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1 Introduction 

In designing fault-tolerant distributed systems, one often encounters questions of ~~ee

ment among processes. In the Byzantine Generals problem [PSL 80, LSP 82}, the objective 

is for nonfaulty processes to agree on a value, in spite of the presence of a small number 

of "Byzantine19 types of faults - completely arbitrary, even pO!Sibly malicio~, behavior~ 

Several variations on the problem can be considered - the model can be synchronous or 

asynchronous, and either exact or approximate agreement can be demanded. In this paper, 

we consider a variant on the traditional Byzantine Generals problem, in which processes 

start with arbitrary real values, and where approximate, rather than exact, agreement ia the 

desired goal. Approximate agreement can be used, for example, for dock synchronization 

and for stabilization of input from sensors. 

We assume a model in which processes can send messages containing arbitrary real 

values, and can store arbitrary real values as ·well. We assume that each process starts with 

an arbitrary real value. For any preassigned e > 0 (as small as desired) , an approzimate 

agreement algorithm must satisfy the following two conditions: 

• Agreement: All nonfaulty processes eventually halt with output values that are within 

e of each other. 

• Validity: The value output by each nonfaulty process must be in the range of initial 

values of the nonf aulty processes. 

Thus, in particular, if all nonfaulty processes should happen to start with the same 

initial value, the fin.al values are all required to be the same as the common initial value. 

This is consistent with the usual requirements for Byzantine agrttment _algorithms. How

. ever , should the nonfaulty processes start with different values, we do not require that the 

nonfaulty processes agree on a unique ·final value. 
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We consider both synchronous and asynchronous versions of the problem. Systems 

in which there is a. finite bounded delay on the operations of the processes and on their 

intercommunication are said to be synchronous. In such systems, unannounced process 

deaths, as well as long delays, are considered to be faults. For synchronous systems, we give 

a simple and rather efficient algorithm for achieving approximate agreement. This algorithm 

works by successive approximation, with a provable convergence rate that depends on the 

ratio between the number of faulty processes and the total number of processes. The 

algorithm is guaranteed to converge when the total number of processes is more than three 

times the number of possible faulty processes. Termination is achieved using a technique 

that ensures that all nonfaulty processes halt, but allows different processes to terminate 

at different times. 

For asynchronous systems, in which a very slow process cannot be distinguished from 

a dead process, no exact agreement can be achieved, even if no malicious failures occur 

[FLP 83, DDS 83]. An interesting contrast to the results in [FLP 83, DDS 83] is our second 

algorithm, which enables processes in an asynchronous system to get as close to agreement 

as one chooses. Our algorithm for the asynchronous case also works by successive approx

imation. In this case, however, the total number of processes required by the algorithm is 

more than five times the number of possible faulty processes. As in the synchronous case, 

we achieve termination using a technique that ensures that all nonfaulty processes halt , but 

permits different processes to terminate at different times. 

Our algorithms to obtain approximate agreement are of a very simple form. Namely, at 

each round until termination is reached, each process sends its latest value to all processes 

(including itself). On receipt of a collection V of values, the process computes a certain 

function f(V) as its next value. The function f is a kind of averaging function. Here we 

use functions that are appropriate for handling t faulty processes. We will show that these 

functions have particularly nice approximation behavior. In particular, we will show that, 

for algorithms of a particular form, no approximation function can provide uniformly faster 

convergence than the functions used in this paper. An earlier paper [DLPSW 83] presented 

similar ·algorithms, but used approximation functions that provided slower convergence than 

achieved by the functions used in this paper. 
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The remainder of this paper is organized as follows: In Section 2, we prove some combina

torial properties of the approximation functions upon which our algorithms depend. Then, 

in Section 3, we introduce the synchronous model and present the synchronous approximate 

agreement algorithm, and in Section 4, we present the asynchronous m'odel and algorithm. 

Next, in Section 5, we present lower bounds on the convergence rate for algorithms of the 

form presented in sections 3 and 4, and show that the approximation functions used in our 

algorithms are optimal. In Section 6, we discuss the resilience properties of our algorithms. 

Finally, in Section 7, we conclude with a short summary and some open questions. 

2 Properties of the Approximation Functions 

In this section, we will state and prove the relevant properties of the approximation 

functions. First , we require some preliminary definitions and properties of multisets. 

2.1 Preliminary Definitions 

Let )I be the natural numbers, including 0, and let R. be the real numbers. We view a 

finite multiset U of reals as a function U : R - JI that is nonzero on at most finitely many 

r E R. Intuitively, the function U assigns a finite multiplicity to each value r E R. The 

cardinality of a multiset U is given by L,eR U(r) , and is denoted by IUI- We say that a 

multiset is empty if its cardinality is zero; otherwise it is nonempty. The difference U - V 

of multisets U and V is the multiset W defined by 

{ 

U ( r) - V ( r) if U ( r) - V ( r) ~ 0 
W(r) = 

0 otherwise. 

The inter3ection U n V of multisets U and V is the multiset W defined by W(r} = 
min(U(r), V(r)). 

In the sequel, the term "multiset" will always refer to finite multisets of real numbers 

as above. ff g is a function on multisets, then g' will denote the k-fold iteration of g; thus 

g1 = g ,. g2 = go g , etc. 

The minimum min( U) of a nonempty multiset U is defined by 

min(U) = min{r ER.: U(r) #: O}. 
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The mazimum max(U) is defined similarly. ff U is nonempty, let p(U) (the range of U) be 

the interval [min(U), max(U)], and let 8(U) (the diameter of U) be max(U) - min(U) . The 

mean mean(U) of a nonempty multiset U is defined by 

mean(U) = L rU(r)/jUI. 
re .IE 

If U is a nonempty multiset, we define the multiset a(U) (intuitively, the multiset ob-

tained by removing one occurrence of the smallest value in U) to be the multiset W defined 

by 

{ 
U(r) - 1 if r = min(U), 

W(r) = 
U(r) otherwise. 

