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ABSTRACT

This thesis shows the application of Regression Analysis in
reservations forecasting in airline yield management.

The first three chapters highlight the need for vyield
management and the automation of seat inventory control. The
seat inventory control problem is related to the
determination of an optimal allocation of seats among the
various fare classes being offered 1in a flight so as to
maximize revenues. In order to determine such optimal seat
allocation, forecasts of final bookings need to be made.

Forecasting alternatives are presented in this thesis. An
example of application of Time Series Analysis is given as
an alternative in providing such forecasts. Results obtained
via Time Series Analysis were not encouraging enough in
providing acceptable estimates.

Regression Analysis is also presented as a forecasting tool.
Although regression models were developed for each market, a
generalized model structure was thought to be preferable in
view of the reduction of modeling efforts, data handling and
model specification, that are need for forecasting final
bookings for all markets/flights/classes. A general
structure model is presented in this thesis as the result of
the search for structural behavior across markets and
fiights.

Regression Analysis results are presented for a set of five
citypairs, one flight in each directional market, i.e. ten
flights in total. These results evidenced that a general
structure model via regression analysis can indeed be used
in the forecasting module of an automated seat inventory
control system, and thus provide better estimates of final
bookings when compared to Time Series Analysis or historical
averages.

Thesis Supervisor : Robert W. Simpson
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CHAPTER ONE

INTRODUCTION

The Airline Industry, since its very
inception, has experienced many changes that have constantly
challenged it and contributed to intensify operations and
improve management of the today's diversified air

transportation markets.

The introduction of jet aircraft in commercial
operation required airlines to quickly adapt and respond to
the "new equipment". Markets that were served with over than
a day's flight could then be reached within the same day.
The industry experienced rapid growth in passenger traffic.
The combination of new equipment and traffic growth favored
competition , which made some airlines operate more
efficiently both in operational and managerial standpoints,
while some other airlines that could not cope with these
changes experienced financial problems, and eventually went

out of business.

Technological advances have dominated the
scenario of innovations in the airline industry. New

aircraft guidance systems, new aircraft with more fuel



efficient engines, and new navigational aids can be cited as
examples of technological innovations that have, one way or

the other, changed the Airline Industry.

Today, the U.S. Airline Industry experiences a

rather different source of innovation.

Managerial innovations caused by the
deregulation of the Airline Industry have dominated the
industry scenario in the last years. The '"fare war" that
immediately follcwed the Airline Deregulation Act in 1978,
was just the beginning. Price competition among airlines

became a vivid reality.

Price competition has quickly evolved to
price-availability competition . Seats allocated to lower
fares are capacity controlled,and there are limitations ov

restrictions associated to low fare seats.

The airline product, a seat in a flight from A
to B, has now two dimensions : fare and restriction. The
emergence of a vast set of airline products has generated
the need of a sophisticated decision support system devoted
to the development /management of price-availability-
restriction policies. Such management decisions are central
to the permanence of an airline in the marketplace, and they

have changed the airline industry.



CHAPTER TWO

THE NEED FOR YIELD MANAGEMENT

The deregulation of the U.S. Airline Industry
launched the industry into a new era. The change from a
regulated to a "free" market caused radical modifications in
the airline industry. The objective of this chapter is to
highlight the different environments that airlines were
subject to in these two periods. A brief comparison between
these periods is presented in the next two sections of this
chapter. The third section highlights the need for an Yield

Management System.

2.1 THE AIRLINE INDUSTRY BEFORE DEREGULATION

Before deregulation, us airlines were
controlled by a government body: the Civil Aeronautics
Board-CAB. The decision of either flying or expanding
existing services in any given market, was subjected to the

approval of the CAB. Fares were calculated by using the




mileage-based Standard Industry Fare Level, adopted by the
CAB. Fare levels and structure were, therefore, fixed.
Markets were regulated and controlled. Marketing decisions

of airlines were dependent of the CAB.

Fare discounting was, nevertheless, practiced
in the U.S. Airline Industry before deregulation. The
concept at that time was that the revenue of a flight could
be increased by offering .he unsold seats to a new and

different segment of passengers.

This new market segment consisted of some few
passengers that would only travel at a discount fare. The
operating cost associated to this 'new segment" was
considered as being minimal, since the full fare passengers
would already have absorbed most of the operating costs.
Incremental costs would typically involve reservations,
ticketing, baggage handling and on board meal service for

these "additional" passengers.

Few seats were sold at discount fare to these
few passengers. The majority of passengers would still fly
at regular full fares. Revenue was not diverted from the
airline's "regular" passengers and a new and different
market , with low yield passengers, was created. Yield is

defined as the revenue per passenger-mile of traffic carried

by an airliine.




A limited set of "discount" tickets was also

available to some passengers meeting pre-~determined
criteria. For instance, senior citizens could buy airline
tickets at a lower price. There were discounts associated

with bulk travel, being either on a family basis or on a
group basis. Thus, some discount tickets were available for

those who would meet these pre-determined criteria.

A step towards a more complex discounting
practice was then observed with the introduction of "red
eye" flights (i.e. late night flight services). These
flights/seats at a discount were available to anyone willing
and able to travel at late hours. This new discounting
practice differed from the existing in the sense that
passenger would not need to meet/have pre-determined
qualifications (age,organizations) , nor need to travel in
"bulk" (family or group). Anyone could buy a ticket on these

flights




Seat inventory management was not needed in
the regular flights of an airline. The available set of
alternatives (airline product) available to passengers was

relatively small

(1) first and regular coach class seats;
(2) limited possibilities of "discount" tickets in
regular fiights;

(3) few special flights at discount fares.

The management of flight revenue was a
relatively straightforward task. Once the potential of sales
of full fare passengers waé estimated for a given market,
the remaining seats were made available for 1lcw yield
passengers. Profit maximization was strongly related *o
+maximization of flight 1loads. No special attention or
routine was used for controlling the seats sold to discount
fare passengers. Revenue maximization was achieved by
filling up planes with as many revenue passengers as
possible. Regular full fare passengers accounted for most of
the revenue. The remainder or unsold seats were sold to few
passengers, at a discount fare. A flight with as much
revenue passengers as possible was thought to be reaching

revenue optimality



For the profit maximizing airline,
revenue and cost would have to be taken into account, since
revenue maximization does not always lead to profit
maximization. Nevertheless, the dominant criterion was that
a flight with high 1load factor was the sign of good

business.



2.2 THE AIRLINE INDUSTRY AFTER DEREGULATION

The deregulation of the U.S. Airline Industry
marked the beginning of a new era. With deregulation, U.S.
airlines were allowed to enter or leave any domestic market,
increase or reduce existing services. It was up to the
management staff of an airline to fully decide where and
when services should be offered. If market A was not
considered as profitable as market B, an airline could
decided to offer services only in market B. Any airline
could offer services in market B. No government approval was

needed.

Fares were also deregulated so the industry
experienced a real change. Today, it is the airline who
determines how much should it charge in a given

market/class.

As a consequence, new airlines were created and
more airlines started to fly in traditionally profitable
markets. Unprofitable markets experienced either a reduction
in the 1level of service or they were abandoned. Fare
competition was inevitable in busy markets. Competition was

increased as result of the "free market" era.

The marketplace, formerly regulated and subject



to 1limitations, gave place to a "free" and strongly
competitive market. With the freedom to enter or leave any
market, airlines started to increase competition in
profitable markets, by offering more seats/flights at lower
and lower prices. The advent of low-cost/low-yield new

entrant carriers led to a fare war.

A fare war immediately followed the free entry
market era. Airlines were forced, once again, to react and
adapt to a new scenario : stiff competition and low fares,

with a high level of diversity.

Passengers who used to fly at full fare,
because few alternatives were available, started taking
advantage of these lower fares. They benefited from the fare
reduction by flying at more competitive prices. Demand
increased as a response toc low fares. New markets were even
created because of some extremely low fares. As a
consequence, to fly at discount fares became a common
practice, and today, only few passengers fly at nominal full

fares.

Established airlines needed +to remain or be
competitive. They needed to compete with new entrant
carriers, and to offer/match some low fares, and yet they
also needed to avoid fare diversion, which happens when a

potential high yield passenger takes advantage of a low fare



seat. But, most importantly, they needed to maintain, or

even recover profitability.

The creation of a very complex fare structure
was the response of the airline management to the fare war
and low-cost/low-yield carriers challenge. By offering a
more complex set of services with differential pricing,
airlines were able to maintain regalar/traditional
passengers, attract low fare passengers, maintain a

competitive image in the market and remain profitable.

