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Abstract- Many researchers have proposed that ensembles of' procC'ssing elements be organized 
as l.r<~<\s. Thi:-- papc-r explores how larg<' tree machines can bC' assPrnbl<~d dlicicntly from smaller 

cornponenls. A principal constraint. consickrC'd is the limitPd number of' cxt-<'rnal rorn1<~dions 

from an integrated circuit chip. We also explore ihe emerging capability of rcsiructurable VLSI 

which allows a chip to be customized after fabrication. 

We give a linear-area chip of m processors and only four off-chip connections which can be 

used as the sole building block to construct an arbitrarily large complete binary tree. We also 

present a resiructurable linear-a rea layout of m processors with O(lg m) pins that can realize 

an arbitrary binary tree of any size. This layout is based on a solution to the graph-theoretic 
problem: Given a tree in which each vertex is eiiher black or white, determine how many edges 

need be cut in order to bisect the tree into equal-size components, each containing exactly half 

the black and half the white vertices. 

These ideas extend to more general graphs using separator theorems or bifurcators. 

This research was supported by DARPA Grant N000J 1-80- C- 0622. 
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1. Introduction 

A trc<' may not. be I.he b<,st multiprocessor organization, but. it, has- lx-en-propos0.d by many rc­

S<'arc·hers l"or a variety of" reasons. For example, a complete binary trPt' o~_pr~ng clements can 

be the major compo11ent of' a priority queue resource ll 5] and of a smart-memory. raster graphics 
system [tO]. A compl<'te binary tree can also serve as a hardware ;tnicturc for S<'arching [2], for 
database:,; l:rn], or for direct execution of applicative programming languages 121 ]. Browning [6] 
proposes a complete binary tree for general-purpose multiprocessing. 

Atientio11 is also directed to binary t rees which arc not complete. Floyd and Ullman 18] show 
that, strings described by a regular expression can be recognized by processing clements organized 

as the parse tree of the regular expression. Foster and Kung 19] have a similar scheme based on 
t.hc simpl<' configurable layout of Section 3 (first presented in [t 7]). There arc other proposals, 

for <·xampl<' l:27]. of' machine organizatio ns which, though not trees, arc nevertheless tree-like. 
We shall not dcbat.c the merits of th<' various tree machine architectures here, but shall 

confine oursel ves to understanding their physical organization. In this regard, one attraction of 

trees is that they can be laid out efficiently. Figure l shows the familiar 11-trce layout originally 
propos<'d by Mead and lfrm [22]. This layout of a complete binary tree requires linear area, as 
opposed to the O(n lg n) area standard layout shown in Figure 2. Leiserson [16j and Valiant [30] 
independently discovered that arbitrary binary trees could be laid out in linear area. In fact, 
Valiant proved that no crossovers were necessary in a linear-area layout. Based on ideas from 
Paterson, Ruzzo, and Snyder 123] and Bhatt and Leiserson [4], planar embeddings of arbitrary 
trees that minimize the maximum edge length were given by Ruzzo and Snyder [26]. 

Heretofore, the theoretical work on layouts has assumed that the entire tree fits on a chip. 
But the tree machines discussed above might be much larger. Whenever any system is larger than 
a single chip, it becomes necessary to partition it among separate chips which can be assembled 
at the circuit board (or chip carrier) level. What is the most effective way to partition a large 
tree among chips? 

This question is pressing because although integrated circuit technology has been advancing 
at a breathtaking pace, one sector of that technology has been crawling in comparison. The 
technology for packaging chips severely limits the number of external connections to an integrated 
circuit, and whereas some enthusiastic technologists project an eye-opening 108 components per 
chip, two hundred pins per chip seems a large number to most. A chip that requires many more 
is unlikely to be realizable for quite some time. 

Most of the theoretical work on tree layout has also implicitly assumed that a given tree, after 
masks have been made of the layout, will be replicated many times. This assumption is implicit 
because of the economics of integrated circuit fabrication technology: it is expensive to make one 
chip, but cheap to make many copies. For this economic reason, manufacturers of custom chips 

have been encouraged to make configurable designs such as gate-arrays, ROM's, and PLA's. The 
entire chip is manufactured except for one mask. The customer to whom the chip will be sold 
specifics a configuration of the chip, and the final layer of metalization connects up the circuitry 

in that particular way. Thus most of the design and fabrication costs arc factored over many 
custom chips. Nevertheless, many copies must be made of the same custom chip for it to be 
economical. 