The multiset l(U) (remove one occurrence of the largest value in U) is defined similarly. ff 

IUI ~ 2, then define reduce(U) = a(l(U)), the result of removing the largest and smallest 

elements of U. 

The first lemma shows that the number of common elements in two nonempty multisets 

is reduced by at most 1 when the smallest (or the largest) element is removed from each. 

Lemma 1 Suppou that V and W are nonempty multiaeta. Then 

1. IV n WI - l-'(V) n a(W)I $ 1. 

e. IV n WI - ll(V) n l(W)I $ 1. 

Proof - We prove the first inequality; the argument for the second is symmetric. H V 

and W have the same minimum, then the same element is removed from each, and hence 

at most one element is removed from their intersection. ff the minima of V and W are not 

the same, then either the minimum of V is not in W, or the minimum of W is not in V. In 

either case, at most one element is removed from the intersection. I 

The next lemma extends the results of the previous lemma to removing the j largest 

and j smallest elements. 

Lemma 2 Suppoae that j is a nonnegative integer and that V and W are multiuta auch 

that IVI ~ 2j and IWI ~ 2j. Then 

IV n WI - lreducei(V) n reducei(W)I $ 2;. 

5 



Proof - Follows from repeated application of Lemma 1. I 

The next lemma is fundamental to the correctness of the algorithms. It states that if 

V and U are multisets such that V contains at most j values not in U, then eveey value in 

reduce; (V) is in the range of U. For example, if the multiset of values held by nonfaulty 

processes at some point in the algorithm is U, and the multiset of values received by some 

process is V , then at most t of the values in V are not in U, where t is the maximum number 

of faulty processes. The lemma then states that reduce1(V) is a multiset whose range is 

contained in the range of the values of the nonfaulty processes. This property is essential 

in showing that the validity condition is satisfied. 

Lemma 3 Suppoae that i ia a nonnegative integer and that U and V are nonempty multiaeta 

auch that IV - UI $ i and IVI > 2j. Then p(reducei(V)) ~ p(U). 

Proof - Suppose p(reducei(V)) i p(U). Then either min{reducei(V)) < min(U) or 

max(reducei(V)) > max(U). H min(reducei(V)) < min(U), then Lr<min(U) V(r) ~ j + 1. 

Hence, IV - UI ~ j + 1, which contradicts a hypothesis. The case max{reducei(V)) > 

max(U) is symmetric. I 

2.2 The Approximation ·Functions 

Suppose U is a nonempty multiset. Let m = IUI and let Uo $ u1 $ ... $ Um-1 be the 

elements of U in nondecreasing order. H Jc > 0 then define selectt(U) to be the multiset 

consisting of the elements uo, UJ: , U2A:, ••• , and Uji, where j = l{m - 1)/ kJ. Thus, selectk(U) 

chooses the smallest element of U and eveey Jeth element thereafter. 

An important role will be played by the constants 

c(m, k) = l(m - 1)//cj + 1, 

where c(m, k) is the number of elements in selectc(U) when Uhas m elements. The constant 

c(n- 2t, t) appears as the convergence factor for the synchronous protocol, and the constant 

c(n - 3t , 2t) as the convergence factor for the asynchronous protocol. 

In this paper we will use approximation functions drawn from a class of functions 

parametrized by: (1) the number t of faulty processes, and (2) a constant Jc, the choice 
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of which depends on t and on whether the algorithm is synchronous or asynchronous. For 

k > 0 and t ~ 0 define the function '1:,t by 

fk ,,(V) = mean(select1:(reduce'(V))), 

for all multisets V with IV I > 2t. The approximation function for the synchronous protocol 

with no more than t faulty processes is ft,t• The approximation function for the asyn

chronous protocol with no more than t faulty processes is ht,t• We will show below why 

these functions are appropriate. 

The next two lemmas describe properties of the approximation functions . Lemma 4 is 

used in verifying the validity condition. 

Lemma 4 Suppoae k > 0 and t ~ 0 are integera. Suppoae that U and V are nonempty 

multiaeta auch that IV - UI $ t and IVI > 2t. Then '1:,1(V) E p(U). 

Proof - Follows easily from Lemma 3 (with j = t). I 

Lemma 5 will be applied to determine the rate of convergence of the approximation 

rounds. The multisets V and W will be the multisets of values received by two nonfaulty 

processes in a given round, and U will be the multiset of values held by nonfaulty processes 

at the beginning of that round. Nonfaulty processes use the appropriate approximation 

function to choose their values for the next round; the lemma tells us how quickly those 

values converge. 

Lemma 5 Suppoae V , W , and U are multiaeta, and k > 0, t ~ 0, and m > 2t are integera, 

with IVI = IWI = m, IV - Uj ~ t , IW - UI $ t , and IW - VI = IV - WI$ k . Then 

lh,,(V) - h,,(W)I $ 6(U)/c(m - 2t, k). 

Proof - Let M = reduce1(V) and N = reduce'(W). Since V and W each contain exactly 

m elements, Mand N each contain exactly m - 2t elements, and hence select1:(M) and 

select1:(N) each contain exactly c = c(m - 2t,/c) elements. Let m0 $ m 1 $ ... $ me- l be 

the elements of select,.(M), and let no ~ n1 $ ... $ ne- l be the elements of select,1;( N). 

Notice that there are at least ki + 1 elements in M that are less than or equal to mi, and 

at most lei elements in M that ~e strictly less than mi; similarly for N . 
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We begin by showing that max(m,,n,) $ min(m,+1,n;+i) for O $ i $ c - 2. It suffices 

to show that m; $ n,+1; a symmetric argument demonstrates that n, $ mi+i . 