Restrictions and limitations were attached to
some fares and, as a general rule, the cheaper the fare
gets, the more restrictions/limitations it has. By
discriminating passengers, offering different fares, with
associated different restrictions, an airline can
differentiate passengers in respect to price, and pursue

profit maximization.

Evidently, the new fare structure could not
coexist with the cost structure that was in effect at that
time, specially for o0ld and established airlines. Cost
levels were no longer compatible with fare/revenue levels.
Low fares must be followed by low costs. It would have been
impossible to survive in the low fare market without drastic
changes in the cost structure. As a consequence, airlines

were forced to reduce cost.

10



2.3 THE NEED FOR YIELD MANAGEMENT

Today, every single class/passenger is an
important part in the apportioning of flight costs. The
concept of "incremental" cost associated to 1lower fare
passengers no longer exists. Management of flight revenue
became a complex task. The optimal combination of passengers
and fares is now the what airlines aim at. A flight need not
to be at its maximum load factor, but rather the overall
product seats/fares sold needs to be maximized: a "revenue

load factor" maximization problem.

Management decisions related to how many seats
to sell at what price, became crucial for airlines. From the
complexity derived from managing such decisions has emerged
the need of Yield Management. An Yield Management System is,
therefore, a decision support tool designed to help an
airline to determine how many seats should be sold, given
the price levels. Finding such answers is central to the

permanence of the airline in the market place.

The passenger load factor of a flight is no
longer a proxy to infer flight revenue performance. The
maximization of the flight 1load has been replaced with

flight revewvue.

11



Profit maximization is now related to the
degree of success that an airline achieves in selling the
right number of seats to the right number of passenger so as
to maximize revenue, while at the same time keeping the

associated costs down.

The revenue maximization problem has now two
major components: seats and fares. Average vyields can be
increased by either increasing price levels or reducing the
proportion of seats sold in the lowest fare product
categories. In both cases, the potential of sales in each
and every fare level has to be estimated so as to allocate
the optimal number of seats to each fare class, maximizing

the revenue of a flight.

Pricing and seat inventory control represent,

therefore, the core of Yield Management.

"While pricing is clearly an important
component of yield management, no one airline can influence
it's own revenue through pricing, without taking the
reactions of its competitors into account. Revenue increases
resulting from pricing actions are possible only when all of
the major competitors in a market agree implicitly to follow

a price leader."[1]

Prices are published in airline guides and

12



displayed 1in reservation systems that are available to
everyone. An airline can always monitor and follow 1its

competitors price changes.

Seat inventory control, on the other hand, is a
logistical component: of vyield management that is entirely
under control of each individual airline. It is an in-house
component that only the airline itself knows and controls,
with the exception of some few one-price-only low-cost/low-
yield airlines. As a consequence, airlines do not know the
seat inventory management decisions of the competitor

airlines.

While pricing is not fully dependent on the
decision of one airline alone, seat/class allocation is.
Through seat inventory control, airlines have the potential
of managing revenue from a flight on a departure by
departure basis, which would be far more difficult to

replicate via pricing.

Today, the need for an Yield Management System
is evident. Airlines can no longer be profitable in the
marketplace without it. The competition is strong. An
efficient Yield Management System Iis, therefore, very

important to an airline.

13



CHAPTER THREE

THE AUTOMATION OF SEAT INVENTORY CONTROL

The seat inventory control problem is related
to the determination of an optimal (revenue maximizing)
allocation of seats on the aircraft among the various fare
classes being offered in a flight. Other management
decisions, such as capacity allocation, equipment
utilization, aircraft routing cannot be dissociated from the
seat inventory control problem. These decisions interact
with each other, and as a consequence, the seat inventory
control problem has to either use them as input, or interact

with them.

3.1 SEAT INVENTORY CONTROL

A flight leg seat inventory control approach is
commonly used in the industry. On a flight leg basis, the
aircraft seating capacity is divided among classes with the

objective of revenue maximization on that flight leg.

14



Although the flight leg approach might not lead to revenue
maximization over the whele flight and/or the entire network
of an airline, because it maximizes flight leg revenues, its

simplicity makes it very attractive.

With a flight 1leg approach, true origin and
destinaticn of passengers are not taken into account. All
passengers flying the same class are treated equally. The
deficiency of this approach is that seat allotment decisions
on a leg basis do nct assure revenue maximization over the

whole flight.

A more coherent apprcach should consider
origins and destinations - 0&D, when allocating seats to
different classes for a flight. The 0&D approach becocmes
complex wheﬁ‘éﬁe considers the possible combinations of a
multiple leg flight. The increase of hub and spoke
operations by the airlines has certainly added further
difficulty. The numkber of possible O0&D combinations can
become unmanageable and, as a consequence, this approach can

hardly be pursued.

In order to determine how many seats should be
allocated to each class on a future flight departure, the
airline has to have estimates of expected loads in each and
every class, as well as the associated average revenues.

With these two parameters for each class, the airline can

15



then figure out the best seat/class allocation that

maximizes flight revenues.

Expected loads have to be transformed in
expected bookings. Because of large incidence of no-shows in
some markets, substantial analysis has to be devoted in
determining the number of seats to be assigned to each
class. Overbooking analysis determines the level of total
bookings for a flight that will minimize the total of the
costs associated with denied boarding of passengers and the
costs in the 1lost revenues associated with no-shows and

unsold seats.

The estimates of expected loads, by class and
by flight, together with estimates of what will happen on
the boarding day, (i.e. no-shows, go-shows, upgrades, etc. )
are then used to generate booking thresholds for each class,
on a given flight leg. These limits can then be input in the
reservations system of the airline and bookings can be

monitored.

16



3.2 SEAT ALLOCATION MODELS - AN OVERVIEW.

The seat inventory control system is a decision
support system that provides inputs to the reservation
system of an airline, helping the yield management analyst
to cdetermine booking limits or thresholds. In the case of a
flight leg based system, 1limits are given by class and by

flight leg.

Several alternatives have been proposed as core
routine of a seat inventory control system. This routine,
apart from determination of overbooking policies, are
intended to determine whether to accept or reject a request

for a seat (reservation) according to the fare paid.

Littlewood ([2], in 1972, suggested a seat
allocation routine, probabilistic based, that maximizes
total expected flight revenues, using a "marginal seat"
model. In his routine, a low-yield passenger paying a lower
fare f2 should be accepted as long as the expected revenue
from selling all S1 seats to passengers paying the higher

fare f1 is less than f2.

17



That is , if fz > f1 . P{S1) take f2 passengers,

where:
f1 = higher fare;
f2 = lower fare ;
P(S1) = probability of selling S1 seats at f1l
fare.
The aircraft seating capacity (C) , in this

simple case, is divided in two compartments. One with S1
seats, calculated with the probability distribution function
(pdf) of f1 passengers, and fares (f1 and f2). The other
compartment takes the remaining seats, that is (C - S1).
Note that the pdf of f2 was not needed in the seat allotment

decision process.

Mayer [3], in 1976, suggested a two class seat
allocation model that would utilize dynamic programming (DP)
as a framework. He suggested a simple model to be'used to
determine initial seat allotments, and that a malti-period
DP-based model should be used to modify initial limits,

taking into account bookings already made.

18



The set of assumptions he made in deriving his

model was:

(1) no cancellations;

(2) total loss of rejected bookings
(no vertical shift );

(3) in each booking period, low fare passengers
make reservations before high fare
passengers;

(4) the demand in each period is independent of

the actual demand in all previous periods.

He concluded that the initial seat allotment
did not benefit from a DP-based approach. He suggested
Littlewoodis model to set initial allotment. From there on,
a model that permits corrective action (reallotment), such

as a DP-based one, should be used.

Buhr [4] contributed to the marginal
probabilistic approach in i982, suggesting a seat allotment
model for a two leg flight ( A to B to C ). His model was
based on the expected "residual” revenue, defined as the
revenue from allocating an additional seat to passenger
flying from A to B as the product of the average fare from A
to B, times the probability of selling more than x seats in

the A/B market, or

19



A (X) = PAB(X) . RAB ;
where,
EAB(X) = expected residual revenue ;
P (x) = probability of getting more that x
A8 passengers in the A/B market ; and
RAB = average fare the A/B market.

For the‘two leg flight, the demand for each O&D
market were assumed as independent. For each of the three
markets, expected residual revenues were calculated and seat
allotment decisions were taken based on such revenues, that

is
| E (x) - (E (y) +E (y)) | --> min ,
AC AB BC

where y is the seat capacity allocated to local AB and BC

passengers.