Restructurable integrated circuits provide a means for the interconnections on a chip to be 
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Figure 1: The linear area "H-tree" layout of a complete binary tree. 

Figure 2: An O(n lg n) layout of a complete binary tree. 

configured after fabrication. The most common example is a PROM (programmable read-only 

memory) in which diodes, which normally pass current, can be bm;ted so that a connection is 

no longer made. More recent and exciting is the work on restructurablc VLSI at IBM [20] and 

MIT Lincoln Laboratory [24]. Connections between two metal layers arc produced reliably and 

efficiently by laser welding. Connections can also be broken by using the laser to cut wires in the 

circuit. Figure 3 shows a scanning electron microscope photograph of laser welds and cuts on a 

chip at MIT Lincoln Laboratory. 

Restructurable VLSI chips have the advantage that the cost of quantity-of-one designs can still 

be factored over many chips, but some propos<' systems that includ<'d dynamically restructurable 

interconnections. For example, the proposed CIIW project at. Purdue (Snyder [28]) is a dynami-
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Figure 3: Laser welds and cuts on a restructurable integrated circuit 

chip (courtesy of MIT Lincoln Laboratory}. 

cally restructurablc multiprocessor. Ii has not yet been demonstrated that large scale dynami­
cally restructurable interconnections are economically feasible due to overheads in reliability, 
area, performance, and fabrication sophistication, but our results do indeed apply to dynamically 
restructurable layouts. 

The rest of this paper addresses packaging constraints and restructurable VLSI with regard 
to tree layouts. Section 2 gives a chip with four pins that can be used as the sole building block 
for arbitrarily large, complete binary trees. A simple, but nonoptimal, restructurable layout that 
can implement any binary tree is given in Section 3. Section 4 proves a two-color bisector theorem 
for trees which is the main technical tool for producing the restructurable chip given in Section 
5. This chip of M vertices has linear area and O(lg M) pins, and it can be used in quantity to 
assemble any binary tree of any size. Section 6 contains extensions and conclusions. 

2. Packaging a complete binary tree 

This section studies the problem of packaging complete binary trees, and presents the design of 
a single chip with four pins that can be used to bulid arbitrarily large complete binary trees. This 
chip, originally proposed in [17], has since been used (at the circuit board level) in tree-machine 
projects at Caltech and l3cll laboratories [7]. 

We begin, however, by examining the inefficient partitioning of a complete binary tree proposed 
in [15] and elsewhere (for example, [6]). Each of the squares in Figure 4 is a Type A chip and is 
packed as full as possible with processors in the H-tree layout of Figure 1. The rectangle above is 
a Type B chip which contains the standard O(n logn) area layout of Figure 2, but with each leaf 
connected off-chip. The Type B chip can be used repeatedly to combine several smaller complete 
binary trees into a larger one. 
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Figure 4: A11 inefficient partitioning of a complete binary tree into Type 

A and Type B chips. 

Theorem 1. Suppose Type A chips each contain J> = 2P - 1 vertices, and Type B chips 

each contain Q = 29 - 1 vertices. Then a complete binary tree with at least N = 2n - 1 

vertices can be assembled from 

• 1;;!J Type A chips and 

. r c}(;.{i) l Type B chips. 

Proof. The complete binary tree can be assembled using the scheme from Figure 4.1 

W(' can do better, however. Figure 5 shows a Type C chip with only four ofT-chip connections. 
Arbitrarily large complete binary trees can be assembled from this one kind of chip. Each chip 
contains <?ne internal node of the tree, and the remainder of the chip is packed as full as possible 
with an B-tree layout. The internal node requires three ofT-chip connections (denoted F, R, and 
L in the figure) for its father, right son, and ]eh son. The II-tree requires only one ofT-chip 
connection (denoted T) to its father. 

Theorem 2. Suppose Type C chips each contain M = 2m vertices. Then a complete binary 

tree with at least N = 2n - 1 vertices can be assembled from (N + 1)/ M Type C chips. 