We proceed by contradiction: Suppose that mi > "i+t· As noted above, there are at 

least k(i + 1) + 1 elements in N less than or equal to n,+1· By our supposition, these 

elements are strictly less than mi. However, there are at most lei elements in M strictly less 

than m,. Therefore, there are at least /c ( i + 1) + 1 - lei ( = /c + 1) elements in N that are not 

in M ; thus, IN - Ml~ /c + l. Now by hypothesis, IW - VI~ k, so IW n VI~ m - k. Then 

Lemma 2 shows IN n Ml~ m - k - 2t, and hence IN - Ml$ (m - 2t) - (m - /c - 2t) = /e. 

This is a contradiction, and we conclude that mi $ ni+i . 

Now we will use the inequality shown above to obtain the desired result. Using the 

notation defined above, 

lh,i(V) - h:,,(W)I = lmean(select1:(M)) - mean(select1:(N))I 
e-1 e-1 

= l(E m;) - (E n,)1/c 
i=O i= O 

e- 1 

= I E(mi - n.)1/c 
i=O 

e- 1 
$ E lmi - n,1/c 

i= O 
e-1 

(by the triangle inequality) 

= 2)max(mi,ni) - min(mi,ni))/c. 
i=O 

By the inequality demonstrated above, for O ~ i ~ c - 2, (max(mi, ni) - min(mi ,ni)) ~ 

(min(mi+t , n,+t) - min(m,, ni)), so we get 

l/1:,,(V) - /1:,,(W)I ~ [max(mc- 1, ne- d - min(me- 1, ne- dl/c 
e-2 

+ E(min(m,+1 , n,+i) - min(m,, n,))/c. 
i=O 

Collecting terms then shows that 

l/1:,,(V) - /1,1(W)I ~ (max(me-1, ne-d - min(mo, no))/c. 

Now, p(M) ~ p(U) and p(N) ~ p(U) by Lemma 3 (with j = t) , so max(me- 1, ne- 1) < 

max(U) and min(mo, no)~ min(U). Hence 

l/1,,(V) - /1,,(W)I ~ (max(U) - min(U))/c 
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= 8(U)/c, 

as desired. I 

3 The Synchronous Problem 

A "ynchronow approzimation algorithm P is a system of n processes, n ;?: 1. Each 

process p has a set of states, including a subset of states called initial atatea and a subset 

called halting atatea. There is a value mapping which assigns a real number as the value 

of each state. For each real number r, there is exactly one initial state with value r. Each 

process acts deterministically according to a tranaition function and a meuage generation 

function. The transition function takes a non-halting process state and a vector of messages 

received from all processes ( one message per process) and produces a new process state. The 

message generation function takes a non-halting state and produces a vector of messages to 

be sent· to all processes (one per process). 

We assume that the system acts synchronously, using a reliable communication medium. 

Each process is able to send messages to all processes (including itself), and the sender of 

each message is identifiable by the receiver. 

A configuration consists of a state for each process. An initial configuration consists 

of an initial state for each process. Let T be any subset of the processes. A sequence 

of configurations ( called ro,.mcu), C0 , C 1 , C2 , . • • is a T-computation provided there exist 

messages sent by each process at each round such that: ( a) C0 is an initial configuration; 

(b) for every i , and every p E T, the messages sent out by p after C; are exactly those 

specified by p 's message generation function, applied to p's state in C;; and (c) for every 

i, and every p E T, p's state in Ci+i is exactly the one specified by p's transition function 

applied to p's state in C; and the messages sent top after C;. In a T-computation, processes 

in T are nonfaulty, while processes not in T may be faulty. 

For the rest of the paper, assume a fixed small value £, a fixed number of processes n , 

and a fixed maximum number of faulty processes t. 

A synchronoU5 approximation algorithm is said to be t-correct provided that for every 

subset T of processes with !Tl ;?: n - t, and every T-computation, the following is true: 
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Every p ET eventually enters a halting state, and the following two conditions hold for the 

values of those halting states: 

• Agreement: If two processes in Tenter halting states with values r and a, respectively, 

then Ir - al $ l. 

• Validity: If a process in T enters a halting state with valuer, then there exist processes 

in T having z and JI as initial values, such that z $ r $ JI. 

We will prove the following theorem. 

Theorem 1 // n ~ 3t+ 1, then there eziata at-correct aynchronoua approzimation algorithm 

with n proceuea. 

Note that the following strategy would suffice to prove Theorem 1. The processes could 

run n executions of a general (unlimited value set) Byzantine Generals algorithm such as 

the one in [DS 82], in order to obtain common estimates for the initial values of all the 

processes. After this algorithm completes, all processes in T will have the same multiset, 

V, of values for all the processes. Then each process halts with value /(V) , where / is a 

predetermined averaging function that is the same for all processes. This algorithm actually 

achieves exact real-valued agreement, with the required validity condition. However, the 

solution presented below is simpler and more elegant, and moreover extends directly to 

the asynchronous case, for which exact agreement is impossible. The algorithm has two 

additional advantages over using a Byzantine Generals algorithm: it is more resilient than 

typical Byzantine Generals algorithms, and it can, in some cases, terminate in fewer than 

t + 1 rounds. 

We now present our synchronous approximation algorithm, S. First, we describe a non

terminating algorithm, S0, and then we discuss how termination is achieved. We assume 

that n ~ 3t + 1. 

Synchronous Approximation Algorithm S0 : 

At each round, each nonfaulty process p performs the following steps: 

1. Process p broadcasts its current value to all processes, including itself. 
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2. Process p collects all the values sent to it at that round into a multiset V. If p does not 

receive exactly one correct value from some particular other process (which means, 

in the synchronous model, that the other process is faulty), then p simply picks some 

arbitrary default value to represent that process in the multiset. The multiset V will 

therefore always contain exactly n values. 