20



An extension to the simple marginal seat
allotment model, proposed by Belobaba [5], handles multiple
fare classes and flight with multiple 1legs. Given the
expected bookings in a fare class i, the expected revenue

for this class is given by
E(Ri) = fi . bi(si)

where fi is the net fare or the yield to the airline from a
passenger booked in <class i, and bi 1is the expected

bookings, given a seat allotment Si.

The expected marginal revenue for class i
(EMSRi) is defined as the increase in revenue when the seat
allotment is increased by one seat, i. e. Si+l1 seats. EMSRi

is, therefore, calculated with the following expression:
EMSRi = fi . P[ ri > Ssi ]},
where ri is the tctal reservations made on class i.

Given a natural ranking of fares f1 > f2 > f3 >
f4 etc. , in order to maximize flight revenue, the
reservation process should be able to discriminate bookings,
giving priority to passengers that contribute most with
revenue. Although the assessment of the probability of

having Si passengers at the fare level fi is made, priority

21



should always be given to higher yield passengers. This
leads to a nested version of authorized booking limits,
where the authorized booking limit for a given higher fare
class overlaps with the authorized booking limit for all
subsequent lower fares. For example, in the case of a three
class flight, where f1 > f2 > £3, the authorized limit (AU}
for each class should be as:

AUl= C H

AU2= C-S1 ;

AU3= C-S1-S2 ;
where

C = seating capacity of the aircraft;

S1 = number of seats protected for class 1;

S2 = number of seats protected for class 2;

rl and r2 represent reservations made in class 1 and 2.

A protection level is calculated for each class
in order to achieve this priority. The protection level for
a class in the minimum number of reservations that are
accepted in that fare class and that must be protected from
lower fare classes. In the above example, S1 seats are
always protected from f2 and f3 passengers. Likewilse, S2
seats are always protected from f3 passengers. No protection
level for f3, of course. Note that nothing prevents
passengers paying higher fare from taking up low fare seats.
In the example, up to C passengers paying f1 fare can make

reservations, and up to to (C-S1) for passengers paying f2.

22



3.3 RESERVATIONS FORECASTING MODULE

Central to any model briefly presented here, is
the ability of knowing the fare and the probability

distribution function for each class i, in every market.

Airlines can obtain average fare figures by
sampling tickets on a class i, for a given market. Several
problems arise when averaging fares within a class. Within
each class there is a multitude of fare codes, and very
often they are not well structured. It is very common to

observe price overlapping between adjacent fare cla. -es.

The average fare , calculated by class, may not
be representative, if too many fare codes exists. Not only

prices vary but also restrictions change.

Another problem associated with fare averaging
is the pro-rating of fares. When a passenger buys a ticket
from A to C, and the service he gets is a one-stop flight A
to B to C, the apportioning of fares in legs AB and BC will
tend to drive down the AB and BC average fare calculations.
With the increase of the airline hub-and-spoke operation ,
the pro-rating problem tends to be widespread. 1If the seat
allocatiocn routine were 0&D based, this problem would not

exist.

23



Due to this high degree of non-homogeneity it
is really difficult to define what is the "average service"
and to estimate its probability distribution function.
Fortunately, several fare data analysis performed together
with this thesis show that although there is a high degree
of non-homogeinity within each fare class, the overall class
result tends to exhibit a stable pattern, as far average

prices are concerned, especially for higher fare classes.

The reason for this result is that within each
class there is always a "dominant fare code". The majority
of passengers fly with dominant fare code tickets. The
remaining pas.engers use other fare code tickets (within the
same class) but with different proportions each time. The
dominant fare code tends to be less predominant as the fare
gets lower. For the lower fare class, passengers are more
disperse. Therefore, the fare aggregation within the same
class should be more meaningful and yield better result than
for lower fare classes, provided there is no radical changes
in fare levels. This may result in a better ébility in
forecasting reservations for higher fares than for lower

ones.

The seat inventory control routine will need a
forecast element that provides (1) initial estimates of
final loads, and (2) updates on such estimates, as the

reservation process for a flight is under way.
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These two inputs, namely fare and expected
bookings, are then used by an automated booking 1limit
routine. The automated bookingy 1limit system calculates
reservations thresholds, by class and by flight. The
promptness of the automated booking 1limit routine in
providing such thresholds is dependent on the reservation
system itself. There are reservation systems that start
taking reservation as early as one year in advance. The
usefulness of generating booking thresholds so early in time
are, of course, questionable. As a general rule, reservation
systems have some form of booking limit introduced at least
6 weeks before departure. From there on, booking thresholds
limit the number of seats made available in each class, in

every market.

The reservation forecasting module of an
Automated Seat Inventory Control System is primarily
intended to provide the dynamic booking limit adjustment
routine with estimates of expected bookings for individual
future flights. A seat allocation routine will then use
these estimates of expected bookings to calculate how many
seats should be allocated/protected for each upper fare

class.

The first step in reservations forecasting
involves initial estimates of final bookings, well in

advance of flight departures. These estimates are typically
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needed for each future flight, up to 90 days out, and are
used to set initial authorized booking limits. Sophisticated
forecasting models are of little use, and outweighed by the
error associated with the forecast produced for such large
time interval. As a consequence, a simplistic but
conservative approach is thought as being the most

appropriate and effective.

These initial estimates need to be improved
later in the bookings process as more information (data) on
the specific flight for which more accurate forecasts are

needed.

A simple forecasting model is suggested for the
initial estimation of final bookings. It consists of moving
average process that is sensitive to day of week variation
only. That is to say, for instance, that a 8-week average is
used to describe or estimate final bookings for a given
flight (e.g. flight F1), on a specific day of week (e.g.

Monday) .

Although no ipformation on actual bookings on
hand for future flights is ever used, nor additional
adjustments are made for cyclic or seasonal variations other
that on weekly basis, the implicit assumption of this simple
approach is that a small sample of final demand for recent

flights will be representative of the demand for the same
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flights in the near future.

The final step in the development of a
forecasting module is to improve the estimates of bookings
to come, over those strictly based on recent historical
averages. These new estimates are used to re-calculate
expected revenues ,and again the seat allocation routine is

used to update allotments.
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CHAPTER FOUR

EXPLORATORY DATA ANALYSIS

An exploratory data analysis 1is designed to
give the forecaster more insight into the variable (s)he is
trying to forecast. Trends in daily booking levels,
variations across markets, and seasonalities are among the
characteristics the forecaster searches. Reservations data
are extiemely confidential and, very reluctantly, airlines
make them available. The exploratory data analysis presented
in this thesis represents a moment of rare opportunity in
which actual and recent data was available. As a

consequence, extensive data analysis are presented here.

4.1 DATA SAMPLE DESCRIPTION

A sample of five city-pairs was selected for
data statistical analysis and hypothesis testing. The sample
included a variety of market types and stage lengths . One

short, one short-medium, two medium and one long haul
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markets were included in the sample. One of the medium-haul

markets was a Canadian market.

A total of 28 flights were included in the
sample. Some flights did not operate throughout the whole
sample period. At least two flights were operating in any
given month, for any of the five markets. The sample period
was from January, 1986 through June, 1986. The Airline
Industry registered no major abnormality during the sample
period. Therefore, it is expected that the data set provides
a normal picture of what happens in the first half of an

year.

Data was collected from the actual database of
an existing US airline. Table 4.01 shows the markets and
flights selected. In order to maintain confidentiality of
the data presented in this thesis, single capital letters
were assigned to markets ,and single digit numbers to

flights. Distances and flight times were rounded.

For instance, the flight F1 in the A/B market
departs at 09:00 am. The distance flown is approximately 500
miles, and the aircraft type is a B73S. Additional market

characteristics are also given in Table 4.01.
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Table 4.02 shows how many days a given flight
operated, throughout the sample period, on a monthly basis.
Some flights started operation only June, e.g. flight F2 in
the C/D market. Some flights operated throughout the whole
sample, e.g. flight F1 in the A/B market. Within the sample
period some flight ceased operations. Sometimes, a new
flight was created, departing at the same time as the o0ld
one, e.g. flight Fz in the G/H market, or the new flight
departed between one and two hours later, e.g. flight F3 in
the D/C markets. 1In both cases, the old and the new flights

were considered as the same flight.
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The markets in the sample exhibited high levels
of bookings on boarding day. Table 4.03 shows reservations
load factors , defined here as total reservations on the
boarding day, divided by the seating capacity of the
aircraft assigned to that flight. From now on the term load
factor will be loosely used meaning not the actual load
factor, which is calculated with departure loads in the
passenger cabin, but rather the reservations 1load factor
already defined. It can be observed that there were months
in which the average load factor was greater than 100%,
which means that in the average flights were overbooked.

