similarly, 
IIA,1 ({i})II = PiJ for i-:/- j and 1 - IIA({i})II = Pii· In what follows, we assume that the result 
is true for sets smaller than W . There are five cases to consider, depending on i and j. Each 
case starts with the identity from Lemma 4 and proceeds by applying the hypothesis inductively. 
Indentities like those proved in Lemma 2 are used thro.ughout the proof. 

Case 1: i-:/- j, i E W, j E W 

kEW IIA ({i})II . ll -4k;(W-{j}}II 
· "'""' tk ll.4(W-{k})II 

IIP,,(W)II = IIAi,({i})II + L.J IIA(W-{k}) II - IIA{W)II 
l - ll-4(W-{k})II 

= Ilk ({i})II + k~ IIAik({i})ll · IIAkJ(W - {j})II 
tJ L.J IIA(W)II 

= kE~{i} 11 ,4,"'"({i})ll · IIAkJ(W - {j})II 

L.J IIA(W)II 
IIA,,(W + {i} - {j})II 

IIA(W)II 

Case 2: i-:/- j,i E W,j E W 

IIPi,(W)II = IIAiJ({i})II + kE1:{i} IIAik({i})"ii~(~;~~ - {j})II 

IIAi1({i}) II · (IIA(W- {j})II - IIA(W)II) 
+ IIA(W)II 

= k~ IIAik({i}) ll · IIAkJ(W - {j})II 
L.J IIA(W)II 
IIAi,(W + {i} - {j})ll 

IIA(W)II 

Case S: i -:/- j , t E W 

IIP (W)II = kEW+~-{i} IIAik({i})ll · ll-4kJ(W - {j})II + (1 - IIA({i})II) · IIAiJ(W + {i}- {j})II 
tJ L.J IIA(W)II IIA(W)II 

= IIA,,.(W + {i}- {j})II + kEW+~-{i} IIA,k({i})ll · IIAkJ(W - {j})ll 

IIA(W)II L...J IIA(W)II 
IIA({i})ll · IIAiJ(W- {;"})II 

IIA(W)II 
_ ll ,4iJ(W + {i} - {j})II 
- IIA(W)II 
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Case 4: i = j, i E W 

IIP,,(W)II = 1 - IIA({i})II + 'f IIA,.({ill\jl(~;r - {i}) II 

- IIA(W - {i})II -( IIA({i})ll · IIA(W)II _ k~ IIAik({i})ll · IIAkt(W)II ) 
- ll,4(W)II IIA(W)II L- IIA(W)II 

IIA(W - {i})II - IIA(W + {i})II 
ll-4(W)II 

Case 5: i = j, i E W 

IJPn(W)IJ = 1- IIA({i})JI + kE~{i} IJAik({i})\,~I(;)~~ - {i})II 

(1 - IIA({i})II) · (IIA(W- {i})II - IIA(W)II) 
+ IIA(W)II 

- (1 - IIA({i})II) · IIA(W- {i})II + kE~{i} ll -4ik({i})ll ·· 11 Aki(W - {i})II 
- IIA(W)II L- II A(W)II 

= ll ,4 (W - {i})II -( ll,4({i})II · ll ,4(W - {i}) II _ kE~{i} IIAik({i})ll · IIAki(W - {i})II) 

IIA(W)II IIA(W)II L- IIA(W)II 

IJ ,4(W - {i})II - IIA{W + {i})II 
IIA{W)II 

This completes the induction. I 

Corollary 2: If B is a minimal closed set and i, j E B, then 

IIP· (B - {"}) II = IIAij(B - {j})II 
t] t IIA(B - {i})II . 

Proof: For i =/. j, apply case 2 of Theorem 2. When i = j, apply case 4. (Note that when 
i = j_, IIPii(B - {i})II = 1.) I 

3. Proofs 

In what follows, we present two proofs of the Markov Chain Tree Theorem. The first proof 
is derived from the graph identities described in Section 2. The second proof is derived from the 
Matrix Tree Theorem. 
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3a. Graph Theoretic Proof 

As we remarked in Section 2, 

In what follows, we will prove the Markov Chain Tree Theorem by showing that 

. 1 O~r<t r II Ai1(V)II 
t~~ t L IIP iJ(V)II = IIA(V) II . 

If there is no path from i to j in M, then both sides of the equation are zero. Otherwise we must 
consider three cases. 