3. Process p applies the function ft,t to the multiset V to obtain its new value. 

The following result states how the diameter and range of the nonf aulty processes' values 

are affected by each round of algorithm S0 • 

Lemma 6 Suppoae n, t > 0 are auch that n ~ 3t + 1. Let T be a aet of proceuea, with 

ITI ~ n - t. Leth be a poaitive integer. Let U and U' be the multiuta of valuea of proceuea 

in ·T, immediately before and after round h, reapectively, in a particular T-computation of 

So. Then 

1. t5(U') $ t5(U)/c(n - 2t, t). 

e. p(U') ~ p(U). 

Proof - Let p and q be arbitrary processes in T. Let V and W be the multisets of values 

(including default values) received by p and q, respectively, at round h. Then IVI = IWI = n . 

Since there are at most t faulty processes, IV- UI $ t and IW-UI $ t. Moreover, since V and 

W contain identical entries for all the processes in T, we know that IV - WI = IW - VI$ t. 

1. The multisets V, W, and U satisfy the hypotheses of Lemma 5 (with m = n and 

k = t). Thus, 

IJ,,,(V) - /,,,(W)I $ 6(U)/c(n - 2t,t). 

2. The multisets V and U satisfy the hypotheses of Lemma 4. Thus /,,,(V) E p(U). 

Since p and q were chosen arbitrarily, the result follows. I 

Part 1 of Lemma 6 shows that, at each round, the diameter of the multiset of values 

held by nonfaulty processes decreases by a factor of c(n - 2t, t), which is at least 2 because 
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n ~ 3t + 1. Thus, the diameter of the multiset of values held by nonfaulty processes 

eventually decreases to t or less. In addition, repeated application of part 2 of Lemma 6 

shows that , at each round h ~ l, the values held by nonfaulty processes immediately before 

round h are all in the range of the initial values of nonfaulty processes. 

It i~ now easy to see why the function/,,, is appropriate for the synchronous algorithm. 

Since a correct process can receive at most t values in a round from faulty processes, t-fold 

application of reduce is sufficient to ensure that extreme values from faulty processes are 

discarded. Thus, the second subscript of f is t. Also, if p and q are correct processes that 

receive multisets V and W, respectively, in a round, then t is the maximum number of 

values that can be in V - W. Application of select, to the reduced multisets is therefore 

sufficient to obtain convergence, and the first subscript of/ is also t. 

Algorithm S0 is not a correct synchronous approximation algorithm, however, for as 

stated, it never terminates. We modify So to obtain a terminating algorithm, S, ·as follows. 

At the first round, each nonfaulty process uses the range of all the values it has received 

at that round to compute a round number at which it is sure that the values of any two 

nonfaulty processes will be a.t most t apart. Each pro_cess can do this because it knows 

the value of t, the guaranteed rate of convergence and furthermore, it knows that the 

range of values it receives on the first round includes the initial values of all nonfaulty 

processes. The total number of rounds that must be executed (including the first round) is 

given by floge(6(V)/t}l, where Vis the multiset of values received in the first round, and 

c = c(n - 2t, t). 

In general, different processes might compute different round numbers. Any process that 

reaches its computed round simply halts, and sends its value out with a special "halting" tag. 

When any process, say p, receives a value with a halting tag, it knows to use the enclosed 

value not only for the designated round, but also for all future rounds (until p itself decides 

to halt , based on p's own computed round number) . Although nonfaulty processes might 

compute different round numbers, it is clear that the smallest such estimate is correct. 

Thus, at the time the first nonfaulty process halts, the range is already sufficiently small. 

At subsequent rounds, the range of values of non faulty processes is never increased, although 

we can no longer guarantee that it decreases. The following lemma makes these ideas more 
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precise. 

Lemma T Aaaume that n ~ 3t + l. Let T be a aet of proceaaea, with ITI ~ n- t. Leth be a 

poaitive integer. Let U and U' be the multiuta of value a of proceuea in T, immediately before 

and after round h, reapectively, in a particular T-computation of S. Then p(U') ~ p(U). 

Proof - Let p be an arbitrary process in T. Let v and v' be the values held by p 

immediately before and after round h, respectively. It suffices, since p is arbitrary, to show 

that v' E p(U). If p has terminated prior to the start of round h, then v' = v E p(U). Hp 

has not halted prior to the start of round h, then let V be the multiset of values received 

by pin round h. Then V and U satisfy the hypotheses of Lemma 4, and since v' = /,,,(V), 

it follows that v' E p(U). I 

Algorithm S is summarized in Figure l. To show that S is a correct synchronous ap

proximation algorithm, we must show that all processes terminate, and that the agreement 

and validity conditions are satisfied. It is clear that all processes terminate. Consider the 

agreement property. At the first round at which some nonfaulty process halts, it is already 

the case that all nonfaulty processes' values are within i of each other. By Lemma 7, this 

diameter never increases at subsequent rounds, so the final values of all the nonfaulty pro

cesses are also within f of each other. The validity property also follows from repeated 

application of Lemma 7. This completes the proof of Theorem l. 

As a final note, observe that algorithm S can be modified so that a process need not 

always wait for its computed round to arrive before halting: it can halt after it receives 

halting tags from at least t + 1 other processes. 

4 The Asynchronous Problem 

In this section , we reformulate the problem in an asynchronous model adapted from the 

one in [FLP 83J. In an aaynchronotU approzimation algorithm, we assume that processes 

have states as before, but now the operation of the processes is described by a transition 

function that in one step tries to receive a message, gets back either "'null" or an actual 

message, and based on the message, changes state and sends out a finite number of other 
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Figure 1: Synchronous Approximation Algorithm S 

Round 1 (First Approximation Round): 

Input t1 ; 

V +- SynchE:zchange(t1) ; 

t1 +- /,,,(V); 

H +- flogc(o(V)/t)l , where c = c(n - 2t, t). 

Round h (2 $ h $ H) (Approximation Rounds): 

V +- SynchEzchange(t1) ; 

t1 +- /,,,(V). 

Rou_nd H + 1 (Termination Round): 

Broadcaat( (t1, halted)); 

Output ti. 