Proof. We show how arbitrarily larg<' complete binary trees can be built up. To interconnect 
two chips, the unconnected internal node of one of the two chips is selected as the father of the 

two H-trees. In Figure 6 the internal node on the left has been chosen for this purpose. The R 

pin on this chip is connected to its own T pin, and the L pin is connected to the T pin on the 
other chip. Considered as a unit, the combined two chips now have the same structure as a single 
chip- three connections to an internal node and one to the root of a complete binary tree. The 
pair of chips can bC' similarly combined with another pair to produce a quadruple of chips, which 
can in turn be combined, and so fort h inductively, as is shown in Figure 7.1 
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Figure 5: Only one Type C chip is netded to package a complete binary 

tree. 

T 

---------. 
I 

I 
I 

---------' 

L F 

R 

,-------- -, 
I I 
I 
I 
I 
I 

·---------· 
Figure 6: Wiring two Type C chips together. 
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Figure 7: A large complete binary tree assembled from many Type C 

chips. 
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Tit(' 011<·-chip lll<'l-hod has 111a11y ad\";111l;1µ;<·s ovt·r t lw 1.wo-chip 111('1 hod. ~1osl ol)\·io11sly, I.Ii<· 

011<·-dii p 1111'1.hod us<'S 011ly 011c ki11d ol' chip . Why 111a11ul"ad.ur<' t.wo kin ds wh<'n <>II<' will do? 

S<·rn11d, only fo ur dat.a pat.Its p;o oil chi p. Third , LIH· Typ<-· C diip i:-- p:u·kl'it l'ull ,-;whik t.h<' Typ<' B 

chip is al111ost. <'lllpty lH'c:tllS<' it. is pin hound. Finally, the:anra. ,1HJ~82ie:ffll,ly (,on a c-ircuit board 

l'or c-xampk) is linear in I.he nulltl>er Typ<' C chips 11:-:1•,I. Th<' Lwn-.drip solu tion 1~ives an O(n log n) 
ar<'a drrnit. layout. Alt.houp;h 1.h<' cast' is 1101. part.irnbrly strong !'or asympt.ot.ic- analysis of c-ir<'11i t 

layout, the constant !'actors p;ivc a ekar prcfprenc<' t.o 1.h<' more r<'g11lar, linear area layout.. H 
circumstances permit, the wires conn<•ctinp; the chips ca n in fact I><' routed undnneat.h the chips 

themselves, thereby rcq11iri11g no more a rea 011 the c-ircuit. board than Uw chips themselves. 

3. A restructurable chip for packaging arbitrary trees 

This s<'rl.ion prPscnLs a si 111pk (b11L suboptimal) se!H' l1l<' For packaging arbitrary Lr<'<'S 11sing a 

si11p;k r<'sl.r uc-t.urabl<- ch ip. Th<' solution is s11gg<•st.0,l by a t.<'c·h11ique of Bentley and LPis<·rson [17] 

for prod11cing collinear layouts f'or arbitrary trees. The strategy for producing collinPar layouts 

is, in turn, based on the observation thal t rees have a small separator theorem. This section 

d<'fines separator theorems, describes the straLPgy for producing collinear layouts, a nd proposes 

a simple packaging scheme. Although t.he solution is asymtotically suboptimal, the results are 

crucial to the optimal scheme presen ted in t he next section. 

Separator theorems [10] have been applied to solve a variety of graph-theoret ic problems 

including graph layout (for example, [3, 11, 16, 17, 30]). Formally, let \JI be a family of graphs 

closed under the subgraph relation, and let a ~ l /2 and /3 be positive constants. If every graph 

on n vertices in \JI can be separated into two disconnected components, each having at least lanj 
vertices, by removing no more than f3f(n) edges, then \JI has an J (n)-separator theorem. 

By removing a single edge, any n-vertex binary tree can be separated into two components, 

each with no more than l i NJ + 1 vertices [18). (The worst-case occurs for the four-vertex tree 

in which one vertex is adjacent to three others.) Either of the two components may be a forest, 

but since the same result applies to forests, the binary tree can be split recursively. Since each 

of the recursively generated subgraphs can be split by removing a single edge, the class of binary 
trees has a one-separator theorem. 