Case 1: i, j E T, the set of transient states. 

Here II Ai1 (V)II = 0 since every arborescence with j as a root has less than IV I - c(V) edges. 
On the other hand, II P;1(V)I I = IIPt(T)II which is at most a lr/ nJ for some a < 1 by Lemma 3. 
Thus 

O<r<t O<r<t 

lim l: II P; (V)II ~ lim ! l: a lr/nJ 
t->oo 1 t-+oo t 

Case 2: i, j E B, a minimal closed block. 

< lim !(_n_ ) 
- t-+oo t 1 - a 
= 0. 

We first show that PiJ = IIPiJ(B - {i})II · Pii • By Corollary 2, llh(B - {i}) II = 1 and thus 
we need only consider the case when i =/= j. By definition, 

By Corollary 2, this means that 

_ II Ai1(B-U})II _ 
PiJ = IIA(B - { i} )II . Pii• 
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Summing over j, we find that · 

and thus that 

Substituting, this gives 

Case3:iET,jE B. 

We first show that 

By definition, 

]EB IIAi3(B - {i})II _ 
l = L IIA(B - {i})II . Pii 

IIA(B)II _ 
= ll,4(B -{i})II ·Pii 

- IIA(B - {i})II 
Pii = II A(B)II " . 

II Ai3(B - {j} )II 
IIA(B)II 

IIAi3(B)II 
IIA(B)II 

IIAi3(V)II 
- IIA(V)II . 

kEB 

P,J = L IIPi_k(T)II · Pk]· 

· By Theorem 2 and the analysis in case 2, the preceding means that 

- _ ~ IIAik(T)II IIAk3(B)II 
PiJ - L, IIA(T)II . IIA(B)II 

IIA,3(T LJ B)II 
ll-4(T LJ B)II 

IIAi1 (V)II 
ll,4(V)II . 
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This completes the proof of Theorem 1. I 

3b. Proof Using the Matrix Tree Theorem 

Let X be an arbitrary real-valued n X n matrix. We let Ck(X) denote t he n X n matrix 
obtained from X by replacing its kth column by a length n vector of ones. We let Di1 (X) denote 
the (n -1) X (n - 1) matrix obtained from X by deleting its ith row and jth column. If A and 
B are sets we also let D Aa(X) denote t he matrix ·obtained from X by deleting all rows in A and 
all columns in B. The following lemma contains some simple identities for the determinants of 
these matrices. (The determinant of a matrix X is denoted by IX I.) 

Lemma 5: Let X be an n X n stochastic matrix. Then 

IC.(X)I = ICi(X)I for 1 ~ i, j -~ n 

IDii(X)I = (-l)i+ilD.,(X)I for 1 ~ i,j ~ n 
n 

ICk(X) I = L ID,i(X)I for 1 ~ k ~ n. 
i=l 

Proof: Straightforward. I 

A general version of the Matrix Tree Theorem [1] can be stated as follows. 

Theorem 3 (Matrix Tree Theorem): Let the n X n matrix X have entries Xii where 

Xii = - Yii for·i c/- j, and 
n 

Xii= - Yii + L Yik• 
k = l 

Define an associated graph G with V = { 1, ... , n} and E = {(i,j) I Yii ;/- O} having weight Yii 
on edge (i,j) . Let B ~ V, i, j EV - Band r = n - IBI. Then 

IDa,a(X)I = IIA'"(V - B)II, and 

(-1)1:+ilDa+i,B+.:(X)I = ll,4;1-:-
1(V - B - {j})II. 

Proof: See [l]. I 

We now proceed with the second proof of the Markov Chain Tree Theorem, starting first with 
the case that the Markov chain Mis irreducible. In this case each row of Pis equal to the vector 
7r which is defined as the unique solution t o: 

n 

1rP = 1r, and L 7rk = 1. 
k = l 

The vector 7i is the stationary probability vector for M if M is aperiodic. 

Since P is stochastic, the above defining conditions on 7i can be combined to read: 



where I denotes the identity matrix and Ek denotes the vector having a one in column k and 
zeros elsewhere. This equation uniquely defines 1r, for any k, 1 s;; k s;; n. 

We now use Cramer's Rule to solve for 1r: 

IDkk(I - P) I 
1fk = ICk(I - P)I . 