Subroutine SynchEzchange(v): 

Broadcaat( v) 

Collect n responses: 

• Fill in values for halted processes. 

• Fill in default values, if necessary. 

Return the multiset of responses. 
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messages. Nonfaulty processes always follow the algorithm. Faulty processes, on the other 

hand, are constrained so that their steps at least follow the standard form - in each step, 

they try to receive a message as do nonfaulty processes. However, they can change state 

arbitrarily (not necessarily according to the given algorithm), and can send out any finite 

set of messages (not necessarily the ones specified by the algorithm). AT-computation of 

an asynchronous approximation algorithm is one in which the processes in T always follow 

the algorithm, all processes (faulty and nonfaulty) continue to take steps until they reach 

a halting state, and any process that fails to enter a halting state eventually receives all 

messages sent to it. 

An asynchronous approximation algorithm is said to be t-correct provided for every 

subset T of processes with ITI ~ n - t, and every T-computation, every process in T 

eventually halts, and the same agreement and validity conditions hold as for the synchronous 

case. 

It seems simplest here to insist on the standard form being followed by all processes. 

The requirement that faulty processes keep taking steps until they enter halting states is 

not a restriction, since they. are free to enter halting states at any time they wish. Similarly, 

the requirement that faulty processes continue trying to receive messages is not a restric

tion, since they are free to do whatever they like with the messages received. Finally, the 

requirement that faulty processes only send finitely many messages at each step is needed 

so that faulty processes are unable to flood the message system, preventing messages from 

other processes from getting through. 

We assume that processes take steps at completely arbitrary rates, so that there is 

no way (in finite time) to distinguish a faulty process from one that is simply slow in 

responding. Also, we assume that the message system takes arbitrary lengths of time to 

deliver messages, and delivers them in arbitrary order. 

We will prove the following theorem: 

Theorem 2 // n ~ St+ 1, then there e:tiata at-correct aaynchronow approximation algo

rithm with n proceaaea. 

We now describe the asynchronous approximation algorithm. As in the synchronous 

case, first we describe a nonterminating algorithm, Ao, in which processes compute better 
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and better approximations, and we then modify Ao to produce a terminating algorithm A. 

Assume that n ~ St + 1. 

Asynchronous Approximation Algorithm Ao 

At round h, each nonfaulty process p performs the following steps: 

1. Process p labels its current value with the current round number h, and then broad

casts this labeled value to all processes, including itself. 

2. Process p waits to receive exactly n - t round h values, and collects these values into 

a multiset V. Since there can be at most t faulty processes, process p will eventually 

receive at least n - t round h values. Note that, in contrast to the synchronous case, 

process p does not choose any default values. 

3. Process p applies the function f2t,t to the multiset V to obtain its new value. 

In analogy with Lemma 6, we have the following result, which states the convergence 

properties of the above algorithm. 

Lemma 8 Suppoae n, t > 0 are auch that n ~ St+ 1. Let T be a aet of proceaaea, with 

ITI ~ n - t. Leth be a poaitive integer. Let U and U' be the multiaeta of valuea of proceuea 

in T, immediately before and after round h, reapectivel11, in a particular T-computation of 

Ao. Then 

1. o(U') ~ o(U)/c(n - 3t, 2t). 

!!. p(U') ~ p(U). 

Proof - Let p and q be arbitrary processes in T. Let V and W be the multisets of values 

received by p and q, respectively, at round h. Then IVI = IWI = n - t. Since there are 

at most t faulty processes, IV - UI $ t and IW - UI $ t. Moreover, since V and W both 

contain identical entries for all the processes in T from which both p and q heard, we know 

that IV n WI ~ n - 3t. Hence IV - WI = IW - VI = IVI - IV n WI $ 2t. 

1. The multisets V, W, and U satisfy the hypotheses of Lemma S ( with m = n - t and 

k = 2t}. ThU3, 

1/,u,t(V) - h,,,(W)I ~ o(U)/c(n - 3t, 2t}. 
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2. The multisets V and U satisfy the hypotheses of Lemma 4. Thus h,,,(V) E p(U). 

Since p and q were chosen arbitrarily, the result follows. I 

Part 1 of Lemma 8 shows that , at each round, the diameter of the multiset of values 

of nonfaulty processes decreases by a factor of c(n - 3t, 2t), which is at least 2 because 

n ~ St + l. Thus , the diameter of the multiset of values held by nonfaulty processes 

eventually decreases to t: or less. In addition, repeated application of part 2 of Lemma 8 

shows that , at each round h ~ 1, the values held by nonfaulty processes immediately before 

round h are all in the range of the initial values of nonfaulty processes. 

We can now see why ht,t is the appropriate approximation function for the asynchronous 

algorithm. The second subscript is t because, as in the synchronous case, that is the 

maximum number of values a correct process can receive in a round that are not values of 

correct processes. The first subscript is 2t because if the correct processes p and q receive 

mul tisets V and W , respectively, in a round, then 2t is the maximum number of values that 

can be in V - W (t faulty values, plus t nonfaulty values received by p but not by q) . 

The only remaining problem is termination. We cannot use the same technique that 

we used in the synchronous algorithm, because a process cannot wait until it he_ars from 

all other processes, and thus cannot obtain an estimate of the range of the initial values 

of the nonfaulty processes. We solve this problem by adding an initialization round at the 

beginning of the algorithm. In this initialization round (round 0), each nonfaulty process p 

performs the following steps: 

Initialization Round for Asynchronous Approximation Algorithm A: 

1. Process p labels its initial value with the round number 0, and then broadcasts this 

labeled value to all processes, including itself. 

2. Process p waits to receive exactly n - t round O values, and collects these values into 

a multiset Vp. 

3. Process p chooses an arbitrary element of p(reduce21(Vp)) (say mean(reduce2'(V,))) 

as its initial value for use in round 1. Let z, be this chosen value. 