This is the case of markets A/B, B/A, D/C, E/F, and F/E.

It is interesting to observe, still on Table
4.03 the change in the performance of reservations caused by
the introduction of a new flight in the market. For the A/B
market, the third flight introduced in June, a night flight,
exhibited a reservations load factor that ranked second. 1In
the opposite direction, market B/A, the third flight
exhibited the highest reservations load factor in the month.
Reservations load factors in the other flights, in June,
were bellow average, with the exception of flight F1 in the
A/B market. This result suggests that some of demand
generated by the new flight might be the result of diversion

of "regular" passengers from other fiights.
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The new flights in the C/D and D/C markets, on
the other hand, exhibited very low load factors, and one may
also speculate about passenger diversion. There was an
overall reduction in load factors in the month of June. If
the reduction of load factors was a consequence of a
seasonality in the market demand then passenger diversion
cannot solely justify the observed reduction in demand

levels.

For the J/I market, the result was very
different. Flight F3 showed a reservations load factor that
ranked second, but the overall market behavior suggests that
reservations demand was indeed increased in the market. 1In
the I/J case, there were three flights from January to
March. When the third flight came back in operation in June,

reservation levels were brought back to normal levels.
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Table 4.04 shows reservation averages for a
flight on the boarding day. Reservations were totaled, for
all classes, and then averages were calculated by month. The
result is presented on table 4.04 . For instance, the
average in January for flight F1 in the C/D market was 144
reservations, for the month of January. This table presents
the intensity in bookings for each market analyzed. market.
The C/D and D/C markets exhibited a high reservation
activity. In this example, a total of six flights, eight in
June only, one can also observe that the high level on
bookings did not vary too much from month to month,
exception made only in June, when flights were added. The
same stability pattern is also observed in the other

markets.
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Table 4.05 shows averages in the reservations
for a flight on the boarding day. The objective of this
table is to show the contribution of different classes in
the flight 1load. First class was also included in the
calculation of percentages, and the total coach compartment
contribution is shown on the last column. The contribution

of the first class is, on the average, less than 5%

For the business market, the Y contribution in
the flight load would be expected to be a little higher than
the average. It was indeed observed in the E/F & F/E data
that participation of Y class was slightly higher in this

business market.

In the I/J & J/I market, the contribution of Y
class was the highest. It happens to be the canadian market.
A large proportion of non-restricted Y seats were sold in
this market. In the other markets the Y contribution was
less than 8%, in the average. The results are as expected.
While the expected typical contribution of Y class 1is less
than 10%, when there is a strong business component in this
market. Canadian markets usually exhibit different behavior

when compared to US markets.

The participation of Q class observed in the
sample was very high. In the average, excluding the business

and the Canadian market, Q class participation was 42.27% .
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Table 4.06 shows class participation in the
flight 1load, on a monthly basis. Table 4.07 shows the
authorized booking 1limits that were imposed to the
reservation system, by flight, by class and by month. The
reference level was the Y class 1limit, which was always
greater than the coach class seating capacity. One could
observe the "high" authorized 1level assigned +to M-class,
exception made only to the Canadian I/J & J/I markets. 1In
the business markets, i. e. C/D & D/C, the authorized limit
was slightly lower. Authorized bookings limits are, in this
case, rested. Considering the seat allocation routine
proposed by Belobaba, one could calculate the average
protection level assigned to each upper fare class. For
instance, for flight F1 in the A/B market, the average
protection level for Y class was 7%, in the month of
January. The M protection level was 15% ( 22% - 7% ),and for

the B class it was 33% ( 55%-22%).
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Table 4.08 shows bookout analysis performed for
the flights in the sample. Columns with heading " # DAYS "
indicate the actual number of days in which the class was
closed. Columns with " (%) " heading indicates the
percentage of days, during the whole sample period in which
the class was closed. As a function of the nested authorized
booking 1limit reservation system, the following equations

describe a bookout in a given class:

Y is closed if:

YRES + MRES + BRES + QRES > YAU.

M is closed if:
YRES + MRES + BRES + QRES > YAU , OR

MRES + BRES + QRES > MAU.

B is closed if:
YRES + MRES + BRES + QRES > YAU :OR
MRES + BRES + QRES > MAU ;OR

BRES + QRES > BAU.

Q is closed if:

YRES + MRES + BRES + QRES > YAU ;OR

MRES + BRES + QRES > MAU ;OR
BRES + QRES > BAU ;OR
QRES > QAU.
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A consequence of the bookout equations in the

previous page, is the following relation

QCLOSED > BCLOSED > MCLOSED > YCLOSED.

One can observe that this relation 1is not
observed in the flight F1 in the B/A market. Flight F2 in
the A/B market exhibit a high level of bookout for all
classes. M was closed in 18.33% of the flight. The high
percentage in Y bookout is likely to be the consequence of
bookout in other class, rather than in Y alone. In the
opposite market, B/A, flight F2 consistently exhibit the

lowest bookout levels, for all classes.
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For the remaining markets, the same behavior
is observed. At least one flight fcr each directional market
exhibited a high level of bookouts. The remaining flights

showed moderate to low bookout statistics.

The flights that exhibited high level of

bookouts were:

MARKET FLIGHT
A/B F2
B/A F1 & F3
Cc/D F1
D/C F2 & F3
E/F F2
F/E Fi
G/H F2
H/G F1
/3 F3
J/I F2



The flights in the following 1list did not

exhibit high level of bcokouts. They were

MARKET FLIGHT
A/B F1
B/A F2
c/b F4
D/C F3
E/F F1
F/E F2
G/H F1
H/G F2
I/3 F1
J/1 F1

Statistical analysis on these flights above
should produce results that are 1likely to be more
representative of the market behavior than the original set
of 28 flights because they have exhibited low level of
bookout. There 1is not a simple routine for bookout
correction, i.e. how to estimate what would have been the
reservations demand given that no seat 1limitation was
imposed to a flight. As a consequence, major attention will
be given to the flights that did not bookout. Therefore,
statistical analysis, distribution plotting and the demand
analysis presented in this thesis will only show results for

these flights.
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4.2 DISTRIBUTION ANALYSIS

The objective in this analysis was to produce
and examine distribution plots of reservations by fare class
for the markets and flights in the sample, specially those
which exhibit low levels of bookout. ~The first reservation
data retrieved for any flight refers to a period that
corresponds to 28 days before departure. From there on,
snapshots were taken for every seven days. That is to say
that each flight will be analyzed in § seven-days' periods,
from day 28 to boarding day, that is, periods are: T28, T21,

Ti14, T7 and TBD.

Analyses were made in terms of reservations
made for the M-class, up to a particular period , or
bookings-on-hand, and the expected number of reservation
still to come,or bookings-to-come. This is to say, that on
day 21, we should have data analysis for both bookings-on-
hand and bookings-to-come. The objective is to observe these
two related but distinct wvariables in terms of shapes,
means, and standard deviation. Exception will be made for

the Canadian markets, where the analyzed class will be Y.

Correlation analysis performed in bookings-on-

hand and final bookings indicated that the correlation
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between these two variables , in the majority of cas:s, was
very low. This means that bookings-on-hand should not
exhibit good explanatory power when forecasting final
bookings via bookings-to-come. This result corroborates the

conclusion arrived by Littlewood [1]:

"The subsequent arriving passengers
can be regarded as independent of

the booked load".

Figures 4.01 through 4.10 show distribution

plots for the flights/markets selected for data analysis.