Bentley and Leiserson [l 6] used the one-separator theorem for trees to produce collinear 
layouts for binary trees. In a collinear layout all the vertices are placed along a common baseline, 

and tree edges are routed along horizontal and vertical tracks on one side of the baseline, as seen 

in Figure 8. The height of a collinear layout is defined as the number of distinct horizontal tracks 

used for routing the edges. As shown in the following theorem, efficient collinear layouts can be 

produced using the one-separator theorem for binary trees. (In fact, Yannakakis [31] has shown 

that a minimum height layout can be obtained for a given N-vertex tree in O(N lg N) time.) 

Lemma 3. Every N -vertex binary tree has a collinear layout with height no greater than 
lgN. 

Proof. Using the one-separator theorem, first separate the tree. If either component contains 

more than N /2 vertices, separate it into two smaller components using the one-separator theorem 

again. Next, recursively construct collinear layouts for each subforest, and place these layouts 
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Figure 8: The construction of a collinear layout. 

side-by-side along th<' baseline. Finally, as shown in Fip:ure 8, conned the t.wo (or thr<'P) subfores1.s 

by routing the separator edges on distinct vertical tracks and along a common horizontal track. 

(For two components this is trivial since only edge is rout.ed ; for three components, place the 

su bforest connected to both other su bforests in the middle as shown.) For each node there are 
three vertical t racks to accornodate edges incident to that node. 

The height of the layout is determined by a simple recurrence relation. Let h(N) be the height 

of the layout, so that h(l) = 0, and in general, 

h(N) $ h(lN /2J) + 1. 

A straightforward calculation yields h(N) $ lg N. I 

Corollary 4. Any binary tree with N vertices can be bisected into components of aizes 
l N /2 J and r N /21 by removing at most lg N edges. 

Proof. Consider the vertical I.inc that passes midway through the collinear layout. It bisects 
the N vertices and the number of edges it cu ts is no more than lg N, the height of the layout. I 

The collinear layout can also be used to make a configurable chip of N vertices which can 

realize any N-vertex binary tree. The chip consists of N collinear vertices, wit.h three vertical 

wires connected to each vertex, and lgN contacts along each vertical wire. Every N-vertex 

binary t ree can be configured on this chip by specifying one extra custom layer. The custom 

layer consists of the portions of the wires in the collinear layout that run horizontally. The 

horizontal wires run between the rows of contacts, and spurs to the contacts make connections. 

An unattractive- feature of the configurable chip is that a difTerent mask must be designed for 

each tree. Not surprisingly, t.he same idea can be used to design a restructurablf chip for trees, 

where the chip is customized (for example, by laser) after fabrication. Once again, the collinear 

layout serves as the basis for the design. The restruct.urable chip consists of vertical wires running 

the height of the layout on one layer, and horizontal wires running the width of the layout on 
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Figure 9 : A Type D nstructurablc chip which can be used to assemble 

large binary trees by making and breaking connections. 

another. By using laser weld~ to connec t various horizontal wires to appropriate vertical wires, 

and laser trimming to break horizontal wi res, any tree can be realized in accordance with its 
collinear layout. The number of connections made or broken is O(N). 

This restructurable layout also suggests a method of packaging arbitrary binary trees using a 

single Type D restructurable chip, which is shown in Figure 9. From each of the collinear vertices, 
three vertical wires are run . At every intersection of a horizontal and vertical wire is a weld point 
which can be programmed after fabrication . Each horizontal wire is connected to pins at either 
end. 

Theorem 5. Suppose Type D chips each contain M vertices and n horizontal wires. Then 

any binary tree with N = 2n vertices can be realized with f N / Ml Type D chips. 

Proof. Take the r NI Ml chips and place them side by side in the natural way hooking up 
adjacent pins. Following Lemma 3, draw a collinear layout of height at most lg N for the N -vertex 
tree. Map· the layout onto the assembly in the obvious manner. Make and break connections on 
each chip to realize the layout.I 

Unfortunately, if a tree with more than 2n vertices were required, this chip might not be 
able to configure it. In the next section a better packaging scheme is developed whereby one 
restructurable chip containing M vertices in linear area and O(lg M) pins, can be used to package 
arbitrarily large binary trees. 