Suppose that p and q are arbitrary nonfaulty processes. Then since IV,1 > 4t and 

IV, - V91 $ 2t, it follows that V,, and V9 satisfy the hypotheses for the multisets V and U, 
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respectively, in Lemma 3 ( with j = 2t). An application of this result therefore shows that, 

for any nonfaulty processes p and q, it is the case that z, E p(V,). That is, the value z, 
computed by process p as the result of the initialization round is contained in the range of 

all values received by process q in the initialization round. Since each nonfaulty process q 

knows: { 1) that its range p(Vq) contains all the round 1 values z, for nonfaulty processes 

p; (2) the value of £; and (3) the guaranteed rate of convergence, it can compute, before 

the beginning of round 1, a round number at which it is sure that the values of any two 

nonfaulty processes will be at most £ apart. The total number of rounds that must be 

executed by a process, not including the initialization round, is floge(6(V)/£)1, where V is 

the multiset received in the initialization round, and c = c(n - 3t, 2t). 

As in the synchronous case, different processes will calculate different round numbers at 

which they would like to halt. The same modification, of sending a value out with a special 

halting tag, works here as well. We obtain a lemma analogous to Lemma 7: 

Lemma 9 Aa.,ume that n ~ St+ l. Let T be a aet of proceaaea, with ITI ~ n - t. Leth be a 

poaitive integer. Let U and U' be the multiaeta of value a of proceaaea in T, immediately before 

and after round h, reapectively, in a particular T-computation of A. Then p(U') ~ p(U). 

Algorithm A is summarized in Figure 2. The remainder of the proof of Theorem 2 is 

analogous to that of Theorem 1. 

5 Lower Bound Results 

In this section, we assume that algorithms are of a standard form in which at each 

round, an old approximation is exchanged with other processes, and a new approximation 

is computed from the multiset of values received, by the application of an approximation 

function /. We assume that / is cautioua, as defined below. (Our algorithms all fit this 

pattern.) The results show that, under these assumptions, the function ft,t gives the best 

possible single-round convergence factor for a synchronous algorithm for n ~ 3t + 1, and the 

function /z1,1 gives the best possible single-round convergence factor for an asynchronous 

algorithm for n ~ St + 1. 
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Figure 2: Asynchronous Approximation Algorithm A 

Round O (Initialization Round): 

Input v ; 

V - AaynchEzchange(v,0); 

v - mean{reduce2'(V)); 

where c = c(n - 3t, 2t). 

Round h (1 $ h $ H) (Approximation Rounds): 

V - AaynchEzchange(v, h); 

V - h1,1(V). 

Round H + 1 (Termination RQund): 

Broadcaat( (v, halted)); 

Output v. 

Subroutine AaynchEzchange(v, h): 

Broadcaat( {v, h)) 

Collect n - t round h responses: 

• Fill in values for halted processes. 

• Do not fill in default values. 

Return the multiset of responses. 
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We should note that the results of this section merely show the existence, given a 

particular choice of approximation functions, of multisets that demonstrate the worst-case 

behavior of those approximation functions. These multisets satisfy cardinality constraints 

such that they could be the multisets appearing in some round of an actual execution of the 

algorithm, for example the first round. However, the multisets of values appearing in any 

round of an execution of the algorithm in general depend upon the behavior of the faulty 

processes at all preceding rounds. We do not necessarily know that the faulty processes can 

conspire to produce worst-case behavior at each round of the algorithm. The results of this 

section therefore do not preclude the existence of approximation functions whose per-round 

convergence factor is not constant over the course of the algorithm, but rather becomes 

more favorable as the algorithm progresses. 

In [DLPSW 83}, an earlier version of this work, we used different approximation functions 

in our algorithms. The discovery of the lower bounds in this section suggested that those 

functions did not give optimal rates of convergence, and led us to search for the improved 

approximation functions that appear in this paper. 

In t.he remainder of this section, let n and t be fixed. 

We say that an approximation function f, which takes a multiset M of real numbers to a 

real number f (M), is cautiou8 if /(M) E p(U) for all multisets U such that IM-UI ~ t. The 

cautious requirement seems reasonable for any approximation function that will tolerate up 

to t faults: regardless of the values received from the faulty processes, a cautious function 

will produce a value in the range of the values held by the nonfaulty processes. It is easy 

to see that f 1t:,, is cautious for all le > 0. 

5.1 The Synchronous Problem 

We will show the following theorem: 

Theorem 3 Suppou n , t > 0 are 8uch that n ~ 3t + 1. Suppo8e that f and g are cautiotu 
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approzimation function,. Then there ezi,t multiaet, V , W, and U ,uch that: 

IVl = IWI = n, 

IUI = n- t, 

IV - UI = IW - UI = t , and 

lf(V) - g(W)I > 6(U)/c(n - 2t, t). 

The implications of this result for the synchronous agreement algorithm are the follow

ing: Suppose we consider algorithms of a standard form, in which at each round, a process 

exchanges its current approximation with all other processes, and then applies a cautious 

approximation function to the multiset of values it receives to determine its new approxima

tion. Theorem 3 then implies that there exist multisets V, W, and U, such that if correct 

processes p and q (using approximation functions f and g, respectively) receive multisets of 

values V and W, respectively, in some round of execution, and U is the multiset of values 

held by correct processes at the st.art of that round, then the new approximations held by 

p and q at the end of the round can be no closer than 6(U)/c(n - 2t, t). Thus this result 

yields a fundamental limitation on the rate of convergence of algorithms of the standard 

form. The lower bound given by this result also matches the upper bound provided by the 

function ft ,t· 

The proof of Theorem 3 requires the following lemma, which Mserts the existence of a 

chain of multisets that spans from a multiset Mo upon which every cautious approximation 

function must yield 0, to a multiset Mc upon which every cautious approximation function 

must yield 1, where c = c(n - 2t, t) . The chain is defined so that: 

1. Mo has the value O with multiplicity n - t and the value 1 with multiplicity t, and 

2. For O ~ i ~ c - 1, the multiset ~+i is obtained from Mi by changing t of the values 

from Oto 1. 