Figure 4.01 shows distribution plots for flight
F1 in the A/B market. The shape of the distribution observed
for final bookings, i.e. reservations on boarding day,
resembles the bell shape of a normal distribution. An
increase in skewness is observed for bookings on hand as
it gets further from boarding day. On the other hand, the
shape of bookings-to-come plots, in any period, resemble
that of a normal distribution. Bookings-on-hand exhibits
increase in standard deviation, going from 6.00 to 7.817,
whereas bookings-to-come is the reverse, going from 8.80 to
6.42 . A side by side plot comparison in given in figure
4.01 . The small table on the top right corner of figure

4.01 shows statistical analysis for this flight.
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The notation used in these figures is

FiMBD

FiMt

FiMt_BD

reservations on boarding day

for flight i, M class;

total reservation made up to day t,
for flight i, M class,

( £t =17, 14, 21 and 28 );
bookings~-to-come for flight i, from
day t to boarding day, M class,

( t =17, 14, 21 and 28 ).
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PERCENT METRIEUTION

PIRCENT DISTMIRUNION

PERCENT B ITRIBUTION

M. - JUM. 1843

30
Sample set tc - ALL
Qescriptive Statistics - 177 observatians used.
Yariable  Mean Std. Dev. Skewness  Kurtesis  Minioum Maximum

F1430 9.5876 8.7441 1.0862 3.5150 .0000 39.00
F1u7 5.0339 4.8464 1.1581 3.9874 .0000 22.00
FlM14 4.0113 4.2107 1.2575 4.0386 .0000 20.00
F1321 3.3955 4.0748 1.5439 5.0282 .0000 20.00
FiM28 2.5028 3.5099 1.9934 7.3824 .0000 19.00
FINT 80 4,557 6.0367 1.3626 4.6258 -5.000 26.00
FIMIT 80 5.5763 6.9818 i
F1421730 6.1971 1.3002 1.0479 3.6200 -7.000 30.00
F1M28780 17.0347 1.1788 1.0703 3.6601 -5.000 32.00

I@% (Skewness = m3/s**3; Kurtosis = ad/s*$d)
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Figure 4.0

M-class

Sample set to -> ALL

Cescriptive Statistics

111 absarvaticns used.

Yariable  Mean Std. Dev. Skewness  Kurtosis Minimun Haximun
F2M8D 18.458 15.468 1.1536 4.6206 .0000 88.00
Fau1 10.350 11.421 2.T478 15177 .0000 88.00
FINUA 6.9209 9.7558 4.4785 32.9U .0000 90.00
Fan21 5.1582 8.8115 5.252 42.639 .0000 86.00
FaN28 3.8023 1.8935 7.1313 69.124 .0000 86.00
Fau7 80 8.10M3 8.0032 .15510 2.8912 -3.600 35.00
Fail 8D 11.537 10.723 18252 2.7485 ~3,000 43.00
F2M21780 13.299 12.200 .65555 3.1032 -23.00 52.00
FaM28780 14.65S 12.555 19869 2.0438 -2.000 56.00
(Skewness = m3/s**3; Kurtosis = md/s**4)
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SEICENT DISTMIBUTION

PEPCINT BiSTHISNTION

dAM. — JUN. 1088

30
28 - Sampie set to -> ALL
26 W Descriptive Statistics - 191 observaticns used.
:: : /1 Variable  Mean Sed. Dev. Skewness  Kurtesis  Minimum Maxinum
/]
20 -4
e F1MED 3341 18.656 1.3495 5.3380 2.000 112.0
FIv? 3641 20.924 1.1379 4.1378 6.000 112.0
1. . FiM14 35.315 22.328 1.13¢41 4.0560 5.000 116.0
14 A FiN21 32.113 23.651 1.2593 4.3380 3.009 118.0
| FiM28 30,276 24.502 1.4118 4,1802 1.000 119.0
1 . i Fi1M7 B0 -3.0000 6.9873 -2.4821 13.830 -49.00 9,000
10 - A F1M1T_BD -1.9206 9.4717 -.3292¢8 3.9236 -32.00 33.00
s /Z F1M21780 70166 11.645 -, 29316 4.055¢ -32.00 38.00
¢ F1M28780 3.1381 12,390 -.22423 3.6612 -33.00 39.00
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PERCENT DISTRIMINION

Flight F1

Sampla ot to o> ALL

Descripzive Statéstice - 179 chsarvations used.
Variable  Me2n Std. Dev. Skewness Kurtosis Nininua Maximum
Fixee 39.072 23.2%0 1.0442 3.4700 3.000 111.0
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CHAPTER FIVE

RESERVATIONS FORECASTING

Forecasts are made because they assist the
decision making process from the analysis of policy,
activity, or plan to the timing and implementation of an
action, program, or strategy [7]. The need to forecast final
reservation requests, particular to this thesis, represents
a key ingredient of the decision making process in a Yield
Management System. Regardless of the core algorithm that the
Seat Inventory Control routine uses, forecasts of final

reservation requests are needed.

In general, the various forecasting methods can
be divided into three broad categories: quantitative or
scientific, gualitative or judgmental, and decision

analysis, which is a combination of the first two methods.

Quantitative methods have been used more often,
and have gained a wide acceptance for several reasons. They
rely heavily on the existence and use of historical data,

and to a large extent, on the perpetuation of past behavior.
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Forecasting methods are based on cause-effect relationships,
statistical analysis or simulation methods, which in turn
provide a description of the underlying process one is

trying to understand, explain and make forecasts.

Qualitative methods, on the other hand, rely on
the "intuition and/or experience" of the forecaster, and
are, as a consequence, dependent on the forecaster ability
in describing the process. Subjective by nature, this class
of forecast "models" tend to be used when very little
information 1is available, or when there 1is an inherent

inability of modelling in an objective fashion.

Decision analysis, the remaining category, is a
combination of both guantitative and qualitative methods. In
this category, assumptions on some unknown parameters are

made, and using quantitative methods, forecasts are made.

Given the ability of any airline to provide a
vast set of historical data , gquantitative methods can be
applied to fulfill the forecast need of the Yield Management
System. Therefore, gquantitative methods in forecasting final

bookings for a flight are explored in this thesis.
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5.1 ALTERNATIVES IN FORECASTING

Time Series Analysis are heavily based on
statistical behavior. The model/parameters estimated in Time
Series Analysis do not have specific mea~ing. Models in this
class can be used as a forecast tool, but they do not try to
explain the underlying nature of the process. Models are

developed based on a statistical basis only.

In this class of models, we presume to know
nothing about the real world causal relationships that
affect the wvariable to be forecasted. Instead, past
behavior of a time series is examined in order to infer
something about its future behavior. Ratio analysis, trend
projection, moving averages, spectral analysis, and
Box_Jenkins' ARIMA modelling can be cited as examples of

Time Series Analysis methods.

The second class of Quantitative methods,
namely Causal Methods, concentrates on models that can be
expressed in equation form, relating variables
quantitatively. Data are then used to estimate parameters of
the equations, and theoretical relationships are tested

statistically.

In single equation regression models, the
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variable under study is explained by a single function
(linear or nonlinear) of explanatory variables. The equation
will often be time-dependent (i.e. a time index will appear
explicitly in the model), so that one can predict the

response over time of the variable under study.
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5.2 TIME SERIES ANALYSIS

Time Series Analysis presumes that the series
to be forecasted has been generated by a stochastic process
with a structure that can be characterized or described. 1In
other words, a times series model provides a description of
the random nature of the stochastic process that generated
the sample under study. The description is given in terms of
how the randomness is embodied in the process, and not in

terms of cause-effect relationships.

Because time series analysis require a large
deal of statistical analysis, it provides better estimates
and it is more sophisticated than simple extrapolations.
Simple extrapolation, such as trend analysis do not account
for the fact that a time series 1is the result of a

stochastic process.

With Box-Jenkins' Auto Regressive Integrated
Moving Average models , known as ARIMA models [8], one can
describe time series process, by using autoregressive and
moving average components. A constant may also be included
in the model. Model parameters can be estimated for the
original series, or for the time series differentiated 1
times. Parameters are chosen for the terms included in the

model in such a way that it minimizes the sum of square
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differences between actual time series and fitted time

series. Model parameters, again, convey no special mean.