Some restructurable technologies do not allow connections to be broken, and thus the scheme 

of Theorem 5 will not work. A nai've alternative is to break every horizontal wire into M unit 
length segments. Each segment can be connected to vertical wires and to its neighboring segments 

on the same horizontal track. Unfortunately, programming the interconnect requires a large 
number of welds to be made on an edge connecting two vert ices. The scheme from Theorem 5 
requires only two welds for each edge. 

Figure 10 shows a Type E restructurable chip which can realize any tree by making, but not 
breaking, connections such that only two welds are required per edge. The chip has M = 2m 
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Figure 10: A Type E restructurable chip which can be used to assemble 

large binary trees without breaking. connections. 

vertices and n horizontal tracks which are divided into groups. The first group contains one 
horizontal track which consists of M /2 unit length wire segments. The second group contains 
two horizontal tracks, each with M /4 wire segments of length 2. In general, for i = 1, 2, ... ,m, 
the ith group contains i tracks, each with M /2i wire segments of length 2i. The remainder of the 

horizontal tracks are in group m + 1. Bach of these tracks has one wire of length M connected 
off chip. 

Theorem 6. Suppou Type E chips each contain M = 2m vertices and n horizontal tracks. 

Then any binary tree with N = c2v'2n vertices can be realized with f N / Ml Type E chips, 
where c is a constant {c :=:::: 1 / ./2 ). 

Proof. Lay the r NI Ml chips side by side, and connect the pins to continue the on-chip 
grouping scheme such that for i = 1, 2, ... , lg N, group i contains i tracks, each with N /2' wire 
segments·· of length 2i. The total number of horizontal tracks is 

h(N) = 1 + 2 + · · · + lg N 

= ½ lgN(lgN + 1) 
~ ½(lgc + v2n)(1gc + v2n + 1) 

1 = n--, 
8 

for c = 1/./2, and thus n tracks are sufficient. 

Observe that this assembly withou t its top group of lg N horizontal wires forms two smaller 
versions of itself. To realize a given tree, remove the lg N bisector edges as in Corollary 4, 
and recursively lay out the equal size components within the two smaller layouts. Combine the 

sublayouts by routing the bisector edges along the top group of wires that run across the layout. 

Since two connections arc formed for each tree edge, the total number of welds is 2N - 2.1 
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Figure 11: At some point, a window of sizt n / 2 slid along the base of 

the two-color collinear layout must contain half the white and half the black 

vertices. 

4. Two-color bisector theorems 

Although the Type D restructurable chip with M vertices and 2n pin connections provides 
one way to package large trees, it suffers two disadvantages. First, it cannot be used to assemble 
trees with more than 2" vertices. Second, and more important, the chip is wasteful in area. In 
fact, although every N-vertex tree can be laid out in O(N) area !16, 30], a collinear layout for the 
complete binary t ree requires at least O(N lg N) area [5, 16]. Thus we arc led to ask: Does there 
exist a restructurable chip with M vertices, occupying O(M) area, and having few pins which can 
realize every binary tree, no matter how large? 

In the next section we answer this question affirmatively. The question is fairly subtle, 
however, and does not follow as a straightforward application of the separator theorem. While we 

can effectively use t he separator theorem to recursively bisect a t ree into equal size components (as 
in Theorem 6), there is nothing to bound the number of external edges that connect a component 
to the rest of the tree. Thus for example, suppose we designed a chip with M vertices and P pins 
for packaging arbitrarily large trees. How can we guarantee that every tree can be decomposed 
into subgraphs of size at most M such that each component has no more than P external edges? 

In this section we introduce the notion of two-color bisector theorems which can be used to 
recursively bisect a graph while also bounding the number of external edges into each component. 
Moreover, trees have small two-color bisector theorems, so that the number of external edges into 

a component is also small. These results use arguments from the previous section. In the next 
section, we apply two-color bisector theorems to design an optimal packaging scheme for binary 
trees. 

Definition. Suppose that an N -vertex graph G has b black vertices and w white vertices. A 
two-color bisector for G is a set of edges whose removal bisects G into two subgraphs each of 

size at least l N /2 J, and such that each contains at least l b/2 J black end l w /2 J white vertices. 
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Figure 12: To keep the number of external connections to all subcom­

ponents small when a component is bisected, the external connections must 

be evenly divided betwten the subcomponents. 

Theorem 7. Every N -•1ertex forest of binary trees has a two-color bisector of size 2 lg N. 