Lemma 10 Suppoae n , t > 0 are ,uch that n ~ 3t + l. Let e = e(n - 2t, t) . Then there 

21 



eziat multiaeta Mo, M1 , ... , Mc , and Ui, U2, ... , U, auch that: 

IM;I = n for O $ i $ c, 

IU;I = n - t for 1 $ i $ c, 

IM; - U;H I = IM;+1 - U;H I = t for O $ i $ c - 1, 

6(U;) = 1 for 1 $ i $ c, 

and auch that /(Mo) = 0 and f(M,) = 1 whenever f ia a cautioua approximation function. 

Proof - Define Mi to have the value O with multiplicity n - (i + l)t and the value 1 

with multiplicity ( i + 1 )t. Define Ui to have the value O with multiplicity n - ( i + 1 )t and 

the value 1 with multiplicity it. The cardinality and diameter constraints on these sets are 

easily checked. Suppose / is cautious. Then since Mo ha., the value O with multiplicity n - t 

(> t) and the value 1 with multiplicity t ($ t), it follows that /(Mo) = 0. Also, Me has 

the value O with multiplicity n - ( c + 1 )t and the value 1 with multiplicity ( c + 1 )t. From 

the definition of c, we know that n - 3t < (c - l)t + 1 $ n - 2t, so (c + l)t ~ n - t , and 

n - (c + l)t $ t. It follo,vs that /(M,) = l. I 

We can now present the proof of Theorem 3: 

Proof - For O $ i $ c ( = c(n - 2t, t)), let the approximation function h; be / if i is even, 

and g if i is odd. By Lemma 10, there exists a chain Mo, M1, ... ,M, , and U1,U2, ... ·,u, 
such that: 

IMil = n for O $ i $ c, 

IUil = n - t for 1 $ i $ c, 

IM - Ui+1 I = IMi+l - U;+1 I = t for O $ i $ C - 1, 

6(Ui) = 1 for 1 $ i $ c, 

and such that ho(Mo) = 0 and h,(Me) = 1. Suppose, to obtain a contradiction, that 

lh;+i(M;+i) - h;{li!;)I < 1/c for O $ i $ c - l. Then 

1 = lh,(Me) - ho(Mo)I 

= lh,(Me) - h,-1(M,_i) + h,-1(M,_i) - h,-2(M,-2) + ... + h1(Mi) - ho(Mo)I 

$ lh,(M,) - h,-1(Mc-dl + lh,-1(M,_i) - h,-2(M,-2)I + ... + lh1(Mi) - ho(Mo)I 

<' c/c 

= 1. 
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This is a contradiction, and we conclude that lh,+1{M.+d - h,(M.)I ~ 1/c for some i with 

1 $ i $ c - 1. If i is even, then h, = f and h;+1 = g, so letting V = M,, W = M;+1 , and 

U = U;+1 satisfies the requirements of the theorem. If i is odd, then instead let V = Mi+1 , 

W = Mi, and U = U;+1 . I 

5.2 The Asynchronous Problem 

We will show the following theorem: 

Theorem 4 Suppoae n, t > 0 are auch that n ~ St + l. Suppoae that f and g are cautioiu 

approzimation function&. Then there eziat multiaet& V , W, and U auch that: 

IVl = IWI = n - t , 

IUI = n - t , 

IV - U I = IW - UI = t , and 

lf(V) - g(W)I > 6(U)/c(n - 3t, 2t) . 

The implications of this result for the asynchronous agreement algorithm are analogous 

to what Theorem 3 has to sa.y about the synchronous algorithm: there exist multisets V , 

W, and U , such that if correct processes p and q ( using approximation functions f and g, 

respect ively) receive multisets of values V and W , respectively, in some round of execution, 

and U is the multiset of values held by correct processes at the start of that round, then 

the new approximations held by p and q at the end of the round can be no closer than 

6(U)/c(n - 3t, 2t). The lower bound given by this result also matches the upper bound 

provided by the function h,,t. 

As before, the theorem is proved with the aid of a chain lemma. Let c = c(n - 3t, 2t) . 

The chain is defined so that: 

1. ~ has the value O with multiplicity n - 2t and the value 1 with multiplicity t , and 

2. For O $ i $ c - 2, the multiset M;+1 is obtained from M. by changing 2t of the values 

from Oto l. 

3. If Me-1 has the value O with multiplicity at least 2t+l, then Me is obtained from Me- i 

by changing 2t of the values from O to 1. If Me- 1 has the value O with multiplicity 
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$ 2t, then ~ is obtained from Me-1 by changing t of the values from Oto 1. Note 

that Me-l will always have the value 0 with multiplicity at least t + 1. 

Lemma 11 Suppoae n, t > 0 are auch that n ~ St+ 1. Let c = c(n - 3t, 2t). Then there 

eziat multiaeta Mo,Ml , ·· ·, Me, and U1,U2, . . , , Ue , auch that: 

IM,I = n- t for 0 $ i $ c, 

IU,I = n-t for 1 $ i $ c, 

IM, - u,+i l = IM,+1 - u,+11 = t for 0 $ i $ C - 1, 

6(U,) = 1 for 1 $ i $ c, 

and auch that f(Mo) = 0 and f(M,) = l whenever f ia a cautioua approximation function. 

Proof - From the definition of c, we know that (2c + l)t + 1 $ n $ (2c + 3)t. We split the 

proof into two cases. In case {2c + 2)t + 1 $ n $ (2c + 3)t, then define M, to have the value 

0 with multiplicity n - (2i + 2)t and the value 1 with multiplicity (2i + l)t, for each i with 

0 $ i $ c. Define Ui to have the value 0 with mult iplicity n - (2i + l)t and the value 1 with 

multiplicity 2it, for each i with 1 $ i $ c. In case (2c + l )t + 1 $ n $ (2c + 2)t, then we 

modify slight ly the definition of M, and U, from the preceding case. That is , define Me to 

have the value 0 with multiplicity n - (2c + l)t and the value 1 with multiplicity 2ct. Also, 

define Ue to have the value 0 with multiplicity n - 2ct and the value 1 with multiplicity 

(2c - l)t. 