ARIMA models were developed and estimated for
flight F1 in the A/B market, as an example of application
and to observe model fitting results. The data used for
modelling was final bookings for M class for this flight,
for the six month sample. Table 5.01 shows fitting results

for an ARIMA(3,0,2) model. The equation fitted was:

AR3 . MBD(t) = C + MA2 . r{t)
where
AR3 = ( 1 + AR(1).B + AR(2).82 + AR(S).33 )
B = backward shift operator, defined as
Bn[X(t)]= X(t-n);
MBD = final reservations, M-class;
MA2 = (1 + MA(1).B + MA(2).B2 )
r(t)= residual at time t ;
and ( to be determined by model fitting )
C = constant ;
AR(i) = coefficient i calculated for

the Moving Average components ;

coefficient i calculated for

MA(1i)

the Auto-Regressive components.
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The model estimated is statistically accepted,

because the calculated chi-square test statistic on first

20 residual autocorrelations is 17.91, which is meaningful
at least at a confidence level of .90 , chi-square(15, .90)
= 22.3 . Three from five parameters do not exhibit

acceptable t statistics. The estimated white noise variance
is 77.56, which corresponds to a standard error of
regression of 8.81 . From figure 4.01 one can observe that
the standard deviation of the time series variable is 8.89

No much explanatory power was gained with this ARIMA model.
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ITERATION 4: RESIDUAL
ITERATION S: RESIDUAL
ITERATION 6: RESIDUAL

SUM OF SQUARES
SUM OF SQUARES
SUM OF SQUARES

..... 13739
..... 13434.9
..... 13346.9

SUMMARY OF FITTED MODEL

parameter
AR ( 1)
AR ( 2)
AR ( 3)
MA (1)
MA ( 2)
MEAN
CONSTANT

estimate stnd.error t-value
1.00765 .14360 7.01705
-.11036 . 17264 -.63922
.02083 .08176 .25474
1.07407 .14845 7.23533
—.22857 .'15545 -1.47036
22.04925 1.33373 16.53206

1.87547

prob(>jt})
.00000
.52353
.79923
.00G00
.14328
.00000

ESTIMATED WHITE NOISE VARIANCE = 77.5587 WITH 172 DEGREES OF FREEDOM.

-
.

-

Table 5.01 Time Series Analysis

ARIMA ( 3,0,2 )

Reservations on Boarding Day

M-class

18

Fight F1 Market A/B

CHI-SQUARE TEST STATISTIC ON FIRST 20 RESIDUAL AUTOCORRELAT!ONS = 17.9051



Another time series model was estimated for the
original series differenced once, which corresponds to the
series D(t) = MBD(t) - MBD(t-1). A week seasonality was
introduced in the model . Table 5.02 shows fitting results
for a seasonal ARIMA(O,1,4), with length of 7 days. The

equation that represents the model is

D(t) = C + MA4 . r(t)
where
D(t)= MBD(t) - MBD(t-1) ;
MBD = final reservations, M-class;
7 14 21
MA4 = 1 + MA(7).B + MA(14).B + MA(21).B +
28
+ MA(28).B
r(t)= residual at time t H
and ( to be determined by model fitting )
C = constant ;
MA(i) = coefficient i calculated for

the Auto-Regressive components.

The calculated chi-square statistic is 17.72 (
< 22.3 ), which means that the model can be accepted.
Estimated white noise variance, this time, was higher than
before: 108.23 , which means a standard error of regression

of 10.40.
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ITERATION 1: RESIDUAL SUM OF SQUARES ..... 16423.8
ITERATION 2: RESIDUAL SUM OF SQUARES ..... 15282
ITERATION 3: RESIDUAL SUM OF SQUARES ..... 15260.9

SUMMARY OF FITTED MODEL

parameter estimate stnd.error t-value prob(>lt])
SAR( T) -.70067 .08339 -8.40285 .00000
SAR( 14) -.43076 .10223 -4 .21363 .00004
SAR( 21) —-.24550 . 10321 -2.37860 .01872
SAR( 28) -.32319 .09446 -3.42135 .00082
MEAN -.10325 .30574 -.33770 .73609
CONSTANT -.36782

MODEL FITTED TO SEASONAL DIFFERENCES OF ORDER 1 WITH SEASONAL LENGTH = 7
ESTIMATED WHITE NOISE VARIANCE = 108.233 WITH 141 DEGREES OF FREEDOM.
CHI-SQUARE TEST STATISTIC ON FIRST 20 RESIDUAL AUTOCCORRELATIONS = 17.7191

Table 5.02 Time Series Analysis
ARIMA ( 0,1,4 )
Reservations on Boarding Day

M-class Fight F1 Market A/B
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The level of error in each model presented is
not related to poor model specification. Instead, they
reflect the wvariability of the parameter we are modelling.
Although reservations on boarding day for a flight/class
exhibit time related patterns, such as day of week
seasonality, they cannot be wused alone to describe the
random process associated with bookings. Furthermore, given
the need to make forecast for a flight departure, say 28
days ahead, the error associated with the forecast will

sharply increase as the time interval increases.

These two examples are illustrative of the
randomness that is present in reservations data. Rather than
showing how to use ARIMA models, they serve to illustrate
the difficulty posed to the forecaster in modelling and the
seemingly disadvantage of +time series models. Moreover,
because no structural behavior is associated with any time
series model, model specification becomes extremely time
consuming. No clear cut approach can be developed in
modelling, not in an reasonable fashion, when one uses time
series models. Just too many forecaster's interventions are
needed. Time series analysis were applied in the remaining
markets, and the results obtained were similar.For the above
reasons, the use of time series analysis in reservation
forecasting becomes unattractive, although with only two
model examples a forecaster should never discard a

forecasting method.
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One should note that in the above presented
models, only reservations data on boarding day were used. No
other available data, such as reservation made 28 days
before departure for the same flight, or reservation for the
same class in the same day, or even other flight
reservations data, were ever used. That leads to the next
step which is the use of Regression Analysis in reservations

forecasting.
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5.3 REGRESSION ANALYSIS

The use of Regression Analysis in reservations
forecasting implicitly leads to the presumption that one
knows something about causal relationships that are relevant
and influences booking patterns for a given flight. One may
assume that there is a relationship between booking levels
in a directional market, for instance. Cause-effect
relationships can also be tested among different classes in
the same flight/market. One could argue that some passengers
that made reservation on a full Y class did so because they
did not find a seat in the "M compartment". Correlation
among classes, among flights and between markets are few
examples that one could test in developing a regression

model.

Given the need to provide estimates of final
seat requests, for a given flight, for a given class, the
forecaster can launch himself in model building, knowing
that he has at his disposal a large database. The data that

is usually available includes
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(1) historical data from past operations of the
same flight, for all classes, which can be
retrieved from the airline reservation
system;

(2) reservation data for the flight itself;

(3) current and past applicable fares;

(4) changes 1in schedules/airlines in the

market;

(5) level of service variables, such as a new
flight was introduced in the market;

(6) time related information, e.g. as flight

will depart on a Friday morning,

Thanksgiving week;

(7) socio-econcmic variables

Historical data from past flight operation can
be retrieved for all classes, and flight build up patterns
can be derived from the database. Data can be retrieved and
analyzed in a seven days intervals, for instance. That is to
say that for the M class of flight F1, market A/B,
reservations data can be retrieved for the boarding day
(MBD), 7 (MZ), 14 (M14) ,21 (M21) days before flight

departure and so forth.
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Current and past fares are also available. A
regression analysis model with micro/macro-economic
variables should increase the explanatory power of
regression models. By including such variables, one could
infer about consequences of fare changes. It is very
unfortunate that, in this thesis, fare data was not so
readily available. Some problems were detected in the fare
database that made them of little use. A "pollution" problem
was particularly detected in the highest fare class, with
exception only of the I/J & J/I markets, which makes them
unusable as far statistical analysis and demand modelling

are concerned.

Because reservations were modeled on a leg
basis, not on a 0&D basis, the absence of a fare variable
does not implicitly represent a loss in the inodel
explanatory power. If O&D forecasts are needed, then fare
variables should inevitably be incorporated, as well other

socio-aconomic variables, e.g income level, population ,etc.

Variables type (4) and (5) cannot be explicitly
introduced in the model. An example of a methodology for
determining the relationship between air transportation
demand and the level of service has been proposed by
Eriksen, Scalea and Taneja [8]. In essence, a level of

service index 1is created and used in regression analysis

models. The level of service index generated is a non-



dimensional generalized trip time scaled from zero to one,
which take< ‘nto account not only the number of flight, but
also the number of intermediate stops, direct or connecting
service, speed of aircraft, and most important, the matching
of departure schedules to time variability of demand. By the
same token that fares cannot be introduced in the model,
(only in O&D models), this index cannot be applied to the

regression models developed in this thesis.

Although some variables above mentioned are not
explicitly considered in the regression models presented in
this thesis, some structural behavior are implicitly assumed
here. For instance, fare elasticities are expected to
increase as cne moves from a potential full fare passenger
to the lowest fare potential passenger. Correlations are
expected to be higher in adjacent classes in comparison with
extreme classes, for instance , or, in other words,
reservations on the lowest fare class are not expected to be
an important explanatory variable in the regression model of
the highest fare class. A coherent fare structure, as well
associated set of restriction, are assumed in each and every
market analyzed. As the models presented here are the result
of a search of a structural behavior among classes and even

markets, those implicit assumptions are of very importance.