Note that Lemma 5 implies that ICk(I - P)I = IC1(I - P)I even if k i:- l, so the denominators 
of the equations for the 7rk are all the same. · 

A simple application of the Matrix Tree Theorem to the evaluation of IDkk(I - P)I then 
completes the proof for irreducible Markov chains. 

We now generalize our result to include all Markov chains. As before, partition the states of 
Minto a set T transient states, and sets B1, .• . ,Bm of minimal closed subsets of states. 

We let Pk denote the IBk I X IBk I su bmatrix of P giving the transition probabilities within Bk, 
Q denote the IT! X ITI matrix of transition probabilities within T, and Rk denote the IBkl X !Tl 
matrix of transition probabilities from Bk to T. 

By appropriate reordering the rows and columns of P we have 

p = (! ~: 1: 
0 0 0 
0 0 0 

It is well-known that P then has the following form: 

p = (~ ~: :: 
0 0 0 
0 0 0 

where Pk is the long-run transition matrix for Pk, 

Uk = NRkPk, and 

N = (I+ Q + Q2 + .. ·) = (I - Q)- 1• 

Here niJ is the average number of times M will visit state j, when M starts in state i. The 
matrix N always exists [6, Lemma III.4.1]. In fact, we will show in what follows that 

By definition, 

IIAi;(T - {j}) II 
niJ = 

IIA(T)II 

niJ. = ((I - Q)-1 )iJ 

(- l)i+ilDJi(I - Q)I 

II-QI 
(- l)i+JIDv-T+{J"},V-T+{i}(I -P)I 

IDv-T,v-T(l - P)I 
II A.;1(T - {j} )II 

IIA(T)II by the Matrix Tree Theorem. 
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It is clear that both p,
1 

and II A,i(V)II are zero unless i,j E Bk (one of the closed subsets), 

or i E T (the set of transient states) and j E Bk. In the former case, PiJ = (Pk)iJ· From the 

1 ' . f . d .bl h . th· th t - - IIA;;(Bk)II d th th t - - IIA;;(V)II ana y sis o 1rre uc1 e c ams, 1s means a PiJ - IIA(Bk) II an us a Pii - II A(V)II • 

If i E T and j E Bk, then 

Pii = (NRkPk)i:f 

l~ l~ IIA,l'(T - {l'})II · IIA 
1 
({l'})II · ll.41,-(Bk)II 

- ~ ~ IIA(T)II l l IIA(Bk)II 

- lI:k ll .4,1(T)II . 11.Ai,-(Bk)II 
ll .4(T)II 11.A(Bk)II 

11 Aij(T u Bk)II 
IIA(T u Bk)II 

_ IIAi1(V)II I 
- 11.A(V)II . 

4. Remarks 

Throughout the paper, arborescences and paths are defined for graphs with nonzero-weight 
edges. This rest riction complicates the proofs somewhat but is necessary to insure their correct­
ness. For example, a "simpler method" might involve substitution of €-weight edges for zero­
weight edges in the Markov chain. Then all of th.e arborescences would be isomorphic ( except for 
weights). By letting E -+ 0 and taking the limit in Theorem 1, one might hope to derive a simpler 
proof. This is not possible, however, as is evidenced by the 2-state example ir. Figure 4. When 
€-weight edges are substituted for the zero-weight edges, p12 = 1/ 2 no matter what the value of 
€ is. Hence limE-+O p12(c) = 1/2. As can be easily seen, however, p12(0) = 0. 

1 1 €, 

t:}) (!J 1-£ 
f., 

. I 
p = O P,2 == 2 
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F igure 4: The difference between 0-weight edges and E-wfight edges. 

It is worth noting that IIAij(V)II and II A(V)II are nonnegative polynomials of degree IVl-c(V) 
in t he variables {p,1 Ii=/- j}. (By nonnegative, we mean that every coefficient in the polynomials 
is nonnegative.) Thus the long-run transition probabilities can be expressed as the ratio of 
nonnegative polynomials with degree n - 1. This result is surprisingly powerful. For example, 
we use this fact in [8] to show that no n-state automata can estimate a probability with mean­
square-error less than 0(1/n). 

It is also worth noting that the graph theoretic proof of the Markov ·Chain Tree Theorem 
can be simply modified to give a natural proof of the Matrix Tree Theorem. Although the proof 
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gives some insight as to why arborescences are important, it does not illuminate their meaning. 
In fact, it would be very nice to have an in_terpretation for the weight of an arborescence in the 
Markov Chain Tree Theorem. 
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