Proof. Following Lemma 3, construct a collinear layout of height at most lg N. Suppose 
there are b black vert ices and N - b white vertices. Consider a "window" which overlaps lN /2j 
consecutive vertices, and place it over the leftmost lN /2j vertices. If more than fb/21 black 
vertices fall within the window, slide the window one position to the right. Observe that by 
sliding the window one position, the number of black vertices within the window changes by at 

most one. Furthermore, by sliding the window all the way to the right, less than lb/2J black 
vertices would fall within the window. Consequently, there must be an intermediate placement 

of the window (sec Figure 11) in which at least lb/2J black vertices and at least l(N - b)/ 2J white 
vertices arc contained within the window. (Such a placement can be obtained in linear time.) 

Draw vertical lines through the endpoints of the window in the position obtained above. The 
edges of the forest intersecting these lines form a two-color bisector of the forest. The size of this 

two-color bisector is no more than twice the height of the layout. Thus the size of the two-color 
bisector is··no more than 2 lg N.I 

For our purposes the following variant of two-color bisectors is more suitable. Suppose each 
vertex of an N -vertex forest is assigned a weight from a bounded set {1, 2, .. . , k} of weights. We 
wish to bisect the forest into two subforests, each of size at least lN /2J, whose total weights 
differ by at most k. How many edges need be cut? Adapting the argument for two-color bisectors 
to this variant in a straightforward manner shows.again that 2 lg N cuts suffice. 

Having obtained bounds on the size of two-color bisect ors for forests, we wish to use them 
for partitioning an arbitrarily large binary tree into subforests of size at most M so that every 
subforest has few edges connected to vertices in other subforests. This result is established in 
the following theorem. 

Theorem 8. Every N-vertex binary tree can be partitioned into f N / Ml sub forests, each of 

size at most M, such that no sub forest has more than 4 lg M + 8 edges connected to vertices 

in other subforests. 

12 



!'roof. W1• prov<' t.h(' Ll1<·or<'rt1 l'or i.hP <'a~w wh<·n N =:/A/. The' µ;e'lll 'ral 1'as1· 111ay hP pron·d 

si111ilarly, b11t. we omit. l.tt<' t.1•dious d<'l.ails ol' t.h1· a11alysis. /1.s in Tlll'or<'ll1 Ii, bisPc1. i hi• Lr<'<· i11to two 

subfor<'st.s. Ca<'h of' sir.<' :d. kast. lN /2j. by l'1Jt.t.i11p; 110 mor<' t ha11 Ip; N cdp;<'s. Split. <'a<'h subfor<'st, 
rc<'ursivdy as follows. For cad1 Vl'rt.ex i11 a rer11rsivcly split. 1·0111po11cnt of siz<' m assign a W<'ip;ht 

<'qua! Lo the 1111111bPr of' edges i11cidcnt Lo that vcrkx and whil'h were rut. at a prrvious kvel. Since 

the drgrc<' of a vnt.<'x is ;1!, most. t.hr<'<', t.11<' W<'i p;h t. assip;11<'d t.o a vNt.rx is at. most. 2. From I.he 
argument. f'ollowing Theorem i, t.hN<' is a weight.Pd bisN·t.or of' sir.c no grcal.N than 2 lgm fort.he 

compo11ent. This weighted bisector divides Lhc numbl'r of external connect.ions almost. equally 
(tire difkrcnl'e is at. most. two) bet.ween Lh<' subrn111poncnt.s of sir.cs lm/2j and fm/21- As seen in 
Figure 12, Lh<' number of' external co1111<'clio11s int.o either of the new s11bcompo11e11t.s is no more 
t.han the sir.r of the weighted bisect.or plus one-half' Lill~ nurnbN of external connections into the 
c-ornponcnt just split. (plus two). This recursive ckcomposit.ion terminates when each component 

has size at most. M. Lett ing [(m) be the' numl)('r of' Pxt.erna l con n<'cl.ions into any compon011t. of 
sir.em, we have [(N) = 0, and 

c(m) ~ ½E(2m) + 2lg(2m) + 2. 