In both cases it is straightforward to check that the required properties hold. I 

The proof of Theorem 4 is entirely analogous to the proof of Theorem 3. 

6 Resilience 

The algorithms presented m this paper have some interesting resilience properties, 

stronger than those usually claimed for Byzantine agreement algorithms. So far, we have 

only claimed that the algorithms are resilient to t different processes exhibiting Byzantine 

faults during the entire course of the algorithm. However, we can claim more for situations 

where processes fail and recover repeatedly. Our algorithms actually support resilience to 

any t Byzantine faulty processes at a time (under suitable definitions of faultiness at a 
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particular time) ; the total number of faulty processes can be much greater than t, since we 

can allow different processes to be faulty at different times. 

We do not give a formal presentation of our resilience properties. Rather, we just give 

a brief sketch of the main ideas. 

First, consider the synchronous case. A faulty process is able to recover easily and 

reintegrate itself into the algorithm. It can reenter the algorithm at any round, just by 

sending an arbitrary value, collecting values and averaging them as usual to get a new 

Yalue. The process also needs to obtain an estimate of the number of rounds required 

before termination. It can obtain such an estimate in the reentry round, just as it could in 

the first round. 

The asynchronous case is a little more complicated. A faulty process p needs to rejoin 

the algorithm at some particular (asynchronous) round; however, it must be careful to rejoin 

at some round that is not "out of date." That is, in the absence of additional failures of p, 

it must be guaranteed to receive all of its messages for that and subsequent rounds. Process 

p could not simply wait until it received n - t messages for some particular round le, since 

those messages might have been delivered very late, and messages for round /c + 1 might 

have already been lost. However, it suffices for p to send out a "recovery" message, and 

await acknowledgements from n - t processes carrying the number of their current round. 

Process p knows that the t + 1st smallest of these round numbers, plus 1, is an allowable 

round number for it to use for reentry. 

The recovering process is not able to use the same method of estimating a termination 

round as it did initially. Therefore, it seems necessary to modify the asynchronous algorithm 

to enable recovering processes to obtain termination estimates when needed. An easy 

modification that works is to have every process piggyback its estimate of the number of 

rounds to termination on every message it sends. Then a recovering process can obtain a 

new estimate just by taking the t + 1st smallest of the estimates it receives at the reentry 

round. 

7 Summary and Open Questions 

We have defined a problem of approximate agreement on real numbers by processes 
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in a distributed system. We integrated simple approximation functions into two simple

to-implement algorithms for achieving approximate agreement - one for a synchronous 

distributed system, and the other for an asynchronous system. In addition, we showed 

that both algorithms achieve the fastest possible convergence rate for algorithms of a par

ticular form. The algorithm for an asynchronous system provides an interesting contrast 

to the results in IFLP 83, DDS 831, which show that exact agreement is impossible in an 

asynchronous system. 

The ideas of this paper have been used in the design of algorithms for synchronizing 

clocks in distributed systems ILL 84]. 

For the synchronous case, it is not difficult to show that 3t+ 1 processes are necessary to 

solve the approximate agreement problem. The proof is an adaptation of the lower bound 

proof in (LSP 82], and appears in !FLM 85]. For the asynchronous case, our number of 

processes is not optimal. In fact, it appears possible to reduce the number of processes to 

as few as 3t + 1. This reduction is obtained using a more complex algorithm, based on some 

of the interesting ideas of [B 84]. This algorithm has a slower rate of convergence than ours. 

The algorithms presented here have the undesirable property that the faulty processes, 

by their actions in the first round, can cause the range of values received by correct processes 

to be arbitrarily large, and hence can cause the time to convergence to be arbitrarily long. 

It appears that some of the ideas of [B 84} can also be used to obtain improved initialization 

rounds for the algorithms that eliminate this possibility. 

To obtain the lower bound results, we had to restrict our attention to algorithms of 

a standard form (ones that operate by broadcasting values and using received values to 

compute a new approximation) , and to functions with a natural, but apparently restric

tive property (the "cautious" property). It would be interesting to obtain answers to the 

following questions: 

• Can the cautious property be weakened or removed entirely? 

• Can algorithms not of the standard form considered here produce agreement faster? 

We would also like to have a better understanding of the relationship between the 

number of processes and the rate of convergence for approximate agreement algorithms. For 
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instance, the more complex asynchronous algorithm mentioned above uses fewer processes, 

but has a slower rate of convergence than ours. Is there a tradeoff? 

We can state a. variant of the approximate a.greement_problem which uses a fixed number, 

r, of rounds, and in which t: is not predetermined. Each process starts with a real value, as 

before. After r rounds, the processes must output their final values. The validity condition 

is the same as before. The object of the algorithm is to insure the best possible agreement, 

expressed as a ratio of the new diameter of the nonfaulty processes' values to the original 

diameter. For given n, t and r, we would like to know the best ratio. 

As before, if the algorithm is constrained to operate round-by-round, applying cautious 

functions at each round, we obtain lower bounds which are exactly the same as are achieved 

by our averaging functions. However, if the algorithm is unconstrained, the best bounds 

we have are not at all tight. Consider the synchronous case, for example. The best upper 

bound we have still arises from repeated application of our averaging function ft,t, and is 

approximately ( t / n )". We can obtain a lower bound by extending our chain a;gument of 

this paper to a k-dimensional hypercube ( along the lines in [FL 82]). This extension gives 

a lower bound of approximately (t/nk}"". This is still a considerable gap, which we would 

like to see closed. Recent work of Fekete [F] has made some progress toward this goal. 
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