Under these circumstances, the models that are

presented here can be called as bonking performance models,
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in the sense that they search for structural behavior and or
performance of booking for a given class, on a given flight.
The search of a structural behavior across inarkets leads to
the formulation of a general structure model, which is a
model that is expected to hold across flights and markets.
The rational in developing this kind of model is that one
expects to find a minimal set of explantory variables that
is able to describe reservations as a function of these
variables. In building the so called general structure
model, causal-effect relationships are examined between
bookings-on-hand and bookings-to-come, among adjacent fare
classes, among flights and classes, and time related
variables, such as week-of-year and day-of-week seasonal

variables.

One may argue that there 1is loss in model
precision when a general structure is used. It is true that
there are losses involved in adopting a general structure
model. A model that is market and flight specific is by all
means better than a generalized one. Because it is specified
and fitted with the data of one flight only, it tends to
show better fitting results. Building models that are
market/flight specific may be a time consuming task,
especially when one considers +he large number of
flights/markets served by an airline. One may introduce a
variable that is relevant for the flight F1 in the A/B

market, whereas the same variable may not be of relevance in
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the flight F1 in the E/F market.

Therefore, building models that are
flight/market specific has some practical disadvantages when
one considers that a vast set of forecasting models has to
to be generated for an airline. When a new flight is
introduced in the A/B market, for instance, a general
structure model, that was fitted for the A/B market is likely
to yield better forecast than the one particularly specified
and fitted to any flight in the market. One also has to have
in mind that schedule changes happen very often in the
airline industry, and the ability of building flight
specific models is sharply reduced. It would require a much
higher stability in schedules that is observed in the

airline industry.

Therefore, if a general structure model can be
developed and the incurred precision losses are not
relevant, those models are preferred. With a general
structure model approach, forecasts of final bookings can be
made more efficiently without spending too much time in

modeling.

Another positive consequence of a general
structure model is the associated reduction in data handling
routines that are required for model fitting. Moreover, with

a market specific approach, one could run into the problem
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of having to re-speciry the model as time goes by, because
the model could also be specific for a determined
period/season of the year, or even worse, a model dependent

on the data set used for fitting.

The regression models presented in this thesis
are the result of a search of a general structure model.
Several model specifications and variables were tested for
each market, and pooled together in a time consuming
regression analysis effort. Variables that showed

statistical adherence in most of all markets were kept.

The general structure model developed here,
includes a long term cyclic (seasonal variation) component,
recent historical data, as well as actual bookings. The
minimum cycle is a week, and the model is sensitive to day-

of-week variation.
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The variables used 1in the general structure
model to forecast bookings to come, for flight Fi in M
class, for a given market, from t days before departure, (

Mt BD ), are as follows:

ONE - a constant or base booking level;

DAYS - day of week dummy variables,
(MO,TU,WE,TH,FR, and SA relative to
Su);

Mt - bookings-on-hand, on day t, M-class;

INDEX - weerk of year non-dimensionalized index
for traffic levels and growth through
the major hub of the airline;

S5MAiB - historical average of bookings made in
M-class , between day t and departure,
for the most five recent departures of
the same flight Fi ;

MT<t - total bookings onr hand ,for all future

flights in the same directional market

t days before departure.

Long-term cycles and market growth are expected

to be captured by the INDEX variable, while S5MAiB should be

sensible to shorter term trends.

Regression analysis results are shown from

Tables 5.03 through 5.12
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Table 5.03 shows fitting results of the general
structure model applied to market A/B, flight F1. Ten
explanatory variables are included in the model. The model
also includes a constant term. The model is fitted in a
subset of the original data set. The subset used was from
observation #35 to observation #181, which means a total of
147 observations. The sample size was reduced to 147 because
of the S5MA variable. S5MA is a 5-week lag average, and
consequently the first non-trivial S5MA is for observation

#35 ( 36 =7 . 6 ).

The degree of freedom for the F-statistic is
therefore equals to 10 (the number of explanatory variables)
in the numerator, and equals to 136 ( number of observations
minus the number of parameters to be estimated, or 136=147-
10-1),in the denominator. Therefore, the critical value of
the F-Statistic (10,136), at 95% level of confidence is
1.91. All runs exhibit a higher F level, which means that

the models are accepted.

The adjusted R-squared , or R-bar squared, for
all runs is characterized by a low value. One has to
remember that the dependent variable is the result of the
difference of final bookings and bookings-on-hand. Model
fitting for differenced variables will always exhibit low R
squared statistics. This explain, to some extent, why R

square is relatively low for each model run.
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In this example there was a distinct behavior
for Mondays, Fridays, Thursdays, and Saturdays. They were
statistically different from the base day, which were
Sundays. The Bookings—-on-hand and INDEX variables were
significant in all runs : in any run, the t statistic of
coefficients were greater than the critical wvalue

t(136)=1.98.

This market/flight is an example of model
fitting results that is expected for the general structure
model. The INDEX variable is expected to be significant and
capture week-of-year seasonality. A '"local" seasonality is
also expected to be captured by day-of-week dummy variables.
It was indeed possible for this flight/market to detect some

different behavior for some dummy variables.
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Table 5.04 shows fitting results for flight F2,
in the B/A market. This is an example of a flight in the

reverse direction of the one shown in the previous example.

In this example, F-statistics were acceptable
for all model runs. R-bar squared although almost constant
was also low across runs. The day-of-week variahles
exhibited an interesting behavior. While only Fridays and
Saturdays variables were statistically significant in the
day_28 run, all days but Mondays were significant in the
day 7 run. The bookings-on-hand variable did not behave
consistently for all runs. It showed an almost acceptable
t_statistics in day_28 and day_7 runs while in between the t
values were not acceptable. The INDEX variable exhibited a
very stable behavior, although not all t-statistics were

acceptable.

This market/flight 1is an example of a mixed
statistical behavior for the general structure model.
Although some coefficients of the variables could not be
statistically determined, the overall model performance was
acceptable. When compared to Table 5.03, one can observe
that relatively similar results were obtained for flights in

both direction of the markets defined by the citypair A&B.
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Table 5.05 shows model fitting results for
flight F4 in the C/D market. R-bar statistics are little
higher for this flight. In this example all day-of-week
variables were different from the base day, Sundays.
Thursday was constantly the busiest day in any week, in any
model run. The bookings-on-hand variable was not significant
in any model run. The INDEX and S5MA variables were

constantly significant across model runs.

The general structure model behave as expected.
Fitting improvement was observed, when compared to previous

flights/markets.

Table 5.06 shows model fitting results for
flight F3 in the D/C market. R-bar squared statistics were
improved. All day-of-week variables were significant, in any
model run. Bookings-on-hand were not significant again. The
INDEX and S5MA variables were siginificant in most of the

runs.

The overall model behavior was similar to the
C/D market example. That is, all dummy variables were
significant in the C&D citypair markets. The INDEX and S5MA
variables did contribute to the general structure model. The
remaining variables did not explicitly improve model

statistics.
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Table 5.07 shows model fitting results for
flight F1 in the E/F market. R-bar squared statistics are
very low. They range from 0.19 to 0.16 . Nevertheless, all
F_statistics were acceptable. The «critical value is
F(10,136)=1.91, at a 95% confidence interval. As it gets
closer to the departure day the more significant the day-of-
week dummy variables are. While the INDEX and S5MA variables
were not significant to the model runs, the Mt and MTt
variables exhibited acceptable t-statistics. It is an

example of the opposite behavior so far observed.

Table 56.08 shows model fitting results for
flight F2 in the F/E market. R-bar squared statistics are a
little higher than in the previous example. All F_statistics
were also acceptable. Statistical significance was
marginally observed for day-of-week variables. The Mt
variable, bookings-on-hand was not significant in any model
run. The INDEX and S5MA were significant in this example.
Total bookings-on-hand (MTt) was not so significant as in

the previous example.

These two examples illustrate the distinct
behavior expected for the (INDEX & S5MA) variables vs. (Mt
& MTt) variables. When the first two are significant, the
others are not, and vice-versa. It explains why both sets
are included in the model, together with the fact that no

one can a priori predict which two will be significant.
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Table 5.09 shows model fitting results for
flight F1 in the G/H market. R-bar squared statistics are
again low. F statistics are acceptable, and in the day 7
run, it reaches the minimum so far observed, 1.92 . In this
example, only the INDEX variable is statistically
significant. One possible reason is the high variation
observed for the dependent variable. While means are
extremely low, ranging from 6.65 to 3.97, standard
deviations are relatively high, ranging from 6.7 to 5.3,
respectively. As a consequence, model performance is
reduced. Nevertheless, the standard error of the regression
was always smaller than the standard deviation of the

dependent variable.