A lit.tic calculation shows that €( m) ~ 4 lg m+8. This means that. every su bforest of size min the 

recursive decomposi t ion has at most 4 lgm + 8 external edges to other subforests. Substituting 
M for m, the result follows. I 
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Figure 13: A k-by-k restructurable permuter can realize any set of one­

to-one connections between the terminals on the two sides. 

5. An optimal packaging scheme 

The recursive decomposition of Theorem 8 leads directly to the design of an efficient restruc­
turable chip which can be used in quantity to assemble any tree. This Type F restructurable 
chip has M vertices, O(lg M) pins, and an O(M) area layout. This packaging scheme is the best 
possible when all vertices on the chips arc ut ilized. 

The design of the Type F chip uses restructurable permuters. A permuter Pk has k terminals 
on each side of a rectangle and can realize any one-to-one connection between the terminals. The 
switch shown in Figu re 13 implements a permuter. It has dimensions 2k X k, with the terminals 
along the longer sides. 

The construction of the Type F restructurablc chip is recursive and follows the recursive 
decomposition of Theorem 8. We shall use Rm to denote a level of the recursive layout with m 
vertices, ~nd let RM denote the restructurable Type F chip of M vertices itself. Figure 14 shows 
how the Type F chip RM is constructed from fou r copies of RM/4 , four copies of P4JgM, and 
two copies of P41g M +4 · Letting S( M) be the length of the side of the layout, we have S(l) = 1 
and, 

S(M) ::; 2S(M/4) + 0(lg M), 

which yields S(M) = O(-/M), so that the area is linear in M. T he number of pins on RM is 
4 lg M + 8. We now show that every large tree can be assembled using RM. 

T h eorem 9. Suppose Type F chips each contain M vertices. Then any N-vertex binary 

tree can be assembled using r N I Ml Type F chips, the minimum possible. 

Proof. As before, we assume that N = 2' M, although the result extends in a straightforward 
manner to the general case. Following Theorem 8, decompose t he t ree into r N / Ml components, 
each of size at most M and having no more than 1 lg M + 8 external edges to other components. 
Each of the r N I Ml components can be realized on a single Type F chip RM, To see this, use 
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Figure 14: The Type F restructurable chip llM which can be used to 

a.~semble arbitrarily large binary tree$. 

Theorem 8 to recu rsively decompose each component into single vertices. In this decomposition 

each subforest of size m has at most 4 lg m + 8 external edges. This decomposition may now 
be mapped directly onto the chip, using the permuters to route edges between different subcom­
ponents. Since the number of external edges at any level is no greater than the size of the 
permuters at that level, the pcrmuters can realize the desired routing. Vertices of the tree are 
embedded at fixed positions in the lowest level permuters />1• Finally, each chip has enough pin 
connections so that the assembly can be completed ofT-chip by connecting the chips together as 
required by the original decomposition. (Permuters arc not needed off chip because wires can be 
routed directly.)I 

The constant factors on area can be improved if one uses the smaller restructurablc permuter 

Pk with dimensions (k+O(vk)) X (k+O(vk)) that follows from the channel routing algorithm of 
[l]. Whereas the simpler permuter from Figure 13 requires only two welds to make a connection, 
the more ·dense layout might require as many as k welds for each connection. Although the total 

number of welds required by either scheme is O(M), the number per wire is O(lg M) if the simpler 
switch is used and O(lg2 M) if the channel-routing permuter is used. 

In related work, Rosenberg [25] has also considered permuters to obtain a degree of configu­
rability in layouts. 

6. Extensions and conclusions 

All the layout techniques presented here extend to more general classes of graphs. In par­

ticular, the techniques extend to classes of graphs not closed under the subgraph relat ion by 

extending the definition of separator theorems as in 16 or 14 to apply recursively to graphs 
generated by the separator. For example, graphs with n<>-separator theorems have linear-area 

restructurablc layouts if o < 1/2. When o = 1/2, the a rea is O(n lg:l n), and if o > 1/2, the area 

is 0( n Zcr ) . These area bounds match the layout areas of 16 and 30 while requiring the layouts to 
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IH' n•st.ructurahl<'. In each ra:w th<' nurnlH'r ol' pi11s 011 a rhip is 0 (11°) ii' et> 0, and O(lµ;n) ii' 

(l' = 0. 