Table 5.10 shows model fitting results for
flight F2, in the H/G market. Although R-bar squared are
extremely low, one can cbserve the distinct model behavior,.
In this example, all day-of-week variables were significant.
The INDEX and S5MA variables were also significant, while
MTt and Mt showed bad t_statistics. Again, only two

variables were significant.

The flight F1, market H/G, example illustrates
that even for a flight with very small load the general

structure model can be used.
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Table 5.11 shows model fitting results for
flight F1, in the I/J market, for the Y-class. The same
general structure is applied to the Y-class in the Canadian
market. R-bar squared statistics are low as it were in the
case of the M-class, for domestic U.S. markets. In the day_7
run, all model statistics dropped significantly, and the
model exhibited a distinct behavior: only two variables were
significant. Neveréheless, F _statistics were acceptable for
all runs. The day-oi-week dummy variables exhibited the
expected behavior, that is for some days (e.g. TU or SA)
different behavior from the base day was observed, i.e.
t_statistics were significant. Bookings-on-hand (Yt) were
significant for all model runs, but day_7 run. The INDEX
variable was marginally accepted in some runs, while the

remaining variables were not.

Table 5.12 shows model fitting results for
flight F1 in the J/I market, for the Y-class. R-bar squared
statistics were a little higher that in the previous
example. In the day_28 model run it was 0.41 and it dropped
to 0.16 on the day 7. The day-of-week variables did not
exhibit good t_statistics. No "local" seasonality could be
picked up by the model. The Yt variable was significant in
the first two model runs, while YTt was not. The INDEX
variable was significant in all model runs. S5MA was not

significant.
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The statistical adherence of the variables
considered 1in the generalized model vary from market to
market. For instance, the bookings-on-hand variable was
statistically significant in the directional A/B market, bhut
in the other direction it was not. 1In the majority of
markets, the INDEX and S5MA variables contributed to the
model. MTt and Mt variables seem to pick up explanatory
power when INDEX and S5MA variables can not. Therefore, they
work together in an almost exclusive basis. Nevertheless,
all four are kept in the general structure model because one
can never predict what variables will be significant. In
general, the model was able to pick up day-of-week
seasonality: day-of-week dummy variables were significant in
most of the cases. A reduction in the number of explanatory
variables included in the set of variables selected for the
general structure model causes noticeable reduction of
Durbin-Watson statistics to values that are not acceptable,
which in turn means the presence of serial correlation. This
result leads to the conclusion that either variables can

only be added to this minimel set, or carefully replaced.

In all markets, the gJgeneral structure model
outperformed simple estimates of bookings-to-come based on
local historical averages. The application of the model in a
Y-class, as in the case of the Canadian market, vyielded
equivalent fitting results, which may suggest that the model

can be adapted and applied to the Y-class.
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CHAPTER SIX

CONCLUSION

6.1 SUMMARY

The forecasting module of an Automated Seat
Inventory Control System is intended to provide the dynamic
booking limit adjustment routine with estimates of expected
bookings for individual future flights. A seat allocation
routine will then use these estimates of expected bookings
to calculate how many seats should be protected for each

upper fare class, in addition to bookings already on hand.

The initial work in forecasting involved models
that derived direct estimates of final bookings. Bookings by
fare class, on the day of departure was the variable we
wanted to forecast - the dependent variable. Cause-effect
relationships between this variable and a set of explanatory
(independent variable) as well qualitative and quantitative

time series behavior.
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Further examination of these cause-effect
relationships, together with statistical analysis of
historical reservations data, have indicated that a focus on
bookings-to-come would be a better approach. The key factor
to this conclusion was an observed correlation between
bookings on hand and final bookings, obtained across the
data set selected for hypothesis testing. With the focus
shifted to bookings-to-come, final bookings were indirectly
estimated as the sum of actual bookings on hand and the

estimated bookings to come.

A simple forecasting model is suggested for the
initial estimation of final bookings. It consists of moving
average process that is sensitive to day of week variation
only. That is to say, for instance, that a 8-week average is
used to describe or estimate final bookings for a given
flight (e.g. flight F1), on a specific day of week (e.g.
Monday). Although no information on actual bockings on hand
for future flights are ever used, nor additional adjustments
are made for cyclic or seasonal variations other that on
weekly basis, the implicit assumption of this simple
approach is that a small sample of final demand for recent
flights will be representative of the demand for the same

flights in the near future.

The first step in reservations forecasting

involves initial estimates of final bookings well in advance
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of flight departures. These estimates can be improved later
in the bookings process as more information (data) on the
specific flight for which more accurate forecasts are

needed.

The final step in the development of a
forecasting module is to improve the estimates of bookings
to come, over those strictly based on recent historical
averages. The closer it gets to departure day, the better is
to improve forecasts of final bookings. As a general rule,
better forecasts of final bookings, via bookings-to-come,
are obtained using regression analysis as the 28 days before

departure day threshold is surpassed.

The models tested in this thesis ranged from
analytical models ( Time Series Analysis and Regression
Analysis) to non conventional models ( Bookings Curves and
ad-hoc methods). Results obtained via Time Series Analysis
(Box and Jenkins' ARIMA models) were not encouraging enough
in providing better estimates, when compared to results
obtained via Regression Analysis or even simple historical
averages. Any improvements were far outweighed by elaborated
data handling routines that would have to be used to fit the
models. Non-conventional methods required too many "tuning"
interventions by the forecaster, which is not helpful if an
automated routine is to be developed, and again their

results did not improve over Regression Analysis. As a
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result, effort was concentrated on Regression Analvsis.

The first step was to develop market specific
models. Models were formulated and generated for the markets
selected in the data sample. The search was for a specific
structure ( model specification) that vielded better and
better model fitting results. At this level, model structure
was considered as independent of direction. That is to say,
for instance, that the same model structure for the A/B
market, should also hold for the B/A market, although
estimated coefficients were allowed to be directionally

sensitive.

Although it was possible to develop models that
were specific to markets, a general structure model was
thought to be preferable in view of the associated reduction
in specific data handling routines that would be required
for model fitting. As model generalization involves losses
in forecast precision caused by aggregation of markets, this
approach was preferred because these losses were not large
enough to distort forecasting results. All forecasts
produced with the general structure approach were
consistently better (less variable) than simple historical

average from a sample of recent flights.

A proposal of a general structure model is then

presented and tested in this thesis. The general structure
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model proposed here includes a long term cyclic (seasonal)
component short term cyclic and trend components
calculated over recent historical data, and the model is
sensitive to day of week variations. Apart from showing
"good" model fitting statistics, this model structure
demonstrates how Regression Analysis can be used in a
forecasting module of an Automated Booking Limit System, and

thus provide improved estimates of bookings to come.
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6.2 TOPICS FOR FURTHER REGSEARCH

The general structure model was developed in

this thesis for the M-class only.

As the typical airline has, at 1least, four
different classes, models need also to be developed and
tested for the remaining classes. For the upper fare class,
in this case Y-class, a similar model structure can be

applied.

The expected set of build-up curves for the Y
class is rather similar to the set of M-class, and generally
speaking, flights start to heavily build up during the last
week, before flight departure. Therefore, a bookings-to-come
approach, with the reference on the boarding day can also be
used. Almost no "supply limitation" 1is also expected to
occur, since Y authorized booking levels are usually greater

than the total coach seating capacity.

As one moves to lower fare classes, both build
up behavior ( build-up curves) and supply 1limitations
change. For the B-class, for instance, the build-up curve
reaches its peak at least a week before the flight
departure, say on day 14, and from there on a period of

cancelliation is expected to be observed. The same phenomena
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is also observed in the lowest fare class, although, as far
as seat inventory control routines are concerned,
forecasting models will not be developed. This build-up
phenomena can be taken into account by changing the
reference day to day 14, as in the case of above mentioned

example for the B-class.

On the other hand, the supply limitation
problem, caused by bookout phenomena, ( the class was closed
due to either a low authorized booking limit, or by a large
number of reservations made in other classes ), needs to be

carefully addressed.

A single equation regression model can no
longer be applied. 1Instead, a multi-equation regression
model needs to developed, using a simultaneous equation
system approach. Now, supply variables, such as authorized
levels for a given class need to be explicitly taken into
account. For instance, cause-effect relationships such as,
for a given fight, for a given class, there was a cutoff in
the flight build up because the authorized level for the
class itself was reached ( low authorized booking limit --->
low demand observed ---> change in flight statistics) should

be investigated.
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