Thcs<' hounds ar<' obtained by rC'cursiv<'l y usin.g- lhe si•f>at:1.t.or t,h<'ol<'rn to pr--Oducc a C'ollinear 

layout. and then chopping the layout with t.wo t·ut.:,,, l.11- ·y~1•kf.. ;i; t.wrH·olor his<'ct.M. There is one 

technical dclail in using the extended notion!-i ol'.s1•p-:tr;tlttr.t~r<'Jn:;.in 16 and 1-1 to accomplish 

tlw cuts of' t.he collinear layouts sirH'e we must. mak<' sun• that. th<' t.wo-<'olor bis<'ct.or th<'orcrn 

applies recursively to the two halves of th<' graph. Hat.her than just. c11Uing the <'dges incid<'nt to 

the two vertical lines, one must in addition cut a constant factor mor<' edges in order that each of 

the subgraphs generated by the two-<'olor bised.or is the union ol' disjoint. subgraphs g<'neratPd by 

the separator theorem. A more general divid<'-and-con<Jll<'r framework for this problem is given 

in [3]. 

The methods for tree assembly considcr'cd in this paper have all assumed t hat the overall 

utilization of t h(' chips is 100 pl'rccnl. sp<•rilically, only r /V / Ml chips arc IJS('d to assemble 

an N-vert<'X tree with chips that hold M vertices. Not ·sur--pristnp;ly, if the assumption of full 

utilization is relaxed, fewer pins arc needed. In particular, we can guarantee 50 percen t utilization 
with six-pin chips using an idea due to Tom Leighton. 

The assembly is generated recursively as in Section 5. At each step of the divide-and-conquer 

construction, there is a su bforest A with at most six external connections. This su bforcst can 

always be split into two components, each containing at least one-sixth of the nodes and at most 

six external connections. We first use the standard separator theorem to remove one edge that 

splits A into two components B and C with at worst a ½ : J ratio. The only case to worry about 

is if all the original external connections are incident to B ( or to C) because the newly removed 
edge will now give B seven external connections. If this bad split indeed occurs, we split B further 

into B1 and B2 so that the seven connections are divided 3: 4. (There is no constraint on the 

ratio of the size of B1 to B2 .) Finally, we take whichever of B1 an<l 8 2 is smaller and combine it 
with C. Of the two remaining components, neither has more than six external connections, and 

each has at least llAIJ/6 vertices. 

The recursion terminates when any subforest has M or fewer vertices, in which case the 

subforest is embedded on a Type F chip. Of course, only six of the O(lg M) connections are 

actually ~sed. The assembly method will never require more than 2f N /(M + l)l chips. The 
worst case occurs when every branch of the recursion terminates with the splitting of a subforest 

of size M + 1. Higher utilization can be attained at the expense of more pins by generalizing this 
technique. 

Since our discovery of two-color bisectors and their relation to restructurable layouts, they 
have been used in other VLSI layout problems. Based on partial knowledge of our work, Leighton 

12 showed independently that any graph t hat has a y'n-separator theorem can be embedded in his 

"tree of meshes," which is similar to the restructurable layout obtained when f(n) = Jn. He and 

Rosenberg 13 have also used three-color bisector theorems to obtain optimal three-dimensional 
VLSI layouts. 

The use of the collinear layout for obtaining a two-color bisector theorem from a separator 

theorem is combinatorially appealing, and can be recast as a necklace problem. Given a necklace 

of black and white pearls, how many cuts are necessary in order to divide the necklace into 

two pieces such that each of the pieces has the same (to within one) number of pearls of each 
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rnlor? Tltc oh\'ious ext<•11sio11 is Lo ask how many <'lib ar<' ll('('('ssary to divid<' a ll<'<'kla<·<' of' k 
rnlors. ll nl'or t un at.cly, the 11aive idea ol' sliding a window ac-ross tlH· rnllinear layout !'ails Lo work 

ii' k ~ ;3. lfrcently, Coldbc-rg and W<'st 11 at Princeton, h<'aring ol' our op<'n prohl<'m, developed 

an Plegnnt, topological argument to show that k cuts suflicc, whid1 is tight in that k cuts arc 
necessary in some cases. This result implies, for example, that trees with k colors have 0( k lg n) 
k-color bisectors and planar graphs with k colors have O(kfo) k-color bisectors. 
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